x86: move kstat_irqs from kstat to irq_desc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / irq / handle.c
1 /*
2 * linux/kernel/irq/handle.c
3 *
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
6 *
7 * This file contains the core interrupt handling code.
8 *
9 * Detailed information is available in Documentation/DocBook/genericirq
10 *
11 */
12
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18
19 #include "internals.h"
20
21 #ifdef CONFIG_TRACE_IRQFLAGS
22
23 /*
24 * lockdep: we want to handle all irq_desc locks as a single lock-class:
25 */
26 static struct lock_class_key irq_desc_lock_class;
27 #endif
28
29 /**
30 * handle_bad_irq - handle spurious and unhandled irqs
31 * @irq: the interrupt number
32 * @desc: description of the interrupt
33 *
34 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35 */
36 void
37 handle_bad_irq(unsigned int irq, struct irq_desc *desc)
38 {
39 print_irq_desc(irq, desc);
40 kstat_irqs_this_cpu(desc)++;
41 ack_bad_irq(irq);
42 }
43
44 /*
45 * Linux has a controller-independent interrupt architecture.
46 * Every controller has a 'controller-template', that is used
47 * by the main code to do the right thing. Each driver-visible
48 * interrupt source is transparently wired to the appropriate
49 * controller. Thus drivers need not be aware of the
50 * interrupt-controller.
51 *
52 * The code is designed to be easily extended with new/different
53 * interrupt controllers, without having to do assembly magic or
54 * having to touch the generic code.
55 *
56 * Controller mappings for all interrupt sources:
57 */
58 int nr_irqs = NR_IRQS;
59 EXPORT_SYMBOL_GPL(nr_irqs);
60
61 #ifdef CONFIG_HAVE_DYN_ARRAY
62 static struct irq_desc irq_desc_init = {
63 .irq = -1U,
64 .status = IRQ_DISABLED,
65 .chip = &no_irq_chip,
66 .handle_irq = handle_bad_irq,
67 .depth = 1,
68 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
69 #ifdef CONFIG_SMP
70 .affinity = CPU_MASK_ALL
71 #endif
72 };
73
74
75 static void init_one_irq_desc(struct irq_desc *desc)
76 {
77 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
78 #ifdef CONFIG_TRACE_IRQFLAGS
79 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
80 #endif
81 }
82
83 extern int after_bootmem;
84 extern void *__alloc_bootmem_nopanic(unsigned long size,
85 unsigned long align,
86 unsigned long goal);
87
88 static void init_kstat_irqs(struct irq_desc *desc, int nr_desc, int nr)
89 {
90 unsigned long bytes, total_bytes;
91 char *ptr;
92 int i;
93 unsigned long phys;
94
95 /* Compute how many bytes we need per irq and allocate them */
96 bytes = nr * sizeof(unsigned int);
97 total_bytes = bytes * nr_desc;
98 if (after_bootmem)
99 ptr = kzalloc(total_bytes, GFP_ATOMIC);
100 else
101 ptr = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
102
103 if (!ptr)
104 panic(" can not allocate kstat_irqs\n");
105
106 phys = __pa(ptr);
107 printk(KERN_DEBUG "kstat_irqs ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
108
109 for (i = 0; i < nr_desc; i++) {
110 desc[i].kstat_irqs = (unsigned int *)ptr;
111 ptr += bytes;
112 }
113 }
114
115
116 static void __init init_work(void *data)
117 {
118 struct dyn_array *da = data;
119 int i;
120 struct irq_desc *desc;
121
122 desc = *da->name;
123
124 for (i = 0; i < *da->nr; i++) {
125 init_one_irq_desc(&desc[i]);
126 #ifndef CONFIG_HAVE_SPARSE_IRQ
127 desc[i].irq = i;
128 #endif
129 }
130
131 #ifdef CONFIG_HAVE_SPARSE_IRQ
132 for (i = 1; i < *da->nr; i++)
133 desc[i-1].next = &desc[i];
134 #endif
135
136 /* init kstat_irqs, nr_cpu_ids is ready already */
137 init_kstat_irqs(desc, *da->nr, nr_cpu_ids);
138 }
139
140 #ifdef CONFIG_HAVE_SPARSE_IRQ
141 static int nr_irq_desc = 32;
142
143 static int __init parse_nr_irq_desc(char *arg)
144 {
145 if (arg)
146 nr_irq_desc = simple_strtoul(arg, NULL, 0);
147 return 0;
148 }
149
150 early_param("nr_irq_desc", parse_nr_irq_desc);
151
152 static struct irq_desc *sparse_irqs;
153 DEFINE_DYN_ARRAY(sparse_irqs, sizeof(struct irq_desc), nr_irq_desc, PAGE_SIZE, init_work);
154
155 struct irq_desc *irq_to_desc(unsigned int irq)
156 {
157 struct irq_desc *desc, *desc_pri;
158 int i;
159 int count = 0;
