Merge branch 'for-linus' of master.kernel.org:/home/rmk/linux-2.6-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46 #include <linux/debugobjects.h>
47
48 #include <asm/uaccess.h>
49
50 /**
51 * ktime_get - get the monotonic time in ktime_t format
52 *
53 * returns the time in ktime_t format
54 */
55 ktime_t ktime_get(void)
56 {
57 struct timespec now;
58
59 ktime_get_ts(&now);
60
61 return timespec_to_ktime(now);
62 }
63 EXPORT_SYMBOL_GPL(ktime_get);
64
65 /**
66 * ktime_get_real - get the real (wall-) time in ktime_t format
67 *
68 * returns the time in ktime_t format
69 */
70 ktime_t ktime_get_real(void)
71 {
72 struct timespec now;
73
74 getnstimeofday(&now);
75
76 return timespec_to_ktime(now);
77 }
78
79 EXPORT_SYMBOL_GPL(ktime_get_real);
80
81 /*
82 * The timer bases:
83 *
84 * Note: If we want to add new timer bases, we have to skip the two
85 * clock ids captured by the cpu-timers. We do this by holding empty
86 * entries rather than doing math adjustment of the clock ids.
87 * This ensures that we capture erroneous accesses to these clock ids
88 * rather than moving them into the range of valid clock id's.
89 */
90 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
91 {
92
93 .clock_base =
94 {
95 {
96 .index = CLOCK_REALTIME,
97 .get_time = &ktime_get_real,
98 .resolution = KTIME_LOW_RES,
99 },
100 {
101 .index = CLOCK_MONOTONIC,
102 .get_time = &ktime_get,
103 .resolution = KTIME_LOW_RES,
104 },
105 }
106 };
107
108 /**
109 * ktime_get_ts - get the monotonic clock in timespec format
110 * @ts: pointer to timespec variable
111 *
112 * The function calculates the monotonic clock from the realtime
113 * clock and the wall_to_monotonic offset and stores the result
114 * in normalized timespec format in the variable pointed to by @ts.
115 */
116 void ktime_get_ts(struct timespec *ts)
117 {
118 struct timespec tomono;
119 unsigned long seq;
120
121 do {
122 seq = read_seqbegin(&xtime_lock);
123 getnstimeofday(ts);
124 tomono = wall_to_monotonic;
125
126 } while (read_seqretry(&xtime_lock, seq));
127
128 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
129 ts->tv_nsec + tomono.tv_nsec);
130 }
131 EXPORT_SYMBOL_GPL(ktime_get_ts);
132
133 /*
134 * Get the coarse grained time at the softirq based on xtime and
135 * wall_to_monotonic.
136 */
137 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
138 {
139 ktime_t xtim, tomono;
140 struct timespec xts, tom;
141 unsigned long seq;
142
143 do {
144 seq = read_seqbegin(&xtime_lock);
145 xts = current_kernel_time();
146 tom = wall_to_monotonic;
147 } while (read_seqretry(&xtime_lock, seq));
148
149 xtim = timespec_to_ktime(xts);
150 tomono = timespec_to_ktime(tom);
151 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
152 base->clock_base[CLOCK_MONOTONIC].softirq_time =
153 ktime_add(xtim, tomono);
154 }
155
156 /*
157 * Functions and macros which are different for UP/SMP systems are kept in a
158 * single place
159 */
160 #ifdef CONFIG_SMP
161
162 /*
163 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
164 * means that all timers which are tied to this base via timer->base are
165 * locked, and the base itself is locked too.
166 *
167 * So __run_timers/migrate_timers can safely modify all timers which could
168 * be found on the lists/queues.
169 *
170 * When the timer's base is locked, and the timer removed from list, it is
171 * possible to set timer->base = NULL and drop the lock: the timer remains
172 * locked.
173 */
174 static
175 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
176 unsigned long *flags)
177 {
178 struct hrtimer_clock_base *base;
179
180 for (;;) {
181 base = timer->base;
182 if (likely(base != NULL)) {
183 spin_lock_irqsave(&base->cpu_base->lock, *flags);
184 if (likely(base == timer->base))
185 return base;
186 /* The timer has migrated to another CPU: */
187 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
188 }
189 cpu_relax();
190 }
191 }
192
193 /*
194 * Switch the timer base to the current CPU when possible.
195 */
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
198 {
199 struct hrtimer_clock_base *new_base;
200 struct hrtimer_cpu_base *new_cpu_base;
201
202 new_cpu_base = &__get_cpu_var(hrtimer_bases);
203 new_base = &new_cpu_base->clock_base[base->index];
204
205 if (base != new_base) {
206 /*
207 * We are trying to schedule the timer on the local CPU.
208 * However we can't change timer's base while it is running,
209 * so we keep it on the same CPU. No hassle vs. reprogramming
210 * the event source in the high resolution case. The softirq
211 * code will take care of this when the timer function has
212 * completed. There is no conflict as we hold the lock until
213 * the timer is enqueued.
