sched: add sched-domain roots
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46
47 #include <asm/uaccess.h>
48
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
54 ktime_t ktime_get(void)
55 {
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61 }
62 EXPORT_SYMBOL_GPL(ktime_get);
63
64 /**
65 * ktime_get_real - get the real (wall-) time in ktime_t format
66 *
67 * returns the time in ktime_t format
68 */
69 ktime_t ktime_get_real(void)
70 {
71 struct timespec now;
72
73 getnstimeofday(&now);
74
75 return timespec_to_ktime(now);
76 }
77
78 EXPORT_SYMBOL_GPL(ktime_get_real);
79
80 /*
81 * The timer bases:
82 *
83 * Note: If we want to add new timer bases, we have to skip the two
84 * clock ids captured by the cpu-timers. We do this by holding empty
85 * entries rather than doing math adjustment of the clock ids.
86 * This ensures that we capture erroneous accesses to these clock ids
87 * rather than moving them into the range of valid clock id's.
88 */
89 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
90 {
91
92 .clock_base =
93 {
94 {
95 .index = CLOCK_REALTIME,
96 .get_time = &ktime_get_real,
97 .resolution = KTIME_LOW_RES,
98 },
99 {
100 .index = CLOCK_MONOTONIC,
101 .get_time = &ktime_get,
102 .resolution = KTIME_LOW_RES,
103 },
104 }
105 };
106
107 /**
108 * ktime_get_ts - get the monotonic clock in timespec format
109 * @ts: pointer to timespec variable
110 *
111 * The function calculates the monotonic clock from the realtime
112 * clock and the wall_to_monotonic offset and stores the result
113 * in normalized timespec format in the variable pointed to by @ts.
114 */
115 void ktime_get_ts(struct timespec *ts)
116 {
117 struct timespec tomono;
118 unsigned long seq;
119
120 do {
121 seq = read_seqbegin(&xtime_lock);
122 getnstimeofday(ts);
123 tomono = wall_to_monotonic;
124
125 } while (read_seqretry(&xtime_lock, seq));
126
127 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
128 ts->tv_nsec + tomono.tv_nsec);
129 }
130 EXPORT_SYMBOL_GPL(ktime_get_ts);
131
132 /*
133 * Get the coarse grained time at the softirq based on xtime and
134 * wall_to_monotonic.
135 */
136 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
137 {
138 ktime_t xtim, tomono;
139 struct timespec xts, tom;
140 unsigned long seq;
141
142 do {
143 seq = read_seqbegin(&xtime_lock);
144 xts = current_kernel_time();
145 tom = wall_to_monotonic;
146 } while (read_seqretry(&xtime_lock, seq));
147
148 xtim = timespec_to_ktime(xts);
149 tomono = timespec_to_ktime(tom);
150 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
151 base->clock_base[CLOCK_MONOTONIC].softirq_time =
152 ktime_add(xtim, tomono);
153 }
154
155 /*
156 * Helper function to check, whether the timer is running the callback
157 * function
158 */
159 static inline int hrtimer_callback_running(struct hrtimer *timer)
160 {
161 return timer->state & HRTIMER_STATE_CALLBACK;
162 }
163
164 /*
165 * Functions and macros which are different for UP/SMP systems are kept in a
166 * single place
167 */
168 #ifdef CONFIG_SMP
169
170 /*
171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
172 * means that all timers which are tied to this base via timer->base are
173 * locked, and the base itself is locked too.
174 *
175 * So __run_timers/migrate_timers can safely modify all timers which could
176 * be found on the lists/queues.
177 *
178 * When the timer's base is locked, and the timer removed from list, it is
179 * possible to set timer->base = NULL and drop the lock: the timer remains
180 * locked.
181 */
182 static
183 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
184 unsigned long *flags)
185 {
186 struct hrtimer_clock_base *base;
187
188 for (;;) {
189 base = timer->base;
190 if (likely(base != NULL)) {
191 spin_lock_irqsave(&base->cpu_base->lock, *flags);
192 if (likely(base == timer->base))
193 return base;
194 /* The timer has migrated to another CPU: */
195 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
196 }
197 cpu_relax();
198 }
199 }
200
201 /*
202 * Switch the timer base to the current CPU when possible.
203 */
204 static inline struct hrtimer_clock_base *
205 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
206 {
207 struct hrtimer_clock_base *new_base;
208 struct hrtimer_cpu_base *new_cpu_base;
209
210 new_cpu_base = &__get_cpu_var(hrtimer_bases);
211 new_base = &new_cpu_base->clock_base[base->index];
212
213 if (base != new_base) {
214 /*
215 * We are trying to schedule the timer on the local CPU.
216 * However we can't change timer's base while it is running,
217 * so we keep it on the same CPU. No hassle vs. reprogramming
218 * the event source in the high resolution case. The softirq
219 * code will take care of this when the timer function has
220 * completed. There is no conflict as we hold the lock until
221 * the timer is enqueued.
