Merge branch 'kconfig' of master.kernel.org:/pub/scm/linux/kernel/git/galak/powerpc...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46
47 #include <asm/uaccess.h>
48
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
54 ktime_t ktime_get(void)
55 {
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61 }
62
63 /**
64 * ktime_get_real - get the real (wall-) time in ktime_t format
65 *
66 * returns the time in ktime_t format
67 */
68 ktime_t ktime_get_real(void)
69 {
70 struct timespec now;
71
72 getnstimeofday(&now);
73
74 return timespec_to_ktime(now);
75 }
76
77 EXPORT_SYMBOL_GPL(ktime_get_real);
78
79 /*
80 * The timer bases:
81 *
82 * Note: If we want to add new timer bases, we have to skip the two
83 * clock ids captured by the cpu-timers. We do this by holding empty
84 * entries rather than doing math adjustment of the clock ids.
85 * This ensures that we capture erroneous accesses to these clock ids
86 * rather than moving them into the range of valid clock id's.
87 */
88 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
89 {
90
91 .clock_base =
92 {
93 {
94 .index = CLOCK_REALTIME,
95 .get_time = &ktime_get_real,
96 .resolution = KTIME_LOW_RES,
97 },
98 {
99 .index = CLOCK_MONOTONIC,
100 .get_time = &ktime_get,
101 .resolution = KTIME_LOW_RES,
102 },
103 }
104 };
105
106 /**
107 * ktime_get_ts - get the monotonic clock in timespec format
108 * @ts: pointer to timespec variable
109 *
110 * The function calculates the monotonic clock from the realtime
111 * clock and the wall_to_monotonic offset and stores the result
112 * in normalized timespec format in the variable pointed to by @ts.
113 */
114 void ktime_get_ts(struct timespec *ts)
115 {
116 struct timespec tomono;
117 unsigned long seq;
118
119 do {
120 seq = read_seqbegin(&xtime_lock);
121 getnstimeofday(ts);
122 tomono = wall_to_monotonic;
123
124 } while (read_seqretry(&xtime_lock, seq));
125
126 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
127 ts->tv_nsec + tomono.tv_nsec);
128 }
129 EXPORT_SYMBOL_GPL(ktime_get_ts);
130
131 /*
132 * Get the coarse grained time at the softirq based on xtime and
133 * wall_to_monotonic.
134 */
135 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
136 {
137 ktime_t xtim, tomono;
138 struct timespec xts, tom;
139 unsigned long seq;
140
141 do {
142 seq = read_seqbegin(&xtime_lock);
143 #ifdef CONFIG_NO_HZ
144 getnstimeofday(&xts);
145 #else
146 xts = xtime;
147 #endif
148 tom = wall_to_monotonic;
149 } while (read_seqretry(&xtime_lock, seq));
150
151 xtim = timespec_to_ktime(xts);
152 tomono = timespec_to_ktime(tom);
153 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
154 base->clock_base[CLOCK_MONOTONIC].softirq_time =
155 ktime_add(xtim, tomono);
156 }
157
158 /*
159 * Helper function to check, whether the timer is running the callback
160 * function
161 */
162 static inline int hrtimer_callback_running(struct hrtimer *timer)
163 {
164 return timer->state & HRTIMER_STATE_CALLBACK;
165 }
166
167 /*
168 * Functions and macros which are different for UP/SMP systems are kept in a
169 * single place
170 */
171 #ifdef CONFIG_SMP
172
173 /*
174 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
175 * means that all timers which are tied to this base via timer->base are
176 * locked, and the base itself is locked too.
177 *
178 * So __run_timers/migrate_timers can safely modify all timers which could
179 * be found on the lists/queues.
180 *
181 * When the timer's base is locked, and the timer removed from list, it is
182 * possible to set timer->base = NULL and drop the lock: the timer remains
183 * locked.
184 */
185 static
186 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
187 unsigned long *flags)
188 {
189 struct hrtimer_clock_base *base;
190
191 for (;;) {
192 base = timer->base;
193 if (likely(base != NULL)) {
194 spin_lock_irqsave(&base->cpu_base->lock, *flags);
195 if (likely(base == timer->base))
196 return base;
197 /* The timer has migrated to another CPU: */
198 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
199 }
200 cpu_relax();
201 }
202 }
203
204 /*
205 * Switch the timer base to the current CPU when possible.
206 */
207 static inline struct hrtimer_clock_base *
208 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
209 {
210 struct hrtimer_clock_base *new_base;
211 struct hrtimer_cpu_base *new_cpu_base;
212
213 new_cpu_base = &__get_cpu_var(hrtimer_bases);
214 new_base = &new_cpu_base->clock_base[base->index];
215
216 if (base != new_base) {
217 /*
218 * We are trying to schedule the timer on the local CPU.
219 * However we can't change timer's base while it is running,
220 * so we keep it on the same CPU. No hassle vs. reprogramming
221 * the event source in the high resolution case. The softirq
222 * code will take care of this when the timer function has
223 * completed. There is no conflict as we hold the lock until
224 * the timer is enqueued.
