pid: fix solaris_procids
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / kexec.c
1 /*
2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/spinlock.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27
28 #include <asm/page.h>
29 #include <asm/uaccess.h>
30 #include <asm/io.h>
31 #include <asm/system.h>
32 #include <asm/semaphore.h>
33 #include <asm/sections.h>
34
35 /* Per cpu memory for storing cpu states in case of system crash. */
36 note_buf_t* crash_notes;
37
38 /* vmcoreinfo stuff */
39 unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
40 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
41 size_t vmcoreinfo_size;
42 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
43
44 /* Location of the reserved area for the crash kernel */
45 struct resource crashk_res = {
46 .name = "Crash kernel",
47 .start = 0,
48 .end = 0,
49 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
50 };
51
52 int kexec_should_crash(struct task_struct *p)
53 {
54 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
55 return 1;
56 return 0;
57 }
58
59 /*
60 * When kexec transitions to the new kernel there is a one-to-one
61 * mapping between physical and virtual addresses. On processors
62 * where you can disable the MMU this is trivial, and easy. For
63 * others it is still a simple predictable page table to setup.
64 *
65 * In that environment kexec copies the new kernel to its final
66 * resting place. This means I can only support memory whose
67 * physical address can fit in an unsigned long. In particular
68 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
69 * If the assembly stub has more restrictive requirements
70 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
71 * defined more restrictively in <asm/kexec.h>.
72 *
73 * The code for the transition from the current kernel to the
74 * the new kernel is placed in the control_code_buffer, whose size
75 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
76 * page of memory is necessary, but some architectures require more.
77 * Because this memory must be identity mapped in the transition from
78 * virtual to physical addresses it must live in the range
79 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
80 * modifiable.
81 *
82 * The assembly stub in the control code buffer is passed a linked list
83 * of descriptor pages detailing the source pages of the new kernel,
84 * and the destination addresses of those source pages. As this data
85 * structure is not used in the context of the current OS, it must
86 * be self-contained.
87 *
88 * The code has been made to work with highmem pages and will use a
89 * destination page in its final resting place (if it happens
90 * to allocate it). The end product of this is that most of the
91 * physical address space, and most of RAM can be used.
92 *
93 * Future directions include:
94 * - allocating a page table with the control code buffer identity
95 * mapped, to simplify machine_kexec and make kexec_on_panic more
96 * reliable.
97 */
98
99 /*
100 * KIMAGE_NO_DEST is an impossible destination address..., for
101 * allocating pages whose destination address we do not care about.
102 */
103 #define KIMAGE_NO_DEST (-1UL)
104
105 static int kimage_is_destination_range(struct kimage *image,
106 unsigned long start, unsigned long end);
107 static struct page *kimage_alloc_page(struct kimage *image,
108 gfp_t gfp_mask,
109 unsigned long dest);
110
111 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
112 unsigned long nr_segments,
113 struct kexec_segment __user *segments)
114 {
115 size_t segment_bytes;
116 struct kimage *image;
117 unsigned long i;
118 int result;
119
120 /* Allocate a controlling structure */
121 result = -ENOMEM;
122 image = kzalloc(sizeof(*image), GFP_KERNEL);
123 if (!image)
124 goto out;
125
126 image->head = 0;
127 image->entry = &image->head;
128 image->last_entry = &image->head;
129 image->control_page = ~0; /* By default this does not apply */
130 image->start = entry;
131 image->type = KEXEC_TYPE_DEFAULT;
132
133 /* Initialize the list of control pages */
134 INIT_LIST_HEAD(&image->control_pages);
135
136 /* Initialize the list of destination pages */
137 INIT_LIST_HEAD(&image->dest_pages);
138
139 /* Initialize the list of unuseable pages */
140 INIT_LIST_HEAD(&image->unuseable_pages);
141
142 /* Read in the segments */
143 image->nr_segments = nr_segments;
144 segment_bytes = nr_segments * sizeof(*segments);
145 result = copy_from_user(image->segment, segments, segment_bytes);
146 if (result)
147 goto out;
148
149 /*
150 * Verify we have good destination addresses. The caller is
151 * responsible for making certain we don't attempt to load
152 * the new image into invalid or reserved areas of RAM. This
153 * just verifies it is an address we can use.
154 *
155 * Since the kernel does everything in page size chunks ensure
156 * the destination addreses are page aligned. Too many
157 * special cases crop of when we don't do this. The most
158 * insidious is getting overlapping destination addresses
159 * simply because addresses are changed to page size
160 * granularity.
161 */
162 result = -EADDRNOTAVAIL;
163 for (i = 0; i < nr_segments; i++) {
164 unsigned long mstart, mend;
165
166 mstart = image->segment[i].mem;
167 mend = mstart + image->segment[i].memsz;
168 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
169 goto out;
170 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
171 goto out;
172 }
173
174 /* Verify our destination addresses do not overlap.
175 * If we alloed overlapping destination addresses
176 * through very weird things can happen with no
177 * easy explanation as one segment stops on another.