222 */
223 if (unlikely(hrtimer_callback_running(timer)))
224 return base;
225
226 /* See the comment in lock_timer_base() */
227 timer->base = NULL;
228 spin_unlock(&base->cpu_base->lock);
229 spin_lock(&new_base->cpu_base->lock);
230 timer->base = new_base;
231 }
232 return new_base;
233 }
234
235 #else /* CONFIG_SMP */
236
237 static inline struct hrtimer_clock_base *
238 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
239 {
240 struct hrtimer_clock_base *base = timer->base;
241
242 spin_lock_irqsave(&base->cpu_base->lock, *flags);
243
244 return base;
245 }
246
247 # define switch_hrtimer_base(t, b) (b)
248
249 #endif /* !CONFIG_SMP */
250
251 /*
252 * Functions for the union type storage format of ktime_t which are
253 * too large for inlining:
254 */
255 #if BITS_PER_LONG < 64
256 # ifndef CONFIG_KTIME_SCALAR
257 /**
258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
259 * @kt: addend
260 * @nsec: the scalar nsec value to add
261 *
262 * Returns the sum of kt and nsec in ktime_t format
263 */
264 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
265 {
266 ktime_t tmp;
267
268 if (likely(nsec < NSEC_PER_SEC)) {
269 tmp.tv64 = nsec;
270 } else {
271 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
272
273 tmp = ktime_set((long)nsec, rem);
274 }
275
276 return ktime_add(kt, tmp);
277 }
278
279 EXPORT_SYMBOL_GPL(ktime_add_ns);
280
281 /**
282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
283 * @kt: minuend
284 * @nsec: the scalar nsec value to subtract
285 *
286 * Returns the subtraction of @nsec from @kt in ktime_t format
287 */
288 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
289 {
290 ktime_t tmp;
291
292 if (likely(nsec < NSEC_PER_SEC)) {
293 tmp.tv64 = nsec;
294 } else {
295 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
296
297 tmp = ktime_set((long)nsec, rem);
298 }
299
300 return ktime_sub(kt, tmp);
301 }
302
303 EXPORT_SYMBOL_GPL(ktime_sub_ns);
304 # endif /* !CONFIG_KTIME_SCALAR */
305
306 /*
307 * Divide a ktime value by a nanosecond value
308 */
309 unsigned long ktime_divns(const ktime_t kt, s64 div)
310 {
311 u64 dclc, inc, dns;
312 int sft = 0;
313
314 dclc = dns = ktime_to_ns(kt);
315 inc = div;
316 /* Make sure the divisor is less than 2^32: */
317 while (div >> 32) {
318 sft++;
319 div >>= 1;
320 }
321 dclc >>= sft;
322 do_div(dclc, (unsigned long) div);
323
324 return (unsigned long) dclc;
325 }
326 #endif /* BITS_PER_LONG >= 64 */
327
328 /* High resolution timer related functions */
329 #ifdef CONFIG_HIGH_RES_TIMERS
330
331 /*
332 * High resolution timer enabled ?
333 */
334 static int hrtimer_hres_enabled __read_mostly = 1;
335
336 /*
337 * Enable / Disable high resolution mode
338 */
339 static int __init setup_hrtimer_hres(char *str)
340 {
341 if (!strcmp(str, "off"))
342 hrtimer_hres_enabled = 0;
343 else if (!strcmp(str, "on"))
344 hrtimer_hres_enabled = 1;
345 else
346 return 0;
347 return 1;
348 }
349
350 __setup("highres=", setup_hrtimer_hres);
351
352 /*
353 * hrtimer_high_res_enabled - query, if the highres mode is enabled
354 */
355 static inline int hrtimer_is_hres_enabled(void)
356 {
357 return hrtimer_hres_enabled;
358 }
359
360 /*
361 * Is the high resolution mode active ?
362 */
363 static inline int hrtimer_hres_active(void)
364 {
365 return __get_cpu_var(hrtimer_bases).hres_active;
366 }
367
368 /*
369 * Reprogram the event source with checking both queues for the
370 * next event
371 * Called with interrupts disabled and base->lock held
372 */
373 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
374 {
375 int i;
376 struct hrtimer_clock_base *base = cpu_base->clock_base;
377 ktime_t expires;
378
379 cpu_base->expires_next.tv64 = KTIME_MAX;
380
381 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
382 struct hrtimer *timer;
383
384 if (!base->first)
385 continue;
386 timer = rb_entry(base->first, struct hrtimer, node);
387 expires = ktime_sub(timer->expires, base->offset);
388 if (expires.tv64 < cpu_base->expires_next.tv64)
389 cpu_base->expires_next = expires;
390 }
391
392 if (cpu_base->expires_next.tv64 != KTIME_MAX)
393 tick_program_event(cpu_base->expires_next, 1);
394 }
395
396 /*
397 * Shared reprogramming for clock_realtime and clock_monotonic
398 *
399 * When a timer is enqueued and expires earlier than the already enqueued
400 * timers, we have to check, whether it expires earlier than the timer for
401 * which the clock event device was armed.
402 *
403 * Called with interrupts disabled and base->cpu_base.lock held
404 */
405 static int hrtimer_reprogram(struct hrtimer *timer,
406 struct hrtimer_clock_base *base)
407 {
408 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
409 ktime_t expires = ktime_sub(timer->expires, base->offset);
410 int res;
411
412 /*
413 * When the callback is running, we do not reprogram the clock event
414 * device. The timer callback is either running on a different CPU or
415 * the callback is executed in the hrtimer_interrupt context. The
416 * reprogramming is handled either by the softirq, which called the
417 * callback or at the end of the hrtimer_interrupt.
