xen: Use this_cpu_ops
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 #include <trace/events/timer.h>
52
53 /*
54 * The timer bases:
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
61 */
62 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63 {
64
65 .clock_base =
66 {
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
70 .resolution = KTIME_LOW_RES,
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
76 },
77 }
78 };
79
80 /*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 {
86 ktime_t xtim, tomono;
87 struct timespec xts, tom;
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
92 xts = __current_kernel_time();
93 tom = __get_wall_to_monotonic();
94 } while (read_seqretry(&xtime_lock, seq));
95
96 xtim = timespec_to_ktime(xts);
97 tomono = timespec_to_ktime(tom);
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
101 }
102
103 /*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107 #ifdef CONFIG_SMP
108
109 /*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
121 static
122 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
124 {
125 struct hrtimer_clock_base *base;
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
130 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
134 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 }
136 cpu_relax();
137 }
138 }
139
140
141 /*
142 * Get the preferred target CPU for NOHZ
143 */
144 static int hrtimer_get_target(int this_cpu, int pinned)
145 {
146 #ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
148 return get_nohz_timer_target();
149 #endif
150 return this_cpu;
151 }
152
153 /*
154 * With HIGHRES=y we do not migrate the timer when it is expiring
155 * before the next event on the target cpu because we cannot reprogram
156 * the target cpu hardware and we would cause it to fire late.
157 *
158 * Called with cpu_base->lock of target cpu held.
159 */
160 static int
161 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
162 {
163 #ifdef CONFIG_HIGH_RES_TIMERS
164 ktime_t expires;
165
166 if (!new_base->cpu_base->hres_active)
167 return 0;
168
169 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
170 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
171 #else
172 return 0;
173 #endif
174 }
175
176 /*
177 * Switch the timer base to the current CPU when possible.
178 */
179 static inline struct hrtimer_clock_base *
180 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
181 int pinned)
182 {
183 struct hrtimer_clock_base *new_base;
184 struct hrtimer_cpu_base *new_cpu_base;
185 int this_cpu = smp_processor_id();
186 int cpu = hrtimer_get_target(this_cpu, pinned);
187
188 again:
189 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
190 new_base = &new_cpu_base->clock_base[base->index];
191
192 if (base != new_base) {
193 /*
194 * We are trying to move timer to new_base.
195 * However we can't change timer's base while it is running,
196 * so we keep it on the same CPU. No hassle vs. reprogramming
197 * the event source in the high resolution case. The softirq
198 * code will take care of this when the timer function has
199 * completed. There is no conflict as we hold the lock until
200 * the timer is enqueued.
201 */
202 if (unlikely(hrtimer_callback_running(timer)))
203 return base;
204
205 /* See the comment in lock_timer_base() */
206 timer->base = NULL;
207 raw_spin_unlock(&base->cpu_base->lock);
208 raw_spin_lock(&new_base->cpu_base->lock);
209
210 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
211 cpu = this_cpu;
212 raw_spin_unlock(&new_base->cpu_base->lock);
213 raw_spin_lock(&base->cpu_base->lock);
214 timer->base = base;
215 goto again;
216 }
217 timer->base = new_base;
218 }
219 return new_base;
220 }
221
222 #else /* CONFIG_SMP */
223
224 static inline struct hrtimer_clock_base *
225 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
226 {
227 struct hrtimer_clock_base *base = timer->base;
228
229 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
230
231 return base;
232 }
233
234 # define switch_hrtimer_base(t, b, p) (b)
235
236 #endif /* !CONFIG_SMP */
237
238 /*
239 * Functions for the union type storage format of ktime_t which are
240 * too large for inlining:
241 */
242 #if BITS_PER_LONG < 64
243 # ifndef CONFIG_KTIME_SCALAR
244 /**
245 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
246 * @kt: addend
247 * @nsec: the scalar nsec value to add
248 *
249 * Returns the sum of kt and nsec in ktime_t format
250 */
251 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
252 {
253 ktime_t tmp;
254
255 if (likely(nsec < NSEC_PER_SEC)) {
256 tmp.tv64 = nsec;
257 } else {
258 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
259
260 tmp = ktime_set((long)nsec, rem);
261 }
262
263 return ktime_add(kt, tmp);
264 }
265
266 EXPORT_SYMBOL_GPL(ktime_add_ns);
267
268 /**
269 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
270 * @kt: minuend
271 * @nsec: the scalar nsec value to subtract
272 *
273 * Returns the subtraction of @nsec from @kt in ktime_t format
274 */
275 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
276 {
277 ktime_t tmp;
278
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
283
284 tmp = ktime_set((long)nsec, rem);
285 }
286
287 return ktime_sub(kt, tmp);
288 }
289
290 EXPORT_SYMBOL_GPL(ktime_sub_ns);
291 # endif /* !CONFIG_KTIME_SCALAR */
292
293 /*
294 * Divide a ktime value by a nanosecond value
295 */
296 u64 ktime_divns(const ktime_t kt, s64 div)
297 {
298 u64 dclc;
299 int sft = 0;
300
301 dclc = ktime_to_ns(kt);
302 /* Make sure the divisor is less than 2^32: */
303 while (div >> 32) {
304 sft++;
305 div >>= 1;
306 }
307 dclc >>= sft;
308 do_div(dclc, (unsigned long) div);
309
310 return dclc;
311 }
312 #endif /* BITS_PER_LONG >= 64 */
313
314 /*
315 * Add two ktime values and do a safety check for overflow:
316 */
317 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
318 {
319 ktime_t res = ktime_add(lhs, rhs);
320
321 /*
322 * We use KTIME_SEC_MAX here, the maximum timeout which we can
323 * return to user space in a timespec:
324 */
325 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
326 res = ktime_set(KTIME_SEC_MAX, 0);
327
328 return res;
329 }
330
331 EXPORT_SYMBOL_GPL(ktime_add_safe);
332
333 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
334
335 static struct debug_obj_descr hrtimer_debug_descr;
336
337 /*
