Merge branch 'timers-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kexec.c
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/spinlock.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33
34 #include <asm/page.h>
35 #include <asm/uaccess.h>
36 #include <asm/io.h>
37 #include <asm/system.h>
38 #include <asm/sections.h>
39
40 /* Per cpu memory for storing cpu states in case of system crash. */
41 note_buf_t* crash_notes;
42
43 /* vmcoreinfo stuff */
44 unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
45 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
46 size_t vmcoreinfo_size;
47 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
48
49 /* Location of the reserved area for the crash kernel */
50 struct resource crashk_res = {
51 .name = "Crash kernel",
52 .start = 0,
53 .end = 0,
54 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
55 };
56
57 int kexec_should_crash(struct task_struct *p)
58 {
59 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
60 return 1;
61 return 0;
62 }
63
64 /*
65 * When kexec transitions to the new kernel there is a one-to-one
66 * mapping between physical and virtual addresses. On processors
67 * where you can disable the MMU this is trivial, and easy. For
68 * others it is still a simple predictable page table to setup.
69 *
70 * In that environment kexec copies the new kernel to its final
71 * resting place. This means I can only support memory whose
72 * physical address can fit in an unsigned long. In particular
73 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
74 * If the assembly stub has more restrictive requirements
75 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
76 * defined more restrictively in <asm/kexec.h>.
77 *
78 * The code for the transition from the current kernel to the
79 * the new kernel is placed in the control_code_buffer, whose size
80 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
81 * page of memory is necessary, but some architectures require more.
82 * Because this memory must be identity mapped in the transition from
83 * virtual to physical addresses it must live in the range
84 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
85 * modifiable.
86 *
87 * The assembly stub in the control code buffer is passed a linked list
88 * of descriptor pages detailing the source pages of the new kernel,
89 * and the destination addresses of those source pages. As this data
90 * structure is not used in the context of the current OS, it must
91 * be self-contained.
92 *
93 * The code has been made to work with highmem pages and will use a
94 * destination page in its final resting place (if it happens
95 * to allocate it). The end product of this is that most of the
96 * physical address space, and most of RAM can be used.
97 *
98 * Future directions include:
99 * - allocating a page table with the control code buffer identity
100 * mapped, to simplify machine_kexec and make kexec_on_panic more
101 * reliable.
102 */
103
104 /*
105 * KIMAGE_NO_DEST is an impossible destination address..., for
106 * allocating pages whose destination address we do not care about.
107 */
108 #define KIMAGE_NO_DEST (-1UL)
109
110 static int kimage_is_destination_range(struct kimage *image,
111 unsigned long start, unsigned long end);
112 static struct page *kimage_alloc_page(struct kimage *image,
113 gfp_t gfp_mask,
114 unsigned long dest);
115
116 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
117 unsigned long nr_segments,
118 struct kexec_segment __user *segments)
119 {
120 size_t segment_bytes;
121 struct kimage *image;
122 unsigned long i;
123 int result;
124
125 /* Allocate a controlling structure */
126 result = -ENOMEM;
127 image = kzalloc(sizeof(*image), GFP_KERNEL);
128 if (!image)
129 goto out;
130
131 image->head = 0;
132 image->entry = &image->head;
133 image->last_entry = &image->head;
134 image->control_page = ~0; /* By default this does not apply */
135 image->start = entry;
136 image->type = KEXEC_TYPE_DEFAULT;
137
138 /* Initialize the list of control pages */
139 INIT_LIST_HEAD(&image->control_pages);
140
141 /* Initialize the list of destination pages */
142 INIT_LIST_HEAD(&image->dest_pages);
143
144 /* Initialize the list of unuseable pages */
145 INIT_LIST_HEAD(&image->unuseable_pages);
146
147 /* Read in the segments */
148 image->nr_segments = nr_segments;
149 segment_bytes = nr_segments * sizeof(*segments);
150 result = copy_from_user(image->segment, segments, segment_bytes);
151 if (result)
152 goto out;
153
154 /*
155 * Verify we have good destination addresses. The caller is
156 * responsible for making certain we don't attempt to load
157 * the new image into invalid or reserved areas of RAM. This
158 * just verifies it is an address we can use.
159 *
160 * Since the kernel does everything in page size chunks ensure
161 * the destination addreses are page aligned. Too many
162 * special cases crop of when we don't do this. The most
163 * insidious is getting overlapping destination addresses
164 * simply because addresses are changed to page size
165 * granularity.
166 */
167 result = -EADDRNOTAVAIL;
168 for (i = 0; i < nr_segments; i++) {
169 unsigned long mstart, mend;
170
171 mstart = image->segment[i].mem;
172 mend = mstart + image->segment[i].memsz;
173 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
174 goto out;
175 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
176 goto out;
177 }
178
179 /* Verify our destination addresses do not overlap.
180 * If we alloed overlapping destination addresses
181 * through very weird things can happen with no
182 * easy explanation as one segment stops on another.
183 */
184 result = -EINVAL;
185 for (i = 0; i < nr_segments; i++) {
186 unsigned long mstart, mend;
187 unsigned long j;
188
189 mstart = image->segment[i].mem;
190 mend = mstart + image->segment[i].memsz;
191 for (j = 0; j < i; j++) {
192 unsigned long pstart, pend;
193 pstart = image->segment[j].mem;
194 pend = pstart + image->segment[j].memsz;
195 /* Do the segments overlap ? */
196 if ((mend > pstart) && (mstart < pend))
197 goto out;
198 }
199 }
200
201 /* Ensure our buffer sizes are strictly less than
202 * our memory sizes. This should always be the case,
203 * and it is easier to check up front than to be surprised
204 * later on.