178 */
179 result = -EINVAL;
180 for (i = 0; i < nr_segments; i++) {
181 unsigned long mstart, mend;
182 unsigned long j;
183
184 mstart = image->segment[i].mem;
185 mend = mstart + image->segment[i].memsz;
186 for (j = 0; j < i; j++) {
187 unsigned long pstart, pend;
188 pstart = image->segment[j].mem;
189 pend = pstart + image->segment[j].memsz;
190 /* Do the segments overlap ? */
191 if ((mend > pstart) && (mstart < pend))
192 goto out;
193 }
194 }
195
196 /* Ensure our buffer sizes are strictly less than
197 * our memory sizes. This should always be the case,
198 * and it is easier to check up front than to be surprised
199 * later on.
200 */
201 result = -EINVAL;
202 for (i = 0; i < nr_segments; i++) {
203 if (image->segment[i].bufsz > image->segment[i].memsz)
204 goto out;
205 }
206
207 result = 0;
208 out:
209 if (result == 0)
210 *rimage = image;
211 else
212 kfree(image);
213
214 return result;
215
216 }
217
218 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
219 unsigned long nr_segments,
220 struct kexec_segment __user *segments)
221 {
222 int result;
223 struct kimage *image;
224
225 /* Allocate and initialize a controlling structure */
226 image = NULL;
227 result = do_kimage_alloc(&image, entry, nr_segments, segments);
228 if (result)
229 goto out;
230
231 *rimage = image;
232
233 /*
234 * Find a location for the control code buffer, and add it
235 * the vector of segments so that it's pages will also be
236 * counted as destination pages.
237 */
238 result = -ENOMEM;
239 image->control_code_page = kimage_alloc_control_pages(image,
240 get_order(KEXEC_CONTROL_CODE_SIZE));
241 if (!image->control_code_page) {
242 printk(KERN_ERR "Could not allocate control_code_buffer\n");
243 goto out;
244 }
245
246 result = 0;
247 out:
248 if (result == 0)
249 *rimage = image;
250 else
251 kfree(image);
252
253 return result;
254 }
255
256 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
257 unsigned long nr_segments,
258 struct kexec_segment __user *segments)
259 {
260 int result;
261 struct kimage *image;
262 unsigned long i;
263
264 image = NULL;
265 /* Verify we have a valid entry point */
266 if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
267 result = -EADDRNOTAVAIL;
268 goto out;
269 }
270
271 /* Allocate and initialize a controlling structure */
272 result = do_kimage_alloc(&image, entry, nr_segments, segments);
273 if (result)
274 goto out;
275
276 /* Enable the special crash kernel control page
277 * allocation policy.
278 */
279 image->control_page = crashk_res.start;
280 image->type = KEXEC_TYPE_CRASH;
281
282 /*
283 * Verify we have good destination addresses. Normally
284 * the caller is responsible for making certain we don't
285 * attempt to load the new image into invalid or reserved
286 * areas of RAM. But crash kernels are preloaded into a
287 * reserved area of ram. We must ensure the addresses
288 * are in the reserved area otherwise preloading the
289 * kernel could corrupt things.
290 */
291 result = -EADDRNOTAVAIL;
292 for (i = 0; i < nr_segments; i++) {
293 unsigned long mstart, mend;
294
295 mstart = image->segment[i].mem;
296 mend = mstart + image->segment[i].memsz - 1;
297 /* Ensure we are within the crash kernel limits */
298 if ((mstart < crashk_res.start) || (mend > crashk_res.end))
299 goto out;
300 }
301
302 /*
303 * Find a location for the control code buffer, and add
304 * the vector of segments so that it's pages will also be
305 * counted as destination pages.
306 */
307 result = -ENOMEM;
308 image->control_code_page = kimage_alloc_control_pages(image,
309 get_order(KEXEC_CONTROL_CODE_SIZE));
310 if (!image->control_code_page) {
311 printk(KERN_ERR "Could not allocate control_code_buffer\n");
312 goto out;
313 }
314
315 result = 0;
316 out:
317 if (result == 0)
318 *rimage = image;
319 else
320 kfree(image);
321
322 return result;
323 }
324
325 static int kimage_is_destination_range(struct kimage *image,
326 unsigned long start,
327 unsigned long end)
328 {
329 unsigned long i;
330
331 for (i = 0; i < image->nr_segments; i++) {
332 unsigned long mstart, mend;
333
334 mstart = image->segment[i].mem;
335 mend = mstart + image->segment[i].memsz;
336 if ((end > mstart) && (start < mend))
337 return 1;
338 }
339
340 return 0;
341 }
342
343 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
344 {
345 struct page *pages;
346
347 pages = alloc_pages(gfp_mask, order);
348 if (pages) {
349 unsigned int count, i;
350 pages->mapping = NULL;
351 set_page_private(pages, order);
352 count = 1 << order;
353 for (i = 0; i < count; i++)
354 SetPageReserved(pages + i);
355 }
356
357 return pages;
358 }
359
360 static void kimage_free_pages(struct page *page)
361 {
362 unsigned int order, count, i;
363
364 order = page_private(page);
365 count = 1 << order;
366 for (i = 0; i < count; i++)
367 ClearPageReserved(page + i);
368 __free_pages(page, order);
369 }
370
371 static void kimage_free_page_list(struct list_head *list)
372 {
373 struct list_head *pos, *next;
374
375 list_for_each_safe(pos, next, list) {
376 struct page *page;
377
378 page = list_entry(pos, struct page, lru);
379 list_del(&page->lru);
380 kimage_free_pages(page);
381 }
382 }
383
384 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
385 unsigned int order)
386 {
387 /* Control pages are special, they are the intermediaries
388 * that are needed while we copy the rest of the pages
389 * to their final resting place. As such they must
390 * not conflict with either the destination addresses
391 * or memory the kernel is already using.