160 unsigned long phys;
161 unsigned long total_bytes;
162
163 BUG_ON(irq == -1U);
164
165 desc_pri = desc = &sparse_irqs[0];
166 while (desc) {
167 if (desc->irq == irq)
168 return desc;
169
170 if (desc->irq == -1U) {
171 desc->irq = irq;
172 return desc;
173 }
174 desc_pri = desc;
175 desc = desc->next;
176 count++;
177 }
178
179 /*
180 * we run out of pre-allocate ones, allocate more
181 */
182 printk(KERN_DEBUG "try to get more irq_desc %d\n", nr_irq_desc);
183
184 total_bytes = sizeof(struct irq_desc) * nr_irq_desc;
185 if (after_bootmem)
186 desc = kzalloc(total_bytes, GFP_ATOMIC);
187 else
188 desc = __alloc_bootmem_nopanic(total_bytes, PAGE_SIZE, 0);
189
190 if (!desc)
191 panic("please boot with nr_irq_desc= %d\n", count * 2);
192
193 phys = __pa(desc);
194 printk(KERN_DEBUG "irq_desc ==> [%#lx - %#lx]\n", phys, phys + total_bytes);
195
196 for (i = 0; i < nr_irq_desc; i++)
197 init_one_irq_desc(&desc[i]);
198
199 for (i = 1; i < nr_irq_desc; i++)
200 desc[i-1].next = &desc[i];
201
202 /* init kstat_irqs, nr_cpu_ids is ready already */
203 init_kstat_irqs(desc, nr_irq_desc, nr_cpu_ids);
204
205 desc->irq = irq;
206 desc_pri->next = desc;
207
208 return desc;
209 }
210 #else
211
212 static struct irq_desc *irq_desc;
213 DEFINE_DYN_ARRAY(irq_desc, sizeof(struct irq_desc), nr_irqs, PAGE_SIZE, init_work);
214
215 #endif
216
217 #else
218
219 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
220 [0 ... NR_IRQS-1] = {
221 .status = IRQ_DISABLED,
222 .chip = &no_irq_chip,
223 .handle_irq = handle_bad_irq,
224 .depth = 1,
225 .lock = __SPIN_LOCK_UNLOCKED(sparse_irqs->lock),
226 #ifdef CONFIG_SMP
227 .affinity = CPU_MASK_ALL
228 #endif
229 }
230 };
231
232 #endif
233
234 #ifndef CONFIG_HAVE_SPARSE_IRQ
235 struct irq_desc *irq_to_desc(unsigned int irq)
236 {
237 if (irq < nr_irqs)
238 return &irq_desc[irq];
239
240 return NULL;
241 }
242 #endif
243
244 /*
245 * What should we do if we get a hw irq event on an illegal vector?
246 * Each architecture has to answer this themself.
247 */
248 static void ack_bad(unsigned int irq)
249 {
250 struct irq_desc *desc;
251
252 desc = irq_to_desc(irq);
253 print_irq_desc(irq, desc);
254 ack_bad_irq(irq);
255 }
256
257 /*
258 * NOP functions
259 */
260 static void noop(unsigned int irq)
261 {
262 }
263
264 static unsigned int noop_ret(unsigned int irq)
265 {
266 return 0;
267 }
268
269 /*
270 * Generic no controller implementation
271 */
272 struct irq_chip no_irq_chip = {
273 .name = "none",
274 .startup = noop_ret,
275 .shutdown = noop,
276 .enable = noop,
277 .disable = noop,
278 .ack = ack_bad,
279 .end = noop,
280 };
281
282 /*
283 * Generic dummy implementation which can be used for
284 * real dumb interrupt sources
285 */
286 struct irq_chip dummy_irq_chip = {
287 .name = "dummy",
288 .startup = noop_ret,
289 .shutdown = noop,
290 .enable = noop,
291 .disable = noop,
292 .ack = noop,
293 .mask = noop,
294 .unmask = noop,
295 .end = noop,
296 };
297
298 /*
299 * Special, empty irq handler:
300 */
301 irqreturn_t no_action(int cpl, void *dev_id)
302 {
303 return IRQ_NONE;
304 }
305
306 /**
307 * handle_IRQ_event - irq action chain handler
308 * @irq: the interrupt number
309 * @action: the interrupt action chain for this irq
310 *
311 * Handles the action chain of an irq event
312 */
313 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
314 {
315 irqreturn_t ret, retval = IRQ_NONE;
316 unsigned int status = 0;
317
318 if (!(action->flags & IRQF_DISABLED))
319 local_irq_enable_in_hardirq();
320
321 do {
322 ret = action->handler(irq, action->dev_id);
323 if (ret == IRQ_HANDLED)
324 status |= action->flags;
325 retval |= ret;
326 action = action->next;
327 } while (action);
328
329 if (status & IRQF_SAMPLE_RANDOM)
330 add_interrupt_randomness(irq);
331 local_irq_disable();
332
333 return retval;
334 }
335
336 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
337 /**
338 * __do_IRQ - original all in one highlevel IRQ handler
339 * @irq: the interrupt number
340 *
341 * __do_IRQ handles all normal device IRQ's (the special
342 * SMP cross-CPU interrupts have their own specific
343 * handlers).