205 */
206 result = -EINVAL;
207 for (i = 0; i < nr_segments; i++) {
208 if (image->segment[i].bufsz > image->segment[i].memsz)
209 goto out;
210 }
211
212 result = 0;
213 out:
214 if (result == 0)
215 *rimage = image;
216 else
217 kfree(image);
218
219 return result;
220
221 }
222
223 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
224 unsigned long nr_segments,
225 struct kexec_segment __user *segments)
226 {
227 int result;
228 struct kimage *image;
229
230 /* Allocate and initialize a controlling structure */
231 image = NULL;
232 result = do_kimage_alloc(&image, entry, nr_segments, segments);
233 if (result)
234 goto out;
235
236 *rimage = image;
237
238 /*
239 * Find a location for the control code buffer, and add it
240 * the vector of segments so that it's pages will also be
241 * counted as destination pages.
242 */
243 result = -ENOMEM;
244 image->control_code_page = kimage_alloc_control_pages(image,
245 get_order(KEXEC_CONTROL_CODE_SIZE));
246 if (!image->control_code_page) {
247 printk(KERN_ERR "Could not allocate control_code_buffer\n");
248 goto out;
249 }
250
251 image->swap_page = kimage_alloc_control_pages(image, 0);
252 if (!image->swap_page) {
253 printk(KERN_ERR "Could not allocate swap buffer\n");
254 goto out;
255 }
256
257 result = 0;
258 out:
259 if (result == 0)
260 *rimage = image;
261 else
262 kfree(image);
263
264 return result;
265 }
266
267 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
268 unsigned long nr_segments,
269 struct kexec_segment __user *segments)
270 {
271 int result;
272 struct kimage *image;
273 unsigned long i;
274
275 image = NULL;
276 /* Verify we have a valid entry point */
277 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
278 result = -EADDRNOTAVAIL;
279 goto out;
280 }
281
282 /* Allocate and initialize a controlling structure */
283 result = do_kimage_alloc(&image, entry, nr_segments, segments);
284 if (result)
285 goto out;
286
287 /* Enable the special crash kernel control page
288 * allocation policy.
289 */
290 image->control_page = crashk_res.start;
291 image->type = KEXEC_TYPE_CRASH;
292
293 /*
294 * Verify we have good destination addresses. Normally
295 * the caller is responsible for making certain we don't
296 * attempt to load the new image into invalid or reserved
297 * areas of RAM. But crash kernels are preloaded into a
298 * reserved area of ram. We must ensure the addresses
299 * are in the reserved area otherwise preloading the
300 * kernel could corrupt things.
301 */
302 result = -EADDRNOTAVAIL;
303 for (i = 0; i < nr_segments; i++) {
304 unsigned long mstart, mend;
305
306 mstart = image->segment[i].mem;
307 mend = mstart + image->segment[i].memsz - 1;
308 /* Ensure we are within the crash kernel limits */
309 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
310 goto out;
311 }
312
313 /*
314 * Find a location for the control code buffer, and add
315 * the vector of segments so that it's pages will also be
316 * counted as destination pages.
317 */
318 result = -ENOMEM;
319 image->control_code_page = kimage_alloc_control_pages(image,
320 get_order(KEXEC_CONTROL_CODE_SIZE));
321 if (!image->control_code_page) {
322 printk(KERN_ERR "Could not allocate control_code_buffer\n");
323 goto out;
324 }
325
326 result = 0;
327 out:
328 if (result == 0)
329 *rimage = image;
330 else
331 kfree(image);
332
333 return result;
334 }
335
336 static int kimage_is_destination_range(struct kimage *image,
337 unsigned long start,
338 unsigned long end)
339 {
340 unsigned long i;
341
342 for (i = 0; i < image->nr_segments; i++) {
343 unsigned long mstart, mend;
344
345 mstart = image->segment[i].mem;
346 mend = mstart + image->segment[i].memsz;
347 if ((end > mstart) && (start < mend))
348 return 1;
349 }
350
351 return 0;
352 }
353
354 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
355 {
356 struct page *pages;
357
358 pages = alloc_pages(gfp_mask, order);
359 if (pages) {
360 unsigned int count, i;
361 pages->mapping = NULL;
362 set_page_private(pages, order);
363 count = 1 << order;
364 for (i = 0; i < count; i++)
365 SetPageReserved(pages + i);
366 }
367
368 return pages;
369 }
370
371 static void kimage_free_pages(struct page *page)
372 {
373 unsigned int order, count, i;
374
375 order = page_private(page);
376 count = 1 << order;
377 for (i = 0; i < count; i++)
378 ClearPageReserved(page + i);
379 __free_pages(page, order);
380 }
381
382 static void kimage_free_page_list(struct list_head *list)
383 {
384 struct list_head *pos, *next;
385
386 list_for_each_safe(pos, next, list) {
387 struct page *page;
388
389 page = list_entry(pos, struct page, lru);
390 list_del(&page->lru);
391 kimage_free_pages(page);
392 }
393 }
394
395 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
396 unsigned int order)
397 {
398 /* Control pages are special, they are the intermediaries
399 * that are needed while we copy the rest of the pages
400 * to their final resting place. As such they must
401 * not conflict with either the destination addresses
402 * or memory the kernel is already using.
403 *
404 * The only case where we really need more than one of
405 * these are for architectures where we cannot disable
406 * the MMU and must instead generate an identity mapped
407 * page table for all of the memory.