392 *
393 * The only case where we really need more than one of
394 * these are for architectures where we cannot disable
395 * the MMU and must instead generate an identity mapped
396 * page table for all of the memory.
397 *
398 * At worst this runs in O(N) of the image size.
399 */
400 struct list_head extra_pages;
401 struct page *pages;
402 unsigned int count;
403
404 count = 1 << order;
405 INIT_LIST_HEAD(&extra_pages);
406
407 /* Loop while I can allocate a page and the page allocated
408 * is a destination page.
409 */
410 do {
411 unsigned long pfn, epfn, addr, eaddr;
412
413 pages = kimage_alloc_pages(GFP_KERNEL, order);
414 if (!pages)
415 break;
416 pfn = page_to_pfn(pages);
417 epfn = pfn + count;
418 addr = pfn << PAGE_SHIFT;
419 eaddr = epfn << PAGE_SHIFT;
420 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
421 kimage_is_destination_range(image, addr, eaddr)) {
422 list_add(&pages->lru, &extra_pages);
423 pages = NULL;
424 }
425 } while (!pages);
426
427 if (pages) {
428 /* Remember the allocated page... */
429 list_add(&pages->lru, &image->control_pages);
430
431 /* Because the page is already in it's destination
432 * location we will never allocate another page at
433 * that address. Therefore kimage_alloc_pages
434 * will not return it (again) and we don't need
435 * to give it an entry in image->segment[].
436 */
437 }
438 /* Deal with the destination pages I have inadvertently allocated.
439 *
440 * Ideally I would convert multi-page allocations into single
441 * page allocations, and add everyting to image->dest_pages.
442 *
443 * For now it is simpler to just free the pages.
444 */
445 kimage_free_page_list(&extra_pages);
446
447 return pages;
448 }
449
450 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
451 unsigned int order)
452 {
453 /* Control pages are special, they are the intermediaries
454 * that are needed while we copy the rest of the pages
455 * to their final resting place. As such they must
456 * not conflict with either the destination addresses
457 * or memory the kernel is already using.
458 *
459 * Control pages are also the only pags we must allocate
460 * when loading a crash kernel. All of the other pages
461 * are specified by the segments and we just memcpy
462 * into them directly.
463 *
464 * The only case where we really need more than one of
465 * these are for architectures where we cannot disable
466 * the MMU and must instead generate an identity mapped
467 * page table for all of the memory.
468 *
469 * Given the low demand this implements a very simple
470 * allocator that finds the first hole of the appropriate
471 * size in the reserved memory region, and allocates all
472 * of the memory up to and including the hole.
473 */
474 unsigned long hole_start, hole_end, size;
475 struct page *pages;
476
477 pages = NULL;
478 size = (1 << order) << PAGE_SHIFT;
479 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
480 hole_end = hole_start + size - 1;
481 while (hole_end <= crashk_res.end) {
482 unsigned long i;
483
484 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT)
485 break;
486 if (hole_end > crashk_res.end)
487 break;
488 /* See if I overlap any of the segments */
489 for (i = 0; i < image->nr_segments; i++) {
490 unsigned long mstart, mend;
491
492 mstart = image->segment[i].mem;
493 mend = mstart + image->segment[i].memsz - 1;
494 if ((hole_end >= mstart) && (hole_start <= mend)) {
495 /* Advance the hole to the end of the segment */
496 hole_start = (mend + (size - 1)) & ~(size - 1);
497 hole_end = hole_start + size - 1;
498 break;
499 }
500 }
501 /* If I don't overlap any segments I have found my hole! */
502 if (i == image->nr_segments) {
503 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
504 break;
505 }
506 }
507 if (pages)
508 image->control_page = hole_end;
509
510 return pages;
511 }
512
513
514 struct page *kimage_alloc_control_pages(struct kimage *image,
515 unsigned int order)
516 {
517 struct page *pages = NULL;
518
519 switch (image->type) {
520 case KEXEC_TYPE_DEFAULT:
521 pages = kimage_alloc_normal_control_pages(image, order);
522 break;
523 case KEXEC_TYPE_CRASH:
524 pages = kimage_alloc_crash_control_pages(image, order);
525 break;
526 }
527
528 return pages;
529 }
530
531 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
532 {
533 if (*image->entry != 0)
534 image->entry++;
535
536 if (image->entry == image->last_entry) {
537 kimage_entry_t *ind_page;
538 struct page *page;
539
540 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
541 if (!page)
542 return -ENOMEM;
543
544 ind_page = page_address(page);
545 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
546 image->entry = ind_page;
547 image->last_entry = ind_page +
548 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
549 }
550 *image->entry = entry;
551 image->entry++;
552 *image->entry = 0;
553
554 return 0;
555 }
556
557 static int kimage_set_destination(struct kimage *image,
558 unsigned long destination)
559 {
560 int result;
561
562 destination &= PAGE_MASK;