338 * fixup_init is called when:
339 * - an active object is initialized
340 */
341 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
342 {
343 struct hrtimer *timer = addr;
344
345 switch (state) {
346 case ODEBUG_STATE_ACTIVE:
347 hrtimer_cancel(timer);
348 debug_object_init(timer, &hrtimer_debug_descr);
349 return 1;
350 default:
351 return 0;
352 }
353 }
354
355 /*
356 * fixup_activate is called when:
357 * - an active object is activated
358 * - an unknown object is activated (might be a statically initialized object)
359 */
360 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
361 {
362 switch (state) {
363
364 case ODEBUG_STATE_NOTAVAILABLE:
365 WARN_ON_ONCE(1);
366 return 0;
367
368 case ODEBUG_STATE_ACTIVE:
369 WARN_ON(1);
370
371 default:
372 return 0;
373 }
374 }
375
376 /*
377 * fixup_free is called when:
378 * - an active object is freed
379 */
380 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
381 {
382 struct hrtimer *timer = addr;
383
384 switch (state) {
385 case ODEBUG_STATE_ACTIVE:
386 hrtimer_cancel(timer);
387 debug_object_free(timer, &hrtimer_debug_descr);
388 return 1;
389 default:
390 return 0;
391 }
392 }
393
394 static struct debug_obj_descr hrtimer_debug_descr = {
395 .name = "hrtimer",
396 .fixup_init = hrtimer_fixup_init,
397 .fixup_activate = hrtimer_fixup_activate,
398 .fixup_free = hrtimer_fixup_free,
399 };
400
401 static inline void debug_hrtimer_init(struct hrtimer *timer)
402 {
403 debug_object_init(timer, &hrtimer_debug_descr);
404 }
405
406 static inline void debug_hrtimer_activate(struct hrtimer *timer)
407 {
408 debug_object_activate(timer, &hrtimer_debug_descr);
409 }
410
411 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
412 {
413 debug_object_deactivate(timer, &hrtimer_debug_descr);
414 }
415
416 static inline void debug_hrtimer_free(struct hrtimer *timer)
417 {
418 debug_object_free(timer, &hrtimer_debug_descr);
419 }
420
421 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
422 enum hrtimer_mode mode);
423
424 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
425 enum hrtimer_mode mode)
426 {
427 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
428 __hrtimer_init(timer, clock_id, mode);
429 }
430 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
431
432 void destroy_hrtimer_on_stack(struct hrtimer *timer)
433 {
434 debug_object_free(timer, &hrtimer_debug_descr);
435 }
436
437 #else
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
441 #endif
442
443 static inline void
444 debug_init(struct hrtimer *timer, clockid_t clockid,
445 enum hrtimer_mode mode)
446 {
447 debug_hrtimer_init(timer);
448 trace_hrtimer_init(timer, clockid, mode);
449 }
450
451 static inline void debug_activate(struct hrtimer *timer)
452 {
453 debug_hrtimer_activate(timer);
454 trace_hrtimer_start(timer);
455 }
456
457 static inline void debug_deactivate(struct hrtimer *timer)
458 {
459 debug_hrtimer_deactivate(timer);
460 trace_hrtimer_cancel(timer);
461 }
462
463 /* High resolution timer related functions */
464 #ifdef CONFIG_HIGH_RES_TIMERS
465
466 /*
467 * High resolution timer enabled ?
468 */
469 static int hrtimer_hres_enabled __read_mostly = 1;
470
471 /*
472 * Enable / Disable high resolution mode
473 */
474 static int __init setup_hrtimer_hres(char *str)
475 {
476 if (!strcmp(str, "off"))
477 hrtimer_hres_enabled = 0;
478 else if (!strcmp(str, "on"))
479 hrtimer_hres_enabled = 1;
480 else
481 return 0;
482 return 1;
483 }
484
485 __setup("highres=", setup_hrtimer_hres);
486
487 /*
488 * hrtimer_high_res_enabled - query, if the highres mode is enabled
489 */
490 static inline int hrtimer_is_hres_enabled(void)
491 {
492 return hrtimer_hres_enabled;
493 }
494
495 /*
496 * Is the high resolution mode active ?
497 */
498 static inline int hrtimer_hres_active(void)
499 {
500 return __get_cpu_var(hrtimer_bases).hres_active;
501 }
502
503 /*
504 * Reprogram the event source with checking both queues for the
505 * next event
506 * Called with interrupts disabled and base->lock held
507 */
508 static void
509 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
510 {
511 int i;
512 struct hrtimer_clock_base *base = cpu_base->clock_base;
513 ktime_t expires, expires_next;
514
515 expires_next.tv64 = KTIME_MAX;
516
517 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
518 struct hrtimer *timer;
519
520 if (!base->first)
521 continue;
522 timer = rb_entry(base->first, struct hrtimer, node);
523 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
524 /*
525 * clock_was_set() has changed base->offset so the
526 * result might be negative. Fix it up to prevent a
527 * false positive in clockevents_program_event()
528 */
529 if (expires.tv64 < 0)
530 expires.tv64 = 0;
531 if (expires.tv64 < expires_next.tv64)
532 expires_next = expires;
533 }
534
535 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
536 return;
537
538 cpu_base->expires_next.tv64 = expires_next.tv64;
539
540 if (cpu_base->expires_next.tv64 != KTIME_MAX)
541 tick_program_event(cpu_base->expires_next, 1);
542 }
543
544 /*
545 * Shared reprogramming for clock_realtime and clock_monotonic
546 *
547 * When a timer is enqueued and expires earlier than the already enqueued
548 * timers, we have to check, whether it expires earlier than the timer for
549 * which the clock event device was armed.
550 *
551 * Called with interrupts disabled and base->cpu_base.lock held
552 */
553 static int hrtimer_reprogram(struct hrtimer *timer,
554 struct hrtimer_clock_base *base)
555 {
556 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
557 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
558 int res;
559
560 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
561
562 /*
563 * When the callback is running, we do not reprogram the clock event
564 * device. The timer callback is either running on a different CPU or
565 * the callback is executed in the hrtimer_interrupt context. The
566 * reprogramming is handled either by the softirq, which called the
567 * callback or at the end of the hrtimer_interrupt.
568 */
569 if (hrtimer_callback_running(timer))
570 return 0;
571
572 /*
573 * CLOCK_REALTIME timer might be requested with an absolute
574 * expiry time which is less than base->offset. Nothing wrong
575 * about that, just avoid to call into the tick code, which
576 * has now objections against negative expiry values.