408 *
409 * At worst this runs in O(N) of the image size.
410 */
411 struct list_head extra_pages;
412 struct page *pages;
413 unsigned int count;
414
415 count = 1 << order;
416 INIT_LIST_HEAD(&extra_pages);
417
418 /* Loop while I can allocate a page and the page allocated
419 * is a destination page.
420 */
421 do {
422 unsigned long pfn, epfn, addr, eaddr;
423
424 pages = kimage_alloc_pages(GFP_KERNEL, order);
425 if (!pages)
426 break;
427 pfn = page_to_pfn(pages);
428 epfn = pfn + count;
429 addr = pfn << PAGE_SHIFT;
430 eaddr = epfn << PAGE_SHIFT;
431 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
432 kimage_is_destination_range(image, addr, eaddr)) {
433 list_add(&pages->lru, &extra_pages);
434 pages = NULL;
435 }
436 } while (!pages);
437
438 if (pages) {
439 /* Remember the allocated page... */
440 list_add(&pages->lru, &image->control_pages);
441
442 /* Because the page is already in it's destination
443 * location we will never allocate another page at
444 * that address. Therefore kimage_alloc_pages
445 * will not return it (again) and we don't need
446 * to give it an entry in image->segment[].
447 */
448 }
449 /* Deal with the destination pages I have inadvertently allocated.
450 *
451 * Ideally I would convert multi-page allocations into single
452 * page allocations, and add everyting to image->dest_pages.
453 *
454 * For now it is simpler to just free the pages.
455 */
456 kimage_free_page_list(&extra_pages);
457
458 return pages;
459 }
460
461 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
462 unsigned int order)
463 {
464 /* Control pages are special, they are the intermediaries
465 * that are needed while we copy the rest of the pages
466 * to their final resting place. As such they must
467 * not conflict with either the destination addresses
468 * or memory the kernel is already using.
469 *
470 * Control pages are also the only pags we must allocate
471 * when loading a crash kernel. All of the other pages
472 * are specified by the segments and we just memcpy
473 * into them directly.
474 *
475 * The only case where we really need more than one of
476 * these are for architectures where we cannot disable
477 * the MMU and must instead generate an identity mapped
478 * page table for all of the memory.
479 *
480 * Given the low demand this implements a very simple
481 * allocator that finds the first hole of the appropriate
482 * size in the reserved memory region, and allocates all
483 * of the memory up to and including the hole.
484 */
485 unsigned long hole_start, hole_end, size;
486 struct page *pages;
487
488 pages = NULL;
489 size = (1 << order) << PAGE_SHIFT;
490 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
491 hole_end = hole_start + size - 1;
492 while (hole_end <= crashk_res.end) {
493 unsigned long i;
494
495 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
496 break;
497 if (hole_end > crashk_res.end)
498 break;
499 /* See if I overlap any of the segments */
500 for (i = 0; i < image->nr_segments; i++) {
501 unsigned long mstart, mend;
502
503 mstart = image->segment[i].mem;
504 mend = mstart + image->segment[i].memsz - 1;
505 if ((hole_end >= mstart) && (hole_start <= mend)) {
506 /* Advance the hole to the end of the segment */
507 hole_start = (mend + (size - 1)) & ~(size - 1);
508 hole_end = hole_start + size - 1;
509 break;
510 }
511 }
512 /* If I don't overlap any segments I have found my hole! */
513 if (i == image->nr_segments) {
514 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
515 break;
516 }
517 }
518 if (pages)
519 image->control_page = hole_end;
520
521 return pages;
522 }
523
524
525 struct page *kimage_alloc_control_pages(struct kimage *image,
526 unsigned int order)
527 {
528 struct page *pages = NULL;
529
530 switch (image->type) {
531 case KEXEC_TYPE_DEFAULT:
532 pages = kimage_alloc_normal_control_pages(image, order);
533 break;
534 case KEXEC_TYPE_CRASH:
535 pages = kimage_alloc_crash_control_pages(image, order);
536 break;
537 }
538
539 return pages;
540 }
541
542 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
543 {
544 if (*image->entry != 0)
545 image->entry++;
546
547 if (image->entry == image->last_entry) {
548 kimage_entry_t *ind_page;
549 struct page *page;
550
551 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
552 if (!page)
553 return -ENOMEM;
554
555 ind_page = page_address(page);
556 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
557 image->entry = ind_page;
558 image->last_entry = ind_page +
559 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
560 }
561 *image->entry = entry;
562 image->entry++;
563 *image->entry = 0;
564
565 return 0;
566 }
567
568 static int kimage_set_destination(struct kimage *image,
569 unsigned long destination)
570 {
571 int result;
572
573 destination &= PAGE_MASK;
574 result = kimage_add_entry(image, destination | IND_DESTINATION);
575 if (result == 0)
576 image->destination = destination;
577
578 return result;
579 }
580
581
582 static int kimage_add_page(struct kimage *image, unsigned long page)
583 {
584 int result;
585
586 page &= PAGE_MASK;
587 result = kimage_add_entry(image, page | IND_SOURCE);
588 if (result == 0)
589 image->destination += PAGE_SIZE;
590
591 return result;
592 }
593
594
595 static void kimage_free_extra_pages(struct kimage *image)
596 {
597 /* Walk through and free any extra destination pages I may have */
598 kimage_free_page_list(&image->dest_pages);
599
600 /* Walk through and free any unuseable pages I have cached */
601 kimage_free_page_list(&image->unuseable_pages);
602
603 }
604 static void kimage_terminate(struct kimage *image)
605 {
606 if (*image->entry != 0)
607 image->entry++;
608
609 *image->entry = IND_DONE;
610 }
611
612 #define for_each_kimage_entry(image, ptr, entry) \
613 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
614 ptr = (entry & IND_INDIRECTION)? \
615 phys_to_virt((entry & PAGE_MASK)): ptr +1)
616
617 static void kimage_free_entry(kimage_entry_t entry)
618 {
619 struct page *page;
620
621 page = pfn_to_page(entry >> PAGE_SHIFT);
622 kimage_free_pages(page);
623 }
624
625 static void kimage_free(struct kimage *image)
626 {
627 kimage_entry_t *ptr, entry;
628 kimage_entry_t ind = 0;
629
630 if (!image)
631 return;
632
633 kimage_free_extra_pages(image);
634 for_each_kimage_entry(image, ptr, entry) {
635 if (entry & IND_INDIRECTION) {
636 /* Free the previous indirection page */
637 if (ind & IND_INDIRECTION)
638 kimage_free_entry(ind);
639 /* Save this indirection page until we are
640 * done with it.