418 */
419 if (hrtimer_callback_running(timer))
420 return 0;
421
422 if (expires.tv64 >= expires_next->tv64)
423 return 0;
424
425 /*
426 * Clockevents returns -ETIME, when the event was in the past.
427 */
428 res = tick_program_event(expires, 0);
429 if (!IS_ERR_VALUE(res))
430 *expires_next = expires;
431 return res;
432 }
433
434
435 /*
436 * Retrigger next event is called after clock was set
437 *
438 * Called with interrupts disabled via on_each_cpu()
439 */
440 static void retrigger_next_event(void *arg)
441 {
442 struct hrtimer_cpu_base *base;
443 struct timespec realtime_offset;
444 unsigned long seq;
445
446 if (!hrtimer_hres_active())
447 return;
448
449 do {
450 seq = read_seqbegin(&xtime_lock);
451 set_normalized_timespec(&realtime_offset,
452 -wall_to_monotonic.tv_sec,
453 -wall_to_monotonic.tv_nsec);
454 } while (read_seqretry(&xtime_lock, seq));
455
456 base = &__get_cpu_var(hrtimer_bases);
457
458 /* Adjust CLOCK_REALTIME offset */
459 spin_lock(&base->lock);
460 base->clock_base[CLOCK_REALTIME].offset =
461 timespec_to_ktime(realtime_offset);
462
463 hrtimer_force_reprogram(base);
464 spin_unlock(&base->lock);
465 }
466
467 /*
468 * Clock realtime was set
469 *
470 * Change the offset of the realtime clock vs. the monotonic
471 * clock.
472 *
473 * We might have to reprogram the high resolution timer interrupt. On
474 * SMP we call the architecture specific code to retrigger _all_ high
475 * resolution timer interrupts. On UP we just disable interrupts and
476 * call the high resolution interrupt code.
477 */
478 void clock_was_set(void)
479 {
480 /* Retrigger the CPU local events everywhere */
481 on_each_cpu(retrigger_next_event, NULL, 0, 1);
482 }
483
484 /*
485 * During resume we might have to reprogram the high resolution timer
486 * interrupt (on the local CPU):
487 */
488 void hres_timers_resume(void)
489 {
490 WARN_ON_ONCE(num_online_cpus() > 1);
491
492 /* Retrigger the CPU local events: */
493 retrigger_next_event(NULL);
494 }
495
496 /*
497 * Check, whether the timer is on the callback pending list
498 */
499 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
500 {
501 return timer->state & HRTIMER_STATE_PENDING;
502 }
503
504 /*
505 * Remove a timer from the callback pending list
506 */
507 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
508 {
509 list_del_init(&timer->cb_entry);
510 }
511
512 /*
513 * Initialize the high resolution related parts of cpu_base
514 */
515 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
516 {
517 base->expires_next.tv64 = KTIME_MAX;
518 base->hres_active = 0;
519 INIT_LIST_HEAD(&base->cb_pending);
520 }
521
522 /*
523 * Initialize the high resolution related parts of a hrtimer
524 */
525 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
526 {
527 INIT_LIST_HEAD(&timer->cb_entry);
528 }
529
530 /*
531 * When High resolution timers are active, try to reprogram. Note, that in case
532 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
533 * check happens. The timer gets enqueued into the rbtree. The reprogramming
534 * and expiry check is done in the hrtimer_interrupt or in the softirq.
535 */
536 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
537 struct hrtimer_clock_base *base)
538 {
539 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
540
541 /* Timer is expired, act upon the callback mode */
542 switch(timer->cb_mode) {
543 case HRTIMER_CB_IRQSAFE_NO_RESTART:
544 /*
545 * We can call the callback from here. No restart
546 * happens, so no danger of recursion
547 */
548 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
549 return 1;
550 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
551 /*
552 * This is solely for the sched tick emulation with
553 * dynamic tick support to ensure that we do not
554 * restart the tick right on the edge and end up with
555 * the tick timer in the softirq ! The calling site
556 * takes care of this.
557 */
558 return 1;
559 case HRTIMER_CB_IRQSAFE:
560 case HRTIMER_CB_SOFTIRQ:
561 /*
562 * Move everything else into the softirq pending list !
