Merge branch 'for-33' of git://repo.or.cz/linux-kbuild
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kexec.c
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <generated/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33 #include <linux/vmalloc.h>
34 #include <linux/swap.h>
35
36 #include <asm/page.h>
37 #include <asm/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/system.h>
40 #include <asm/sections.h>
41
42 /* Per cpu memory for storing cpu states in case of system crash. */
43 note_buf_t* crash_notes;
44
45 /* vmcoreinfo stuff */
46 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
47 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
48 size_t vmcoreinfo_size;
49 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
50
51 /* Location of the reserved area for the crash kernel */
52 struct resource crashk_res = {
53 .name = "Crash kernel",
54 .start = 0,
55 .end = 0,
56 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
57 };
58
59 int kexec_should_crash(struct task_struct *p)
60 {
61 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
62 return 1;
63 return 0;
64 }
65
66 /*
67 * When kexec transitions to the new kernel there is a one-to-one
68 * mapping between physical and virtual addresses. On processors
69 * where you can disable the MMU this is trivial, and easy. For
70 * others it is still a simple predictable page table to setup.
71 *
72 * In that environment kexec copies the new kernel to its final
73 * resting place. This means I can only support memory whose
74 * physical address can fit in an unsigned long. In particular
75 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
76 * If the assembly stub has more restrictive requirements
77 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
78 * defined more restrictively in <asm/kexec.h>.
79 *
80 * The code for the transition from the current kernel to the
81 * the new kernel is placed in the control_code_buffer, whose size
82 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
83 * page of memory is necessary, but some architectures require more.
84 * Because this memory must be identity mapped in the transition from
85 * virtual to physical addresses it must live in the range
86 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
87 * modifiable.
88 *
89 * The assembly stub in the control code buffer is passed a linked list
90 * of descriptor pages detailing the source pages of the new kernel,
91 * and the destination addresses of those source pages. As this data
92 * structure is not used in the context of the current OS, it must
93 * be self-contained.
94 *
95 * The code has been made to work with highmem pages and will use a
96 * destination page in its final resting place (if it happens
97 * to allocate it). The end product of this is that most of the
98 * physical address space, and most of RAM can be used.
99 *
100 * Future directions include:
101 * - allocating a page table with the control code buffer identity
102 * mapped, to simplify machine_kexec and make kexec_on_panic more
103 * reliable.
104 */
105
106 /*
107 * KIMAGE_NO_DEST is an impossible destination address..., for
108 * allocating pages whose destination address we do not care about.
109 */
110 #define KIMAGE_NO_DEST (-1UL)
111
112 static int kimage_is_destination_range(struct kimage *image,
113 unsigned long start, unsigned long end);
114 static struct page *kimage_alloc_page(struct kimage *image,
115 gfp_t gfp_mask,
116 unsigned long dest);
117
118 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
119 unsigned long nr_segments,
120 struct kexec_segment __user *segments)
121 {
122 size_t segment_bytes;
123 struct kimage *image;
124 unsigned long i;
125 int result;
126
127 /* Allocate a controlling structure */
128 result = -ENOMEM;
129 image = kzalloc(sizeof(*image), GFP_KERNEL);
130 if (!image)
131 goto out;
132
133 image->head = 0;
134 image->entry = &image->head;
135 image->last_entry = &image->head;
136 image->control_page = ~0; /* By default this does not apply */
137 image->start = entry;
138 image->type = KEXEC_TYPE_DEFAULT;
139
140 /* Initialize the list of control pages */
141 INIT_LIST_HEAD(&image->control_pages);
142
143 /* Initialize the list of destination pages */
144 INIT_LIST_HEAD(&image->dest_pages);
145
146 /* Initialize the list of unuseable pages */
147 INIT_LIST_HEAD(&image->unuseable_pages);
148
149 /* Read in the segments */
150 image->nr_segments = nr_segments;
151 segment_bytes = nr_segments * sizeof(*segments);
152 result = copy_from_user(image->segment, segments, segment_bytes);
153 if (result)
154 goto out;
155
156 /*
157 * Verify we have good destination addresses. The caller is
158 * responsible for making certain we don't attempt to load
159 * the new image into invalid or reserved areas of RAM. This
160 * just verifies it is an address we can use.
161 *
162 * Since the kernel does everything in page size chunks ensure
163 * the destination addreses are page aligned. Too many
164 * special cases crop of when we don't do this. The most
165 * insidious is getting overlapping destination addresses
166 * simply because addresses are changed to page size
167 * granularity.
168 */
169 result = -EADDRNOTAVAIL;
170 for (i = 0; i < nr_segments; i++) {
171 unsigned long mstart, mend;
172
173 mstart = image->segment[i].mem;
174 mend = mstart + image->segment[i].memsz;
175 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
176 goto out;
177 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
178 goto out;
179 }
180
181 /* Verify our destination addresses do not overlap.
182 * If we alloed overlapping destination addresses
183 * through very weird things can happen with no
184 * easy explanation as one segment stops on another.
185 */
186 result = -EINVAL;
187 for (i = 0; i < nr_segments; i++) {
188 unsigned long mstart, mend;
189 unsigned long j;
190
191 mstart = image->segment[i].mem;
192 mend = mstart + image->segment[i].memsz;
193 for (j = 0; j < i; j++) {
194 unsigned long pstart, pend;
195 pstart = image->segment[j].mem;
196 pend = pstart + image->segment[j].memsz;
197 /* Do the segments overlap ? */
198 if ((mend > pstart) && (mstart < pend))
199 goto out;
200 }
201 }
202
203 /* Ensure our buffer sizes are strictly less than
204 * our memory sizes. This should always be the case,
205 * and it is easier to check up front than to be surprised
206 * later on.