641 */
642 ind = entry;
643 }
644 else if (entry & IND_SOURCE)
645 kimage_free_entry(entry);
646 }
647 /* Free the final indirection page */
648 if (ind & IND_INDIRECTION)
649 kimage_free_entry(ind);
650
651 /* Handle any machine specific cleanup */
652 machine_kexec_cleanup(image);
653
654 /* Free the kexec control pages... */
655 kimage_free_page_list(&image->control_pages);
656 kfree(image);
657 }
658
659 static kimage_entry_t *kimage_dst_used(struct kimage *image,
660 unsigned long page)
661 {
662 kimage_entry_t *ptr, entry;
663 unsigned long destination = 0;
664
665 for_each_kimage_entry(image, ptr, entry) {
666 if (entry & IND_DESTINATION)
667 destination = entry & PAGE_MASK;
668 else if (entry & IND_SOURCE) {
669 if (page == destination)
670 return ptr;
671 destination += PAGE_SIZE;
672 }
673 }
674
675 return NULL;
676 }
677
678 static struct page *kimage_alloc_page(struct kimage *image,
679 gfp_t gfp_mask,
680 unsigned long destination)
681 {
682 /*
683 * Here we implement safeguards to ensure that a source page
684 * is not copied to its destination page before the data on
685 * the destination page is no longer useful.
686 *
687 * To do this we maintain the invariant that a source page is
688 * either its own destination page, or it is not a
689 * destination page at all.
690 *
691 * That is slightly stronger than required, but the proof
692 * that no problems will not occur is trivial, and the
693 * implementation is simply to verify.
694 *
695 * When allocating all pages normally this algorithm will run
696 * in O(N) time, but in the worst case it will run in O(N^2)
697 * time. If the runtime is a problem the data structures can
698 * be fixed.
699 */
700 struct page *page;
701 unsigned long addr;
702
703 /*
704 * Walk through the list of destination pages, and see if I
705 * have a match.
706 */
707 list_for_each_entry(page, &image->dest_pages, lru) {
708 addr = page_to_pfn(page) << PAGE_SHIFT;
709 if (addr == destination) {
710 list_del(&page->lru);
711 return page;
712 }
713 }
714 page = NULL;
715 while (1) {
716 kimage_entry_t *old;
717
718 /* Allocate a page, if we run out of memory give up */
719 page = kimage_alloc_pages(gfp_mask, 0);
720 if (!page)
721 return NULL;
722 /* If the page cannot be used file it away */
723 if (page_to_pfn(page) >
724 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
725 list_add(&page->lru, &image->unuseable_pages);
726 continue;
727 }
728 addr = page_to_pfn(page) << PAGE_SHIFT;
729
730 /* If it is the destination page we want use it */
731 if (addr == destination)
732 break;
733
734 /* If the page is not a destination page use it */
735 if (!kimage_is_destination_range(image, addr,
736 addr + PAGE_SIZE))
737 break;
738
739 /*
740 * I know that the page is someones destination page.
741 * See if there is already a source page for this
742 * destination page. And if so swap the source pages.
743 */
744 old = kimage_dst_used(image, addr);
745 if (old) {
746 /* If so move it */
747 unsigned long old_addr;
748 struct page *old_page;
749
750 old_addr = *old & PAGE_MASK;
751 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
752 copy_highpage(page, old_page);
753 *old = addr | (*old & ~PAGE_MASK);
754
755 /* The old page I have found cannot be a
756 * destination page, so return it.
757 */
758 addr = old_addr;
759 page = old_page;
760 break;
761 }
762 else {
763 /* Place the page on the destination list I
764 * will use it later.