563 */
564 list_add_tail(&timer->cb_entry,
565 &base->cpu_base->cb_pending);
566 timer->state = HRTIMER_STATE_PENDING;
567 raise_softirq(HRTIMER_SOFTIRQ);
568 return 1;
569 default:
570 BUG();
571 }
572 }
573 return 0;
574 }
575
576 /*
577 * Switch to high resolution mode
578 */
579 static int hrtimer_switch_to_hres(void)
580 {
581 int cpu = smp_processor_id();
582 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
583 unsigned long flags;
584
585 if (base->hres_active)
586 return 1;
587
588 local_irq_save(flags);
589
590 if (tick_init_highres()) {
591 local_irq_restore(flags);
592 printk(KERN_WARNING "Could not switch to high resolution "
593 "mode on CPU %d\n", cpu);
594 return 0;
595 }
596 base->hres_active = 1;
597 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
598 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
599
600 tick_setup_sched_timer();
601
602 /* "Retrigger" the interrupt to get things going */
603 retrigger_next_event(NULL);
604 local_irq_restore(flags);
605 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
606 smp_processor_id());
607 return 1;
608 }
609
610 #else
611
612 static inline int hrtimer_hres_active(void) { return 0; }
613 static inline int hrtimer_is_hres_enabled(void) { return 0; }
614 static inline int hrtimer_switch_to_hres(void) { return 0; }
615 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
616 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
617 struct hrtimer_clock_base *base)
618 {
619 return 0;
620 }
621 static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
622 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
623 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
624 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
625
626 #endif /* CONFIG_HIGH_RES_TIMERS */
627
628 #ifdef CONFIG_TIMER_STATS
629 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
630 {
631 if (timer->start_site)
632 return;
633
634 timer->start_site = addr;
635 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
636 timer->start_pid = current->pid;
637 }
638 #endif
639
640 /*
641 * Counterpart to lock_hrtimer_base above:
642 */
643 static inline
644 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
645 {
646 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
647 }
648
649 /**
650 * hrtimer_forward - forward the timer expiry
651 * @timer: hrtimer to forward
652 * @now: forward past this time
653 * @interval: the interval to forward
654 *
655 * Forward the timer expiry so it will expire in the future.
656 * Returns the number of overruns.
657 */
658 unsigned long
659 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
660 {
661 unsigned long orun = 1;
662 ktime_t delta;
663
664 delta = ktime_sub(now, timer->expires);
665
666 if (delta.tv64 < 0)
667 return 0;
668
669 if (interval.tv64 < timer->base->resolution.tv64)
670 interval.tv64 = timer->base->resolution.tv64;
671
672 if (unlikely(delta.tv64 >= interval.tv64)) {
673 s64 incr = ktime_to_ns(interval);
674
675 orun = ktime_divns(delta, incr);
676 timer->expires = ktime_add_ns(timer->expires, incr * orun);
677 if (timer->expires.tv64 > now.tv64)
678 return orun;
679 /*
680 * This (and the ktime_add() below) is the
681 * correction for exact:
682 */
683 orun++;
684 }
685 timer->expires = ktime_add(timer->expires, interval);
686 /*
687 * Make sure, that the result did not wrap with a very large
688 * interval.
689 */
690 if (timer->expires.tv64 < 0)
691 timer->expires = ktime_set(KTIME_SEC_MAX, 0);
692
693 return orun;
694 }
695 EXPORT_SYMBOL_GPL(hrtimer_forward);
696
697 /*
698 * enqueue_hrtimer - internal function to (re)start a timer
699 *
700 * The timer is inserted in expiry order. Insertion into the
701 * red black tree is O(log(n)). Must hold the base lock.
702 */
703 static void enqueue_hrtimer(struct hrtimer *timer,
704 struct hrtimer_clock_base *base, int reprogram)
705 {
706 struct rb_node **link = &base->active.rb_node;
707 struct rb_node *parent = NULL;
708 struct hrtimer *entry;
709 int leftmost = 1;
710
711 /*
712 * Find the right place in the rbtree:
713 */
714 while (*link) {
715 parent = *link;
716 entry = rb_entry(parent, struct hrtimer, node);
717 /*
718 * We dont care about collisions. Nodes with
719 * the same expiry time stay together.
720 */
721 if (timer->expires.tv64 < entry->expires.tv64) {
722 link = &(*link)->rb_left;
723 } else {
724 link = &(*link)->rb_right;
725 leftmost = 0;
726 }
727 }
728
729 /*
730 * Insert the timer to the rbtree and check whether it
731 * replaces the first pending timer
732 */
733 if (leftmost) {
734 /*
735 * Reprogram the clock event device. When the timer is already
736 * expired hrtimer_enqueue_reprogram has either called the
737 * callback or added it to the pending list and raised the
738 * softirq.
739 *
740 * This is a NOP for !HIGHRES
741 */
742 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
743 return;
744
745 base->first = &timer->node;
746 }
747
748 rb_link_node(&timer->node, parent, link);
749 rb_insert_color(&timer->node, &base->active);
750 /*
751 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
752 * state of a possibly running callback.
753 */
754 timer->state |= HRTIMER_STATE_ENQUEUED;
755 }
756
757 /*
758 * __remove_hrtimer - internal function to remove a timer
759 *
760 * Caller must hold the base lock.
761 *
762 * High resolution timer mode reprograms the clock event device when the
763 * timer is the one which expires next. The caller can disable this by setting
764 * reprogram to zero. This is useful, when the context does a reprogramming
765 * anyway (e.g. timer interrupt)
766 */
767 static void __remove_hrtimer(struct hrtimer *timer,
768 struct hrtimer_clock_base *base,
769 unsigned long newstate, int reprogram)
770 {
771 /* High res. callback list. NOP for !HIGHRES */
772 if (hrtimer_cb_pending(timer))
773 hrtimer_remove_cb_pending(timer);
774 else {
775 /*
776 * Remove the timer from the rbtree and replace the
777 * first entry pointer if necessary.