214 */
215 if (unlikely(hrtimer_callback_running(timer)))
216 return base;
217
218 /* See the comment in lock_timer_base() */
219 timer->base = NULL;
220 spin_unlock(&base->cpu_base->lock);
221 spin_lock(&new_base->cpu_base->lock);
222 timer->base = new_base;
223 }
224 return new_base;
225 }
226
227 #else /* CONFIG_SMP */
228
229 static inline struct hrtimer_clock_base *
230 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
231 {
232 struct hrtimer_clock_base *base = timer->base;
233
234 spin_lock_irqsave(&base->cpu_base->lock, *flags);
235
236 return base;
237 }
238
239 # define switch_hrtimer_base(t, b) (b)
240
241 #endif /* !CONFIG_SMP */
242
243 /*
244 * Functions for the union type storage format of ktime_t which are
245 * too large for inlining:
246 */
247 #if BITS_PER_LONG < 64
248 # ifndef CONFIG_KTIME_SCALAR
249 /**
250 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
251 * @kt: addend
252 * @nsec: the scalar nsec value to add
253 *
254 * Returns the sum of kt and nsec in ktime_t format
255 */
256 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
257 {
258 ktime_t tmp;
259
260 if (likely(nsec < NSEC_PER_SEC)) {
261 tmp.tv64 = nsec;
262 } else {
263 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
264
265 tmp = ktime_set((long)nsec, rem);
266 }
267
268 return ktime_add(kt, tmp);
269 }
270
271 EXPORT_SYMBOL_GPL(ktime_add_ns);
272
273 /**
274 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
275 * @kt: minuend
276 * @nsec: the scalar nsec value to subtract
277 *
278 * Returns the subtraction of @nsec from @kt in ktime_t format
279 */
280 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
281 {
282 ktime_t tmp;
283
284 if (likely(nsec < NSEC_PER_SEC)) {
285 tmp.tv64 = nsec;
286 } else {
287 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
288
289 tmp = ktime_set((long)nsec, rem);
290 }
291
292 return ktime_sub(kt, tmp);
293 }
294
295 EXPORT_SYMBOL_GPL(ktime_sub_ns);
296 # endif /* !CONFIG_KTIME_SCALAR */
297
298 /*
299 * Divide a ktime value by a nanosecond value
300 */
301 u64 ktime_divns(const ktime_t kt, s64 div)
302 {
303 u64 dclc;
304 int sft = 0;
305
306 dclc = ktime_to_ns(kt);
307 /* Make sure the divisor is less than 2^32: */
308 while (div >> 32) {
309 sft++;
310 div >>= 1;
311 }
312 dclc >>= sft;
313 do_div(dclc, (unsigned long) div);
314
315 return dclc;
316 }
317 #endif /* BITS_PER_LONG >= 64 */
318
319 /*
320 * Add two ktime values and do a safety check for overflow:
321 */
322 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
323 {
324 ktime_t res = ktime_add(lhs, rhs);
325
326 /*
327 * We use KTIME_SEC_MAX here, the maximum timeout which we can
328 * return to user space in a timespec:
329 */
330 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
331 res = ktime_set(KTIME_SEC_MAX, 0);
332
333 return res;
334 }
335
336 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
337
338 static struct debug_obj_descr hrtimer_debug_descr;
339
340 /*
341 * fixup_init is called when:
342 * - an active object is initialized
343 */
344 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
345 {
346 struct hrtimer *timer = addr;
347
348 switch (state) {
349 case ODEBUG_STATE_ACTIVE:
350 hrtimer_cancel(timer);
351 debug_object_init(timer, &hrtimer_debug_descr);
352 return 1;
353 default:
354 return 0;
355 }
356 }
357
358 /*
359 * fixup_activate is called when:
360 * - an active object is activated
361 * - an unknown object is activated (might be a statically initialized object)
362 */
363 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
364 {
365 switch (state) {
366
367 case ODEBUG_STATE_NOTAVAILABLE:
368 WARN_ON_ONCE(1);
369 return 0;
370
371 case ODEBUG_STATE_ACTIVE:
372 WARN_ON(1);
373
374 default:
375 return 0;
376 }
377 }
378
379 /*
380 * fixup_free is called when:
381 * - an active object is freed
382 */
383 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
384 {
385 struct hrtimer *timer = addr;
386
387 switch (state) {
388 case ODEBUG_STATE_ACTIVE:
389 hrtimer_cancel(timer);
390 debug_object_free(timer, &hrtimer_debug_descr);
391 return 1;
392 default:
393 return 0;
394 }
395 }
396
397 static struct debug_obj_descr hrtimer_debug_descr = {
398 .name = "hrtimer",
399 .fixup_init = hrtimer_fixup_init,
400 .fixup_activate = hrtimer_fixup_activate,
401 .fixup_free = hrtimer_fixup_free,
402 };
403
404 static inline void debug_hrtimer_init(struct hrtimer *timer)
405 {
406 debug_object_init(timer, &hrtimer_debug_descr);
407 }
408
409 static inline void debug_hrtimer_activate(struct hrtimer *timer)
410 {
411 debug_object_activate(timer, &hrtimer_debug_descr);
412 }
413
414 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
415 {
416 debug_object_deactivate(timer, &hrtimer_debug_descr);
417 }
418
419 static inline void debug_hrtimer_free(struct hrtimer *timer)
420 {
421 debug_object_free(timer, &hrtimer_debug_descr);
422 }
423
424 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode);
426
427 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
428 enum hrtimer_mode mode)
429 {
430 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
431 __hrtimer_init(timer, clock_id, mode);
432 }
433
434 void destroy_hrtimer_on_stack(struct hrtimer *timer)
435 {
436 debug_object_free(timer, &hrtimer_debug_descr);
437 }
438
439 #else
440 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
441 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
442 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443 #endif
444
445 /*
446 * Check, whether the timer is on the callback pending list
447 */
448 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
449 {
450 return timer->state & HRTIMER_STATE_PENDING;
451 }
452
453 /*
454 * Remove a timer from the callback pending list
455 */
456 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
457 {
458 list_del_init(&timer->cb_entry);
459 }
460
461 /* High resolution timer related functions */
462 #ifdef CONFIG_HIGH_RES_TIMERS
463
464 /*
465 * High resolution timer enabled ?
466 */
467 static int hrtimer_hres_enabled __read_mostly = 1;
468
469 /*
470 * Enable / Disable high resolution mode
471 */
472 static int __init setup_hrtimer_hres(char *str)
473 {
474 if (!strcmp(str, "off"))
475 hrtimer_hres_enabled = 0;
476 else if (!strcmp(str, "on"))
477 hrtimer_hres_enabled = 1;
478 else
479 return 0;
480 return 1;
481 }
482
483 __setup("highres=", setup_hrtimer_hres);
484
485 /*
486 * hrtimer_high_res_enabled - query, if the highres mode is enabled
487 */
488 static inline int hrtimer_is_hres_enabled(void)
489 {
490 return hrtimer_hres_enabled;
491 }
492
493 /*
494 * Is the high resolution mode active ?