765 */
766 list_add(&page->lru, &image->dest_pages);
767 }
768 }
769
770 return page;
771 }
772
773 static int kimage_load_normal_segment(struct kimage *image,
774 struct kexec_segment *segment)
775 {
776 unsigned long maddr;
777 unsigned long ubytes, mbytes;
778 int result;
779 unsigned char __user *buf;
780
781 result = 0;
782 buf = segment->buf;
783 ubytes = segment->bufsz;
784 mbytes = segment->memsz;
785 maddr = segment->mem;
786
787 result = kimage_set_destination(image, maddr);
788 if (result < 0)
789 goto out;
790
791 while (mbytes) {
792 struct page *page;
793 char *ptr;
794 size_t uchunk, mchunk;
795
796 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
797 if (!page) {
798 result = -ENOMEM;
799 goto out;
800 }
801 result = kimage_add_page(image, page_to_pfn(page)
802 << PAGE_SHIFT);
803 if (result < 0)
804 goto out;
805
806 ptr = kmap(page);
807 /* Start with a clear page */
808 memset(ptr, 0, PAGE_SIZE);
809 ptr += maddr & ~PAGE_MASK;
810 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
811 if (mchunk > mbytes)
812 mchunk = mbytes;
813
814 uchunk = mchunk;
815 if (uchunk > ubytes)
816 uchunk = ubytes;
817
818 result = copy_from_user(ptr, buf, uchunk);
819 kunmap(page);
820 if (result) {
821 result = (result < 0) ? result : -EIO;
822 goto out;
823 }
824 ubytes -= uchunk;
825 maddr += mchunk;
826 buf += mchunk;
827 mbytes -= mchunk;
828 }
829 out:
830 return result;
831 }
832
833 static int kimage_load_crash_segment(struct kimage *image,
834 struct kexec_segment *segment)
835 {
836 /* For crash dumps kernels we simply copy the data from
837 * user space to it's destination.
838 * We do things a page at a time for the sake of kmap.
839 */
840 unsigned long maddr;
841 unsigned long ubytes, mbytes;
842 int result;
843 unsigned char __user *buf;
844
845 result = 0;
846 buf = segment->buf;
847 ubytes = segment->bufsz;
848 mbytes = segment->memsz;
849 maddr = segment->mem;
850 while (mbytes) {
851 struct page *page;
852 char *ptr;
853 size_t uchunk, mchunk;
854
855 page = pfn_to_page(maddr >> PAGE_SHIFT);
856 if (!page) {
857 result = -ENOMEM;
858 goto out;
859 }
860 ptr = kmap(page);
861 ptr += maddr & ~PAGE_MASK;
862 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
863 if (mchunk > mbytes)
864 mchunk = mbytes;
865
866 uchunk = mchunk;
867 if (uchunk > ubytes) {
868 uchunk = ubytes;
869 /* Zero the trailing part of the page */
870 memset(ptr + uchunk, 0, mchunk - uchunk);
871 }
872 result = copy_from_user(ptr, buf, uchunk);
873 kexec_flush_icache_page(page);
874 kunmap(page);
875 if (result) {
876 result = (result < 0) ? result : -EIO;
877 goto out;
878 }
879 ubytes -= uchunk;
880 maddr += mchunk;
881 buf += mchunk;
882 mbytes -= mchunk;
883 }
884 out:
885 return result;
886 }
887
888 static int kimage_load_segment(struct kimage *image,
889 struct kexec_segment *segment)
890 {
891 int result = -ENOMEM;
892
893 switch (image->type) {
894 case KEXEC_TYPE_DEFAULT:
895 result = kimage_load_normal_segment(image, segment);
896 break;
897 case KEXEC_TYPE_CRASH:
898 result = kimage_load_crash_segment(image, segment);
899 break;
900 }
901
902 return result;
903 }
904
905 /*
906 * Exec Kernel system call: for obvious reasons only root may call it.
907 *
908 * This call breaks up into three pieces.
909 * - A generic part which loads the new kernel from the current
910 * address space, and very carefully places the data in the
911 * allocated pages.
912 *
913 * - A generic part that interacts with the kernel and tells all of
914 * the devices to shut down. Preventing on-going dmas, and placing
915 * the devices in a consistent state so a later kernel can
916 * reinitialize them.
917 *
918 * - A machine specific part that includes the syscall number
919 * and the copies the image to it's final destination. And
920 * jumps into the image at entry.
921 *
922 * kexec does not sync, or unmount filesystems so if you need
923 * that to happen you need to do that yourself.
924 */
925 struct kimage *kexec_image;
926 struct kimage *kexec_crash_image;
927 /*
928 * A home grown binary mutex.
929 * Nothing can wait so this mutex is safe to use
930 * in interrupt context :)
931 */
932 static int kexec_lock;
933
934 asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
935 struct kexec_segment __user *segments,
936 unsigned long flags)
937 {
938 struct kimage **dest_image, *image;
939 int locked;
940 int result;
941
942 /* We only trust the superuser with rebooting the system. */
943 if (!capable(CAP_SYS_BOOT))
944 return -EPERM;
945
946 /*
947 * Verify we have a legal set of flags
948 * This leaves us room for future extensions.
949 */
950 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
951 return -EINVAL;
952
953 /* Verify we are on the appropriate architecture */
954 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
955 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
956 return -EINVAL;
957
958 /* Put an artificial cap on the number
959 * of segments passed to kexec_load.
960 */
961 if (nr_segments > KEXEC_SEGMENT_MAX)
962 return -EINVAL;
963
964 image = NULL;
965 result = 0;
966
967 /* Because we write directly to the reserved memory
968 * region when loading crash kernels we need a mutex here to
969 * prevent multiple crash kernels from attempting to load
970 * simultaneously, and to prevent a crash kernel from loading
971 * over the top of a in use crash kernel.
972 *
973 * KISS: always take the mutex.
974 */
975 locked = xchg(&kexec_lock, 1);
976 if (locked)
977 return -EBUSY;
978
979 dest_image = &kexec_image;
980 if (flags & KEXEC_ON_CRASH)
981 dest_image = &kexec_crash_image;
982 if (nr_segments > 0) {
983 unsigned long i;
984
985 /* Loading another kernel to reboot into */
986 if ((flags & KEXEC_ON_CRASH) == 0)
987 result = kimage_normal_alloc(&image, entry,
988 nr_segments, segments);
989 /* Loading another kernel to switch to if this one crashes */
990 else if (flags & KEXEC_ON_CRASH) {
991 /* Free any current crash dump kernel before
992 * we corrupt it.