778 */
779 if (base->first == &timer->node) {
780 base->first = rb_next(&timer->node);
781 /* Reprogram the clock event device. if enabled */
782 if (reprogram && hrtimer_hres_active())
783 hrtimer_force_reprogram(base->cpu_base);
784 }
785 rb_erase(&timer->node, &base->active);
786 }
787 timer->state = newstate;
788 }
789
790 /*
791 * remove hrtimer, called with base lock held
792 */
793 static inline int
794 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
795 {
796 if (hrtimer_is_queued(timer)) {
797 int reprogram;
798
799 /*
800 * Remove the timer and force reprogramming when high
801 * resolution mode is active and the timer is on the current
802 * CPU. If we remove a timer on another CPU, reprogramming is
803 * skipped. The interrupt event on this CPU is fired and
804 * reprogramming happens in the interrupt handler. This is a
805 * rare case and less expensive than a smp call.
806 */
807 timer_stats_hrtimer_clear_start_info(timer);
808 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
809 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
810 reprogram);
811 return 1;
812 }
813 return 0;
814 }
815
816 /**
817 * hrtimer_start - (re)start an relative timer on the current CPU
818 * @timer: the timer to be added
819 * @tim: expiry time
820 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
821 *
822 * Returns:
823 * 0 on success
824 * 1 when the timer was active
825 */
826 int
827 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
828 {
829 struct hrtimer_clock_base *base, *new_base;
830 unsigned long flags;
831 int ret;
832
833 base = lock_hrtimer_base(timer, &flags);
834
835 /* Remove an active timer from the queue: */
836 ret = remove_hrtimer(timer, base);
837
838 /* Switch the timer base, if necessary: */
839 new_base = switch_hrtimer_base(timer, base);
840
841 if (mode == HRTIMER_MODE_REL) {
842 tim = ktime_add(tim, new_base->get_time());
843 /*
844 * CONFIG_TIME_LOW_RES is a temporary way for architectures
845 * to signal that they simply return xtime in
846 * do_gettimeoffset(). In this case we want to round up by
847 * resolution when starting a relative timer, to avoid short
848 * timeouts. This will go away with the GTOD framework.
849 */
850 #ifdef CONFIG_TIME_LOW_RES
851 tim = ktime_add(tim, base->resolution);
852 #endif
853 /*
854 * Careful here: User space might have asked for a
855 * very long sleep, so the add above might result in a
856 * negative number, which enqueues the timer in front
857 * of the queue.
858 */
859 if (tim.tv64 < 0)
860 tim.tv64 = KTIME_MAX;
861 }
862 timer->expires = tim;
863
864 timer_stats_hrtimer_set_start_info(timer);
865
866 /*
867 * Only allow reprogramming if the new base is on this CPU.
868 * (it might still be on another CPU if the timer was pending)
869 */
870 enqueue_hrtimer(timer, new_base,
871 new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
872
873 unlock_hrtimer_base(timer, &flags);
874
875 return ret;
876 }
877 EXPORT_SYMBOL_GPL(hrtimer_start);
878
879 /**
880 * hrtimer_try_to_cancel - try to deactivate a timer
881 * @timer: hrtimer to stop
882 *
883 * Returns:
884 * 0 when the timer was not active
885 * 1 when the timer was active
886 * -1 when the timer is currently excuting the callback function and
887 * cannot be stopped
888 */
889 int hrtimer_try_to_cancel(struct hrtimer *timer)
890 {
891 struct hrtimer_clock_base *base;
892 unsigned long flags;
893 int ret = -1;
894
895 base = lock_hrtimer_base(timer, &flags);
896
897 if (!hrtimer_callback_running(timer))
898 ret = remove_hrtimer(timer, base);
899
900 unlock_hrtimer_base(timer, &flags);
901
902 return ret;
903
904 }
905 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
906
907 /**
908 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
909 * @timer: the timer to be cancelled
910 *
911 * Returns:
912 * 0 when the timer was not active
913 * 1 when the timer was active
914 */
915 int hrtimer_cancel(struct hrtimer *timer)
916 {
917 for (;;) {
918 int ret = hrtimer_try_to_cancel(timer);
919
920 if (ret >= 0)
921 return ret;
922 cpu_relax();
923 }
924 }
925 EXPORT_SYMBOL_GPL(hrtimer_cancel);
926
927 /**
928 * hrtimer_get_remaining - get remaining time for the timer
929 * @timer: the timer to read
930 */
931 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
932 {
933 struct hrtimer_clock_base *base;
934 unsigned long flags;
935 ktime_t rem;
936
937 base = lock_hrtimer_base(timer, &flags);
938 rem = ktime_sub(timer->expires, base->get_time());
939 unlock_hrtimer_base(timer, &flags);
940
941 return rem;
942 }
943 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
944
945 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
946 /**
947 * hrtimer_get_next_event - get the time until next expiry event
948 *
949 * Returns the delta to the next expiry event or KTIME_MAX if no timer
950 * is pending.