207 */
208 result = -EINVAL;
209 for (i = 0; i < nr_segments; i++) {
210 if (image->segment[i].bufsz > image->segment[i].memsz)
211 goto out;
212 }
213
214 result = 0;
215 out:
216 if (result == 0)
217 *rimage = image;
218 else
219 kfree(image);
220
221 return result;
222
223 }
224
225 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
226 unsigned long nr_segments,
227 struct kexec_segment __user *segments)
228 {
229 int result;
230 struct kimage *image;
231
232 /* Allocate and initialize a controlling structure */
233 image = NULL;
234 result = do_kimage_alloc(&image, entry, nr_segments, segments);
235 if (result)
236 goto out;
237
238 *rimage = image;
239
240 /*
241 * Find a location for the control code buffer, and add it
242 * the vector of segments so that it's pages will also be
243 * counted as destination pages.
244 */
245 result = -ENOMEM;
246 image->control_code_page = kimage_alloc_control_pages(image,
247 get_order(KEXEC_CONTROL_PAGE_SIZE));
248 if (!image->control_code_page) {
249 printk(KERN_ERR "Could not allocate control_code_buffer\n");
250 goto out;
251 }
252
253 image->swap_page = kimage_alloc_control_pages(image, 0);
254 if (!image->swap_page) {
255 printk(KERN_ERR "Could not allocate swap buffer\n");
256 goto out;
257 }
258
259 result = 0;
260 out:
261 if (result == 0)
262 *rimage = image;
263 else
264 kfree(image);
265
266 return result;
267 }
268
269 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
270 unsigned long nr_segments,
271 struct kexec_segment __user *segments)
272 {
273 int result;
274 struct kimage *image;
275 unsigned long i;
276
277 image = NULL;
278 /* Verify we have a valid entry point */
279 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
280 result = -EADDRNOTAVAIL;
281 goto out;
282 }
283
284 /* Allocate and initialize a controlling structure */
285 result = do_kimage_alloc(&image, entry, nr_segments, segments);
286 if (result)
287 goto out;
288
289 /* Enable the special crash kernel control page
290 * allocation policy.
291 */
292 image->control_page = crashk_res.start;
293 image->type = KEXEC_TYPE_CRASH;
294
295 /*
296 * Verify we have good destination addresses. Normally
297 * the caller is responsible for making certain we don't
298 * attempt to load the new image into invalid or reserved
299 * areas of RAM. But crash kernels are preloaded into a
300 * reserved area of ram. We must ensure the addresses
301 * are in the reserved area otherwise preloading the
302 * kernel could corrupt things.
303 */
304 result = -EADDRNOTAVAIL;
305 for (i = 0; i < nr_segments; i++) {
306 unsigned long mstart, mend;
307
308 mstart = image->segment[i].mem;
309 mend = mstart + image->segment[i].memsz - 1;
310 /* Ensure we are within the crash kernel limits */
311 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
312 goto out;
313 }
314
315 /*
316 * Find a location for the control code buffer, and add
317 * the vector of segments so that it's pages will also be
318 * counted as destination pages.
319 */
320 result = -ENOMEM;
321 image->control_code_page = kimage_alloc_control_pages(image,
322 get_order(KEXEC_CONTROL_PAGE_SIZE));
323 if (!image->control_code_page) {
324 printk(KERN_ERR "Could not allocate control_code_buffer\n");
325 goto out;
326 }
327
328 result = 0;
329 out:
330 if (result == 0)
331 *rimage = image;
332 else
333 kfree(image);
334
335 return result;
336 }
337
338 static int kimage_is_destination_range(struct kimage *image,
339 unsigned long start,
340 unsigned long end)
341 {
342 unsigned long i;
343
344 for (i = 0; i < image->nr_segments; i++) {
345 unsigned long mstart, mend;
346
347 mstart = image->segment[i].mem;
348 mend = mstart + image->segment[i].memsz;
349 if ((end > mstart) && (start < mend))
350 return 1;
351 }
352
353 return 0;
354 }
355
356 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
357 {
358 struct page *pages;
359
360 pages = alloc_pages(gfp_mask, order);
361 if (pages) {
362 unsigned int count, i;
363 pages->mapping = NULL;
364 set_page_private(pages, order);
365 count = 1 << order;
366 for (i = 0; i < count; i++)
367 SetPageReserved(pages + i);
368 }
369
370 return pages;
371 }
372
373 static void kimage_free_pages(struct page *page)
374 {
375 unsigned int order, count, i;
376
377 order = page_private(page);
378 count = 1 << order;
379 for (i = 0; i < count; i++)
380 ClearPageReserved(page + i);
381 __free_pages(page, order);
382 }
383
384 static void kimage_free_page_list(struct list_head *list)
385 {
386 struct list_head *pos, *next;
387
388 list_for_each_safe(pos, next, list) {
389 struct page *page;
390
391 page = list_entry(pos, struct page, lru);
392 list_del(&page->lru);
393 kimage_free_pages(page);
394 }
395 }
396
397 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
398 unsigned int order)
399 {
400 /* Control pages are special, they are the intermediaries
401 * that are needed while we copy the rest of the pages
402 * to their final resting place. As such they must
403 * not conflict with either the destination addresses
404 * or memory the kernel is already using.
405 *
406 * The only case where we really need more than one of
407 * these are for architectures where we cannot disable
408 * the MMU and must instead generate an identity mapped
409 * page table for all of the memory.
410 *
411 * At worst this runs in O(N) of the image size.
412 */
413 struct list_head extra_pages;
414 struct page *pages;
415 unsigned int count;
416
417 count = 1 << order;
418 INIT_LIST_HEAD(&extra_pages);
419
420 /* Loop while I can allocate a page and the page allocated
421 * is a destination page.