993 */
994 kimage_free(xchg(&kexec_crash_image, NULL));
995 result = kimage_crash_alloc(&image, entry,
996 nr_segments, segments);
997 }
998 if (result)
999 goto out;
1000
1001 if (flags & KEXEC_PRESERVE_CONTEXT)
1002 image->preserve_context = 1;
1003 result = machine_kexec_prepare(image);
1004 if (result)
1005 goto out;
1006
1007 for (i = 0; i < nr_segments; i++) {
1008 result = kimage_load_segment(image, &image->segment[i]);
1009 if (result)
1010 goto out;
1011 }
1012 kimage_terminate(image);
1013 }
1014 /* Install the new kernel, and Uninstall the old */
1015 image = xchg(dest_image, image);
1016
1017 out:
1018 locked = xchg(&kexec_lock, 0); /* Release the mutex */
1019 BUG_ON(!locked);
1020 kimage_free(image);
1021
1022 return result;
1023 }
1024
1025 #ifdef CONFIG_COMPAT
1026 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1027 unsigned long nr_segments,
1028 struct compat_kexec_segment __user *segments,
1029 unsigned long flags)
1030 {
1031 struct compat_kexec_segment in;
1032 struct kexec_segment out, __user *ksegments;
1033 unsigned long i, result;
1034
1035 /* Don't allow clients that don't understand the native
1036 * architecture to do anything.
1037 */
1038 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1039 return -EINVAL;
1040
1041 if (nr_segments > KEXEC_SEGMENT_MAX)
1042 return -EINVAL;
1043
1044 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1045 for (i=0; i < nr_segments; i++) {
1046 result = copy_from_user(&in, &segments[i], sizeof(in));
1047 if (result)
1048 return -EFAULT;
1049
1050 out.buf = compat_ptr(in.buf);
1051 out.bufsz = in.bufsz;
1052 out.mem = in.mem;
1053 out.memsz = in.memsz;
1054
1055 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1056 if (result)
1057 return -EFAULT;
1058 }
1059
1060 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1061 }
1062 #endif
1063
1064 void crash_kexec(struct pt_regs *regs)
1065 {
1066 int locked;
1067
1068
1069 /* Take the kexec_lock here to prevent sys_kexec_load
1070 * running on one cpu from replacing the crash kernel
1071 * we are using after a panic on a different cpu.
1072 *
1073 * If the crash kernel was not located in a fixed area
1074 * of memory the xchg(&kexec_crash_image) would be
1075 * sufficient. But since I reuse the memory...
1076 */
1077 locked = xchg(&kexec_lock, 1);
1078 if (!locked) {
1079 if (kexec_crash_image) {
1080 struct pt_regs fixed_regs;
1081 crash_setup_regs(&fixed_regs, regs);
1082 crash_save_vmcoreinfo();
1083 machine_crash_shutdown(&fixed_regs);
1084 machine_kexec(kexec_crash_image);
1085 }
1086 locked = xchg(&kexec_lock, 0);
1087 BUG_ON(!locked);
1088 }
1089 }
1090
1091 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1092 size_t data_len)
1093 {
1094 struct elf_note note;
1095
1096 note.n_namesz = strlen(name) + 1;
1097 note.n_descsz = data_len;
1098 note.n_type = type;
1099 memcpy(buf, &note, sizeof(note));
1100 buf += (sizeof(note) + 3)/4;
1101 memcpy(buf, name, note.n_namesz);
1102 buf += (note.n_namesz + 3)/4;
1103 memcpy(buf, data, note.n_descsz);
1104 buf += (note.n_descsz + 3)/4;
1105
1106 return buf;
1107 }
1108
1109 static void final_note(u32 *buf)
1110 {
1111 struct elf_note note;
1112
1113 note.n_namesz = 0;
1114 note.n_descsz = 0;
1115 note.n_type = 0;
1116 memcpy(buf, &note, sizeof(note));
1117 }
1118
1119 void crash_save_cpu(struct pt_regs *regs, int cpu)
1120 {
1121 struct elf_prstatus prstatus;
1122 u32 *buf;
1123
1124 if ((cpu < 0) || (cpu >= NR_CPUS))
1125 return;
1126
1127 /* Using ELF notes here is opportunistic.
1128 * I need a well defined structure format
1129 * for the data I pass, and I need tags
1130 * on the data to indicate what information I have
1131 * squirrelled away. ELF notes happen to provide
1132 * all of that, so there is no need to invent something new.
1133 */
1134 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1135 if (!buf)
1136 return;
1137 memset(&prstatus, 0, sizeof(prstatus));
1138 prstatus.pr_pid = current->pid;
1139 elf_core_copy_regs(&prstatus.pr_reg, regs);
1140 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1141 &prstatus, sizeof(prstatus));
1142 final_note(buf);
1143 }
1144
1145 static int __init crash_notes_memory_init(void)
1146 {
1147 /* Allocate memory for saving cpu registers. */
1148 crash_notes = alloc_percpu(note_buf_t);
1149 if (!crash_notes) {
1150 printk("Kexec: Memory allocation for saving cpu register"
1151 " states failed\n");
1152 return -ENOMEM;
1153 }
1154 return 0;
1155 }
1156 module_init(crash_notes_memory_init)
1157
1158
1159 /*
1160 * parsing the "crashkernel" commandline
1161 *
1162 * this code is intended to be called from architecture specific code
1163 */
1164
1165
1166 /*
1167 * This function parses command lines in the format
1168 *
1169 * crashkernel=ramsize-range:size[,...][@offset]
1170 *
1171 * The function returns 0 on success and -EINVAL on failure.