577 */
578 if (expires.tv64 < 0)
579 return -ETIME;
580
581 if (expires.tv64 >= cpu_base->expires_next.tv64)
582 return 0;
583
584 /*
585 * If a hang was detected in the last timer interrupt then we
586 * do not schedule a timer which is earlier than the expiry
587 * which we enforced in the hang detection. We want the system
588 * to make progress.
589 */
590 if (cpu_base->hang_detected)
591 return 0;
592
593 /*
594 * Clockevents returns -ETIME, when the event was in the past.
595 */
596 res = tick_program_event(expires, 0);
597 if (!IS_ERR_VALUE(res))
598 cpu_base->expires_next = expires;
599 return res;
600 }
601
602
603 /*
604 * Retrigger next event is called after clock was set
605 *
606 * Called with interrupts disabled via on_each_cpu()
607 */
608 static void retrigger_next_event(void *arg)
609 {
610 struct hrtimer_cpu_base *base;
611 struct timespec realtime_offset, wtm;
612 unsigned long seq;
613
614 if (!hrtimer_hres_active())
615 return;
616
617 do {
618 seq = read_seqbegin(&xtime_lock);
619 wtm = __get_wall_to_monotonic();
620 } while (read_seqretry(&xtime_lock, seq));
621 set_normalized_timespec(&realtime_offset, -wtm.tv_sec, -wtm.tv_nsec);
622
623 base = &__get_cpu_var(hrtimer_bases);
624
625 /* Adjust CLOCK_REALTIME offset */
626 raw_spin_lock(&base->lock);
627 base->clock_base[CLOCK_REALTIME].offset =
628 timespec_to_ktime(realtime_offset);
629
630 hrtimer_force_reprogram(base, 0);
631 raw_spin_unlock(&base->lock);
632 }
633
634 /*
635 * Clock realtime was set
636 *
637 * Change the offset of the realtime clock vs. the monotonic
638 * clock.
639 *
640 * We might have to reprogram the high resolution timer interrupt. On
641 * SMP we call the architecture specific code to retrigger _all_ high
642 * resolution timer interrupts. On UP we just disable interrupts and
643 * call the high resolution interrupt code.
644 */
645 void clock_was_set(void)
646 {
647 /* Retrigger the CPU local events everywhere */
648 on_each_cpu(retrigger_next_event, NULL, 1);
649 }
650
651 /*
652 * During resume we might have to reprogram the high resolution timer
653 * interrupt (on the local CPU):
654 */
655 void hres_timers_resume(void)
656 {
657 WARN_ONCE(!irqs_disabled(),
658 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
659
660 retrigger_next_event(NULL);
661 }
662
663 /*
664 * Initialize the high resolution related parts of cpu_base
665 */
666 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
667 {
668 base->expires_next.tv64 = KTIME_MAX;
669 base->hres_active = 0;
670 }
671
672 /*
673 * Initialize the high resolution related parts of a hrtimer
674 */
675 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
676 {
677 }
678
679
680 /*
681 * When High resolution timers are active, try to reprogram. Note, that in case
682 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
683 * check happens. The timer gets enqueued into the rbtree. The reprogramming
684 * and expiry check is done in the hrtimer_interrupt or in the softirq.
685 */
686 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
687 struct hrtimer_clock_base *base,
688 int wakeup)
689 {
690 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
691 if (wakeup) {
692 raw_spin_unlock(&base->cpu_base->lock);
693 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
694 raw_spin_lock(&base->cpu_base->lock);
695 } else
696 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
697
698 return 1;
699 }
700
701 return 0;
702 }
703
704 /*
705 * Switch to high resolution mode
706 */
707 static int hrtimer_switch_to_hres(void)
708 {
709 int cpu = smp_processor_id();
710 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 unsigned long flags;
712
713 if (base->hres_active)
714 return 1;
715
716 local_irq_save(flags);
717
718 if (tick_init_highres()) {
719 local_irq_restore(flags);
720 printk(KERN_WARNING "Could not switch to high resolution "
721 "mode on CPU %d\n", cpu);
722 return 0;
723 }
724 base->hres_active = 1;
725 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
726 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
727
728 tick_setup_sched_timer();
729
730 /* "Retrigger" the interrupt to get things going */
731 retrigger_next_event(NULL);
732 local_irq_restore(flags);
733 return 1;
734 }
735
736 #else
737
738 static inline int hrtimer_hres_active(void) { return 0; }
739 static inline int hrtimer_is_hres_enabled(void) { return 0; }
740 static inline int hrtimer_switch_to_hres(void) { return 0; }
741 static inline void
742 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
743 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
744 struct hrtimer_clock_base *base,
745 int wakeup)
746 {
747 return 0;
748 }
749 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
750 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
751
752 #endif /* CONFIG_HIGH_RES_TIMERS */
753
754 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
755 {
756 #ifdef CONFIG_TIMER_STATS
757 if (timer->start_site)
758 return;
759 timer->start_site = __builtin_return_address(0);
760 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
761 timer->start_pid = current->pid;
762 #endif
763 }
764
765 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
766 {
767 #ifdef CONFIG_TIMER_STATS
768 timer->start_site = NULL;
769 #endif
770 }
771
772 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
773 {
774 #ifdef CONFIG_TIMER_STATS
775 if (likely(!timer_stats_active))
776 return;
777 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
778 timer->function, timer->start_comm, 0);
779 #endif
780 }
781
782 /*
783 * Counterpart to lock_hrtimer_base above:
784 */
785 static inline
786 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
787 {
788 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
789 }
790
791 /**
792 * hrtimer_forward - forward the timer expiry
793 * @timer: hrtimer to forward
794 * @now: forward past this time
795 * @interval: the interval to forward
796 *
797 * Forward the timer expiry so it will expire in the future.
798 * Returns the number of overruns.