422 */
423 do {
424 unsigned long pfn, epfn, addr, eaddr;
425
426 pages = kimage_alloc_pages(GFP_KERNEL, order);
427 if (!pages)
428 break;
429 pfn = page_to_pfn(pages);
430 epfn = pfn + count;
431 addr = pfn << PAGE_SHIFT;
432 eaddr = epfn << PAGE_SHIFT;
433 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
434 kimage_is_destination_range(image, addr, eaddr)) {
435 list_add(&pages->lru, &extra_pages);
436 pages = NULL;
437 }
438 } while (!pages);
439
440 if (pages) {
441 /* Remember the allocated page... */
442 list_add(&pages->lru, &image->control_pages);
443
444 /* Because the page is already in it's destination
445 * location we will never allocate another page at
446 * that address. Therefore kimage_alloc_pages
447 * will not return it (again) and we don't need
448 * to give it an entry in image->segment[].
449 */
450 }
451 /* Deal with the destination pages I have inadvertently allocated.
452 *
453 * Ideally I would convert multi-page allocations into single
454 * page allocations, and add everyting to image->dest_pages.
455 *
456 * For now it is simpler to just free the pages.
457 */
458 kimage_free_page_list(&extra_pages);
459
460 return pages;
461 }
462
463 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
464 unsigned int order)
465 {
466 /* Control pages are special, they are the intermediaries
467 * that are needed while we copy the rest of the pages
468 * to their final resting place. As such they must
469 * not conflict with either the destination addresses
470 * or memory the kernel is already using.
471 *
472 * Control pages are also the only pags we must allocate
473 * when loading a crash kernel. All of the other pages
474 * are specified by the segments and we just memcpy
475 * into them directly.
476 *
477 * The only case where we really need more than one of
478 * these are for architectures where we cannot disable
479 * the MMU and must instead generate an identity mapped
480 * page table for all of the memory.
481 *
482 * Given the low demand this implements a very simple
483 * allocator that finds the first hole of the appropriate
484 * size in the reserved memory region, and allocates all
485 * of the memory up to and including the hole.
486 */
487 unsigned long hole_start, hole_end, size;
488 struct page *pages;
489
490 pages = NULL;
491 size = (1 << order) << PAGE_SHIFT;
492 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
493 hole_end = hole_start + size - 1;
494 while (hole_end <= crashk_res.end) {
495 unsigned long i;
496
497 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
498 break;
499 if (hole_end > crashk_res.end)
500 break;
501 /* See if I overlap any of the segments */
502 for (i = 0; i < image->nr_segments; i++) {
503 unsigned long mstart, mend;
504
505 mstart = image->segment[i].mem;
506 mend = mstart + image->segment[i].memsz - 1;
507 if ((hole_end >= mstart) && (hole_start <= mend)) {
508 /* Advance the hole to the end of the segment */
509 hole_start = (mend + (size - 1)) & ~(size - 1);
510 hole_end = hole_start + size - 1;
511 break;
512 }
513 }
514 /* If I don't overlap any segments I have found my hole! */
515 if (i == image->nr_segments) {
516 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
517 break;
518 }
519 }
520 if (pages)
521 image->control_page = hole_end;
522
523 return pages;
524 }
525
526
527 struct page *kimage_alloc_control_pages(struct kimage *image,
528 unsigned int order)
529 {
530 struct page *pages = NULL;
531
532 switch (image->type) {
533 case KEXEC_TYPE_DEFAULT:
534 pages = kimage_alloc_normal_control_pages(image, order);
535 break;
536 case KEXEC_TYPE_CRASH:
537 pages = kimage_alloc_crash_control_pages(image, order);
538 break;
539 }
540
541 return pages;
542 }
543
544 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
545 {
546 if (*image->entry != 0)
547 image->entry++;
548
549 if (image->entry == image->last_entry) {
550 kimage_entry_t *ind_page;
551 struct page *page;
552
553 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
554 if (!page)
555 return -ENOMEM;
556
557 ind_page = page_address(page);
558 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
559 image->entry = ind_page;
560 image->last_entry = ind_page +
561 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
562 }
563 *image->entry = entry;
564 image->entry++;
565 *image->entry = 0;
566
567 return 0;
568 }
569
570 static int kimage_set_destination(struct kimage *image,
571 unsigned long destination)
572 {
573 int result;
574
575 destination &= PAGE_MASK;
576 result = kimage_add_entry(image, destination | IND_DESTINATION);
577 if (result == 0)
578 image->destination = destination;
579
580 return result;
581 }
582
583
584 static int kimage_add_page(struct kimage *image, unsigned long page)
585 {
586 int result;
587
588 page &= PAGE_MASK;
589 result = kimage_add_entry(image, page | IND_SOURCE);
590 if (result == 0)
591 image->destination += PAGE_SIZE;
592
593 return result;
594 }
595
596
597 static void kimage_free_extra_pages(struct kimage *image)
598 {
599 /* Walk through and free any extra destination pages I may have */
600 kimage_free_page_list(&image->dest_pages);
601
602 /* Walk through and free any unuseable pages I have cached */
603 kimage_free_page_list(&image->unuseable_pages);
604
605 }
606 static void kimage_terminate(struct kimage *image)
607 {
608 if (*image->entry != 0)
609 image->entry++;
610
611 *image->entry = IND_DONE;
612 }
613
614 #define for_each_kimage_entry(image, ptr, entry) \
615 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
616 ptr = (entry & IND_INDIRECTION)? \
617 phys_to_virt((entry & PAGE_MASK)): ptr +1)
618
619 static void kimage_free_entry(kimage_entry_t entry)
620 {
621 struct page *page;
622
623 page = pfn_to_page(entry >> PAGE_SHIFT);
624 kimage_free_pages(page);
625 }
626
627 static void kimage_free(struct kimage *image)
628 {
629 kimage_entry_t *ptr, entry;
630 kimage_entry_t ind = 0;
631
632 if (!image)
633 return;
634
635 kimage_free_extra_pages(image);
636 for_each_kimage_entry(image, ptr, entry) {
637 if (entry & IND_INDIRECTION) {
638 /* Free the previous indirection page */
639 if (ind & IND_INDIRECTION)
640 kimage_free_entry(ind);
641 /* Save this indirection page until we are
642 * done with it.