951 */
952 ktime_t hrtimer_get_next_event(void)
953 {
954 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
955 struct hrtimer_clock_base *base = cpu_base->clock_base;
956 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
957 unsigned long flags;
958 int i;
959
960 spin_lock_irqsave(&cpu_base->lock, flags);
961
962 if (!hrtimer_hres_active()) {
963 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
964 struct hrtimer *timer;
965
966 if (!base->first)
967 continue;
968
969 timer = rb_entry(base->first, struct hrtimer, node);
970 delta.tv64 = timer->expires.tv64;
971 delta = ktime_sub(delta, base->get_time());
972 if (delta.tv64 < mindelta.tv64)
973 mindelta.tv64 = delta.tv64;
974 }
975 }
976
977 spin_unlock_irqrestore(&cpu_base->lock, flags);
978
979 if (mindelta.tv64 < 0)
980 mindelta.tv64 = 0;
981 return mindelta;
982 }
983 #endif
984
985 /**
986 * hrtimer_init - initialize a timer to the given clock
987 * @timer: the timer to be initialized
988 * @clock_id: the clock to be used
989 * @mode: timer mode abs/rel
990 */
991 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
992 enum hrtimer_mode mode)
993 {
994 struct hrtimer_cpu_base *cpu_base;
995
996 memset(timer, 0, sizeof(struct hrtimer));
997
998 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
999
1000 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1001 clock_id = CLOCK_MONOTONIC;
1002
1003 timer->base = &cpu_base->clock_base[clock_id];
1004 hrtimer_init_timer_hres(timer);
1005
1006 #ifdef CONFIG_TIMER_STATS
1007 timer->start_site = NULL;
1008 timer->start_pid = -1;
1009 memset(timer->start_comm, 0, TASK_COMM_LEN);
1010 #endif
1011 }
1012 EXPORT_SYMBOL_GPL(hrtimer_init);
1013
1014 /**
1015 * hrtimer_get_res - get the timer resolution for a clock
1016 * @which_clock: which clock to query
1017 * @tp: pointer to timespec variable to store the resolution
1018 *
1019 * Store the resolution of the clock selected by @which_clock in the
1020 * variable pointed to by @tp.
1021 */
1022 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1023 {
1024 struct hrtimer_cpu_base *cpu_base;
1025
1026 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1027 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1028
1029 return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1032
1033 #ifdef CONFIG_HIGH_RES_TIMERS
1034
1035 /*
1036 * High resolution timer interrupt
1037 * Called with interrupts disabled
1038 */
1039 void hrtimer_interrupt(struct clock_event_device *dev)
1040 {
1041 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1042 struct hrtimer_clock_base *base;
1043 ktime_t expires_next, now;
1044 int i, raise = 0;
1045
1046 BUG_ON(!cpu_base->hres_active);
1047 cpu_base->nr_events++;
1048 dev->next_event.tv64 = KTIME_MAX;
1049
1050 retry:
1051 now = ktime_get();
1052
1053 expires_next.tv64 = KTIME_MAX;
1054
1055 base = cpu_base->clock_base;
1056
1057 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1058 ktime_t basenow;
1059 struct rb_node *node;
1060
1061 spin_lock(&cpu_base->lock);
1062
1063 basenow = ktime_add(now, base->offset);
1064
1065 while ((node = base->first)) {
1066 struct hrtimer *timer;
1067
1068 timer = rb_entry(node, struct hrtimer, node);
1069
1070 if (basenow.tv64 < timer->expires.tv64) {
1071 ktime_t expires;
1072
1073 expires = ktime_sub(timer->expires,
1074 base->offset);
1075 if (expires.tv64 < expires_next.tv64)
1076 expires_next = expires;
1077 break;
1078 }
1079
1080 /* Move softirq callbacks to the pending list */
1081 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1082 __remove_hrtimer(timer, base,
1083 HRTIMER_STATE_PENDING, 0);
1084 list_add_tail(&timer->cb_entry,
1085 &base->cpu_base->cb_pending);
1086 raise = 1;
1087 continue;
1088 }
1089
1090 __remove_hrtimer(timer, base,
1091 HRTIMER_STATE_CALLBACK, 0);
1092 timer_stats_account_hrtimer(timer);
1093
1094 /*
1095 * Note: We clear the CALLBACK bit after
1096 * enqueue_hrtimer to avoid reprogramming of
1097 * the event hardware. This happens at the end
1098 * of this function anyway.
1099 */
1100 if (timer->function(timer) != HRTIMER_NORESTART) {
1101 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1102 enqueue_hrtimer(timer, base, 0);
1103 }
1104 timer->state &= ~HRTIMER_STATE_CALLBACK;
1105 }
1106 spin_unlock(&cpu_base->lock);
1107 base++;
1108 }
1109
1110 cpu_base->expires_next = expires_next;
1111
1112 /* Reprogramming necessary ? */
1113 if (expires_next.tv64 != KTIME_MAX) {
1114 if (tick_program_event(expires_next, 0))
1115 goto retry;
1116 }
1117
1118 /* Raise softirq ? */
1119 if (raise)
1120 raise_softirq(HRTIMER_SOFTIRQ);
1121 }
1122
1123 static void run_hrtimer_softirq(struct softirq_action *h)
1124 {
1125 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1126
1127 spin_lock_irq(&cpu_base->lock);
1128
1129 while (!list_empty(&cpu_base->cb_pending)) {
1130 enum hrtimer_restart (*fn)(struct hrtimer *);
1131 struct hrtimer *timer;
1132 int restart;
1133
1134 timer = list_entry(cpu_base->cb_pending.next,
1135 struct hrtimer, cb_entry);
1136
1137 timer_stats_account_hrtimer(timer);
1138
1139 fn = timer->function;
1140 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1141 spin_unlock_irq(&cpu_base->lock);
1142
1143 restart = fn(timer);
1144
1145 spin_lock_irq(&cpu_base->lock);
1146
1147 timer->state &= ~HRTIMER_STATE_CALLBACK;
1148 if (restart == HRTIMER_RESTART) {
1149 BUG_ON(hrtimer_active(timer));
1150 /*
1151 * Enqueue the timer, allow reprogramming of the event
1152 * device
1153 */
1154 enqueue_hrtimer(timer, timer->base, 1);
1155 } else if (hrtimer_active(timer)) {
1156 /*
1157 * If the timer was rearmed on another CPU, reprogram
1158 * the event device.