799 */
800 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
801 {
802 u64 orun = 1;
803 ktime_t delta;
804
805 delta = ktime_sub(now, hrtimer_get_expires(timer));
806
807 if (delta.tv64 < 0)
808 return 0;
809
810 if (interval.tv64 < timer->base->resolution.tv64)
811 interval.tv64 = timer->base->resolution.tv64;
812
813 if (unlikely(delta.tv64 >= interval.tv64)) {
814 s64 incr = ktime_to_ns(interval);
815
816 orun = ktime_divns(delta, incr);
817 hrtimer_add_expires_ns(timer, incr * orun);
818 if (hrtimer_get_expires_tv64(timer) > now.tv64)
819 return orun;
820 /*
821 * This (and the ktime_add() below) is the
822 * correction for exact:
823 */
824 orun++;
825 }
826 hrtimer_add_expires(timer, interval);
827
828 return orun;
829 }
830 EXPORT_SYMBOL_GPL(hrtimer_forward);
831
832 /*
833 * enqueue_hrtimer - internal function to (re)start a timer
834 *
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
837 *
838 * Returns 1 when the new timer is the leftmost timer in the tree.
839 */
840 static int enqueue_hrtimer(struct hrtimer *timer,
841 struct hrtimer_clock_base *base)
842 {
843 struct rb_node **link = &base->active.rb_node;
844 struct rb_node *parent = NULL;
845 struct hrtimer *entry;
846 int leftmost = 1;
847
848 debug_activate(timer);
849
850 /*
851 * Find the right place in the rbtree:
852 */
853 while (*link) {
854 parent = *link;
855 entry = rb_entry(parent, struct hrtimer, node);
856 /*
857 * We dont care about collisions. Nodes with
858 * the same expiry time stay together.
859 */
860 if (hrtimer_get_expires_tv64(timer) <
861 hrtimer_get_expires_tv64(entry)) {
862 link = &(*link)->rb_left;
863 } else {
864 link = &(*link)->rb_right;
865 leftmost = 0;
866 }
867 }
868
869 /*
870 * Insert the timer to the rbtree and check whether it
871 * replaces the first pending timer
872 */
873 if (leftmost)
874 base->first = &timer->node;
875
876 rb_link_node(&timer->node, parent, link);
877 rb_insert_color(&timer->node, &base->active);
878 /*
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
881 */
882 timer->state |= HRTIMER_STATE_ENQUEUED;
883
884 return leftmost;
885 }
886
887 /*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
896 */
897 static void __remove_hrtimer(struct hrtimer *timer,
898 struct hrtimer_clock_base *base,
899 unsigned long newstate, int reprogram)
900 {
901 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
902 goto out;
903
904 /*
905 * Remove the timer from the rbtree and replace the first
906 * entry pointer if necessary.
907 */
908 if (base->first == &timer->node) {
909 base->first = rb_next(&timer->node);
910 #ifdef CONFIG_HIGH_RES_TIMERS
911 /* Reprogram the clock event device. if enabled */
912 if (reprogram && hrtimer_hres_active()) {
913 ktime_t expires;
914
915 expires = ktime_sub(hrtimer_get_expires(timer),
916 base->offset);
917 if (base->cpu_base->expires_next.tv64 == expires.tv64)
918 hrtimer_force_reprogram(base->cpu_base, 1);
919 }
920 #endif
921 }
922 rb_erase(&timer->node, &base->active);
923 out:
924 timer->state = newstate;
925 }
926
927 /*
928 * remove hrtimer, called with base lock held
929 */
930 static inline int
931 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
932 {
933 if (hrtimer_is_queued(timer)) {
934 unsigned long state;
935 int reprogram;
936
937 /*
938 * Remove the timer and force reprogramming when high
939 * resolution mode is active and the timer is on the current
940 * CPU. If we remove a timer on another CPU, reprogramming is
941 * skipped. The interrupt event on this CPU is fired and
942 * reprogramming happens in the interrupt handler. This is a
943 * rare case and less expensive than a smp call.
944 */
945 debug_deactivate(timer);
946 timer_stats_hrtimer_clear_start_info(timer);
947 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
948 /*
949 * We must preserve the CALLBACK state flag here,
950 * otherwise we could move the timer base in
951 * switch_hrtimer_base.
952 */
953 state = timer->state & HRTIMER_STATE_CALLBACK;
954 __remove_hrtimer(timer, base, state, reprogram);
955 return 1;
956 }
957 return 0;
958 }
959
960 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
961 unsigned long delta_ns, const enum hrtimer_mode mode,
962 int wakeup)
963 {
964 struct hrtimer_clock_base *base, *new_base;
965 unsigned long flags;
966 int ret, leftmost;
967
968 base = lock_hrtimer_base(timer, &flags);
969
970 /* Remove an active timer from the queue: */
971 ret = remove_hrtimer(timer, base);
972
973 /* Switch the timer base, if necessary: */
974 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
975
976 if (mode & HRTIMER_MODE_REL) {
977 tim = ktime_add_safe(tim, new_base->get_time());
978 /*
979 * CONFIG_TIME_LOW_RES is a temporary way for architectures
980 * to signal that they simply return xtime in
981 * do_gettimeoffset(). In this case we want to round up by
982 * resolution when starting a relative timer, to avoid short
983 * timeouts. This will go away with the GTOD framework.
984 */
985 #ifdef CONFIG_TIME_LOW_RES
986 tim = ktime_add_safe(tim, base->resolution);
987 #endif
988 }
989
990 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
991
992 timer_stats_hrtimer_set_start_info(timer);
993
994 leftmost = enqueue_hrtimer(timer, new_base);
995
996 /*
997 * Only allow reprogramming if the new base is on this CPU.
998 * (it might still be on another CPU if the timer was pending)
999 *
1000 * XXX send_remote_softirq() ?