225 */
226 if (unlikely(hrtimer_callback_running(timer)))
227 return base;
228
229 /* See the comment in lock_timer_base() */
230 timer->base = NULL;
231 spin_unlock(&base->cpu_base->lock);
232 spin_lock(&new_base->cpu_base->lock);
233 timer->base = new_base;
234 }
235 return new_base;
236 }
237
238 #else /* CONFIG_SMP */
239
240 static inline struct hrtimer_clock_base *
241 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
242 {
243 struct hrtimer_clock_base *base = timer->base;
244
245 spin_lock_irqsave(&base->cpu_base->lock, *flags);
246
247 return base;
248 }
249
250 # define switch_hrtimer_base(t, b) (b)
251
252 #endif /* !CONFIG_SMP */
253
254 /*
255 * Functions for the union type storage format of ktime_t which are
256 * too large for inlining:
257 */
258 #if BITS_PER_LONG < 64
259 # ifndef CONFIG_KTIME_SCALAR
260 /**
261 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
262 * @kt: addend
263 * @nsec: the scalar nsec value to add
264 *
265 * Returns the sum of kt and nsec in ktime_t format
266 */
267 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
268 {
269 ktime_t tmp;
270
271 if (likely(nsec < NSEC_PER_SEC)) {
272 tmp.tv64 = nsec;
273 } else {
274 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
275
276 tmp = ktime_set((long)nsec, rem);
277 }
278
279 return ktime_add(kt, tmp);
280 }
281 # endif /* !CONFIG_KTIME_SCALAR */
282
283 /*
284 * Divide a ktime value by a nanosecond value
285 */
286 unsigned long ktime_divns(const ktime_t kt, s64 div)
287 {
288 u64 dclc, inc, dns;
289 int sft = 0;
290
291 dclc = dns = ktime_to_ns(kt);
292 inc = div;
293 /* Make sure the divisor is less than 2^32: */
294 while (div >> 32) {
295 sft++;
296 div >>= 1;
297 }
298 dclc >>= sft;
299 do_div(dclc, (unsigned long) div);
300
301 return (unsigned long) dclc;
302 }
303 #endif /* BITS_PER_LONG >= 64 */
304
305 /* High resolution timer related functions */
306 #ifdef CONFIG_HIGH_RES_TIMERS
307
308 /*
309 * High resolution timer enabled ?
310 */
311 static int hrtimer_hres_enabled __read_mostly = 1;
312
313 /*
314 * Enable / Disable high resolution mode
315 */
316 static int __init setup_hrtimer_hres(char *str)
317 {
318 if (!strcmp(str, "off"))
319 hrtimer_hres_enabled = 0;
320 else if (!strcmp(str, "on"))
321 hrtimer_hres_enabled = 1;
322 else
323 return 0;
324 return 1;
325 }
326
327 __setup("highres=", setup_hrtimer_hres);
328
329 /*
330 * hrtimer_high_res_enabled - query, if the highres mode is enabled
331 */
332 static inline int hrtimer_is_hres_enabled(void)
333 {
334 return hrtimer_hres_enabled;
335 }
336
337 /*
338 * Is the high resolution mode active ?
339 */
340 static inline int hrtimer_hres_active(void)
341 {
342 return __get_cpu_var(hrtimer_bases).hres_active;
343 }
344
345 /*
346 * Reprogram the event source with checking both queues for the
347 * next event
348 * Called with interrupts disabled and base->lock held
349 */
350 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
351 {
352 int i;
353 struct hrtimer_clock_base *base = cpu_base->clock_base;
354 ktime_t expires;
355
356 cpu_base->expires_next.tv64 = KTIME_MAX;
357
358 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
359 struct hrtimer *timer;
360
361 if (!base->first)
362 continue;
363 timer = rb_entry(base->first, struct hrtimer, node);
364 expires = ktime_sub(timer->expires, base->offset);
365 if (expires.tv64 < cpu_base->expires_next.tv64)
366 cpu_base->expires_next = expires;
367 }
368
369 if (cpu_base->expires_next.tv64 != KTIME_MAX)
370 tick_program_event(cpu_base->expires_next, 1);
371 }
372
373 /*
374 * Shared reprogramming for clock_realtime and clock_monotonic
375 *
376 * When a timer is enqueued and expires earlier than the already enqueued
377 * timers, we have to check, whether it expires earlier than the timer for
378 * which the clock event device was armed.
379 *
380 * Called with interrupts disabled and base->cpu_base.lock held
381 */
382 static int hrtimer_reprogram(struct hrtimer *timer,
383 struct hrtimer_clock_base *base)
384 {
385 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
386 ktime_t expires = ktime_sub(timer->expires, base->offset);
387 int res;
388
389 /*
390 * When the callback is running, we do not reprogram the clock event
391 * device. The timer callback is either running on a different CPU or
392 * the callback is executed in the hrtimer_interupt context. The
393 * reprogramming is handled either by the softirq, which called the
394 * callback or at the end of the hrtimer_interrupt.