1172 */
1173 static int __init parse_crashkernel_mem(char *cmdline,
1174 unsigned long long system_ram,
1175 unsigned long long *crash_size,
1176 unsigned long long *crash_base)
1177 {
1178 char *cur = cmdline, *tmp;
1179
1180 /* for each entry of the comma-separated list */
1181 do {
1182 unsigned long long start, end = ULLONG_MAX, size;
1183
1184 /* get the start of the range */
1185 start = memparse(cur, &tmp);
1186 if (cur == tmp) {
1187 pr_warning("crashkernel: Memory value expected\n");
1188 return -EINVAL;
1189 }
1190 cur = tmp;
1191 if (*cur != '-') {
1192 pr_warning("crashkernel: '-' expected\n");
1193 return -EINVAL;
1194 }
1195 cur++;
1196
1197 /* if no ':' is here, than we read the end */
1198 if (*cur != ':') {
1199 end = memparse(cur, &tmp);
1200 if (cur == tmp) {
1201 pr_warning("crashkernel: Memory "
1202 "value expected\n");
1203 return -EINVAL;
1204 }
1205 cur = tmp;
1206 if (end <= start) {
1207 pr_warning("crashkernel: end <= start\n");
1208 return -EINVAL;
1209 }
1210 }
1211
1212 if (*cur != ':') {
1213 pr_warning("crashkernel: ':' expected\n");
1214 return -EINVAL;
1215 }
1216 cur++;
1217
1218 size = memparse(cur, &tmp);
1219 if (cur == tmp) {
1220 pr_warning("Memory value expected\n");
1221 return -EINVAL;
1222 }
1223 cur = tmp;
1224 if (size >= system_ram) {
1225 pr_warning("crashkernel: invalid size\n");
1226 return -EINVAL;
1227 }
1228
1229 /* match ? */
1230 if (system_ram >= start && system_ram < end) {
1231 *crash_size = size;
1232 break;
1233 }
1234 } while (*cur++ == ',');
1235
1236 if (*crash_size > 0) {
1237 while (*cur != ' ' && *cur != '@')
1238 cur++;
1239 if (*cur == '@') {
1240 cur++;
1241 *crash_base = memparse(cur, &tmp);
1242 if (cur == tmp) {
1243 pr_warning("Memory value expected "
1244 "after '@'\n");
1245 return -EINVAL;
1246 }
1247 }
1248 }
1249
1250 return 0;
1251 }
1252
1253 /*
1254 * That function parses "simple" (old) crashkernel command lines like
1255 *
1256 * crashkernel=size[@offset]
1257 *
1258 * It returns 0 on success and -EINVAL on failure.
1259 */
1260 static int __init parse_crashkernel_simple(char *cmdline,
1261 unsigned long long *crash_size,
1262 unsigned long long *crash_base)
1263 {
1264 char *cur = cmdline;
1265
1266 *crash_size = memparse(cmdline, &cur);
1267 if (cmdline == cur) {
1268 pr_warning("crashkernel: memory value expected\n");
1269 return -EINVAL;
1270 }
1271
1272 if (*cur == '@')
1273 *crash_base = memparse(cur+1, &cur);
1274
1275 return 0;
1276 }
1277
1278 /*
1279 * That function is the entry point for command line parsing and should be
1280 * called from the arch-specific code.
1281 */
1282 int __init parse_crashkernel(char *cmdline,
1283 unsigned long long system_ram,
1284 unsigned long long *crash_size,
1285 unsigned long long *crash_base)
1286 {
1287 char *p = cmdline, *ck_cmdline = NULL;
1288 char *first_colon, *first_space;
1289
1290 BUG_ON(!crash_size || !crash_base);
1291 *crash_size = 0;
1292 *crash_base = 0;
1293
1294 /* find crashkernel and use the last one if there are more */
1295 p = strstr(p, "crashkernel=");
1296 while (p) {
1297 ck_cmdline = p;
1298 p = strstr(p+1, "crashkernel=");
1299 }
1300
1301 if (!ck_cmdline)
1302 return -EINVAL;
1303
1304 ck_cmdline += 12; /* strlen("crashkernel=") */
1305
1306 /*
1307 * if the commandline contains a ':', then that's the extended
1308 * syntax -- if not, it must be the classic syntax
1309 */
1310 first_colon = strchr(ck_cmdline, ':');
1311 first_space = strchr(ck_cmdline, ' ');
1312 if (first_colon && (!first_space || first_colon < first_space))
1313 return parse_crashkernel_mem(ck_cmdline, system_ram,
1314 crash_size, crash_base);
1315 else
1316 return parse_crashkernel_simple(ck_cmdline, crash_size,
1317 crash_base);
1318
1319 return 0;
1320 }
1321
1322
1323
1324 void crash_save_vmcoreinfo(void)
1325 {
1326 u32 *buf;
1327
1328 if (!vmcoreinfo_size)
1329 return;
1330
1331 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1332
1333 buf = (u32 *)vmcoreinfo_note;
1334
1335 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1336 vmcoreinfo_size);
1337
1338 final_note(buf);
1339 }
1340
1341 void vmcoreinfo_append_str(const char *fmt, ...)