1001 */
1002 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
1003 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1004
1005 unlock_hrtimer_base(timer, &flags);
1006
1007 return ret;
1008 }
1009
1010 /**
1011 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1012 * @timer: the timer to be added
1013 * @tim: expiry time
1014 * @delta_ns: "slack" range for the timer
1015 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1016 *
1017 * Returns:
1018 * 0 on success
1019 * 1 when the timer was active
1020 */
1021 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1022 unsigned long delta_ns, const enum hrtimer_mode mode)
1023 {
1024 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1025 }
1026 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1027
1028 /**
1029 * hrtimer_start - (re)start an hrtimer on the current CPU
1030 * @timer: the timer to be added
1031 * @tim: expiry time
1032 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1033 *
1034 * Returns:
1035 * 0 on success
1036 * 1 when the timer was active
1037 */
1038 int
1039 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1040 {
1041 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1042 }
1043 EXPORT_SYMBOL_GPL(hrtimer_start);
1044
1045
1046 /**
1047 * hrtimer_try_to_cancel - try to deactivate a timer
1048 * @timer: hrtimer to stop
1049 *
1050 * Returns:
1051 * 0 when the timer was not active
1052 * 1 when the timer was active
1053 * -1 when the timer is currently excuting the callback function and
1054 * cannot be stopped
1055 */
1056 int hrtimer_try_to_cancel(struct hrtimer *timer)
1057 {
1058 struct hrtimer_clock_base *base;
1059 unsigned long flags;
1060 int ret = -1;
1061
1062 base = lock_hrtimer_base(timer, &flags);
1063
1064 if (!hrtimer_callback_running(timer))
1065 ret = remove_hrtimer(timer, base);
1066
1067 unlock_hrtimer_base(timer, &flags);
1068
1069 return ret;
1070
1071 }
1072 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1073
1074 /**
1075 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1076 * @timer: the timer to be cancelled
1077 *
1078 * Returns:
1079 * 0 when the timer was not active
1080 * 1 when the timer was active
1081 */
1082 int hrtimer_cancel(struct hrtimer *timer)
1083 {
1084 for (;;) {
1085 int ret = hrtimer_try_to_cancel(timer);
1086
1087 if (ret >= 0)
1088 return ret;
1089 cpu_relax();
1090 }
1091 }
1092 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1093
1094 /**
1095 * hrtimer_get_remaining - get remaining time for the timer
1096 * @timer: the timer to read
1097 */
1098 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1099 {
1100 unsigned long flags;
1101 ktime_t rem;
1102
1103 lock_hrtimer_base(timer, &flags);
1104 rem = hrtimer_expires_remaining(timer);
1105 unlock_hrtimer_base(timer, &flags);
1106
1107 return rem;
1108 }
1109 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1110
1111 #ifdef CONFIG_NO_HZ
1112 /**
1113 * hrtimer_get_next_event - get the time until next expiry event
1114 *
1115 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1116 * is pending.
1117 */
1118 ktime_t hrtimer_get_next_event(void)
1119 {
1120 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1121 struct hrtimer_clock_base *base = cpu_base->clock_base;
1122 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1123 unsigned long flags;
1124 int i;
1125
1126 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1127
1128 if (!hrtimer_hres_active()) {
1129 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1130 struct hrtimer *timer;
1131
1132 if (!base->first)
1133 continue;
1134
1135 timer = rb_entry(base->first, struct hrtimer, node);
1136 delta.tv64 = hrtimer_get_expires_tv64(timer);
1137 delta = ktime_sub(delta, base->get_time());
1138 if (delta.tv64 < mindelta.tv64)
1139 mindelta.tv64 = delta.tv64;
1140 }
1141 }
1142
1143 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1144
1145 if (mindelta.tv64 < 0)
1146 mindelta.tv64 = 0;
1147 return mindelta;
1148 }
1149 #endif
1150
1151 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1152 enum hrtimer_mode mode)
1153 {
1154 struct hrtimer_cpu_base *cpu_base;
1155
1156 memset(timer, 0, sizeof(struct hrtimer));
1157
1158 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1159
1160 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1161 clock_id = CLOCK_MONOTONIC;
1162
1163 timer->base = &cpu_base->clock_base[clock_id];
1164 hrtimer_init_timer_hres(timer);
1165
1166 #ifdef CONFIG_TIMER_STATS
1167 timer->start_site = NULL;
1168 timer->start_pid = -1;
1169 memset(timer->start_comm, 0, TASK_COMM_LEN);
1170 #endif
1171 }
1172
1173 /**
1174 * hrtimer_init - initialize a timer to the given clock
1175 * @timer: the timer to be initialized
1176 * @clock_id: the clock to be used
1177 * @mode: timer mode abs/rel
1178 */
1179 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1180 enum hrtimer_mode mode)
1181 {
1182 debug_init(timer, clock_id, mode);
1183 __hrtimer_init(timer, clock_id, mode);
1184 }
1185 EXPORT_SYMBOL_GPL(hrtimer_init);
1186
1187 /**
1188 * hrtimer_get_res - get the timer resolution for a clock
1189 * @which_clock: which clock to query
1190 * @tp: pointer to timespec variable to store the resolution
1191 *
1192 * Store the resolution of the clock selected by @which_clock in the
1193 * variable pointed to by @tp.
1194 */
1195 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1196 {
1197 struct hrtimer_cpu_base *cpu_base;
1198
1199 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1200 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1201
1202 return 0;
1203 }
1204 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1205
1206 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1207 {
1208 struct hrtimer_clock_base *base = timer->base;
1209 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1210 enum hrtimer_restart (*fn)(struct hrtimer *);
1211 int restart;
1212
1213 WARN_ON(!irqs_disabled());
1214
1215 debug_deactivate(timer);
1216 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1217 timer_stats_account_hrtimer(timer);
1218 fn = timer->function;
1219
1220 /*
1221 * Because we run timers from hardirq context, there is no chance
1222 * they get migrated to another cpu, therefore its safe to unlock
1223 * the timer base.
1224 */
1225 raw_spin_unlock(&cpu_base->lock);
1226 trace_hrtimer_expire_entry(timer, now);
1227 restart = fn(timer);
1228 trace_hrtimer_expire_exit(timer);
1229 raw_spin_lock(&cpu_base->lock);
1230
1231 /*
1232 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1233 * we do not reprogramm the event hardware. Happens either in
1234 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1235 */
1236 if (restart != HRTIMER_NORESTART) {
1237 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1238 enqueue_hrtimer(timer, base);
1239 }
1240
1241 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1242
1243 timer->state &= ~HRTIMER_STATE_CALLBACK;
1244 }
1245
1246 #ifdef CONFIG_HIGH_RES_TIMERS
1247
1248 /*
1249 * High resolution timer interrupt
1250 * Called with interrupts disabled
1251 */
1252 void hrtimer_interrupt(struct clock_event_device *dev)
1253 {
1254 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1255 struct hrtimer_clock_base *base;
1256 ktime_t expires_next, now, entry_time, delta;
1257 int i, retries = 0;
1258
1259 BUG_ON(!cpu_base->hres_active);
1260 cpu_base->nr_events++;
1261 dev->next_event.tv64 = KTIME_MAX;
1262
1263 entry_time = now = ktime_get();
1264 retry:
1265 expires_next.tv64 = KTIME_MAX;
1266
1267 raw_spin_lock(&cpu_base->lock);
1268 /*
1269 * We set expires_next to KTIME_MAX here with cpu_base->lock
1270 * held to prevent that a timer is enqueued in our queue via
1271 * the migration code. This does not affect enqueueing of
1272 * timers which run their callback and need to be requeued on
1273 * this CPU.