563 result = kimage_add_entry(image, destination | IND_DESTINATION);
564 if (result == 0)
565 image->destination = destination;
566
567 return result;
568 }
569
570
571 static int kimage_add_page(struct kimage *image, unsigned long page)
572 {
573 int result;
574
575 page &= PAGE_MASK;
576 result = kimage_add_entry(image, page | IND_SOURCE);
577 if (result == 0)
578 image->destination += PAGE_SIZE;
579
580 return result;
581 }
582
583
584 static void kimage_free_extra_pages(struct kimage *image)
585 {
586 /* Walk through and free any extra destination pages I may have */
587 kimage_free_page_list(&image->dest_pages);
588
589 /* Walk through and free any unuseable pages I have cached */
590 kimage_free_page_list(&image->unuseable_pages);
591
592 }
593 static int kimage_terminate(struct kimage *image)
594 {
595 if (*image->entry != 0)
596 image->entry++;
597
598 *image->entry = IND_DONE;
599
600 return 0;
601 }
602
603 #define for_each_kimage_entry(image, ptr, entry) \
604 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
605 ptr = (entry & IND_INDIRECTION)? \
606 phys_to_virt((entry & PAGE_MASK)): ptr +1)
607
608 static void kimage_free_entry(kimage_entry_t entry)
609 {
610 struct page *page;
611
612 page = pfn_to_page(entry >> PAGE_SHIFT);
613 kimage_free_pages(page);
614 }
615
616 static void kimage_free(struct kimage *image)
617 {
618 kimage_entry_t *ptr, entry;
619 kimage_entry_t ind = 0;
620
621 if (!image)
622 return;
623
624 kimage_free_extra_pages(image);
625 for_each_kimage_entry(image, ptr, entry) {
626 if (entry & IND_INDIRECTION) {
627 /* Free the previous indirection page */
628 if (ind & IND_INDIRECTION)
629 kimage_free_entry(ind);
630 /* Save this indirection page until we are
631 * done with it.
632 */
633 ind = entry;
634 }
635 else if (entry & IND_SOURCE)
636 kimage_free_entry(entry);
637 }
638 /* Free the final indirection page */
639 if (ind & IND_INDIRECTION)
640 kimage_free_entry(ind);
641
642 /* Handle any machine specific cleanup */
643 machine_kexec_cleanup(image);
644
645 /* Free the kexec control pages... */
646 kimage_free_page_list(&image->control_pages);
647 kfree(image);
648 }
649
650 static kimage_entry_t *kimage_dst_used(struct kimage *image,
651 unsigned long page)
652 {
653 kimage_entry_t *ptr, entry;
654 unsigned long destination = 0;
655
656 for_each_kimage_entry(image, ptr, entry) {
657 if (entry & IND_DESTINATION)
658 destination = entry & PAGE_MASK;
659 else if (entry & IND_SOURCE) {
660 if (page == destination)
661 return ptr;
662 destination += PAGE_SIZE;
663 }
664 }
665
666 return NULL;
667 }
668
669 static struct page *kimage_alloc_page(struct kimage *image,
670 gfp_t gfp_mask,
671 unsigned long destination)
672 {
673 /*
674 * Here we implement safeguards to ensure that a source page
675 * is not copied to its destination page before the data on
676 * the destination page is no longer useful.
677 *
678 * To do this we maintain the invariant that a source page is
679 * either its own destination page, or it is not a
680 * destination page at all.
681 *
682 * That is slightly stronger than required, but the proof
683 * that no problems will not occur is trivial, and the
684 * implementation is simply to verify.
685 *
686 * When allocating all pages normally this algorithm will run
687 * in O(N) time, but in the worst case it will run in O(N^2)
688 * time. If the runtime is a problem the data structures can
689 * be fixed.
690 */
691 struct page *page;
692 unsigned long addr;
693
694 /*
695 * Walk through the list of destination pages, and see if I
696 * have a match.
697 */
698 list_for_each_entry(page, &image->dest_pages, lru) {
699 addr = page_to_pfn(page) << PAGE_SHIFT;
700 if (addr == destination) {
701 list_del(&page->lru);
702 return page;
703 }
704 }
705 page = NULL;
706 while (1) {
707 kimage_entry_t *old;
708
709 /* Allocate a page, if we run out of memory give up */
710 page = kimage_alloc_pages(gfp_mask, 0);
711 if (!page)
712 return NULL;
713 /* If the page cannot be used file it away */
714 if (page_to_pfn(page) >
715 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
716 list_add(&page->lru, &image->unuseable_pages);
717 continue;
718 }
719 addr = page_to_pfn(page) << PAGE_SHIFT;
720
721 /* If it is the destination page we want use it */
722 if (addr == destination)
723 break;
724
725 /* If the page is not a destination page use it */
726 if (!kimage_is_destination_range(image, addr,
727 addr + PAGE_SIZE))
728 break;
729
730 /*
731 * I know that the page is someones destination page.
732 * See if there is already a source page for this
733 * destination page. And if so swap the source pages.
734 */
735 old = kimage_dst_used(image, addr);
736 if (old) {
737 /* If so move it */
738 unsigned long old_addr;
739 struct page *old_page;
740
741 old_addr = *old & PAGE_MASK;
742 old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
743 copy_highpage(page, old_page);
744 *old = addr | (*old & ~PAGE_MASK);
745
746 /* The old page I have found cannot be a
747 * destination page, so return it.