1159 */
1160 if (timer->base->first == &timer->node)
1161 hrtimer_reprogram(timer, timer->base);
1162 }
1163 }
1164 spin_unlock_irq(&cpu_base->lock);
1165 }
1166
1167 #endif /* CONFIG_HIGH_RES_TIMERS */
1168
1169 /*
1170 * Expire the per base hrtimer-queue:
1171 */
1172 static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1173 int index)
1174 {
1175 struct rb_node *node;
1176 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1177
1178 if (!base->first)
1179 return;
1180
1181 if (base->get_softirq_time)
1182 base->softirq_time = base->get_softirq_time();
1183
1184 spin_lock_irq(&cpu_base->lock);
1185
1186 while ((node = base->first)) {
1187 struct hrtimer *timer;
1188 enum hrtimer_restart (*fn)(struct hrtimer *);
1189 int restart;
1190
1191 timer = rb_entry(node, struct hrtimer, node);
1192 if (base->softirq_time.tv64 <= timer->expires.tv64)
1193 break;
1194
1195 #ifdef CONFIG_HIGH_RES_TIMERS
1196 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1197 #endif
1198 timer_stats_account_hrtimer(timer);
1199
1200 fn = timer->function;
1201 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1202 spin_unlock_irq(&cpu_base->lock);
1203
1204 restart = fn(timer);
1205
1206 spin_lock_irq(&cpu_base->lock);
1207
1208 timer->state &= ~HRTIMER_STATE_CALLBACK;
1209 if (restart != HRTIMER_NORESTART) {
1210 BUG_ON(hrtimer_active(timer));
1211 enqueue_hrtimer(timer, base, 0);
1212 }
1213 }
1214 spin_unlock_irq(&cpu_base->lock);
1215 }
1216
1217 /*
1218 * Called from timer softirq every jiffy, expire hrtimers:
1219 *
1220 * For HRT its the fall back code to run the softirq in the timer
1221 * softirq context in case the hrtimer initialization failed or has
1222 * not been done yet.
1223 */
1224 void hrtimer_run_queues(void)
1225 {
1226 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1227 int i;
1228
1229 if (hrtimer_hres_active())
1230 return;
1231
1232 /*
1233 * This _is_ ugly: We have to check in the softirq context,
1234 * whether we can switch to highres and / or nohz mode. The
1235 * clocksource switch happens in the timer interrupt with
1236 * xtime_lock held. Notification from there only sets the
1237 * check bit in the tick_oneshot code, otherwise we might
1238 * deadlock vs. xtime_lock.
1239 */
1240 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1241 if (hrtimer_switch_to_hres())
1242 return;
1243
1244 hrtimer_get_softirq_time(cpu_base);
1245
1246 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1247 run_hrtimer_queue(cpu_base, i);
1248 }
1249
1250 /*
1251 * Sleep related functions:
1252 */
1253 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1254 {
1255 struct hrtimer_sleeper *t =
1256 container_of(timer, struct hrtimer_sleeper, timer);
1257 struct task_struct *task = t->task;
1258
1259 t->task = NULL;
1260 if (task)
1261 wake_up_process(task);
1262
1263 return HRTIMER_NORESTART;
1264 }
1265
1266 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1267 {
1268 sl->timer.function = hrtimer_wakeup;
1269 sl->task = task;
1270 #ifdef CONFIG_HIGH_RES_TIMERS
1271 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1272 #endif
1273 }
1274
1275 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1276 {
1277 hrtimer_init_sleeper(t, current);
1278
1279 do {
1280 set_current_state(TASK_INTERRUPTIBLE);
1281 hrtimer_start(&t->timer, t->timer.expires, mode);
1282
1283 if (likely(t->task))
1284 schedule();
1285
1286 hrtimer_cancel(&t->timer);
1287 mode = HRTIMER_MODE_ABS;
1288
1289 } while (t->task && !signal_pending(current));
1290
1291 return t->task == NULL;
1292 }
1293
1294 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1295 {
1296 struct hrtimer_sleeper t;
1297 struct timespec *rmtp;
1298 ktime_t time;
1299
1300 restart->fn = do_no_restart_syscall;
1301
1302 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1303 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1304
1305 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1306 return 0;
1307
1308 rmtp = (struct timespec *)restart->arg1;
1309 if (rmtp) {
1310 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1311 if (time.tv64 <= 0)
1312 return 0;
1313 *rmtp = ktime_to_timespec(time);
1314 }
1315
1316 restart->fn = hrtimer_nanosleep_restart;
1317
1318 /* The other values in restart are already filled in */
1319 return -ERESTART_RESTARTBLOCK;
1320 }
1321