395 */
396 if (hrtimer_callback_running(timer))
397 return 0;
398
399 if (expires.tv64 >= expires_next->tv64)
400 return 0;
401
402 /*
403 * Clockevents returns -ETIME, when the event was in the past.
404 */
405 res = tick_program_event(expires, 0);
406 if (!IS_ERR_VALUE(res))
407 *expires_next = expires;
408 return res;
409 }
410
411
412 /*
413 * Retrigger next event is called after clock was set
414 *
415 * Called with interrupts disabled via on_each_cpu()
416 */
417 static void retrigger_next_event(void *arg)
418 {
419 struct hrtimer_cpu_base *base;
420 struct timespec realtime_offset;
421 unsigned long seq;
422
423 if (!hrtimer_hres_active())
424 return;
425
426 do {
427 seq = read_seqbegin(&xtime_lock);
428 set_normalized_timespec(&realtime_offset,
429 -wall_to_monotonic.tv_sec,
430 -wall_to_monotonic.tv_nsec);
431 } while (read_seqretry(&xtime_lock, seq));
432
433 base = &__get_cpu_var(hrtimer_bases);
434
435 /* Adjust CLOCK_REALTIME offset */
436 spin_lock(&base->lock);
437 base->clock_base[CLOCK_REALTIME].offset =
438 timespec_to_ktime(realtime_offset);
439
440 hrtimer_force_reprogram(base);
441 spin_unlock(&base->lock);
442 }
443
444 /*
445 * Clock realtime was set
446 *
447 * Change the offset of the realtime clock vs. the monotonic
448 * clock.
449 *
450 * We might have to reprogram the high resolution timer interrupt. On
451 * SMP we call the architecture specific code to retrigger _all_ high
452 * resolution timer interrupts. On UP we just disable interrupts and
453 * call the high resolution interrupt code.
454 */
455 void clock_was_set(void)
456 {
457 /* Retrigger the CPU local events everywhere */
458 on_each_cpu(retrigger_next_event, NULL, 0, 1);
459 }
460
461 /*
462 * During resume we might have to reprogram the high resolution timer
463 * interrupt (on the local CPU):
464 */
465 void hres_timers_resume(void)
466 {
467 WARN_ON_ONCE(num_online_cpus() > 1);
468
469 /* Retrigger the CPU local events: */
470 retrigger_next_event(NULL);
471 }
472
473 /*
474 * Check, whether the timer is on the callback pending list
475 */
476 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
477 {
478 return timer->state & HRTIMER_STATE_PENDING;
479 }
480
481 /*
482 * Remove a timer from the callback pending list
483 */
484 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
485 {
486 list_del_init(&timer->cb_entry);
487 }
488
489 /*
490 * Initialize the high resolution related parts of cpu_base
491 */
492 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
493 {
494 base->expires_next.tv64 = KTIME_MAX;
495 base->hres_active = 0;
496 INIT_LIST_HEAD(&base->cb_pending);
497 }
498
499 /*
500 * Initialize the high resolution related parts of a hrtimer
501 */
502 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
503 {
504 INIT_LIST_HEAD(&timer->cb_entry);
505 }
506
507 /*
508 * When High resolution timers are active, try to reprogram. Note, that in case
509 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
510 * check happens. The timer gets enqueued into the rbtree. The reprogramming
511 * and expiry check is done in the hrtimer_interrupt or in the softirq.
512 */
513 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
514 struct hrtimer_clock_base *base)
515 {
516 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
517
518 /* Timer is expired, act upon the callback mode */
519 switch(timer->cb_mode) {
520 case HRTIMER_CB_IRQSAFE_NO_RESTART:
521 /*
522 * We can call the callback from here. No restart
523 * happens, so no danger of recursion
524 */
525 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
526 return 1;
527 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
528 /*
529 * This is solely for the sched tick emulation with
530 * dynamic tick support to ensure that we do not
531 * restart the tick right on the edge and end up with
532 * the tick timer in the softirq ! The calling site
533 * takes care of this.
534 */
535 return 1;
536 case HRTIMER_CB_IRQSAFE:
537 case HRTIMER_CB_SOFTIRQ:
538 /*
539 * Move everything else into the softirq pending list !