748 */
749 addr = old_addr;
750 page = old_page;
751 break;
752 }
753 else {
754 /* Place the page on the destination list I
755 * will use it later.
756 */
757 list_add(&page->lru, &image->dest_pages);
758 }
759 }
760
761 return page;
762 }
763
764 static int kimage_load_normal_segment(struct kimage *image,
765 struct kexec_segment *segment)
766 {
767 unsigned long maddr;
768 unsigned long ubytes, mbytes;
769 int result;
770 unsigned char __user *buf;
771
772 result = 0;
773 buf = segment->buf;
774 ubytes = segment->bufsz;
775 mbytes = segment->memsz;
776 maddr = segment->mem;
777
778 result = kimage_set_destination(image, maddr);
779 if (result < 0)
780 goto out;
781
782 while (mbytes) {
783 struct page *page;
784 char *ptr;
785 size_t uchunk, mchunk;
786
787 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
788 if (!page) {
789 result = -ENOMEM;
790 goto out;
791 }
792 result = kimage_add_page(image, page_to_pfn(page)
793 << PAGE_SHIFT);
794 if (result < 0)
795 goto out;
796
797 ptr = kmap(page);
798 /* Start with a clear page */
799 memset(ptr, 0, PAGE_SIZE);
800 ptr += maddr & ~PAGE_MASK;
801 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
802 if (mchunk > mbytes)
803 mchunk = mbytes;
804
805 uchunk = mchunk;
806 if (uchunk > ubytes)
807 uchunk = ubytes;
808
809 result = copy_from_user(ptr, buf, uchunk);
810 kunmap(page);
811 if (result) {
812 result = (result < 0) ? result : -EIO;
813 goto out;
814 }
815 ubytes -= uchunk;
816 maddr += mchunk;
817 buf += mchunk;
818 mbytes -= mchunk;
819 }
820 out:
821 return result;
822 }
823
824 static int kimage_load_crash_segment(struct kimage *image,
825 struct kexec_segment *segment)
826 {
827 /* For crash dumps kernels we simply copy the data from
828 * user space to it's destination.
829 * We do things a page at a time for the sake of kmap.
830 */
831 unsigned long maddr;
832 unsigned long ubytes, mbytes;
833 int result;
834 unsigned char __user *buf;
835
836 result = 0;
837 buf = segment->buf;
838 ubytes = segment->bufsz;
839 mbytes = segment->memsz;
840 maddr = segment->mem;
841 while (mbytes) {
842 struct page *page;
843 char *ptr;
844 size_t uchunk, mchunk;
845
846 page = pfn_to_page(maddr >> PAGE_SHIFT);
847 if (!page) {
848 result = -ENOMEM;
849 goto out;
850 }
851 ptr = kmap(page);
852 ptr += maddr & ~PAGE_MASK;
853 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
854 if (mchunk > mbytes)
855 mchunk = mbytes;
856
857 uchunk = mchunk;
858 if (uchunk > ubytes) {
859 uchunk = ubytes;
860 /* Zero the trailing part of the page */
861 memset(ptr + uchunk, 0, mchunk - uchunk);
862 }
863 result = copy_from_user(ptr, buf, uchunk);
864 kexec_flush_icache_page(page);
865 kunmap(page);
866 if (result) {
867 result = (result < 0) ? result : -EIO;
868 goto out;
869 }
870 ubytes -= uchunk;
871 maddr += mchunk;
872 buf += mchunk;
873 mbytes -= mchunk;
874 }
875 out:
876 return result;
877 }
878
879 static int kimage_load_segment(struct kimage *image,
880 struct kexec_segment *segment)
881 {
882 int result = -ENOMEM;
883
884 switch (image->type) {
885 case KEXEC_TYPE_DEFAULT:
886 result = kimage_load_normal_segment(image, segment);
887 break;
888 case KEXEC_TYPE_CRASH:
889 result = kimage_load_crash_segment(image, segment);
890 break;
891 }
892
893 return result;
894 }
895
896 /*
897 * Exec Kernel system call: for obvious reasons only root may call it.
898 *
899 * This call breaks up into three pieces.
900 * - A generic part which loads the new kernel from the current
901 * address space, and very carefully places the data in the
902 * allocated pages.
903 *
904 * - A generic part that interacts with the kernel and tells all of
905 * the devices to shut down. Preventing on-going dmas, and placing
906 * the devices in a consistent state so a later kernel can
907 * reinitialize them.
908 *
909 * - A machine specific part that includes the syscall number
910 * and the copies the image to it's final destination. And
911 * jumps into the image at entry.
912 *
913 * kexec does not sync, or unmount filesystems so if you need
914 * that to happen you need to do that yourself.
915 */
916 struct kimage *kexec_image;
917 struct kimage *kexec_crash_image;
918 /*
919 * A home grown binary mutex.
920 * Nothing can wait so this mutex is safe to use
921 * in interrupt context :)
922 */
923 static int kexec_lock;
924
925 asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments,
926 struct kexec_segment __user *segments,
927 unsigned long flags)
928 {
929 struct kimage **dest_image, *image;
930 int locked;
931 int result;
932
933 /* We only trust the superuser with rebooting the system. */
934 if (!capable(CAP_SYS_BOOT))
935 return -EPERM;
936
937 /*
938 * Verify we have a legal set of flags
939 * This leaves us room for future extensions.