1274 */
1275 cpu_base->expires_next.tv64 = KTIME_MAX;
1276
1277 base = cpu_base->clock_base;
1278
1279 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1280 ktime_t basenow;
1281 struct rb_node *node;
1282
1283 basenow = ktime_add(now, base->offset);
1284
1285 while ((node = base->first)) {
1286 struct hrtimer *timer;
1287
1288 timer = rb_entry(node, struct hrtimer, node);
1289
1290 /*
1291 * The immediate goal for using the softexpires is
1292 * minimizing wakeups, not running timers at the
1293 * earliest interrupt after their soft expiration.
1294 * This allows us to avoid using a Priority Search
1295 * Tree, which can answer a stabbing querry for
1296 * overlapping intervals and instead use the simple
1297 * BST we already have.
1298 * We don't add extra wakeups by delaying timers that
1299 * are right-of a not yet expired timer, because that
1300 * timer will have to trigger a wakeup anyway.
1301 */
1302
1303 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1304 ktime_t expires;
1305
1306 expires = ktime_sub(hrtimer_get_expires(timer),
1307 base->offset);
1308 if (expires.tv64 < expires_next.tv64)
1309 expires_next = expires;
1310 break;
1311 }
1312
1313 __run_hrtimer(timer, &basenow);
1314 }
1315 base++;
1316 }
1317
1318 /*
1319 * Store the new expiry value so the migration code can verify
1320 * against it.
1321 */
1322 cpu_base->expires_next = expires_next;
1323 raw_spin_unlock(&cpu_base->lock);
1324
1325 /* Reprogramming necessary ? */
1326 if (expires_next.tv64 == KTIME_MAX ||
1327 !tick_program_event(expires_next, 0)) {
1328 cpu_base->hang_detected = 0;
1329 return;
1330 }
1331
1332 /*
1333 * The next timer was already expired due to:
1334 * - tracing
1335 * - long lasting callbacks
1336 * - being scheduled away when running in a VM
1337 *
1338 * We need to prevent that we loop forever in the hrtimer
1339 * interrupt routine. We give it 3 attempts to avoid
1340 * overreacting on some spurious event.
1341 */
1342 now = ktime_get();
1343 cpu_base->nr_retries++;
1344 if (++retries < 3)
1345 goto retry;
1346 /*
1347 * Give the system a chance to do something else than looping
1348 * here. We stored the entry time, so we know exactly how long
1349 * we spent here. We schedule the next event this amount of
1350 * time away.
1351 */
1352 cpu_base->nr_hangs++;
1353 cpu_base->hang_detected = 1;
1354 delta = ktime_sub(now, entry_time);
1355 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1356 cpu_base->max_hang_time = delta;
1357 /*
1358 * Limit it to a sensible value as we enforce a longer
1359 * delay. Give the CPU at least 100ms to catch up.
1360 */
1361 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1362 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1363 else
1364 expires_next = ktime_add(now, delta);
1365 tick_program_event(expires_next, 1);
1366 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1367 ktime_to_ns(delta));
1368 }
1369
1370 /*
1371 * local version of hrtimer_peek_ahead_timers() called with interrupts
1372 * disabled.
1373 */
1374 static void __hrtimer_peek_ahead_timers(void)
1375 {
1376 struct tick_device *td;
1377
1378 if (!hrtimer_hres_active())
1379 return;
1380
1381 td = &__get_cpu_var(tick_cpu_device);
1382 if (td && td->evtdev)
1383 hrtimer_interrupt(td->evtdev);
1384 }
1385
1386 /**
1387 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1388 *
1389 * hrtimer_peek_ahead_timers will peek at the timer queue of
1390 * the current cpu and check if there are any timers for which
1391 * the soft expires time has passed. If any such timers exist,
1392 * they are run immediately and then removed from the timer queue.
1393 *
1394 */
1395 void hrtimer_peek_ahead_timers(void)
1396 {
1397 unsigned long flags;
1398
1399 local_irq_save(flags);
1400 __hrtimer_peek_ahead_timers();
1401 local_irq_restore(flags);
1402 }
1403
1404 static void run_hrtimer_softirq(struct softirq_action *h)
1405 {
1406 hrtimer_peek_ahead_timers();
1407 }
1408
1409 #else /* CONFIG_HIGH_RES_TIMERS */
1410
1411 static inline void __hrtimer_peek_ahead_timers(void) { }
1412
1413 #endif /* !CONFIG_HIGH_RES_TIMERS */
1414
1415 /*
1416 * Called from timer softirq every jiffy, expire hrtimers:
1417 *
1418 * For HRT its the fall back code to run the softirq in the timer
1419 * softirq context in case the hrtimer initialization failed or has
1420 * not been done yet.
1421 */
1422 void hrtimer_run_pending(void)
1423 {
1424 if (hrtimer_hres_active())
1425 return;
1426
1427 /*
1428 * This _is_ ugly: We have to check in the softirq context,
1429 * whether we can switch to highres and / or nohz mode. The
1430 * clocksource switch happens in the timer interrupt with
1431 * xtime_lock held. Notification from there only sets the
1432 * check bit in the tick_oneshot code, otherwise we might
1433 * deadlock vs. xtime_lock.