540 */
541 list_add_tail(&timer->cb_entry,
542 &base->cpu_base->cb_pending);
543 timer->state = HRTIMER_STATE_PENDING;
544 raise_softirq(HRTIMER_SOFTIRQ);
545 return 1;
546 default:
547 BUG();
548 }
549 }
550 return 0;
551 }
552
553 /*
554 * Switch to high resolution mode
555 */
556 static int hrtimer_switch_to_hres(void)
557 {
558 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
559 unsigned long flags;
560
561 if (base->hres_active)
562 return 1;
563
564 local_irq_save(flags);
565
566 if (tick_init_highres()) {
567 local_irq_restore(flags);
568 return 0;
569 }
570 base->hres_active = 1;
571 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
572 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
573
574 tick_setup_sched_timer();
575
576 /* "Retrigger" the interrupt to get things going */
577 retrigger_next_event(NULL);
578 local_irq_restore(flags);
579 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
580 smp_processor_id());
581 return 1;
582 }
583
584 #else
585
586 static inline int hrtimer_hres_active(void) { return 0; }
587 static inline int hrtimer_is_hres_enabled(void) { return 0; }
588 static inline int hrtimer_switch_to_hres(void) { return 0; }
589 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
590 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
591 struct hrtimer_clock_base *base)
592 {
593 return 0;
594 }
595 static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
596 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
597 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
598 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
599
600 #endif /* CONFIG_HIGH_RES_TIMERS */
601
602 #ifdef CONFIG_TIMER_STATS
603 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
604 {
605 if (timer->start_site)
606 return;
607
608 timer->start_site = addr;
609 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
610 timer->start_pid = current->pid;
611 }
612 #endif
613
614 /*
615 * Counterpart to lock_timer_base above:
616 */
617 static inline
618 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
619 {
620 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
621 }
622
623 /**
624 * hrtimer_forward - forward the timer expiry
625 * @timer: hrtimer to forward
626 * @now: forward past this time
627 * @interval: the interval to forward
628 *
629 * Forward the timer expiry so it will expire in the future.
630 * Returns the number of overruns.
631 */
632 unsigned long
633 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
634 {
635 unsigned long orun = 1;
636 ktime_t delta;
637
638 delta = ktime_sub(now, timer->expires);
639
640 if (delta.tv64 < 0)
641 return 0;
642
643 if (interval.tv64 < timer->base->resolution.tv64)
644 interval.tv64 = timer->base->resolution.tv64;
645
646 if (unlikely(delta.tv64 >= interval.tv64)) {
647 s64 incr = ktime_to_ns(interval);
648
649 orun = ktime_divns(delta, incr);
650 timer->expires = ktime_add_ns(timer->expires, incr * orun);
651 if (timer->expires.tv64 > now.tv64)
652 return orun;
653 /*
654 * This (and the ktime_add() below) is the
655 * correction for exact:
656 */
657 orun++;
658 }
659 timer->expires = ktime_add(timer->expires, interval);
660 /*
661 * Make sure, that the result did not wrap with a very large
662 * interval.
663 */
664 if (timer->expires.tv64 < 0)
665 timer->expires = ktime_set(KTIME_SEC_MAX, 0);
666
667 return orun;
668 }
669
670 /*
671 * enqueue_hrtimer - internal function to (re)start a timer
672 *
673 * The timer is inserted in expiry order. Insertion into the
674 * red black tree is O(log(n)). Must hold the base lock.
675 */
676 static void enqueue_hrtimer(struct hrtimer *timer,
677 struct hrtimer_clock_base *base, int reprogram)
678 {
679 struct rb_node **link = &base->active.rb_node;
680 struct rb_node *parent = NULL;
681 struct hrtimer *entry;
682
683 /*
684 * Find the right place in the rbtree:
685 */
686 while (*link) {
687 parent = *link;
688 entry = rb_entry(parent, struct hrtimer, node);
689 /*
690 * We dont care about collisions. Nodes with
691 * the same expiry time stay together.
692 */
693 if (timer->expires.tv64 < entry->expires.tv64)
694 link = &(*link)->rb_left;
695 else
696 link = &(*link)->rb_right;
697 }
698
699 /*
700 * Insert the timer to the rbtree and check whether it
701 * replaces the first pending timer
702 */
703 if (!base->first || timer->expires.tv64 <
704 rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
705 /*
706 * Reprogram the clock event device. When the timer is already
707 * expired hrtimer_enqueue_reprogram has either called the
708 * callback or added it to the pending list and raised the
709 * softirq.
710 *
711 * This is a NOP for !HIGHRES
712 */
713 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
714 return;
715
716 base->first = &timer->node;
717 }
718
719 rb_link_node(&timer->node, parent, link);
720 rb_insert_color(&timer->node, &base->active);
721 /*
722 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
723 * state of a possibly running callback.
724 */
725 timer->state |= HRTIMER_STATE_ENQUEUED;
726 }
727
728 /*
729 * __remove_hrtimer - internal function to remove a timer
730 *
731 * Caller must hold the base lock.
732 *
733 * High resolution timer mode reprograms the clock event device when the
734 * timer is the one which expires next. The caller can disable this by setting
735 * reprogram to zero. This is useful, when the context does a reprogramming
736 * anyway (e.g. timer interrupt)
737 */
738 static void __remove_hrtimer(struct hrtimer *timer,
739 struct hrtimer_clock_base *base,
740 unsigned long newstate, int reprogram)
741 {
742 /* High res. callback list. NOP for !HIGHRES */
743 if (hrtimer_cb_pending(timer))
744 hrtimer_remove_cb_pending(timer);
745 else {
746 /*
747 * Remove the timer from the rbtree and replace the
748 * first entry pointer if necessary.