643 */
644 ind = entry;
645 }
646 else if (entry & IND_SOURCE)
647 kimage_free_entry(entry);
648 }
649 /* Free the final indirection page */
650 if (ind & IND_INDIRECTION)
651 kimage_free_entry(ind);
652
653 /* Handle any machine specific cleanup */
654 machine_kexec_cleanup(image);
655
656 /* Free the kexec control pages... */
657 kimage_free_page_list(&image->control_pages);
658 kfree(image);
659 }
660
661 static kimage_entry_t *kimage_dst_used(struct kimage *image,
662 unsigned long page)
663 {
664 kimage_entry_t *ptr, entry;
665 unsigned long destination = 0;
666
667 for_each_kimage_entry(image, ptr, entry) {
668 if (entry & IND_DESTINATION)
669 destination = entry & PAGE_MASK;
670 else if (entry & IND_SOURCE) {
671 if (page == destination)
672 return ptr;
673 destination += PAGE_SIZE;
674 }
675 }
676
677 return NULL;
678 }
679
680 static struct page *kimage_alloc_page(struct kimage *image,
681 gfp_t gfp_mask,
682 unsigned long destination)
683 {
684 /*
685 * Here we implement safeguards to ensure that a source page
686 * is not copied to its destination page before the data on
687 * the destination page is no longer useful.
688 *
689 * To do this we maintain the invariant that a source page is
690 * either its own destination page, or it is not a
691 * destination page at all.
692 *
693 * That is slightly stronger than required, but the proof
694 * that no problems will not occur is trivial, and the
695 * implementation is simply to verify.
696 *
697 * When allocating all pages normally this algorithm will run
698 * in O(N) time, but in the worst case it will run in O(N^2)
699 * time. If the runtime is a problem the data structures can
700 * be fixed.
701 */
702 struct page *page;
703 unsigned long addr;
704
705 /*
706 * Walk through the list of destination pages, and see if I
707 * have a match.
708 */
709 list_for_each_entry(page, &image->dest_pages, lru) {
710 addr = page_to_pfn(page) << PAGE_SHIFT;
711 if (addr == destination) {
712 list_del(&page->lru);
713 return page;
714 }
715 }
716 page = NULL;
717 while (1) {
718 kimage_entry_t *old;
719
720 /* Allocate a page, if we run out of memory give up */
721 page = kimage_alloc_pages(gfp_mask, 0);
722 if (!page)
723 return NULL;
724 /* If the page cannot be used file it away */
725 if (page_to_pfn(page) >
726 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
727 list_add(&page->lru, &image->unuseable_pages);
728 continue;
729 }
730 addr = page_to_pfn(page) << PAGE_SHIFT;
731
732 /* If it is the destination page we want use it */
733 if (addr == destination)
734 break;
735
736 /* If the page is not a destination page use it */
737 if (!kimage_is_destination_range(image, addr,
738 addr + PAGE_SIZE))
739 break;
740
741 /*
742 * I know that the page is someones destination page.
743 * See if there is already a source page for this
744 * destination page. And if so swap the source pages.
745 */
746 old = kimage_dst_used(image, addr);
747 if (old) {
748 /* If so move it */
749 unsigned long old_addr;
750 struct page *old_page;
751
752 old_addr = *old & PAGE_MASK;
753 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
754 copy_highpage(page, old_page);
755 *old = addr | (*old & ~PAGE_MASK);
756
757 /* The old page I have found cannot be a
758 * destination page, so return it if it's
759 * gfp_flags honor the ones passed in.
760 */
761 if (!(gfp_mask & __GFP_HIGHMEM) &&
762 PageHighMem(old_page)) {
763 kimage_free_pages(old_page);
764 continue;
765 }
766 addr = old_addr;
767 page = old_page;
768 break;
769 }
770 else {
771 /* Place the page on the destination list I
772 * will use it later.
773 */
774 list_add(&page->lru, &image->dest_pages);
775 }
776 }
777
778 return page;
779 }
780
781 static int kimage_load_normal_segment(struct kimage *image,
782 struct kexec_segment *segment)
783 {
784 unsigned long maddr;
785 unsigned long ubytes, mbytes;
786 int result;
787 unsigned char __user *buf;
788
789 result = 0;
790 buf = segment->buf;
791 ubytes = segment->bufsz;
792 mbytes = segment->memsz;
793 maddr = segment->mem;
794
795 result = kimage_set_destination(image, maddr);
796 if (result < 0)
797 goto out;
798
799 while (mbytes) {
800 struct page *page;
801 char *ptr;
802 size_t uchunk, mchunk;
803
804 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
805 if (!page) {
806 result = -ENOMEM;
807 goto out;
808 }
809 result = kimage_add_page(image, page_to_pfn(page)
810 << PAGE_SHIFT);
811 if (result < 0)
812 goto out;
813
814 ptr = kmap(page);
815 /* Start with a clear page */
816 memset(ptr, 0, PAGE_SIZE);
817 ptr += maddr & ~PAGE_MASK;
818 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
819 if (mchunk > mbytes)
820 mchunk = mbytes;
821
822 uchunk = mchunk;
823 if (uchunk > ubytes)
824 uchunk = ubytes;
825
826 result = copy_from_user(ptr, buf, uchunk);
827 kunmap(page);
828 if (result) {
829 result = (result < 0) ? result : -EIO;
830 goto out;
831 }
832 ubytes -= uchunk;
833 maddr += mchunk;
834 buf += mchunk;
835 mbytes -= mchunk;
836 }
837 out:
838 return result;
839 }
840
841 static int kimage_load_crash_segment(struct kimage *image,
842 struct kexec_segment *segment)
843 {
844 /* For crash dumps kernels we simply copy the data from
845 * user space to it's destination.