495 */
496 static inline int hrtimer_hres_active(void)
497 {
498 return __get_cpu_var(hrtimer_bases).hres_active;
499 }
500
501 /*
502 * Reprogram the event source with checking both queues for the
503 * next event
504 * Called with interrupts disabled and base->lock held
505 */
506 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
507 {
508 int i;
509 struct hrtimer_clock_base *base = cpu_base->clock_base;
510 ktime_t expires;
511
512 cpu_base->expires_next.tv64 = KTIME_MAX;
513
514 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
515 struct hrtimer *timer;
516
517 if (!base->first)
518 continue;
519 timer = rb_entry(base->first, struct hrtimer, node);
520 expires = ktime_sub(timer->expires, base->offset);
521 if (expires.tv64 < cpu_base->expires_next.tv64)
522 cpu_base->expires_next = expires;
523 }
524
525 if (cpu_base->expires_next.tv64 != KTIME_MAX)
526 tick_program_event(cpu_base->expires_next, 1);
527 }
528
529 /*
530 * Shared reprogramming for clock_realtime and clock_monotonic
531 *
532 * When a timer is enqueued and expires earlier than the already enqueued
533 * timers, we have to check, whether it expires earlier than the timer for
534 * which the clock event device was armed.
535 *
536 * Called with interrupts disabled and base->cpu_base.lock held
537 */
538 static int hrtimer_reprogram(struct hrtimer *timer,
539 struct hrtimer_clock_base *base)
540 {
541 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
542 ktime_t expires = ktime_sub(timer->expires, base->offset);
543 int res;
544
545 WARN_ON_ONCE(timer->expires.tv64 < 0);
546
547 /*
548 * When the callback is running, we do not reprogram the clock event
549 * device. The timer callback is either running on a different CPU or
550 * the callback is executed in the hrtimer_interrupt context. The
551 * reprogramming is handled either by the softirq, which called the
552 * callback or at the end of the hrtimer_interrupt.
553 */
554 if (hrtimer_callback_running(timer))
555 return 0;
556
557 /*
558 * CLOCK_REALTIME timer might be requested with an absolute
559 * expiry time which is less than base->offset. Nothing wrong
560 * about that, just avoid to call into the tick code, which
561 * has now objections against negative expiry values.
562 */
563 if (expires.tv64 < 0)
564 return -ETIME;
565
566 if (expires.tv64 >= expires_next->tv64)
567 return 0;
568
569 /*
570 * Clockevents returns -ETIME, when the event was in the past.
571 */
572 res = tick_program_event(expires, 0);
573 if (!IS_ERR_VALUE(res))
574 *expires_next = expires;
575 return res;
576 }
577
578
579 /*
580 * Retrigger next event is called after clock was set
581 *
582 * Called with interrupts disabled via on_each_cpu()
583 */
584 static void retrigger_next_event(void *arg)
585 {
586 struct hrtimer_cpu_base *base;
587 struct timespec realtime_offset;
588 unsigned long seq;
589
590 if (!hrtimer_hres_active())
591 return;
592
593 do {
594 seq = read_seqbegin(&xtime_lock);
595 set_normalized_timespec(&realtime_offset,
596 -wall_to_monotonic.tv_sec,
597 -wall_to_monotonic.tv_nsec);
598 } while (read_seqretry(&xtime_lock, seq));
599
600 base = &__get_cpu_var(hrtimer_bases);
601
602 /* Adjust CLOCK_REALTIME offset */
603 spin_lock(&base->lock);
604 base->clock_base[CLOCK_REALTIME].offset =
605 timespec_to_ktime(realtime_offset);
606
607 hrtimer_force_reprogram(base);
608 spin_unlock(&base->lock);
609 }
610
611 /*
612 * Clock realtime was set
613 *
614 * Change the offset of the realtime clock vs. the monotonic
615 * clock.
616 *
617 * We might have to reprogram the high resolution timer interrupt. On
618 * SMP we call the architecture specific code to retrigger _all_ high
619 * resolution timer interrupts. On UP we just disable interrupts and
620 * call the high resolution interrupt code.
621 */
622 void clock_was_set(void)
623 {
624 /* Retrigger the CPU local events everywhere */
625 on_each_cpu(retrigger_next_event, NULL, 1);
626 }
627
628 /*
629 * During resume we might have to reprogram the high resolution timer
630 * interrupt (on the local CPU):
631 */
632 void hres_timers_resume(void)
633 {
634 /* Retrigger the CPU local events: */
635 retrigger_next_event(NULL);
636 }
637
638 /*
639 * Initialize the high resolution related parts of cpu_base
640 */
641 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
642 {
643 base->expires_next.tv64 = KTIME_MAX;
644 base->hres_active = 0;
645 }
646
647 /*
648 * Initialize the high resolution related parts of a hrtimer
649 */
650 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
651 {
652 }
653
654 /*
655 * When High resolution timers are active, try to reprogram. Note, that in case
656 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
657 * check happens. The timer gets enqueued into the rbtree. The reprogramming
658 * and expiry check is done in the hrtimer_interrupt or in the softirq.
659 */
660 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
661 struct hrtimer_clock_base *base)
662 {
663 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
664
665 /* Timer is expired, act upon the callback mode */
666 switch(timer->cb_mode) {
667 case HRTIMER_CB_IRQSAFE_NO_RESTART:
668 debug_hrtimer_deactivate(timer);
669 /*
670 * We can call the callback from here. No restart
671 * happens, so no danger of recursion
672 */
673 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
674 return 1;
675 case HRTIMER_CB_IRQSAFE_PERCPU:
676 case HRTIMER_CB_IRQSAFE_UNLOCKED:
677 /*
678 * This is solely for the sched tick emulation with
679 * dynamic tick support to ensure that we do not
680 * restart the tick right on the edge and end up with
681 * the tick timer in the softirq ! The calling site
682 * takes care of this. Also used for hrtimer sleeper !
683 */
684 debug_hrtimer_deactivate(timer);
685 return 1;
686 case HRTIMER_CB_IRQSAFE:
687 case HRTIMER_CB_SOFTIRQ:
688 /*
689 * Move everything else into the softirq pending list !