749 */
750 if (base->first == &timer->node) {
751 base->first = rb_next(&timer->node);
752 /* Reprogram the clock event device. if enabled */
753 if (reprogram && hrtimer_hres_active())
754 hrtimer_force_reprogram(base->cpu_base);
755 }
756 rb_erase(&timer->node, &base->active);
757 }
758 timer->state = newstate;
759 }
760
761 /*
762 * remove hrtimer, called with base lock held
763 */
764 static inline int
765 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
766 {
767 if (hrtimer_is_queued(timer)) {
768 int reprogram;
769
770 /*
771 * Remove the timer and force reprogramming when high
772 * resolution mode is active and the timer is on the current
773 * CPU. If we remove a timer on another CPU, reprogramming is
774 * skipped. The interrupt event on this CPU is fired and
775 * reprogramming happens in the interrupt handler. This is a
776 * rare case and less expensive than a smp call.
777 */
778 timer_stats_hrtimer_clear_start_info(timer);
779 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
780 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
781 reprogram);
782 return 1;
783 }
784 return 0;
785 }
786
787 /**
788 * hrtimer_start - (re)start an relative timer on the current CPU
789 * @timer: the timer to be added
790 * @tim: expiry time
791 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
792 *
793 * Returns:
794 * 0 on success
795 * 1 when the timer was active
796 */
797 int
798 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
799 {
800 struct hrtimer_clock_base *base, *new_base;
801 unsigned long flags;
802 int ret;
803
804 base = lock_hrtimer_base(timer, &flags);
805
806 /* Remove an active timer from the queue: */
807 ret = remove_hrtimer(timer, base);
808
809 /* Switch the timer base, if necessary: */
810 new_base = switch_hrtimer_base(timer, base);
811
812 if (mode == HRTIMER_MODE_REL) {
813 tim = ktime_add(tim, new_base->get_time());
814 /*
815 * CONFIG_TIME_LOW_RES is a temporary way for architectures
816 * to signal that they simply return xtime in
817 * do_gettimeoffset(). In this case we want to round up by
818 * resolution when starting a relative timer, to avoid short
819 * timeouts. This will go away with the GTOD framework.
820 */
821 #ifdef CONFIG_TIME_LOW_RES
822 tim = ktime_add(tim, base->resolution);
823 #endif
824 }
825 timer->expires = tim;
826
827 timer_stats_hrtimer_set_start_info(timer);
828
829 /*
830 * Only allow reprogramming if the new base is on this CPU.
831 * (it might still be on another CPU if the timer was pending)
832 */
833 enqueue_hrtimer(timer, new_base,
834 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
835
836 unlock_hrtimer_base(timer, &flags);
837
838 return ret;
839 }
840 EXPORT_SYMBOL_GPL(hrtimer_start);
841
842 /**
843 * hrtimer_try_to_cancel - try to deactivate a timer
844 * @timer: hrtimer to stop
845 *
846 * Returns:
847 * 0 when the timer was not active
848 * 1 when the timer was active
849 * -1 when the timer is currently excuting the callback function and
850 * cannot be stopped
851 */
852 int hrtimer_try_to_cancel(struct hrtimer *timer)
853 {
854 struct hrtimer_clock_base *base;
855 unsigned long flags;
856 int ret = -1;
857
858 base = lock_hrtimer_base(timer, &flags);
859
860 if (!hrtimer_callback_running(timer))
861 ret = remove_hrtimer(timer, base);
862
863 unlock_hrtimer_base(timer, &flags);
864
865 return ret;
866
867 }
868 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
869
870 /**
871 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
872 * @timer: the timer to be cancelled
873 *
874 * Returns:
875 * 0 when the timer was not active
876 * 1 when the timer was active
877 */
878 int hrtimer_cancel(struct hrtimer *timer)
879 {
880 for (;;) {
881 int ret = hrtimer_try_to_cancel(timer);
882
883 if (ret >= 0)
884 return ret;
885 cpu_relax();
886 }
887 }
888 EXPORT_SYMBOL_GPL(hrtimer_cancel);
889
890 /**
891 * hrtimer_get_remaining - get remaining time for the timer
892 * @timer: the timer to read
893 */
894 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
895 {
896 struct hrtimer_clock_base *base;
897 unsigned long flags;
898 ktime_t rem;
899
900 base = lock_hrtimer_base(timer, &flags);
901 rem = ktime_sub(timer->expires, base->get_time());
902 unlock_hrtimer_base(timer, &flags);
903
904 return rem;
905 }
906 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
907
908 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
909 /**
910 * hrtimer_get_next_event - get the time until next expiry event
911 *
912 * Returns the delta to the next expiry event or KTIME_MAX if no timer
913 * is pending.