1434 */
1435 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1436 hrtimer_switch_to_hres();
1437 }
1438
1439 /*
1440 * Called from hardirq context every jiffy
1441 */
1442 void hrtimer_run_queues(void)
1443 {
1444 struct rb_node *node;
1445 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1446 struct hrtimer_clock_base *base;
1447 int index, gettime = 1;
1448
1449 if (hrtimer_hres_active())
1450 return;
1451
1452 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1453 base = &cpu_base->clock_base[index];
1454
1455 if (!base->first)
1456 continue;
1457
1458 if (gettime) {
1459 hrtimer_get_softirq_time(cpu_base);
1460 gettime = 0;
1461 }
1462
1463 raw_spin_lock(&cpu_base->lock);
1464
1465 while ((node = base->first)) {
1466 struct hrtimer *timer;
1467
1468 timer = rb_entry(node, struct hrtimer, node);
1469 if (base->softirq_time.tv64 <=
1470 hrtimer_get_expires_tv64(timer))
1471 break;
1472
1473 __run_hrtimer(timer, &base->softirq_time);
1474 }
1475 raw_spin_unlock(&cpu_base->lock);
1476 }
1477 }
1478
1479 /*
1480 * Sleep related functions:
1481 */
1482 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1483 {
1484 struct hrtimer_sleeper *t =
1485 container_of(timer, struct hrtimer_sleeper, timer);
1486 struct task_struct *task = t->task;
1487
1488 t->task = NULL;
1489 if (task)
1490 wake_up_process(task);
1491
1492 return HRTIMER_NORESTART;
1493 }
1494
1495 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1496 {
1497 sl->timer.function = hrtimer_wakeup;
1498 sl->task = task;
1499 }
1500 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1501
1502 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1503 {
1504 hrtimer_init_sleeper(t, current);
1505
1506 do {
1507 set_current_state(TASK_INTERRUPTIBLE);
1508 hrtimer_start_expires(&t->timer, mode);
1509 if (!hrtimer_active(&t->timer))
1510 t->task = NULL;
1511
1512 if (likely(t->task))
1513 schedule();
1514
1515 hrtimer_cancel(&t->timer);
1516 mode = HRTIMER_MODE_ABS;
1517
1518 } while (t->task && !signal_pending(current));
1519
1520 __set_current_state(TASK_RUNNING);
1521
1522 return t->task == NULL;
1523 }
1524
1525 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1526 {
1527 struct timespec rmt;
1528 ktime_t rem;
1529
1530 rem = hrtimer_expires_remaining(timer);
1531 if (rem.tv64 <= 0)
1532 return 0;
1533 rmt = ktime_to_timespec(rem);
1534
1535 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1536 return -EFAULT;
1537
1538 return 1;
1539 }
1540
1541 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1542 {
1543 struct hrtimer_sleeper t;
1544 struct timespec __user *rmtp;
1545 int ret = 0;
1546
1547 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1548 HRTIMER_MODE_ABS);
1549 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1550
1551 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1552 goto out;
1553
1554 rmtp = restart->nanosleep.rmtp;
1555 if (rmtp) {
1556 ret = update_rmtp(&t.timer, rmtp);
1557 if (ret <= 0)
1558 goto out;
1559 }
1560
1561 /* The other values in restart are already filled in */
1562 ret = -ERESTART_RESTARTBLOCK;
1563 out:
1564 destroy_hrtimer_on_stack(&t.timer);
1565 return ret;
1566 }
1567
1568 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1569 const enum hrtimer_mode mode, const clockid_t clockid)
1570 {
1571 struct restart_block *restart;
1572 struct hrtimer_sleeper t;
1573 int ret = 0;
1574 unsigned long slack;
1575
1576 slack = current->timer_slack_ns;
1577 if (rt_task(current))
1578 slack = 0;
1579
1580 hrtimer_init_on_stack(&t.timer, clockid, mode);
1581 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1582 if (do_nanosleep(&t, mode))
1583 goto out;
1584
1585 /* Absolute timers do not update the rmtp value and restart: */
1586 if (mode == HRTIMER_MODE_ABS) {
1587 ret = -ERESTARTNOHAND;
1588 goto out;
1589 }
1590
1591 if (rmtp) {
1592 ret = update_rmtp(&t.timer, rmtp);
1593 if (ret <= 0)
1594 goto out;
1595 }
1596
1597 restart = &current_thread_info()->restart_block;
1598 restart->fn = hrtimer_nanosleep_restart;
1599 restart->nanosleep.index = t.timer.base->index;
1600 restart->nanosleep.rmtp = rmtp;
1601 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1602
1603 ret = -ERESTART_RESTARTBLOCK;
1604 out:
1605 destroy_hrtimer_on_stack(&t.timer);
1606 return ret;
1607 }
1608
1609 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1610 struct timespec __user *, rmtp)
1611 {
1612 struct timespec tu;
1613
1614 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1615 return -EFAULT;
1616
1617 if (!timespec_valid(&tu))
1618 return -EINVAL;
1619
1620 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1621 }
1622
1623 /*
1624 * Functions related to boot-time initialization:
1625 */
1626 static void __cpuinit init_hrtimers_cpu(int cpu)
1627 {
1628 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1629 int i;
1630
1631 raw_spin_lock_init(&cpu_base->lock);
1632
1633 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1634 cpu_base->clock_base[i].cpu_base = cpu_base;
1635
1636 hrtimer_init_hres(cpu_base);
1637 }
1638
1639 #ifdef CONFIG_HOTPLUG_CPU
1640
1641 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1642 struct hrtimer_clock_base *new_base)
1643 {
1644 struct hrtimer *timer;
1645 struct rb_node *node;
1646
1647 while ((node = rb_first(&old_base->active))) {
1648 timer = rb_entry(node, struct hrtimer, node);
1649 BUG_ON(hrtimer_callback_running(timer));
1650 debug_deactivate(timer);
1651
1652 /*
1653 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1654 * timer could be seen as !active and just vanish away
1655 * under us on another CPU
1656 */
1657 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1658 timer->base = new_base;
1659 /*
1660 * Enqueue the timers on the new cpu. This does not
1661 * reprogram the event device in case the timer
1662 * expires before the earliest on this CPU, but we run
1663 * hrtimer_interrupt after we migrated everything to
1664 * sort out already expired timers and reprogram the
1665 * event device.