690 */
691 list_add_tail(&timer->cb_entry,
692 &base->cpu_base->cb_pending);
693 timer->state = HRTIMER_STATE_PENDING;
694 return 1;
695 default:
696 BUG();
697 }
698 }
699 return 0;
700 }
701
702 /*
703 * Switch to high resolution mode
704 */
705 static int hrtimer_switch_to_hres(void)
706 {
707 int cpu = smp_processor_id();
708 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
709 unsigned long flags;
710
711 if (base->hres_active)
712 return 1;
713
714 local_irq_save(flags);
715
716 if (tick_init_highres()) {
717 local_irq_restore(flags);
718 printk(KERN_WARNING "Could not switch to high resolution "
719 "mode on CPU %d\n", cpu);
720 return 0;
721 }
722 base->hres_active = 1;
723 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
724 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
725
726 tick_setup_sched_timer();
727
728 /* "Retrigger" the interrupt to get things going */
729 retrigger_next_event(NULL);
730 local_irq_restore(flags);
731 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
732 smp_processor_id());
733 return 1;
734 }
735
736 static inline void hrtimer_raise_softirq(void)
737 {
738 raise_softirq(HRTIMER_SOFTIRQ);
739 }
740
741 #else
742
743 static inline int hrtimer_hres_active(void) { return 0; }
744 static inline int hrtimer_is_hres_enabled(void) { return 0; }
745 static inline int hrtimer_switch_to_hres(void) { return 0; }
746 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
747 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
748 struct hrtimer_clock_base *base)
749 {
750 return 0;
751 }
752 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
753 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
754 static inline int hrtimer_reprogram(struct hrtimer *timer,
755 struct hrtimer_clock_base *base)
756 {
757 return 0;
758 }
759 static inline void hrtimer_raise_softirq(void) { }
760
761 #endif /* CONFIG_HIGH_RES_TIMERS */
762
763 #ifdef CONFIG_TIMER_STATS
764 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
765 {
766 if (timer->start_site)
767 return;
768
769 timer->start_site = addr;
770 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
771 timer->start_pid = current->pid;
772 }
773 #endif
774
775 /*
776 * Counterpart to lock_hrtimer_base above:
777 */
778 static inline
779 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
780 {
781 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
782 }
783
784 /**
785 * hrtimer_forward - forward the timer expiry
786 * @timer: hrtimer to forward
787 * @now: forward past this time
788 * @interval: the interval to forward
789 *
790 * Forward the timer expiry so it will expire in the future.
791 * Returns the number of overruns.
792 */
793 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
794 {
795 u64 orun = 1;
796 ktime_t delta;
797
798 delta = ktime_sub(now, timer->expires);
799
800 if (delta.tv64 < 0)
801 return 0;
802
803 if (interval.tv64 < timer->base->resolution.tv64)
804 interval.tv64 = timer->base->resolution.tv64;
805
806 if (unlikely(delta.tv64 >= interval.tv64)) {
807 s64 incr = ktime_to_ns(interval);
808
809 orun = ktime_divns(delta, incr);
810 timer->expires = ktime_add_ns(timer->expires, incr * orun);
811 if (timer->expires.tv64 > now.tv64)
812 return orun;
813 /*
814 * This (and the ktime_add() below) is the
815 * correction for exact:
816 */
817 orun++;
818 }
819 timer->expires = ktime_add_safe(timer->expires, interval);
820
821 return orun;
822 }
823 EXPORT_SYMBOL_GPL(hrtimer_forward);
824
825 /*
826 * enqueue_hrtimer - internal function to (re)start a timer
827 *
828 * The timer is inserted in expiry order. Insertion into the
829 * red black tree is O(log(n)). Must hold the base lock.
830 */
831 static void enqueue_hrtimer(struct hrtimer *timer,
832 struct hrtimer_clock_base *base, int reprogram)
833 {
834 struct rb_node **link = &base->active.rb_node;
835 struct rb_node *parent = NULL;
836 struct hrtimer *entry;
837 int leftmost = 1;
838
839 debug_hrtimer_activate(timer);
840
841 /*
842 * Find the right place in the rbtree:
843 */
844 while (*link) {
845 parent = *link;
846 entry = rb_entry(parent, struct hrtimer, node);
847 /*
848 * We dont care about collisions. Nodes with
849 * the same expiry time stay together.
850 */
851 if (timer->expires.tv64 < entry->expires.tv64) {
852 link = &(*link)->rb_left;
853 } else {
854 link = &(*link)->rb_right;
855 leftmost = 0;
856 }
857 }
858
859 /*
860 * Insert the timer to the rbtree and check whether it
861 * replaces the first pending timer
862 */
863 if (leftmost) {
864 /*
865 * Reprogram the clock event device. When the timer is already
866 * expired hrtimer_enqueue_reprogram has either called the
867 * callback or added it to the pending list and raised the
868 * softirq.
869 *
870 * This is a NOP for !HIGHRES
871 */
872 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
873 return;
874
875 base->first = &timer->node;
876 }
877
878 rb_link_node(&timer->node, parent, link);
879 rb_insert_color(&timer->node, &base->active);
880 /*
881 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
882 * state of a possibly running callback.
883 */
884 timer->state |= HRTIMER_STATE_ENQUEUED;
885 }
886
887 /*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
896 */
897 static void __remove_hrtimer(struct hrtimer *timer,
898 struct hrtimer_clock_base *base,
899 unsigned long newstate, int reprogram)
900 {
901 /* High res. callback list. NOP for !HIGHRES */
902 if (hrtimer_cb_pending(timer))
903 hrtimer_remove_cb_pending(timer);
904 else {
905 /*
906 * Remove the timer from the rbtree and replace the
907 * first entry pointer if necessary.
908 */
909 if (base->first == &timer->node) {
910 base->first = rb_next(&timer->node);
911 /* Reprogram the clock event device. if enabled */
912 if (reprogram && hrtimer_hres_active())
913 hrtimer_force_reprogram(base->cpu_base);
914 }
915 rb_erase(&timer->node, &base->active);
916 }
917 timer->state = newstate;
918 }
919
920 /*
921 * remove hrtimer, called with base lock held
922 */
923 static inline int
924 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
925 {
926 if (hrtimer_is_queued(timer)) {
927 int reprogram;
928
929 /*
930 * Remove the timer and force reprogramming when high
931 * resolution mode is active and the timer is on the current
932 * CPU. If we remove a timer on another CPU, reprogramming is
933 * skipped. The interrupt event on this CPU is fired and
934 * reprogramming happens in the interrupt handler. This is a
935 * rare case and less expensive than a smp call.