1322 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec *rmtp,
1323 const enum hrtimer_mode mode, const clockid_t clockid)
1324 {
1325 struct restart_block *restart;
1326 struct hrtimer_sleeper t;
1327 ktime_t rem;
1328
1329 hrtimer_init(&t.timer, clockid, mode);
1330 t.timer.expires = timespec_to_ktime(*rqtp);
1331 if (do_nanosleep(&t, mode))
1332 return 0;
1333
1334 /* Absolute timers do not update the rmtp value and restart: */
1335 if (mode == HRTIMER_MODE_ABS)
1336 return -ERESTARTNOHAND;
1337
1338 if (rmtp) {
1339 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1340 if (rem.tv64 <= 0)
1341 return 0;
1342 *rmtp = ktime_to_timespec(rem);
1343 }
1344
1345 restart = &current_thread_info()->restart_block;
1346 restart->fn = hrtimer_nanosleep_restart;
1347 restart->arg0 = (unsigned long) t.timer.base->index;
1348 restart->arg1 = (unsigned long) rmtp;
1349 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1350 restart->arg3 = t.timer.expires.tv64 >> 32;
1351
1352 return -ERESTART_RESTARTBLOCK;
1353 }
1354
1355 asmlinkage long
1356 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1357 {
1358 struct timespec tu, rmt;
1359 int ret;
1360
1361 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1362 return -EFAULT;
1363
1364 if (!timespec_valid(&tu))
1365 return -EINVAL;
1366
1367 ret = hrtimer_nanosleep(&tu, rmtp ? &rmt : NULL, HRTIMER_MODE_REL,
1368 CLOCK_MONOTONIC);
1369
1370 if (ret && rmtp) {
1371 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1372 return -EFAULT;
1373 }
1374
1375 return ret;
1376 }
1377
1378 /*
1379 * Functions related to boot-time initialization:
1380 */
1381 static void __cpuinit init_hrtimers_cpu(int cpu)
1382 {
1383 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1384 int i;
1385
1386 spin_lock_init(&cpu_base->lock);
1387 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1388
1389 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1390 cpu_base->clock_base[i].cpu_base = cpu_base;
1391
1392 hrtimer_init_hres(cpu_base);
1393 }
1394
1395 #ifdef CONFIG_HOTPLUG_CPU
1396
1397 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1398 struct hrtimer_clock_base *new_base)
1399 {
1400 struct hrtimer *timer;
1401 struct rb_node *node;
1402
1403 while ((node = rb_first(&old_base->active))) {
1404 timer = rb_entry(node, struct hrtimer, node);
1405 BUG_ON(hrtimer_callback_running(timer));
1406 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1407 timer->base = new_base;
1408 /*
1409 * Enqueue the timer. Allow reprogramming of the event device
1410 */
1411 enqueue_hrtimer(timer, new_base, 1);
1412 }
1413 }
1414
1415 static void migrate_hrtimers(int cpu)
1416 {
1417 struct hrtimer_cpu_base *old_base, *new_base;
1418 int i;
1419
1420 BUG_ON(cpu_online(cpu));
1421 old_base = &per_cpu(hrtimer_bases, cpu);
1422 new_base = &get_cpu_var(hrtimer_bases);
1423
1424 tick_cancel_sched_timer(cpu);
1425
1426 local_irq_disable();
1427 double_spin_lock(&new_base->lock, &old_base->lock,
1428 smp_processor_id() < cpu);
1429
1430 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1431 migrate_hrtimer_list(&old_base->clock_base[i],
1432 &new_base->clock_base[i]);
1433 }
1434
1435 double_spin_unlock(&new_base->lock, &old_base->lock,
1436 smp_processor_id() < cpu);
1437 local_irq_enable();
1438 put_cpu_var(hrtimer_bases);
1439 }
1440 #endif /* CONFIG_HOTPLUG_CPU */
1441
1442 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1443 unsigned long action, void *hcpu)
1444 {
1445 unsigned int cpu = (long)hcpu;
1446
1447 switch (action) {
1448
1449 case CPU_UP_PREPARE:
1450 case CPU_UP_PREPARE_FROZEN:
1451 init_hrtimers_cpu(cpu);
1452 break;
1453
1454 #ifdef CONFIG_HOTPLUG_CPU
1455 case CPU_DEAD:
1456 case CPU_DEAD_FROZEN:
1457 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1458 migrate_hrtimers(cpu);
1459 break;
1460 #endif
1461
1462 default:
1463 break;
1464 }
1465
1466 return NOTIFY_OK;
1467 }
1468
1469 static struct notifier_block __cpuinitdata hrtimers_nb = {
1470 .notifier_call = hrtimer_cpu_notify,
1471 };
1472
1473 void __init hrtimers_init(void)
1474 {
1475 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1476 (void *)(long)smp_processor_id());
1477 register_cpu_notifier(&hrtimers_nb);
1478 #ifdef CONFIG_HIGH_RES_TIMERS
1479 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1480 #endif
1481 }
1482