914 */
915 ktime_t hrtimer_get_next_event(void)
916 {
917 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
918 struct hrtimer_clock_base *base = cpu_base->clock_base;
919 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
920 unsigned long flags;
921 int i;
922
923 spin_lock_irqsave(&cpu_base->lock, flags);
924
925 if (!hrtimer_hres_active()) {
926 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
927 struct hrtimer *timer;
928
929 if (!base->first)
930 continue;
931
932 timer = rb_entry(base->first, struct hrtimer, node);
933 delta.tv64 = timer->expires.tv64;
934 delta = ktime_sub(delta, base->get_time());
935 if (delta.tv64 < mindelta.tv64)
936 mindelta.tv64 = delta.tv64;
937 }
938 }
939
940 spin_unlock_irqrestore(&cpu_base->lock, flags);
941
942 if (mindelta.tv64 < 0)
943 mindelta.tv64 = 0;
944 return mindelta;
945 }
946 #endif
947
948 /**
949 * hrtimer_init - initialize a timer to the given clock
950 * @timer: the timer to be initialized
951 * @clock_id: the clock to be used
952 * @mode: timer mode abs/rel
953 */
954 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
955 enum hrtimer_mode mode)
956 {
957 struct hrtimer_cpu_base *cpu_base;
958
959 memset(timer, 0, sizeof(struct hrtimer));
960
961 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
962
963 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
964 clock_id = CLOCK_MONOTONIC;
965
966 timer->base = &cpu_base->clock_base[clock_id];
967 hrtimer_init_timer_hres(timer);
968
969 #ifdef CONFIG_TIMER_STATS
970 timer->start_site = NULL;
971 timer->start_pid = -1;
972 memset(timer->start_comm, 0, TASK_COMM_LEN);
973 #endif
974 }
975 EXPORT_SYMBOL_GPL(hrtimer_init);
976
977 /**
978 * hrtimer_get_res - get the timer resolution for a clock
979 * @which_clock: which clock to query
980 * @tp: pointer to timespec variable to store the resolution
981 *
982 * Store the resolution of the clock selected by @which_clock in the
983 * variable pointed to by @tp.
984 */
985 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
986 {
987 struct hrtimer_cpu_base *cpu_base;
988
989 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
990 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
991
992 return 0;
993 }
994 EXPORT_SYMBOL_GPL(hrtimer_get_res);
995
996 #ifdef CONFIG_HIGH_RES_TIMERS
997
998 /*
999 * High resolution timer interrupt
1000 * Called with interrupts disabled
1001 */
1002 void hrtimer_interrupt(struct clock_event_device *dev)
1003 {
1004 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1005 struct hrtimer_clock_base *base;
1006 ktime_t expires_next, now;
1007 int i, raise = 0;
1008
1009 BUG_ON(!cpu_base->hres_active);
1010 cpu_base->nr_events++;
1011 dev->next_event.tv64 = KTIME_MAX;
1012
1013 retry:
1014 now = ktime_get();
1015
1016 expires_next.tv64 = KTIME_MAX;
1017
1018 base = cpu_base->clock_base;
1019
1020 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1021 ktime_t basenow;
1022 struct rb_node *node;
1023
1024 spin_lock(&cpu_base->lock);
1025
1026 basenow = ktime_add(now, base->offset);
1027
1028 while ((node = base->first)) {
1029 struct hrtimer *timer;
1030
1031 timer = rb_entry(node, struct hrtimer, node);
1032
1033 if (basenow.tv64 < timer->expires.tv64) {
1034 ktime_t expires;
1035
1036 expires = ktime_sub(timer->expires,
1037 base->offset);
1038 if (expires.tv64 < expires_next.tv64)
1039 expires_next = expires;
1040 break;
1041 }
1042
1043 /* Move softirq callbacks to the pending list */
1044 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1045 __remove_hrtimer(timer, base,
1046 HRTIMER_STATE_PENDING, 0);
1047 list_add_tail(&timer->cb_entry,
1048 &base->cpu_base->cb_pending);
1049 raise = 1;
1050 continue;
1051 }
1052
1053 __remove_hrtimer(timer, base,
1054 HRTIMER_STATE_CALLBACK, 0);
1055 timer_stats_account_hrtimer(timer);
1056
1057 /*
1058 * Note: We clear the CALLBACK bit after
1059 * enqueue_hrtimer to avoid reprogramming of
1060 * the event hardware. This happens at the end
1061 * of this function anyway.
1062 */
1063 if (timer->function(timer) != HRTIMER_NORESTART) {
1064 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1065 enqueue_hrtimer(timer, base, 0);
1066 }
1067 timer->state &= ~HRTIMER_STATE_CALLBACK;
1068 }
1069 spin_unlock(&cpu_base->lock);
1070 base++;
1071 }
1072
1073 cpu_base->expires_next = expires_next;
1074
1075 /* Reprogramming necessary ? */
1076 if (expires_next.tv64 != KTIME_MAX) {
1077 if (tick_program_event(expires_next, 0))
1078 goto retry;
1079 }
1080
1081 /* Raise softirq ? */
1082 if (raise)
1083 raise_softirq(HRTIMER_SOFTIRQ);
1084 }
1085
1086 static void run_hrtimer_softirq(struct softirq_action *h)
1087 {
1088 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1089
1090 spin_lock_irq(&cpu_base->lock);
1091
1092 while (!list_empty(&cpu_base->cb_pending)) {
1093 enum hrtimer_restart (*fn)(struct hrtimer *);
1094 struct hrtimer *timer;
1095 int restart;
1096
1097 timer = list_entry(cpu_base->cb_pending.next,
1098 struct hrtimer, cb_entry);
1099
1100 timer_stats_account_hrtimer(timer);
1101
1102 fn = timer->function;
1103 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1104 spin_unlock_irq(&cpu_base->lock);
1105
1106 restart = fn(timer);
1107
1108 spin_lock_irq(&cpu_base->lock);
1109
1110 timer->state &= ~HRTIMER_STATE_CALLBACK;
1111 if (restart == HRTIMER_RESTART) {
1112 BUG_ON(hrtimer_active(timer));
1113 /*
1114 * Enqueue the timer, allow reprogramming of the event
1115 * device
1116 */
1117 enqueue_hrtimer(timer, timer->base, 1);
1118 } else if (hrtimer_active(timer)) {
1119 /*
1120 * If the timer was rearmed on another CPU, reprogram
1121 * the event device.