936 */
937 debug_hrtimer_deactivate(timer);
938 timer_stats_hrtimer_clear_start_info(timer);
939 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
940 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
941 reprogram);
942 return 1;
943 }
944 return 0;
945 }
946
947 /**
948 * hrtimer_start - (re)start an relative timer on the current CPU
949 * @timer: the timer to be added
950 * @tim: expiry time
951 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
952 *
953 * Returns:
954 * 0 on success
955 * 1 when the timer was active
956 */
957 int
958 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
959 {
960 struct hrtimer_clock_base *base, *new_base;
961 unsigned long flags;
962 int ret, raise;
963
964 base = lock_hrtimer_base(timer, &flags);
965
966 /* Remove an active timer from the queue: */
967 ret = remove_hrtimer(timer, base);
968
969 /* Switch the timer base, if necessary: */
970 new_base = switch_hrtimer_base(timer, base);
971
972 if (mode == HRTIMER_MODE_REL) {
973 tim = ktime_add_safe(tim, new_base->get_time());
974 /*
975 * CONFIG_TIME_LOW_RES is a temporary way for architectures
976 * to signal that they simply return xtime in
977 * do_gettimeoffset(). In this case we want to round up by
978 * resolution when starting a relative timer, to avoid short
979 * timeouts. This will go away with the GTOD framework.
980 */
981 #ifdef CONFIG_TIME_LOW_RES
982 tim = ktime_add_safe(tim, base->resolution);
983 #endif
984 }
985
986 timer->expires = tim;
987
988 timer_stats_hrtimer_set_start_info(timer);
989
990 /*
991 * Only allow reprogramming if the new base is on this CPU.
992 * (it might still be on another CPU if the timer was pending)
993 */
994 enqueue_hrtimer(timer, new_base,
995 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
996
997 /*
998 * The timer may be expired and moved to the cb_pending
999 * list. We can not raise the softirq with base lock held due
1000 * to a possible deadlock with runqueue lock.
1001 */
1002 raise = timer->state == HRTIMER_STATE_PENDING;
1003
1004 /*
1005 * We use preempt_disable to prevent this task from migrating after
1006 * setting up the softirq and raising it. Otherwise, if me migrate
1007 * we will raise the softirq on the wrong CPU.
1008 */
1009 preempt_disable();
1010
1011 unlock_hrtimer_base(timer, &flags);
1012
1013 if (raise)
1014 hrtimer_raise_softirq();
1015 preempt_enable();
1016
1017 return ret;
1018 }
1019 EXPORT_SYMBOL_GPL(hrtimer_start);
1020
1021 /**
1022 * hrtimer_try_to_cancel - try to deactivate a timer
1023 * @timer: hrtimer to stop
1024 *
1025 * Returns:
1026 * 0 when the timer was not active
1027 * 1 when the timer was active
1028 * -1 when the timer is currently excuting the callback function and
1029 * cannot be stopped
1030 */
1031 int hrtimer_try_to_cancel(struct hrtimer *timer)
1032 {
1033 struct hrtimer_clock_base *base;
1034 unsigned long flags;
1035 int ret = -1;
1036
1037 base = lock_hrtimer_base(timer, &flags);
1038
1039 if (!hrtimer_callback_running(timer))
1040 ret = remove_hrtimer(timer, base);
1041
1042 unlock_hrtimer_base(timer, &flags);
1043
1044 return ret;
1045
1046 }
1047 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1048
1049 /**
1050 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1051 * @timer: the timer to be cancelled
1052 *
1053 * Returns:
1054 * 0 when the timer was not active
1055 * 1 when the timer was active
1056 */
1057 int hrtimer_cancel(struct hrtimer *timer)
1058 {
1059 for (;;) {
1060 int ret = hrtimer_try_to_cancel(timer);
1061
1062 if (ret >= 0)
1063 return ret;
1064 cpu_relax();
1065 }
1066 }
1067 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1068
1069 /**
1070 * hrtimer_get_remaining - get remaining time for the timer
1071 * @timer: the timer to read
1072 */
1073 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1074 {
1075 struct hrtimer_clock_base *base;
1076 unsigned long flags;
1077 ktime_t rem;
1078
1079 base = lock_hrtimer_base(timer, &flags);
1080 rem = ktime_sub(timer->expires, base->get_time());
1081 unlock_hrtimer_base(timer, &flags);
1082
1083 return rem;
1084 }
1085 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1086
1087 #ifdef CONFIG_NO_HZ
1088 /**
1089 * hrtimer_get_next_event - get the time until next expiry event
1090 *
1091 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1092 * is pending.
1093 */
1094 ktime_t hrtimer_get_next_event(void)
1095 {
1096 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1097 struct hrtimer_clock_base *base = cpu_base->clock_base;
1098 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1099 unsigned long flags;
1100 int i;
1101
1102 spin_lock_irqsave(&cpu_base->lock, flags);
1103
1104 if (!hrtimer_hres_active()) {
1105 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1106 struct hrtimer *timer;
1107
1108 if (!base->first)
1109 continue;
1110
1111 timer = rb_entry(base->first, struct hrtimer, node);
1112 delta.tv64 = timer->expires.tv64;
1113 delta = ktime_sub(delta, base->get_time());
1114 if (delta.tv64 < mindelta.tv64)
1115 mindelta.tv64 = delta.tv64;
1116 }
1117 }
1118
1119 spin_unlock_irqrestore(&cpu_base->lock, flags);
1120
1121 if (mindelta.tv64 < 0)
1122 mindelta.tv64 = 0;
1123 return mindelta;
1124 }
1125 #endif
1126
1127 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1128 enum hrtimer_mode mode)
1129 {
1130 struct hrtimer_cpu_base *cpu_base;
1131
1132 memset(timer, 0, sizeof(struct hrtimer));
1133
1134 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1135
1136 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1137 clock_id = CLOCK_MONOTONIC;
1138
1139 timer->base = &cpu_base->clock_base[clock_id];
1140 INIT_LIST_HEAD(&timer->cb_entry);
1141 hrtimer_init_timer_hres(timer);
1142
1143 #ifdef CONFIG_TIMER_STATS
1144 timer->start_site = NULL;
1145 timer->start_pid = -1;
1146 memset(timer->start_comm, 0, TASK_COMM_LEN);
1147 #endif
1148 }
1149
1150 /**
1151 * hrtimer_init - initialize a timer to the given clock
1152 * @timer: the timer to be initialized
1153 * @clock_id: the clock to be used
1154 * @mode: timer mode abs/rel
1155 */
1156 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1157 enum hrtimer_mode mode)
1158 {
1159 debug_hrtimer_init(timer);
1160 __hrtimer_init(timer, clock_id, mode);
1161 }
1162 EXPORT_SYMBOL_GPL(hrtimer_init);
1163
1164 /**
1165 * hrtimer_get_res - get the timer resolution for a clock
1166 * @which_clock: which clock to query
1167 * @tp: pointer to timespec variable to store the resolution
1168 *
1169 * Store the resolution of the clock selected by @which_clock in the
1170 * variable pointed to by @tp.