940 */
941 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
942 return -EINVAL;
943
944 /* Verify we are on the appropriate architecture */
945 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
946 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
947 return -EINVAL;
948
949 /* Put an artificial cap on the number
950 * of segments passed to kexec_load.
951 */
952 if (nr_segments > KEXEC_SEGMENT_MAX)
953 return -EINVAL;
954
955 image = NULL;
956 result = 0;
957
958 /* Because we write directly to the reserved memory
959 * region when loading crash kernels we need a mutex here to
960 * prevent multiple crash kernels from attempting to load
961 * simultaneously, and to prevent a crash kernel from loading
962 * over the top of a in use crash kernel.
963 *
964 * KISS: always take the mutex.
965 */
966 locked = xchg(&kexec_lock, 1);
967 if (locked)
968 return -EBUSY;
969
970 dest_image = &kexec_image;
971 if (flags & KEXEC_ON_CRASH)
972 dest_image = &kexec_crash_image;
973 if (nr_segments > 0) {
974 unsigned long i;
975
976 /* Loading another kernel to reboot into */
977 if ((flags & KEXEC_ON_CRASH) == 0)
978 result = kimage_normal_alloc(&image, entry,
979 nr_segments, segments);
980 /* Loading another kernel to switch to if this one crashes */
981 else if (flags & KEXEC_ON_CRASH) {
982 /* Free any current crash dump kernel before
983 * we corrupt it.
984 */
985 kimage_free(xchg(&kexec_crash_image, NULL));
986 result = kimage_crash_alloc(&image, entry,
987 nr_segments, segments);
988 }
989 if (result)
990 goto out;
991
992 result = machine_kexec_prepare(image);
993 if (result)
994 goto out;
995
996 for (i = 0; i < nr_segments; i++) {
997 result = kimage_load_segment(image, &image->segment[i]);
998 if (result)
999 goto out;
1000 }
1001 result = kimage_terminate(image);
1002 if (result)
1003 goto out;
1004 }
1005 /* Install the new kernel, and Uninstall the old */
1006 image = xchg(dest_image, image);
1007
1008 out:
1009 locked = xchg(&kexec_lock, 0); /* Release the mutex */
1010 BUG_ON(!locked);
1011 kimage_free(image);
1012
1013 return result;
1014 }
1015
1016 #ifdef CONFIG_COMPAT
1017 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1018 unsigned long nr_segments,
1019 struct compat_kexec_segment __user *segments,
1020 unsigned long flags)
1021 {
1022 struct compat_kexec_segment in;
1023 struct kexec_segment out, __user *ksegments;
1024 unsigned long i, result;
1025
1026 /* Don't allow clients that don't understand the native
1027 * architecture to do anything.
1028 */
1029 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1030 return -EINVAL;
1031
1032 if (nr_segments > KEXEC_SEGMENT_MAX)
1033 return -EINVAL;
1034
1035 ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1036 for (i=0; i < nr_segments; i++) {
1037 result = copy_from_user(&in, &segments[i], sizeof(in));
1038 if (result)
1039 return -EFAULT;
1040
1041 out.buf = compat_ptr(in.buf);
1042 out.bufsz = in.bufsz;
1043 out.mem = in.mem;
1044 out.memsz = in.memsz;
1045
1046 result = copy_to_user(&ksegments[i], &out, sizeof(out));
1047 if (result)
1048 return -EFAULT;
1049 }
1050
1051 return sys_kexec_load(entry, nr_segments, ksegments, flags);
1052 }
1053 #endif
1054
1055 void crash_kexec(struct pt_regs *regs)
1056 {
1057 int locked;
1058
1059
1060 /* Take the kexec_lock here to prevent sys_kexec_load
1061 * running on one cpu from replacing the crash kernel
1062 * we are using after a panic on a different cpu.
1063 *
1064 * If the crash kernel was not located in a fixed area
1065 * of memory the xchg(&kexec_crash_image) would be
1066 * sufficient. But since I reuse the memory...
1067 */
1068 locked = xchg(&kexec_lock, 1);
1069 if (!locked) {
1070 if (kexec_crash_image) {
1071 struct pt_regs fixed_regs;
1072 crash_setup_regs(&fixed_regs, regs);
1073 crash_save_vmcoreinfo();
1074 machine_crash_shutdown(&fixed_regs);
1075 machine_kexec(kexec_crash_image);
1076 }
1077 locked = xchg(&kexec_lock, 0);
1078 BUG_ON(!locked);
1079 }
1080 }
1081
1082 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1083 size_t data_len)
1084 {
1085 struct elf_note note;
1086
1087 note.n_namesz = strlen(name) + 1;
1088 note.n_descsz = data_len;
1089 note.n_type = type;
1090 memcpy(buf, &note, sizeof(note));
1091 buf += (sizeof(note) + 3)/4;
1092 memcpy(buf, name, note.n_namesz);
1093 buf += (note.n_namesz + 3)/4;
1094 memcpy(buf, data, note.n_descsz);
1095 buf += (note.n_descsz + 3)/4;
1096
1097 return buf;
1098 }
1099
1100 static void final_note(u32 *buf)
1101 {
1102 struct elf_note note;
1103
1104 note.n_namesz = 0;
1105 note.n_descsz = 0;
1106 note.n_type = 0;
1107 memcpy(buf, &note, sizeof(note));
1108 }
1109
1110 void crash_save_cpu(struct pt_regs *regs, int cpu)
1111 {
1112 struct elf_prstatus prstatus;
1113 u32 *buf;
1114
1115 if ((cpu < 0) || (cpu >= NR_CPUS))
1116 return;
1117
1118 /* Using ELF notes here is opportunistic.