1122 */
1123 if (timer->base->first == &timer->node)
1124 hrtimer_reprogram(timer, timer->base);
1125 }
1126 }
1127 spin_unlock_irq(&cpu_base->lock);
1128 }
1129
1130 #endif /* CONFIG_HIGH_RES_TIMERS */
1131
1132 /*
1133 * Expire the per base hrtimer-queue:
1134 */
1135 static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1136 int index)
1137 {
1138 struct rb_node *node;
1139 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1140
1141 if (!base->first)
1142 return;
1143
1144 if (base->get_softirq_time)
1145 base->softirq_time = base->get_softirq_time();
1146
1147 spin_lock_irq(&cpu_base->lock);
1148
1149 while ((node = base->first)) {
1150 struct hrtimer *timer;
1151 enum hrtimer_restart (*fn)(struct hrtimer *);
1152 int restart;
1153
1154 timer = rb_entry(node, struct hrtimer, node);
1155 if (base->softirq_time.tv64 <= timer->expires.tv64)
1156 break;
1157
1158 #ifdef CONFIG_HIGH_RES_TIMERS
1159 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1160 #endif
1161 timer_stats_account_hrtimer(timer);
1162
1163 fn = timer->function;
1164 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1165 spin_unlock_irq(&cpu_base->lock);
1166
1167 restart = fn(timer);
1168
1169 spin_lock_irq(&cpu_base->lock);
1170
1171 timer->state &= ~HRTIMER_STATE_CALLBACK;
1172 if (restart != HRTIMER_NORESTART) {
1173 BUG_ON(hrtimer_active(timer));
1174 enqueue_hrtimer(timer, base, 0);
1175 }
1176 }
1177 spin_unlock_irq(&cpu_base->lock);
1178 }
1179
1180 /*
1181 * Called from timer softirq every jiffy, expire hrtimers:
1182 *
1183 * For HRT its the fall back code to run the softirq in the timer
1184 * softirq context in case the hrtimer initialization failed or has
1185 * not been done yet.
1186 */
1187 void hrtimer_run_queues(void)
1188 {
1189 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1190 int i;
1191
1192 if (hrtimer_hres_active())
1193 return;
1194
1195 /*
1196 * This _is_ ugly: We have to check in the softirq context,
1197 * whether we can switch to highres and / or nohz mode. The
1198 * clocksource switch happens in the timer interrupt with
1199 * xtime_lock held. Notification from there only sets the
1200 * check bit in the tick_oneshot code, otherwise we might
1201 * deadlock vs. xtime_lock.
1202 */
1203 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1204 if (hrtimer_switch_to_hres())
1205 return;
1206
1207 hrtimer_get_softirq_time(cpu_base);
1208
1209 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1210 run_hrtimer_queue(cpu_base, i);
1211 }
1212
1213 /*
1214 * Sleep related functions:
1215 */
1216 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1217 {
1218 struct hrtimer_sleeper *t =
1219 container_of(timer, struct hrtimer_sleeper, timer);
1220 struct task_struct *task = t->task;
1221
1222 t->task = NULL;
1223 if (task)
1224 wake_up_process(task);
1225
1226 return HRTIMER_NORESTART;
1227 }
1228
1229 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1230 {
1231 sl->timer.function = hrtimer_wakeup;
1232 sl->task = task;
1233 #ifdef CONFIG_HIGH_RES_TIMERS
1234 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1235 #endif
1236 }
1237
1238 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1239 {
1240 hrtimer_init_sleeper(t, current);
1241
1242 do {
1243 set_current_state(TASK_INTERRUPTIBLE);
1244 hrtimer_start(&t->timer, t->timer.expires, mode);
1245
1246 if (likely(t->task))
1247 schedule();
1248
1249 hrtimer_cancel(&t->timer);
1250 mode = HRTIMER_MODE_ABS;
1251
1252 } while (t->task && !signal_pending(current));
1253
1254 return t->task == NULL;
1255 }
1256
1257 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1258 {
1259 struct hrtimer_sleeper t;
1260 struct timespec __user *rmtp;
1261 struct timespec tu;
1262 ktime_t time;
1263
1264 restart->fn = do_no_restart_syscall;
1265
1266 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1267 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1268
1269 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1270 return 0;
1271
1272 rmtp = (struct timespec __user *) restart->arg1;
1273 if (rmtp) {
1274 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1275 if (time.tv64 <= 0)
1276 return 0;
1277 tu = ktime_to_timespec(time);
1278 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1279 return -EFAULT;
1280 }
1281