1171 */
1172 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1173 {
1174 struct hrtimer_cpu_base *cpu_base;
1175
1176 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1177 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1178
1179 return 0;
1180 }
1181 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1182
1183 static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
1184 {
1185 spin_lock_irq(&cpu_base->lock);
1186
1187 while (!list_empty(&cpu_base->cb_pending)) {
1188 enum hrtimer_restart (*fn)(struct hrtimer *);
1189 struct hrtimer *timer;
1190 int restart;
1191
1192 timer = list_entry(cpu_base->cb_pending.next,
1193 struct hrtimer, cb_entry);
1194
1195 debug_hrtimer_deactivate(timer);
1196 timer_stats_account_hrtimer(timer);
1197
1198 fn = timer->function;
1199 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1200 spin_unlock_irq(&cpu_base->lock);
1201
1202 restart = fn(timer);
1203
1204 spin_lock_irq(&cpu_base->lock);
1205
1206 timer->state &= ~HRTIMER_STATE_CALLBACK;
1207 if (restart == HRTIMER_RESTART) {
1208 BUG_ON(hrtimer_active(timer));
1209 /*
1210 * Enqueue the timer, allow reprogramming of the event
1211 * device
1212 */
1213 enqueue_hrtimer(timer, timer->base, 1);
1214 } else if (hrtimer_active(timer)) {
1215 /*
1216 * If the timer was rearmed on another CPU, reprogram
1217 * the event device.
1218 */
1219 struct hrtimer_clock_base *base = timer->base;
1220
1221 if (base->first == &timer->node &&
1222 hrtimer_reprogram(timer, base)) {
1223 /*
1224 * Timer is expired. Thus move it from tree to
1225 * pending list again.
1226 */
1227 __remove_hrtimer(timer, base,
1228 HRTIMER_STATE_PENDING, 0);
1229 list_add_tail(&timer->cb_entry,
1230 &base->cpu_base->cb_pending);
1231 }
1232 }
1233 }
1234 spin_unlock_irq(&cpu_base->lock);
1235 }
1236
1237 static void __run_hrtimer(struct hrtimer *timer)
1238 {
1239 struct hrtimer_clock_base *base = timer->base;
1240 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1241 enum hrtimer_restart (*fn)(struct hrtimer *);
1242 int restart;
1243
1244 debug_hrtimer_deactivate(timer);
1245 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1246 timer_stats_account_hrtimer(timer);
1247
1248 fn = timer->function;
1249 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
1250 timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) {
1251 /*
1252 * Used for scheduler timers, avoid lock inversion with
1253 * rq->lock and tasklist_lock.
1254 *
1255 * These timers are required to deal with enqueue expiry
1256 * themselves and are not allowed to migrate.
1257 */
1258 spin_unlock(&cpu_base->lock);
1259 restart = fn(timer);
1260 spin_lock(&cpu_base->lock);
1261 } else
1262 restart = fn(timer);
1263
1264 /*
1265 * Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
1266 * reprogramming of the event hardware. This happens at the end of this
1267 * function anyway.
1268 */
1269 if (restart != HRTIMER_NORESTART) {
1270 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1271 enqueue_hrtimer(timer, base, 0);
1272 }
1273 timer->state &= ~HRTIMER_STATE_CALLBACK;
1274 }
1275
1276 #ifdef CONFIG_HIGH_RES_TIMERS
1277
1278 /*
1279 * High resolution timer interrupt
1280 * Called with interrupts disabled
1281 */
1282 void hrtimer_interrupt(struct clock_event_device *dev)
1283 {
1284 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1285 struct hrtimer_clock_base *base;
1286 ktime_t expires_next, now;
1287 int i, raise = 0;
1288
1289 BUG_ON(!cpu_base->hres_active);
1290 cpu_base->nr_events++;
1291 dev->next_event.tv64 = KTIME_MAX;
1292
1293 retry:
1294 now = ktime_get();
1295
1296 expires_next.tv64 = KTIME_MAX;
1297
1298 base = cpu_base->clock_base;
1299
1300 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1301 ktime_t basenow;
1302 struct rb_node *node;
1303
1304 spin_lock(&cpu_base->lock);
1305
1306 basenow = ktime_add(now, base->offset);
1307
1308 while ((node = base->first)) {
1309 struct hrtimer *timer;
1310
1311 timer = rb_entry(node, struct hrtimer, node);
1312
1313 if (basenow.tv64 < timer->expires.tv64) {
1314 ktime_t expires;
1315
1316 expires = ktime_sub(timer->expires,
1317 base->offset);
1318 if (expires.tv64 < expires_next.tv64)
1319 expires_next = expires;
1320 break;
1321 }
1322
1323 /* Move softirq callbacks to the pending list */
1324 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1325 __remove_hrtimer(timer, base,
1326 HRTIMER_STATE_PENDING, 0);
1327 list_add_tail(&timer->cb_entry,
1328 &base->cpu_base->cb_pending);
1329 raise = 1;
1330 continue;
1331 }
1332
1333 __run_hrtimer(timer);
1334 }
1335 spin_unlock(&cpu_base->lock);
1336 base++;
1337 }
1338
1339 cpu_base->expires_next = expires_next;
1340
1341 /* Reprogramming necessary ? */
1342 if (expires_next.tv64 != KTIME_MAX) {
1343 if (tick_program_event(expires_next, 0))
1344 goto retry;
1345 }
1346
1347 /* Raise softirq ? */
1348 if (raise)
1349 raise_softirq(HRTIMER_SOFTIRQ);
1350 }
1351
1352 static void run_hrtimer_softirq(struct softirq_action *h)
1353 {
1354 run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
1355 }
1356
1357 #endif /* CONFIG_HIGH_RES_TIMERS */
1358
1359 /*
1360 * Called from timer softirq every jiffy, expire hrtimers:
1361 *
1362 * For HRT its the fall back code to run the softirq in the timer
1363 * softirq context in case the hrtimer initialization failed or has
1364 * not been done yet.