1666 */
1667 enqueue_hrtimer(timer, new_base);
1668
1669 /* Clear the migration state bit */
1670 timer->state &= ~HRTIMER_STATE_MIGRATE;
1671 }
1672 }
1673
1674 static void migrate_hrtimers(int scpu)
1675 {
1676 struct hrtimer_cpu_base *old_base, *new_base;
1677 int i;
1678
1679 BUG_ON(cpu_online(scpu));
1680 tick_cancel_sched_timer(scpu);
1681
1682 local_irq_disable();
1683 old_base = &per_cpu(hrtimer_bases, scpu);
1684 new_base = &__get_cpu_var(hrtimer_bases);
1685 /*
1686 * The caller is globally serialized and nobody else
1687 * takes two locks at once, deadlock is not possible.
1688 */
1689 raw_spin_lock(&new_base->lock);
1690 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1691
1692 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1693 migrate_hrtimer_list(&old_base->clock_base[i],
1694 &new_base->clock_base[i]);
1695 }
1696
1697 raw_spin_unlock(&old_base->lock);
1698 raw_spin_unlock(&new_base->lock);
1699
1700 /* Check, if we got expired work to do */
1701 __hrtimer_peek_ahead_timers();
1702 local_irq_enable();
1703 }
1704
1705 #endif /* CONFIG_HOTPLUG_CPU */
1706
1707 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1708 unsigned long action, void *hcpu)
1709 {
1710 int scpu = (long)hcpu;
1711
1712 switch (action) {
1713
1714 case CPU_UP_PREPARE:
1715 case CPU_UP_PREPARE_FROZEN:
1716 init_hrtimers_cpu(scpu);
1717 break;
1718
1719 #ifdef CONFIG_HOTPLUG_CPU
1720 case CPU_DYING:
1721 case CPU_DYING_FROZEN:
1722 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1723 break;
1724 case CPU_DEAD:
1725 case CPU_DEAD_FROZEN:
1726 {
1727 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1728 migrate_hrtimers(scpu);
1729 break;
1730 }
1731 #endif
1732
1733 default:
1734 break;
1735 }
1736
1737 return NOTIFY_OK;
1738 }
1739
1740 static struct notifier_block __cpuinitdata hrtimers_nb = {
1741 .notifier_call = hrtimer_cpu_notify,
1742 };
1743
1744 void __init hrtimers_init(void)
1745 {
1746 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1747 (void *)(long)smp_processor_id());
1748 register_cpu_notifier(&hrtimers_nb);
1749 #ifdef CONFIG_HIGH_RES_TIMERS
1750 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1751 #endif
1752 }
1753
1754 /**
1755 * schedule_hrtimeout_range_clock - sleep until timeout
1756 * @expires: timeout value (ktime_t)
1757 * @delta: slack in expires timeout (ktime_t)
1758 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1759 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1760 */
1761 int __sched
1762 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1763 const enum hrtimer_mode mode, int clock)
1764 {
1765 struct hrtimer_sleeper t;
1766
1767 /*
1768 * Optimize when a zero timeout value is given. It does not
1769 * matter whether this is an absolute or a relative time.
1770 */
1771 if (expires && !expires->tv64) {
1772 __set_current_state(TASK_RUNNING);
1773 return 0;
1774 }
1775
1776 /*
1777 * A NULL parameter means "inifinte"
1778 */
1779 if (!expires) {
1780 schedule();
1781 __set_current_state(TASK_RUNNING);
1782 return -EINTR;
1783 }
1784
1785 hrtimer_init_on_stack(&t.timer, clock, mode);
1786 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1787
1788 hrtimer_init_sleeper(&t, current);
1789
1790 hrtimer_start_expires(&t.timer, mode);
1791 if (!hrtimer_active(&t.timer))
1792 t.task = NULL;
1793
1794 if (likely(t.task))
1795 schedule();
1796
1797 hrtimer_cancel(&t.timer);
1798 destroy_hrtimer_on_stack(&t.timer);
1799
1800 __set_current_state(TASK_RUNNING);
1801
1802 return !t.task ? 0 : -EINTR;
1803 }
1804
1805 /**
1806 * schedule_hrtimeout_range - sleep until timeout
1807 * @expires: timeout value (ktime_t)
1808 * @delta: slack in expires timeout (ktime_t)
1809 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1810 *
1811 * Make the current task sleep until the given expiry time has
1812 * elapsed. The routine will return immediately unless
1813 * the current task state has been set (see set_current_state()).
1814 *
1815 * The @delta argument gives the kernel the freedom to schedule the
1816 * actual wakeup to a time that is both power and performance friendly.
1817 * The kernel give the normal best effort behavior for "@expires+@delta",
1818 * but may decide to fire the timer earlier, but no earlier than @expires.
1819 *
1820 * You can set the task state as follows -
1821 *
1822 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1823 * pass before the routine returns.
1824 *
1825 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1826 * delivered to the current task.
1827 *
1828 * The current task state is guaranteed to be TASK_RUNNING when this
1829 * routine returns.
1830 *
1831 * Returns 0 when the timer has expired otherwise -EINTR
1832 */
1833 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1834 const enum hrtimer_mode mode)
1835 {
1836 return schedule_hrtimeout_range_clock(expires, delta, mode,
1837 CLOCK_MONOTONIC);
1838 }
1839 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1840
1841 /**
1842 * schedule_hrtimeout - sleep until timeout
1843 * @expires: timeout value (ktime_t)
1844 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1845 *
1846 * Make the current task sleep until the given expiry time has
1847 * elapsed. The routine will return immediately unless
1848 * the current task state has been set (see set_current_state()).
1849 *
1850 * You can set the task state as follows -
1851 *
1852 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1853 * pass before the routine returns.
1854 *
1855 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1856 * delivered to the current task.
1857 *
1858 * The current task state is guaranteed to be TASK_RUNNING when this
1859 * routine returns.
1860 *
1861 * Returns 0 when the timer has expired otherwise -EINTR
1862 */
1863 int __sched schedule_hrtimeout(ktime_t *expires,
1864 const enum hrtimer_mode mode)
1865 {
1866 return schedule_hrtimeout_range(expires, 0, mode);
1867 }
1868 EXPORT_SYMBOL_GPL(schedule_hrtimeout);