846 * We do things a page at a time for the sake of kmap.
847 */
848 unsigned long maddr;
849 unsigned long ubytes, mbytes;
850 int result;
851 unsigned char __user *buf;
852
853 result = 0;
854 buf = segment->buf;
855 ubytes = segment->bufsz;
856 mbytes = segment->memsz;
857 maddr = segment->mem;
858 while (mbytes) {
859 struct page *page;
860 char *ptr;
861 size_t uchunk, mchunk;
862
863 page = pfn_to_page(maddr >> PAGE_SHIFT);
864 if (!page) {
865 result = -ENOMEM;
866 goto out;
867 }
868 ptr = kmap(page);
869 ptr += maddr & ~PAGE_MASK;
870 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
871 if (mchunk > mbytes)
872 mchunk = mbytes;
873
874 uchunk = mchunk;
875 if (uchunk > ubytes) {
876 uchunk = ubytes;
877 /* Zero the trailing part of the page */
878 memset(ptr + uchunk, 0, mchunk - uchunk);
879 }
880 result = copy_from_user(ptr, buf, uchunk);
881 kexec_flush_icache_page(page);
882 kunmap(page);
883 if (result) {
884 result = (result < 0) ? result : -EIO;
885 goto out;
886 }
887 ubytes -= uchunk;
888 maddr += mchunk;
889 buf += mchunk;
890 mbytes -= mchunk;
891 }
892 out:
893 return result;
894 }
895
896 static int kimage_load_segment(struct kimage *image,
897 struct kexec_segment *segment)
898 {
899 int result = -ENOMEM;
900
901 switch (image->type) {
902 case KEXEC_TYPE_DEFAULT:
903 result = kimage_load_normal_segment(image, segment);
904 break;
905 case KEXEC_TYPE_CRASH:
906 result = kimage_load_crash_segment(image, segment);
907 break;
908 }
909
910 return result;
911 }
912
913 /*
914 * Exec Kernel system call: for obvious reasons only root may call it.
915 *
916 * This call breaks up into three pieces.
917 * - A generic part which loads the new kernel from the current
918 * address space, and very carefully places the data in the
919 * allocated pages.
920 *
921 * - A generic part that interacts with the kernel and tells all of
922 * the devices to shut down. Preventing on-going dmas, and placing
923 * the devices in a consistent state so a later kernel can
924 * reinitialize them.
925 *
926 * - A machine specific part that includes the syscall number
927 * and the copies the image to it's final destination. And
928 * jumps into the image at entry.
929 *
930 * kexec does not sync, or unmount filesystems so if you need
931 * that to happen you need to do that yourself.
932 */
933 struct kimage *kexec_image;
934 struct kimage *kexec_crash_image;
935
936 static DEFINE_MUTEX(kexec_mutex);
937
938 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
939 struct kexec_segment __user *, segments, unsigned long, flags)
940 {
941 struct kimage **dest_image, *image;
942 int result;
943
944 /* We only trust the superuser with rebooting the system. */
945 if (!capable(CAP_SYS_BOOT))
946 return -EPERM;
947
948 /*
949 * Verify we have a legal set of flags
950 * This leaves us room for future extensions.
951 */
952 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
953 return -EINVAL;
954
955 /* Verify we are on the appropriate architecture */
956 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
957 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
958 return -EINVAL;
959
960 /* Put an artificial cap on the number
961 * of segments passed to kexec_load.
962 */
963 if (nr_segments > KEXEC_SEGMENT_MAX)
964 return -EINVAL;
965
966 image = NULL;
967 result = 0;
968
969 /* Because we write directly to the reserved memory
970 * region when loading crash kernels we need a mutex here to
971 * prevent multiple crash kernels from attempting to load
972 * simultaneously, and to prevent a crash kernel from loading
973 * over the top of a in use crash kernel.
974 *
975 * KISS: always take the mutex.
976 */
977 if (!mutex_trylock(&kexec_mutex))
978 return -EBUSY;
979
980 dest_image = &kexec_image;
981 if (flags & KEXEC_ON_CRASH)
982 dest_image = &kexec_crash_image;
983 if (nr_segments > 0) {
984 unsigned long i;
985
986 /* Loading another kernel to reboot into */
987 if ((flags & KEXEC_ON_CRASH) == 0)
988 result = kimage_normal_alloc(&image, entry,
989 nr_segments, segments);
990 /* Loading another kernel to switch to if this one crashes */
991 else if (flags & KEXEC_ON_CRASH) {
992 /* Free any current crash dump kernel before
993 * we corrupt it.
994 */
995 kimage_free(xchg(&kexec_crash_image, NULL));
996 result = kimage_crash_alloc(&image, entry,
997 nr_segments, segments);
998 }
999 if (result)
1000 goto out;
1001
1002 if (flags & KEXEC_PRESERVE_CONTEXT)
1003 image->preserve_context = 1;
1004 result = machine_kexec_prepare(image);
1005 if (result)
1006 goto out;
1007
1008 for (i = 0; i < nr_segments; i++) {
1009 result = kimage_load_segment(image, &image->segment[i]);
1010 if (result)
1011 goto out;
1012 }
1013 kimage_terminate(image);
1014 }
1015 /* Install the new kernel, and Uninstall the old */
1016 image = xchg(dest_image, image);
1017
1018 out:
1019 mutex_unlock(&kexec_mutex);
1020 kimage_free(image);
1021
1022 return result;
1023 }
1024
1025 #ifdef CONFIG_COMPAT
1026 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1027 unsigned long nr_segments,
1028 struct compat_kexec_segment __user *segments,
1029 unsigned long flags)
1030 {
1031 struct compat_kexec_segment in;
1032 struct kexec_segment out, __user *ksegments;
1033 unsigned long i, result;
1034
1035 /* Don't allow clients that don't understand the native
1036 * architecture to do anything.