1365 */
1366 void hrtimer_run_pending(void)
1367 {
1368 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1369
1370 if (hrtimer_hres_active())
1371 return;
1372
1373 /*
1374 * This _is_ ugly: We have to check in the softirq context,
1375 * whether we can switch to highres and / or nohz mode. The
1376 * clocksource switch happens in the timer interrupt with
1377 * xtime_lock held. Notification from there only sets the
1378 * check bit in the tick_oneshot code, otherwise we might
1379 * deadlock vs. xtime_lock.
1380 */
1381 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1382 hrtimer_switch_to_hres();
1383
1384 run_hrtimer_pending(cpu_base);
1385 }
1386
1387 /*
1388 * Called from hardirq context every jiffy
1389 */
1390 void hrtimer_run_queues(void)
1391 {
1392 struct rb_node *node;
1393 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1394 struct hrtimer_clock_base *base;
1395 int index, gettime = 1;
1396
1397 if (hrtimer_hres_active())
1398 return;
1399
1400 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1401 base = &cpu_base->clock_base[index];
1402
1403 if (!base->first)
1404 continue;
1405
1406 if (base->get_softirq_time)
1407 base->softirq_time = base->get_softirq_time();
1408 else if (gettime) {
1409 hrtimer_get_softirq_time(cpu_base);
1410 gettime = 0;
1411 }
1412
1413 spin_lock(&cpu_base->lock);
1414
1415 while ((node = base->first)) {
1416 struct hrtimer *timer;
1417
1418 timer = rb_entry(node, struct hrtimer, node);
1419 if (base->softirq_time.tv64 <= timer->expires.tv64)
1420 break;
1421
1422 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1423 __remove_hrtimer(timer, base,
1424 HRTIMER_STATE_PENDING, 0);
1425 list_add_tail(&timer->cb_entry,
1426 &base->cpu_base->cb_pending);
1427 continue;
1428 }
1429
1430 __run_hrtimer(timer);
1431 }
1432 spin_unlock(&cpu_base->lock);
1433 }
1434 }
1435
1436 /*
1437 * Sleep related functions:
1438 */
1439 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1440 {
1441 struct hrtimer_sleeper *t =
1442 container_of(timer, struct hrtimer_sleeper, timer);
1443 struct task_struct *task = t->task;
1444
1445 t->task = NULL;
1446 if (task)
1447 wake_up_process(task);
1448
1449 return HRTIMER_NORESTART;
1450 }
1451
1452 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1453 {
1454 sl->timer.function = hrtimer_wakeup;
1455 sl->task = task;
1456 #ifdef CONFIG_HIGH_RES_TIMERS
1457 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
1458 #endif
1459 }
1460
1461 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1462 {
1463 hrtimer_init_sleeper(t, current);
1464
1465 do {
1466 set_current_state(TASK_INTERRUPTIBLE);
1467 hrtimer_start(&t->timer, t->timer.expires, mode);
1468 if (!hrtimer_active(&t->timer))
1469 t->task = NULL;
1470
1471 if (likely(t->task))
1472 schedule();
1473
1474 hrtimer_cancel(&t->timer);
1475 mode = HRTIMER_MODE_ABS;
1476
1477 } while (t->task && !signal_pending(current));
1478
1479 __set_current_state(TASK_RUNNING);
1480
1481 return t->task == NULL;
1482 }
1483
1484 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1485 {
1486 struct timespec rmt;
1487 ktime_t rem;
1488
1489 rem = ktime_sub(timer->expires, timer->base->get_time());
1490 if (rem.tv64 <= 0)
1491 return 0;
1492 rmt = ktime_to_timespec(rem);
1493
1494 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1495 return -EFAULT;
1496
1497 return 1;
1498 }
1499
1500 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1501 {
1502 struct hrtimer_sleeper t;
1503 struct timespec __user *rmtp;
1504 int ret = 0;
1505
1506 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1507 HRTIMER_MODE_ABS);
1508 t.timer.expires.tv64 = restart->nanosleep.expires;
1509
1510 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1511 goto out;
1512
1513 rmtp = restart->nanosleep.rmtp;
1514 if (rmtp) {
1515 ret = update_rmtp(&t.timer, rmtp);
1516 if (ret <= 0)
1517 goto out;
1518 }
1519
1520 /* The other values in restart are already filled in */
1521 ret = -ERESTART_RESTARTBLOCK;
1522 out:
1523 destroy_hrtimer_on_stack(&t.timer);
1524 return ret;
1525 }
1526
1527 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1528 const enum hrtimer_mode mode, const clockid_t clockid)
1529 {
1530 struct restart_block *restart;
1531 struct hrtimer_sleeper t;
1532 int ret = 0;
1533
1534 hrtimer_init_on_stack(&t.timer, clockid, mode);
1535 t.timer.expires = timespec_to_ktime(*rqtp);
1536 if (do_nanosleep(&t, mode))
1537 goto out;
1538
1539 /* Absolute timers do not update the rmtp value and restart: */
1540 if (mode == HRTIMER_MODE_ABS) {
1541 ret = -ERESTARTNOHAND;
1542 goto out;
1543 }
1544
1545 if (rmtp) {
1546 ret = update_rmtp(&t.timer, rmtp);
1547 if (ret <= 0)
1548 goto out;
1549 }
1550
1551 restart = &current_thread_info()->restart_block;
1552 restart->fn = hrtimer_nanosleep_restart;
1553 restart->nanosleep.index = t.timer.base->index;
1554 restart->nanosleep.rmtp = rmtp;
1555 restart->nanosleep.expires = t.timer.expires.tv64;
1556
1557 ret = -ERESTART_RESTARTBLOCK;
1558 out:
1559 destroy_hrtimer_on_stack(&t.timer);
1560 return ret;
1561 }
1562
1563 asmlinkage long
1564 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1565 {
1566 struct timespec tu;
1567