1282 restart->fn = hrtimer_nanosleep_restart;
1283
1284 /* The other values in restart are already filled in */
1285 return -ERESTART_RESTARTBLOCK;
1286 }
1287
1288 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1289 const enum hrtimer_mode mode, const clockid_t clockid)
1290 {
1291 struct restart_block *restart;
1292 struct hrtimer_sleeper t;
1293 struct timespec tu;
1294 ktime_t rem;
1295
1296 hrtimer_init(&t.timer, clockid, mode);
1297 t.timer.expires = timespec_to_ktime(*rqtp);
1298 if (do_nanosleep(&t, mode))
1299 return 0;
1300
1301 /* Absolute timers do not update the rmtp value and restart: */
1302 if (mode == HRTIMER_MODE_ABS)
1303 return -ERESTARTNOHAND;
1304
1305 if (rmtp) {
1306 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1307 if (rem.tv64 <= 0)
1308 return 0;
1309 tu = ktime_to_timespec(rem);
1310 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1311 return -EFAULT;
1312 }
1313
1314 restart = &current_thread_info()->restart_block;
1315 restart->fn = hrtimer_nanosleep_restart;
1316 restart->arg0 = (unsigned long) t.timer.base->index;
1317 restart->arg1 = (unsigned long) rmtp;
1318 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1319 restart->arg3 = t.timer.expires.tv64 >> 32;
1320
1321 return -ERESTART_RESTARTBLOCK;
1322 }
1323
1324 asmlinkage long
1325 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1326 {
1327 struct timespec tu;
1328
1329 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1330 return -EFAULT;
1331
1332 if (!timespec_valid(&tu))
1333 return -EINVAL;
1334
1335 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1336 }
1337
1338 /*
1339 * Functions related to boot-time initialization:
1340 */
1341 static void __devinit init_hrtimers_cpu(int cpu)
1342 {
1343 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1344 int i;
1345
1346 spin_lock_init(&cpu_base->lock);
1347 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1348
1349 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1350 cpu_base->clock_base[i].cpu_base = cpu_base;
1351
1352 hrtimer_init_hres(cpu_base);
1353 }
1354
1355 #ifdef CONFIG_HOTPLUG_CPU
1356
1357 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1358 struct hrtimer_clock_base *new_base)
1359 {
1360 struct hrtimer *timer;
1361 struct rb_node *node;
1362
1363 while ((node = rb_first(&old_base->active))) {
1364 timer = rb_entry(node, struct hrtimer, node);
1365 BUG_ON(hrtimer_callback_running(timer));
1366 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1367 timer->base = new_base;
1368 /*
1369 * Enqueue the timer. Allow reprogramming of the event device
1370 */
1371 enqueue_hrtimer(timer, new_base, 1);
1372 }
1373 }
1374
1375 static void migrate_hrtimers(int cpu)
1376 {
1377 struct hrtimer_cpu_base *old_base, *new_base;
1378 int i;
1379
1380 BUG_ON(cpu_online(cpu));
1381 old_base = &per_cpu(hrtimer_bases, cpu);
1382 new_base = &get_cpu_var(hrtimer_bases);
1383
1384 tick_cancel_sched_timer(cpu);
1385
1386 local_irq_disable();
1387 double_spin_lock(&new_base->lock, &old_base->lock,
1388 smp_processor_id() < cpu);
1389
1390 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1391 migrate_hrtimer_list(&old_base->clock_base[i],
1392 &new_base->clock_base[i]);
1393 }
1394
1395 double_spin_unlock(&new_base->lock, &old_base->lock,
1396 smp_processor_id() < cpu);
1397 local_irq_enable();
1398 put_cpu_var(hrtimer_bases);
1399 }
1400 #endif /* CONFIG_HOTPLUG_CPU */
1401
1402 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1403 unsigned long action, void *hcpu)
1404 {
1405 long cpu = (long)hcpu;
1406
1407 switch (action) {
1408
1409 case CPU_UP_PREPARE:
1410 init_hrtimers_cpu(cpu);
1411 break;
1412
1413 #ifdef CONFIG_HOTPLUG_CPU
1414 case CPU_DEAD:
1415 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1416 migrate_hrtimers(cpu);
1417 break;
1418 #endif
1419
1420 default:
1421 break;
1422 }
1423
1424 return NOTIFY_OK;
1425 }
1426
1427 static struct notifier_block __cpuinitdata hrtimers_nb = {
1428 .notifier_call = hrtimer_cpu_notify,
1429 };
1430
1431 void __init hrtimers_init(void)
1432 {
1433 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1434 (void *)(long)smp_processor_id());
1435 register_cpu_notifier(&hrtimers_nb);
1436 #ifdef CONFIG_HIGH_RES_TIMERS
1437 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1438 #endif
1439 }
1440