1037 */
1038 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1039 return -EINVAL;
1040
1041 if (nr_segments > KEXEC_SEGMENT_MAX)
1042 return -EINVAL;
1043
1044 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1045 for (i=0; i < nr_segments; i++) {
1046 result = copy_from_user(&in, &segments[i], sizeof(in));
1047 if (result)
1048 return -EFAULT;
1049
1050 out.buf = compat_ptr(in.buf);
1051 out.bufsz = in.bufsz;
1052 out.mem = in.mem;
1053 out.memsz = in.memsz;
1054
1055 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1056 if (result)
1057 return -EFAULT;
1058 }
1059
1060 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1061 }
1062 #endif
1063
1064 void crash_kexec(struct pt_regs *regs)
1065 {
1066 /* Take the kexec_mutex here to prevent sys_kexec_load
1067 * running on one cpu from replacing the crash kernel
1068 * we are using after a panic on a different cpu.
1069 *
1070 * If the crash kernel was not located in a fixed area
1071 * of memory the xchg(&kexec_crash_image) would be
1072 * sufficient. But since I reuse the memory...
1073 */
1074 if (mutex_trylock(&kexec_mutex)) {
1075 if (kexec_crash_image) {
1076 struct pt_regs fixed_regs;
1077 crash_setup_regs(&fixed_regs, regs);
1078 crash_save_vmcoreinfo();
1079 machine_crash_shutdown(&fixed_regs);
1080 machine_kexec(kexec_crash_image);
1081 }
1082 mutex_unlock(&kexec_mutex);
1083 }
1084 }
1085
1086 size_t crash_get_memory_size(void)
1087 {
1088 size_t size;
1089 mutex_lock(&kexec_mutex);
1090 size = crashk_res.end - crashk_res.start + 1;
1091 mutex_unlock(&kexec_mutex);
1092 return size;
1093 }
1094
1095 static void free_reserved_phys_range(unsigned long begin, unsigned long end)
1096 {
1097 unsigned long addr;
1098
1099 for (addr = begin; addr < end; addr += PAGE_SIZE) {
1100 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1101 init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1102 free_page((unsigned long)__va(addr));
1103 totalram_pages++;
1104 }
1105 }
1106
1107 int crash_shrink_memory(unsigned long new_size)
1108 {
1109 int ret = 0;
1110 unsigned long start, end;
1111
1112 mutex_lock(&kexec_mutex);
1113
1114 if (kexec_crash_image) {
1115 ret = -ENOENT;
1116 goto unlock;
1117 }
1118 start = crashk_res.start;
1119 end = crashk_res.end;
1120
1121 if (new_size >= end - start + 1) {
1122 ret = -EINVAL;
1123 if (new_size == end - start + 1)
1124 ret = 0;
1125 goto unlock;
1126 }
1127
1128 start = roundup(start, PAGE_SIZE);
1129 end = roundup(start + new_size, PAGE_SIZE);
1130
1131 free_reserved_phys_range(end, crashk_res.end);
1132
1133 if (start == end) {
1134 crashk_res.end = end;
1135 release_resource(&crashk_res);
1136 } else
1137 crashk_res.end = end - 1;
1138
1139 unlock:
1140 mutex_unlock(&kexec_mutex);
1141 return ret;
1142 }
1143
1144 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1145 size_t data_len)
1146 {
1147 struct elf_note note;
1148
1149 note.n_namesz = strlen(name) + 1;
1150 note.n_descsz = data_len;
1151 note.n_type = type;
1152 memcpy(buf, &note, sizeof(note));
1153 buf += (sizeof(note) + 3)/4;
1154 memcpy(buf, name, note.n_namesz);
1155 buf += (note.n_namesz + 3)/4;
1156 memcpy(buf, data, note.n_descsz);
1157 buf += (note.n_descsz + 3)/4;
1158
1159 return buf;
1160 }
1161
1162 static void final_note(u32 *buf)
1163 {
1164 struct elf_note note;
1165
1166 note.n_namesz = 0;
1167 note.n_descsz = 0;
1168 note.n_type = 0;
1169 memcpy(buf, &note, sizeof(note));
1170 }
1171
1172 void crash_save_cpu(struct pt_regs *regs, int cpu)
1173 {
1174 struct elf_prstatus prstatus;
1175 u32 *buf;
1176
1177 if ((cpu < 0) || (cpu >= nr_cpu_ids))
1178 return;
1179
1180 /* Using ELF notes here is opportunistic.
1181 * I need a well defined structure format
1182 * for the data I pass, and I need tags
1183 * on the data to indicate what information I have
1184 * squirrelled away. ELF notes happen to provide
1185 * all of that, so there is no need to invent something new.
1186 */
1187 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1188 if (!buf)
1189 return;
1190 memset(&prstatus, 0, sizeof(prstatus));
1191 prstatus.pr_pid = current->pid;
1192 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1193 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1194 &prstatus, sizeof(prstatus));
1195 final_note(buf);
1196 }
1197
1198 static int __init crash_notes_memory_init(void)
1199 {
1200 /* Allocate memory for saving cpu registers. */
1201 crash_notes = alloc_percpu(note_buf_t);
1202 if (!crash_notes) {
1203 printk("Kexec: Memory allocation for saving cpu register"
1204 " states failed\n");
1205 return -ENOMEM;
1206 }
1207 return 0;
1208 }
1209 module_init(crash_notes_memory_init)
1210
1211
1212 /*
1213 * parsing the "crashkernel" commandline
1214 *
1215 * this code is intended to be called from architecture specific code
1216 */
1217
1218
1219 /*
1220 * This function parses command lines in the format
1221 *
1222 * crashkernel=ramsize-range:size[,...][@offset]
1223 *
1224 * The function returns 0 on success and -EINVAL on failure.