1568 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1569 return -EFAULT;
1570
1571 if (!timespec_valid(&tu))
1572 return -EINVAL;
1573
1574 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1575 }
1576
1577 /*
1578 * Functions related to boot-time initialization:
1579 */
1580 static void __cpuinit init_hrtimers_cpu(int cpu)
1581 {
1582 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1583 int i;
1584
1585 spin_lock_init(&cpu_base->lock);
1586
1587 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1588 cpu_base->clock_base[i].cpu_base = cpu_base;
1589
1590 INIT_LIST_HEAD(&cpu_base->cb_pending);
1591 hrtimer_init_hres(cpu_base);
1592 }
1593
1594 #ifdef CONFIG_HOTPLUG_CPU
1595
1596 static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1597 struct hrtimer_clock_base *new_base, int dcpu)
1598 {
1599 struct hrtimer *timer;
1600 struct rb_node *node;
1601 int raise = 0;
1602
1603 while ((node = rb_first(&old_base->active))) {
1604 timer = rb_entry(node, struct hrtimer, node);
1605 BUG_ON(hrtimer_callback_running(timer));
1606 debug_hrtimer_deactivate(timer);
1607
1608 /*
1609 * Should not happen. Per CPU timers should be
1610 * canceled _before_ the migration code is called
1611 */
1612 if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
1613 __remove_hrtimer(timer, old_base,
1614 HRTIMER_STATE_INACTIVE, 0);
1615 WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
1616 timer, timer->function, dcpu);
1617 continue;
1618 }
1619
1620 /*
1621 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1622 * timer could be seen as !active and just vanish away
1623 * under us on another CPU
1624 */
1625 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1626 timer->base = new_base;
1627 /*
1628 * Enqueue the timer. Allow reprogramming of the event device
1629 */
1630 enqueue_hrtimer(timer, new_base, 1);
1631
1632 #ifdef CONFIG_HIGH_RES_TIMERS
1633 /*
1634 * Happens with high res enabled when the timer was
1635 * already expired and the callback mode is
1636 * HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
1637 * enqueue code does not move them to the soft irq
1638 * pending list for performance/latency reasons, but
1639 * in the migration state, we need to do that
1640 * otherwise we end up with a stale timer.
1641 */
1642 if (timer->state == HRTIMER_STATE_MIGRATE) {
1643 timer->state = HRTIMER_STATE_PENDING;
1644 list_add_tail(&timer->cb_entry,
1645 &new_base->cpu_base->cb_pending);
1646 raise = 1;
1647 }
1648 #endif
1649 /* Clear the migration state bit */
1650 timer->state &= ~HRTIMER_STATE_MIGRATE;
1651 }
1652 return raise;
1653 }
1654
1655 #ifdef CONFIG_HIGH_RES_TIMERS
1656 static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1657 struct hrtimer_cpu_base *new_base)
1658 {
1659 struct hrtimer *timer;
1660 int raise = 0;
1661
1662 while (!list_empty(&old_base->cb_pending)) {
1663 timer = list_entry(old_base->cb_pending.next,
1664 struct hrtimer, cb_entry);
1665
1666 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
1667 timer->base = &new_base->clock_base[timer->base->index];
1668 list_add_tail(&timer->cb_entry, &new_base->cb_pending);
1669 raise = 1;
1670 }
1671 return raise;
1672 }
1673 #else
1674 static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
1675 struct hrtimer_cpu_base *new_base)
1676 {
1677 return 0;
1678 }
1679 #endif
1680
1681 static void migrate_hrtimers(int cpu)
1682 {
1683 struct hrtimer_cpu_base *old_base, *new_base;
1684 int i, raise = 0;
1685
1686 BUG_ON(cpu_online(cpu));
1687 old_base = &per_cpu(hrtimer_bases, cpu);
1688 new_base = &get_cpu_var(hrtimer_bases);
1689
1690 tick_cancel_sched_timer(cpu);
1691
1692 local_irq_disable();
1693 spin_lock(&new_base->lock);
1694 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1695
1696 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1697 if (migrate_hrtimer_list(&old_base->clock_base[i],
1698 &new_base->clock_base[i], cpu))
1699 raise = 1;
1700 }
1701
1702 if (migrate_hrtimer_pending(old_base, new_base))
1703 raise = 1;
1704
1705 spin_unlock(&old_base->lock);
1706 spin_unlock(&new_base->lock);
1707 local_irq_enable();
1708 put_cpu_var(hrtimer_bases);
1709
1710 if (raise)
1711 hrtimer_raise_softirq();
1712 }
1713 #endif /* CONFIG_HOTPLUG_CPU */
1714
1715 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1716 unsigned long action, void *hcpu)
1717 {
1718 unsigned int cpu = (long)hcpu;
1719
1720 switch (action) {
1721
1722 case CPU_UP_PREPARE:
1723 case CPU_UP_PREPARE_FROZEN:
1724 init_hrtimers_cpu(cpu);
1725 break;
1726
1727 #ifdef CONFIG_HOTPLUG_CPU
1728 case CPU_DEAD:
1729 case CPU_DEAD_FROZEN:
1730 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1731 migrate_hrtimers(cpu);
1732 break;
1733 #endif
1734
1735 default:
1736 break;
1737 }
1738
1739 return NOTIFY_OK;
1740 }
1741
1742 static struct notifier_block __cpuinitdata hrtimers_nb = {
1743 .notifier_call = hrtimer_cpu_notify,
1744 };
1745
1746 void __init hrtimers_init(void)
1747 {
1748 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1749 (void *)(long)smp_processor_id());
1750 register_cpu_notifier(&hrtimers_nb);
1751 #ifdef CONFIG_HIGH_RES_TIMERS
1752 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1753 #endif
1754 }
1755