344 *
345 * This is the original x86 implementation which is used for every
346 * interrupt type.
347 */
348 unsigned int __do_IRQ(unsigned int irq)
349 {
350 struct irq_desc *desc = irq_to_desc(irq);
351 struct irqaction *action;
352 unsigned int status;
353
354 kstat_irqs_this_cpu(desc)++;
355 if (CHECK_IRQ_PER_CPU(desc->status)) {
356 irqreturn_t action_ret;
357
358 /*
359 * No locking required for CPU-local interrupts:
360 */
361 if (desc->chip->ack)
362 desc->chip->ack(irq);
363 if (likely(!(desc->status & IRQ_DISABLED))) {
364 action_ret = handle_IRQ_event(irq, desc->action);
365 if (!noirqdebug)
366 note_interrupt(irq, desc, action_ret);
367 }
368 desc->chip->end(irq);
369 return 1;
370 }
371
372 spin_lock(&desc->lock);
373 if (desc->chip->ack)
374 desc->chip->ack(irq);
375 /*
376 * REPLAY is when Linux resends an IRQ that was dropped earlier
377 * WAITING is used by probe to mark irqs that are being tested
378 */
379 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
380 status |= IRQ_PENDING; /* we _want_ to handle it */
381
382 /*
383 * If the IRQ is disabled for whatever reason, we cannot
384 * use the action we have.
385 */
386 action = NULL;
387 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
388 action = desc->action;
389 status &= ~IRQ_PENDING; /* we commit to handling */
390 status |= IRQ_INPROGRESS; /* we are handling it */
391 }
392 desc->status = status;
393
394 /*
395 * If there is no IRQ handler or it was disabled, exit early.
396 * Since we set PENDING, if another processor is handling
397 * a different instance of this same irq, the other processor
398 * will take care of it.
399 */
400 if (unlikely(!action))
401 goto out;
402
403 /*
404 * Edge triggered interrupts need to remember
405 * pending events.
406 * This applies to any hw interrupts that allow a second
407 * instance of the same irq to arrive while we are in do_IRQ
408 * or in the handler. But the code here only handles the _second_
409 * instance of the irq, not the third or fourth. So it is mostly
410 * useful for irq hardware that does not mask cleanly in an
411 * SMP environment.
412 */
413 for (;;) {
414 irqreturn_t action_ret;
415
416 spin_unlock(&desc->lock);
417
418 action_ret = handle_IRQ_event(irq, action);
419 if (!noirqdebug)
420 note_interrupt(irq, desc, action_ret);
421
422 spin_lock(&desc->lock);
423 if (likely(!(desc->status & IRQ_PENDING)))
424 break;
425 desc->status &= ~IRQ_PENDING;
426 }
427 desc->status &= ~IRQ_INPROGRESS;
428
429 out:
430 /*
431 * The ->end() handler has to deal with interrupts which got
432 * disabled while the handler was running.
433 */
434 desc->chip->end(irq);
435 spin_unlock(&desc->lock);
436
437 return 1;
438 }
439 #endif
440
441
442 #ifdef CONFIG_TRACE_IRQFLAGS
443 void early_init_irq_lock_class(void)
444 {
445 #ifndef CONFIG_HAVE_DYN_ARRAY
446 int i;
447
448 for (i = 0; i < nr_irqs; i++)
449 lockdep_set_class(&irq_desc[i].lock, &irq_desc_lock_class);
450 #endif
451 }
452 #endif
453
454 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
455 {
456 struct irq_desc *desc = irq_to_desc(irq);
457 return desc->kstat_irqs[cpu];
458 }
459 EXPORT_SYMBOL(kstat_irqs_cpu);
460