1342 {
1343 va_list args;
1344 char buf[0x50];
1345 int r;
1346
1347 va_start(args, fmt);
1348 r = vsnprintf(buf, sizeof(buf), fmt, args);
1349 va_end(args);
1350
1351 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1352 r = vmcoreinfo_max_size - vmcoreinfo_size;
1353
1354 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1355
1356 vmcoreinfo_size += r;
1357 }
1358
1359 /*
1360 * provide an empty default implementation here -- architecture
1361 * code may override this
1362 */
1363 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1364 {}
1365
1366 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1367 {
1368 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1369 }
1370
1371 static int __init crash_save_vmcoreinfo_init(void)
1372 {
1373 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1374 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1375
1376 VMCOREINFO_SYMBOL(init_uts_ns);
1377 VMCOREINFO_SYMBOL(node_online_map);
1378 VMCOREINFO_SYMBOL(swapper_pg_dir);
1379 VMCOREINFO_SYMBOL(_stext);
1380
1381 #ifndef CONFIG_NEED_MULTIPLE_NODES
1382 VMCOREINFO_SYMBOL(mem_map);
1383 VMCOREINFO_SYMBOL(contig_page_data);
1384 #endif
1385 #ifdef CONFIG_SPARSEMEM
1386 VMCOREINFO_SYMBOL(mem_section);
1387 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1388 VMCOREINFO_STRUCT_SIZE(mem_section);
1389 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1390 #endif
1391 VMCOREINFO_STRUCT_SIZE(page);
1392 VMCOREINFO_STRUCT_SIZE(pglist_data);
1393 VMCOREINFO_STRUCT_SIZE(zone);
1394 VMCOREINFO_STRUCT_SIZE(free_area);
1395 VMCOREINFO_STRUCT_SIZE(list_head);
1396 VMCOREINFO_SIZE(nodemask_t);
1397 VMCOREINFO_OFFSET(page, flags);
1398 VMCOREINFO_OFFSET(page, _count);
1399 VMCOREINFO_OFFSET(page, mapping);
1400 VMCOREINFO_OFFSET(page, lru);
1401 VMCOREINFO_OFFSET(pglist_data, node_zones);
1402 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1403 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1404 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1405 #endif
1406 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1407 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1408 VMCOREINFO_OFFSET(pglist_data, node_id);
1409 VMCOREINFO_OFFSET(zone, free_area);
1410 VMCOREINFO_OFFSET(zone, vm_stat);
1411 VMCOREINFO_OFFSET(zone, spanned_pages);
1412 VMCOREINFO_OFFSET(free_area, free_list);
1413 VMCOREINFO_OFFSET(list_head, next);
1414 VMCOREINFO_OFFSET(list_head, prev);
1415 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1416 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1417 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1418 VMCOREINFO_NUMBER(PG_lru);
1419 VMCOREINFO_NUMBER(PG_private);
1420 VMCOREINFO_NUMBER(PG_swapcache);
1421
1422 arch_crash_save_vmcoreinfo();
1423
1424 return 0;
1425 }
1426
1427 module_init(crash_save_vmcoreinfo_init)
1428
1429 /**
1430 * kernel_kexec - reboot the system
1431 *
1432 * Move into place and start executing a preloaded standalone
1433 * executable. If nothing was preloaded return an error.
1434 */
1435 int kernel_kexec(void)
1436 {
1437 int error = 0;
1438
1439 if (xchg(&kexec_lock, 1))
1440 return -EBUSY;
1441 if (!kexec_image) {
1442 error = -EINVAL;
1443 goto Unlock;
1444 }
1445
1446 if (kexec_image->preserve_context) {
1447 #ifdef CONFIG_KEXEC_JUMP
1448 mutex_lock(&pm_mutex);
1449 pm_prepare_console();
1450 error = freeze_processes();
1451 if (error) {
1452 error = -EBUSY;
1453 goto Restore_console;
1454 }
1455 suspend_console();
1456 error = device_suspend(PMSG_FREEZE);
1457 if (error)
1458 goto Resume_console;
1459 error = disable_nonboot_cpus();
1460 if (error)
1461 goto Resume_devices;
1462 local_irq_disable();
1463 /* At this point, device_suspend() has been called,
1464 * but *not* device_power_down(). We *must*
1465 * device_power_down() now. Otherwise, drivers for
1466 * some devices (e.g. interrupt controllers) become
1467 * desynchronized with the actual state of the
1468 * hardware at resume time, and evil weirdness ensues.
1469 */
1470 error = device_power_down(PMSG_FREEZE);
1471 if (error)
1472 goto Enable_irqs;
1473 save_processor_state();
1474 #endif
1475 } else {
1476 blocking_notifier_call_chain(&reboot_notifier_list,
1477 SYS_RESTART, NULL);
1478 system_state = SYSTEM_RESTART;
1479 device_shutdown();
1480 sysdev_shutdown();
1481 printk(KERN_EMERG "Starting new kernel\n");
1482 machine_shutdown();
1483 }
1484
1485 machine_kexec(kexec_image);
1486
1487 if (kexec_image->preserve_context) {
1488 #ifdef CONFIG_KEXEC_JUMP
1489 restore_processor_state();
1490 device_power_up(PMSG_RESTORE);
1491 Enable_irqs:
1492 local_irq_enable();
1493 enable_nonboot_cpus();
1494 Resume_devices:
1495 device_resume(PMSG_RESTORE);
1496 Resume_console:
1497 resume_console();
1498 thaw_processes();
1499 Restore_console:
1500 pm_restore_console();
1501 mutex_unlock(&pm_mutex);
1502 #endif
1503 }
1504
1505 Unlock:
1506 xchg(&kexec_lock, 0);
1507
1508 return error;
1509 }