1225 */
1226 static int __init parse_crashkernel_mem(char *cmdline,
1227 unsigned long long system_ram,
1228 unsigned long long *crash_size,
1229 unsigned long long *crash_base)
1230 {
1231 char *cur = cmdline, *tmp;
1232
1233 /* for each entry of the comma-separated list */
1234 do {
1235 unsigned long long start, end = ULLONG_MAX, size;
1236
1237 /* get the start of the range */
1238 start = memparse(cur, &tmp);
1239 if (cur == tmp) {
1240 pr_warning("crashkernel: Memory value expected\n");
1241 return -EINVAL;
1242 }
1243 cur = tmp;
1244 if (*cur != '-') {
1245 pr_warning("crashkernel: '-' expected\n");
1246 return -EINVAL;
1247 }
1248 cur++;
1249
1250 /* if no ':' is here, than we read the end */
1251 if (*cur != ':') {
1252 end = memparse(cur, &tmp);
1253 if (cur == tmp) {
1254 pr_warning("crashkernel: Memory "
1255 "value expected\n");
1256 return -EINVAL;
1257 }
1258 cur = tmp;
1259 if (end <= start) {
1260 pr_warning("crashkernel: end <= start\n");
1261 return -EINVAL;
1262 }
1263 }
1264
1265 if (*cur != ':') {
1266 pr_warning("crashkernel: ':' expected\n");
1267 return -EINVAL;
1268 }
1269 cur++;
1270
1271 size = memparse(cur, &tmp);
1272 if (cur == tmp) {
1273 pr_warning("Memory value expected\n");
1274 return -EINVAL;
1275 }
1276 cur = tmp;
1277 if (size >= system_ram) {
1278 pr_warning("crashkernel: invalid size\n");
1279 return -EINVAL;
1280 }
1281
1282 /* match ? */
1283 if (system_ram >= start && system_ram < end) {
1284 *crash_size = size;
1285 break;
1286 }
1287 } while (*cur++ == ',');
1288
1289 if (*crash_size > 0) {
1290 while (*cur && *cur != ' ' && *cur != '@')
1291 cur++;
1292 if (*cur == '@') {
1293 cur++;
1294 *crash_base = memparse(cur, &tmp);
1295 if (cur == tmp) {
1296 pr_warning("Memory value expected "
1297 "after '@'\n");
1298 return -EINVAL;
1299 }
1300 }
1301 }
1302
1303 return 0;
1304 }
1305
1306 /*
1307 * That function parses "simple" (old) crashkernel command lines like
1308 *
1309 * crashkernel=size[@offset]
1310 *
1311 * It returns 0 on success and -EINVAL on failure.
1312 */
1313 static int __init parse_crashkernel_simple(char *cmdline,
1314 unsigned long long *crash_size,
1315 unsigned long long *crash_base)
1316 {
1317 char *cur = cmdline;
1318
1319 *crash_size = memparse(cmdline, &cur);
1320 if (cmdline == cur) {
1321 pr_warning("crashkernel: memory value expected\n");
1322 return -EINVAL;
1323 }
1324
1325 if (*cur == '@')
1326 *crash_base = memparse(cur+1, &cur);
1327
1328 return 0;
1329 }
1330
1331 /*
1332 * That function is the entry point for command line parsing and should be
1333 * called from the arch-specific code.
1334 */
1335 int __init parse_crashkernel(char *cmdline,
1336 unsigned long long system_ram,
1337 unsigned long long *crash_size,
1338 unsigned long long *crash_base)
1339 {
1340 char *p = cmdline, *ck_cmdline = NULL;
1341 char *first_colon, *first_space;
1342
1343 BUG_ON(!crash_size || !crash_base);
1344 *crash_size = 0;
1345 *crash_base = 0;
1346
1347 /* find crashkernel and use the last one if there are more */
1348 p = strstr(p, "crashkernel=");
1349 while (p) {
1350 ck_cmdline = p;
1351 p = strstr(p+1, "crashkernel=");
1352 }
1353
1354 if (!ck_cmdline)
1355 return -EINVAL;
1356
1357 ck_cmdline += 12; /* strlen("crashkernel=") */
1358
1359 /*
1360 * if the commandline contains a ':', then that's the extended
1361 * syntax -- if not, it must be the classic syntax
1362 */
1363 first_colon = strchr(ck_cmdline, ':');
1364 first_space = strchr(ck_cmdline, ' ');
1365 if (first_colon && (!first_space || first_colon < first_space))
1366 return parse_crashkernel_mem(ck_cmdline, system_ram,
1367 crash_size, crash_base);
1368 else
1369 return parse_crashkernel_simple(ck_cmdline, crash_size,
1370 crash_base);
1371
1372 return 0;
1373 }
1374
1375
1376
1377 void crash_save_vmcoreinfo(void)
1378 {
1379 u32 *buf;
1380
1381 if (!vmcoreinfo_size)
1382 return;
1383
1384 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1385
1386 buf = (u32 *)vmcoreinfo_note;
1387
1388 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1389 vmcoreinfo_size);
1390
1391 final_note(buf);
1392 }
1393
1394 void vmcoreinfo_append_str(const char *fmt, ...)