1119 * I need a well defined structure format
1120 * for the data I pass, and I need tags
1121 * on the data to indicate what information I have
1122 * squirrelled away. ELF notes happen to provide
1123 * all of that, so there is no need to invent something new.
1124 */
1125 buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1126 if (!buf)
1127 return;
1128 memset(&prstatus, 0, sizeof(prstatus));
1129 prstatus.pr_pid = current->pid;
1130 elf_core_copy_regs(&prstatus.pr_reg, regs);
1131 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1132 &prstatus, sizeof(prstatus));
1133 final_note(buf);
1134 }
1135
1136 static int __init crash_notes_memory_init(void)
1137 {
1138 /* Allocate memory for saving cpu registers. */
1139 crash_notes = alloc_percpu(note_buf_t);
1140 if (!crash_notes) {
1141 printk("Kexec: Memory allocation for saving cpu register"
1142 " states failed\n");
1143 return -ENOMEM;
1144 }
1145 return 0;
1146 }
1147 module_init(crash_notes_memory_init)
1148
1149
1150 /*
1151 * parsing the "crashkernel" commandline
1152 *
1153 * this code is intended to be called from architecture specific code
1154 */
1155
1156
1157 /*
1158 * This function parses command lines in the format
1159 *
1160 * crashkernel=ramsize-range:size[,...][@offset]
1161 *
1162 * The function returns 0 on success and -EINVAL on failure.
1163 */
1164 static int __init parse_crashkernel_mem(char *cmdline,
1165 unsigned long long system_ram,
1166 unsigned long long *crash_size,
1167 unsigned long long *crash_base)
1168 {
1169 char *cur = cmdline, *tmp;
1170
1171 /* for each entry of the comma-separated list */
1172 do {
1173 unsigned long long start, end = ULLONG_MAX, size;
1174
1175 /* get the start of the range */
1176 start = memparse(cur, &tmp);
1177 if (cur == tmp) {
1178 pr_warning("crashkernel: Memory value expected\n");
1179 return -EINVAL;
1180 }
1181 cur = tmp;
1182 if (*cur != '-') {
1183 pr_warning("crashkernel: '-' expected\n");
1184 return -EINVAL;
1185 }
1186 cur++;
1187
1188 /* if no ':' is here, than we read the end */
1189 if (*cur != ':') {
1190 end = memparse(cur, &tmp);
1191 if (cur == tmp) {
1192 pr_warning("crashkernel: Memory "
1193 "value expected\n");
1194 return -EINVAL;
1195 }
1196 cur = tmp;
1197 if (end <= start) {
1198 pr_warning("crashkernel: end <= start\n");
1199 return -EINVAL;
1200 }
1201 }
1202
1203 if (*cur != ':') {
1204 pr_warning("crashkernel: ':' expected\n");
1205 return -EINVAL;
1206 }
1207 cur++;
1208
1209 size = memparse(cur, &tmp);
1210 if (cur == tmp) {
1211 pr_warning("Memory value expected\n");
1212 return -EINVAL;
1213 }
1214 cur = tmp;
1215 if (size >= system_ram) {
1216 pr_warning("crashkernel: invalid size\n");
1217 return -EINVAL;
1218 }
1219
1220 /* match ? */
1221 if (system_ram >= start && system_ram <= end) {
1222 *crash_size = size;
1223 break;
1224 }
1225 } while (*cur++ == ',');
1226
1227 if (*crash_size > 0) {
1228 while (*cur != ' ' && *cur != '@')
1229 cur++;
1230 if (*cur == '@') {
1231 cur++;
1232 *crash_base = memparse(cur, &tmp);
1233 if (cur == tmp) {
1234 pr_warning("Memory value expected "
1235 "after '@'\n");
1236 return -EINVAL;
1237 }
1238 }
1239 }
1240
1241 return 0;
1242 }
1243
1244 /*
1245 * That function parses "simple" (old) crashkernel command lines like
1246 *
1247 * crashkernel=size[@offset]
1248 *
1249 * It returns 0 on success and -EINVAL on failure.
1250 */
1251 static int __init parse_crashkernel_simple(char *cmdline,
1252 unsigned long long *crash_size,
1253 unsigned long long *crash_base)
1254 {
1255 char *cur = cmdline;
1256
1257 *crash_size = memparse(cmdline, &cur);
1258 if (cmdline == cur) {
1259 pr_warning("crashkernel: memory value expected\n");
1260 return -EINVAL;
1261 }
1262
1263 if (*cur == '@')
1264 *crash_base = memparse(cur+1, &cur);
1265
1266 return 0;
1267 }
1268
1269 /*
1270 * That function is the entry point for command line parsing and should be
1271 * called from the arch-specific code.