1395 {
1396 va_list args;
1397 char buf[0x50];
1398 int r;
1399
1400 va_start(args, fmt);
1401 r = vsnprintf(buf, sizeof(buf), fmt, args);
1402 va_end(args);
1403
1404 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1405 r = vmcoreinfo_max_size - vmcoreinfo_size;
1406
1407 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1408
1409 vmcoreinfo_size += r;
1410 }
1411
1412 /*
1413 * provide an empty default implementation here -- architecture
1414 * code may override this
1415 */
1416 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1417 {}
1418
1419 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1420 {
1421 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1422 }
1423
1424 static int __init crash_save_vmcoreinfo_init(void)
1425 {
1426 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1427 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1428
1429 VMCOREINFO_SYMBOL(init_uts_ns);
1430 VMCOREINFO_SYMBOL(node_online_map);
1431 VMCOREINFO_SYMBOL(swapper_pg_dir);
1432 VMCOREINFO_SYMBOL(_stext);
1433 VMCOREINFO_SYMBOL(vmlist);
1434
1435 #ifndef CONFIG_NEED_MULTIPLE_NODES
1436 VMCOREINFO_SYMBOL(mem_map);
1437 VMCOREINFO_SYMBOL(contig_page_data);
1438 #endif
1439 #ifdef CONFIG_SPARSEMEM
1440 VMCOREINFO_SYMBOL(mem_section);
1441 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1442 VMCOREINFO_STRUCT_SIZE(mem_section);
1443 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1444 #endif
1445 VMCOREINFO_STRUCT_SIZE(page);
1446 VMCOREINFO_STRUCT_SIZE(pglist_data);
1447 VMCOREINFO_STRUCT_SIZE(zone);
1448 VMCOREINFO_STRUCT_SIZE(free_area);
1449 VMCOREINFO_STRUCT_SIZE(list_head);
1450 VMCOREINFO_SIZE(nodemask_t);
1451 VMCOREINFO_OFFSET(page, flags);
1452 VMCOREINFO_OFFSET(page, _count);
1453 VMCOREINFO_OFFSET(page, mapping);
1454 VMCOREINFO_OFFSET(page, lru);
1455 VMCOREINFO_OFFSET(pglist_data, node_zones);
1456 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1457 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1458 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1459 #endif
1460 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1461 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1462 VMCOREINFO_OFFSET(pglist_data, node_id);
1463 VMCOREINFO_OFFSET(zone, free_area);
1464 VMCOREINFO_OFFSET(zone, vm_stat);
1465 VMCOREINFO_OFFSET(zone, spanned_pages);
1466 VMCOREINFO_OFFSET(free_area, free_list);
1467 VMCOREINFO_OFFSET(list_head, next);
1468 VMCOREINFO_OFFSET(list_head, prev);
1469 VMCOREINFO_OFFSET(vm_struct, addr);
1470 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1471 log_buf_kexec_setup();
1472 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1473 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1474 VMCOREINFO_NUMBER(PG_lru);
1475 VMCOREINFO_NUMBER(PG_private);
1476 VMCOREINFO_NUMBER(PG_swapcache);
1477
1478 arch_crash_save_vmcoreinfo();
1479
1480 return 0;
1481 }
1482
1483 module_init(crash_save_vmcoreinfo_init)
1484
1485 /*
1486 * Move into place and start executing a preloaded standalone
1487 * executable. If nothing was preloaded return an error.
1488 */
1489 int kernel_kexec(void)
1490 {
1491 int error = 0;
1492
1493 if (!mutex_trylock(&kexec_mutex))
1494 return -EBUSY;
1495 if (!kexec_image) {
1496 error = -EINVAL;
1497 goto Unlock;
1498 }
1499
1500 #ifdef CONFIG_KEXEC_JUMP
1501 if (kexec_image->preserve_context) {
1502 mutex_lock(&pm_mutex);
1503 pm_prepare_console();
1504 error = freeze_processes();
1505 if (error) {
1506 error = -EBUSY;
1507 goto Restore_console;
1508 }
1509 suspend_console();
1510 error = dpm_suspend_start(PMSG_FREEZE);
1511 if (error)
1512 goto Resume_console;
1513 /* At this point, dpm_suspend_start() has been called,
1514 * but *not* dpm_suspend_noirq(). We *must* call
1515 * dpm_suspend_noirq() now. Otherwise, drivers for
1516 * some devices (e.g. interrupt controllers) become
1517 * desynchronized with the actual state of the
1518 * hardware at resume time, and evil weirdness ensues.
1519 */
1520 error = dpm_suspend_noirq(PMSG_FREEZE);
1521 if (error)
1522 goto Resume_devices;
1523 error = disable_nonboot_cpus();
1524 if (error)
1525 goto Enable_cpus;
1526 local_irq_disable();
1527 /* Suspend system devices */
1528 error = sysdev_suspend(PMSG_FREEZE);
1529 if (error)
1530 goto Enable_irqs;
1531 } else
1532 #endif
1533 {
1534 kernel_restart_prepare(NULL);
1535 printk(KERN_EMERG "Starting new kernel\n");
1536 machine_shutdown();
1537 }
1538
1539 machine_kexec(kexec_image);
1540
1541 #ifdef CONFIG_KEXEC_JUMP
1542 if (kexec_image->preserve_context) {
1543 sysdev_resume();
1544 Enable_irqs:
1545 local_irq_enable();
1546 Enable_cpus:
1547 enable_nonboot_cpus();
1548 dpm_resume_noirq(PMSG_RESTORE);
1549 Resume_devices:
1550 dpm_resume_end(PMSG_RESTORE);
1551 Resume_console:
1552 resume_console();
1553 thaw_processes();
1554 Restore_console:
1555 pm_restore_console();
1556 mutex_unlock(&pm_mutex);
1557 }
1558 #endif
1559
1560 Unlock:
1561 mutex_unlock(&kexec_mutex);
1562 return error;
1563 }