1272 */
1273 int __init parse_crashkernel(char *cmdline,
1274 unsigned long long system_ram,
1275 unsigned long long *crash_size,
1276 unsigned long long *crash_base)
1277 {
1278 char *p = cmdline, *ck_cmdline = NULL;
1279 char *first_colon, *first_space;
1280
1281 BUG_ON(!crash_size || !crash_base);
1282 *crash_size = 0;
1283 *crash_base = 0;
1284
1285 /* find crashkernel and use the last one if there are more */
1286 p = strstr(p, "crashkernel=");
1287 while (p) {
1288 ck_cmdline = p;
1289 p = strstr(p+1, "crashkernel=");
1290 }
1291
1292 if (!ck_cmdline)
1293 return -EINVAL;
1294
1295 ck_cmdline += 12; /* strlen("crashkernel=") */
1296
1297 /*
1298 * if the commandline contains a ':', then that's the extended
1299 * syntax -- if not, it must be the classic syntax
1300 */
1301 first_colon = strchr(ck_cmdline, ':');
1302 first_space = strchr(ck_cmdline, ' ');
1303 if (first_colon && (!first_space || first_colon < first_space))
1304 return parse_crashkernel_mem(ck_cmdline, system_ram,
1305 crash_size, crash_base);
1306 else
1307 return parse_crashkernel_simple(ck_cmdline, crash_size,
1308 crash_base);
1309
1310 return 0;
1311 }
1312
1313
1314
1315 void crash_save_vmcoreinfo(void)
1316 {
1317 u32 *buf;
1318
1319 if (!vmcoreinfo_size)
1320 return;
1321
1322 vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1323
1324 buf = (u32 *)vmcoreinfo_note;
1325
1326 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1327 vmcoreinfo_size);
1328
1329 final_note(buf);
1330 }
1331
1332 void vmcoreinfo_append_str(const char *fmt, ...)
1333 {
1334 va_list args;
1335 char buf[0x50];
1336 int r;
1337
1338 va_start(args, fmt);
1339 r = vsnprintf(buf, sizeof(buf), fmt, args);
1340 va_end(args);
1341
1342 if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1343 r = vmcoreinfo_max_size - vmcoreinfo_size;
1344
1345 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1346
1347 vmcoreinfo_size += r;
1348 }
1349
1350 /*
1351 * provide an empty default implementation here -- architecture
1352 * code may override this
1353 */
1354 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1355 {}
1356
1357 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1358 {
1359 return __pa((unsigned long)(char *)&vmcoreinfo_note);
1360 }
1361
1362 static int __init crash_save_vmcoreinfo_init(void)
1363 {
1364 VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1365 VMCOREINFO_PAGESIZE(PAGE_SIZE);
1366
1367 VMCOREINFO_SYMBOL(init_uts_ns);
1368 VMCOREINFO_SYMBOL(node_online_map);
1369 VMCOREINFO_SYMBOL(swapper_pg_dir);
1370 VMCOREINFO_SYMBOL(_stext);
1371
1372 #ifndef CONFIG_NEED_MULTIPLE_NODES
1373 VMCOREINFO_SYMBOL(mem_map);
1374 VMCOREINFO_SYMBOL(contig_page_data);
1375 #endif
1376 #ifdef CONFIG_SPARSEMEM
1377 VMCOREINFO_SYMBOL(mem_section);
1378 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1379 VMCOREINFO_STRUCT_SIZE(mem_section);
1380 VMCOREINFO_OFFSET(mem_section, section_mem_map);
1381 #endif
1382 VMCOREINFO_STRUCT_SIZE(page);
1383 VMCOREINFO_STRUCT_SIZE(pglist_data);
1384 VMCOREINFO_STRUCT_SIZE(zone);
1385 VMCOREINFO_STRUCT_SIZE(free_area);
1386 VMCOREINFO_STRUCT_SIZE(list_head);
1387 VMCOREINFO_SIZE(nodemask_t);
1388 VMCOREINFO_OFFSET(page, flags);
1389 VMCOREINFO_OFFSET(page, _count);
1390 VMCOREINFO_OFFSET(page, mapping);
1391 VMCOREINFO_OFFSET(page, lru);
1392 VMCOREINFO_OFFSET(pglist_data, node_zones);
1393 VMCOREINFO_OFFSET(pglist_data, nr_zones);
1394 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1395 VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1396 #endif
1397 VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1398 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1399 VMCOREINFO_OFFSET(pglist_data, node_id);
1400 VMCOREINFO_OFFSET(zone, free_area);
1401 VMCOREINFO_OFFSET(zone, vm_stat);
1402 VMCOREINFO_OFFSET(zone, spanned_pages);
1403 VMCOREINFO_OFFSET(free_area, free_list);
1404 VMCOREINFO_OFFSET(list_head, next);
1405 VMCOREINFO_OFFSET(list_head, prev);
1406 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1407 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1408 VMCOREINFO_NUMBER(NR_FREE_PAGES);
1409
1410 arch_crash_save_vmcoreinfo();
1411
1412 return 0;
1413 }
1414
1415 module_init(crash_save_vmcoreinfo_init)