switch compat_sys_rt_sigtimedwait to COMPAT_SYSCALL_DEFINE
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 #include <trace/events/timer.h>
52
53 /*
54 * The timer bases:
55 *
56 * There are more clockids then hrtimer bases. Thus, we index
57 * into the timer bases by the hrtimer_base_type enum. When trying
58 * to reach a base using a clockid, hrtimer_clockid_to_base()
59 * is used to convert from clockid to the proper hrtimer_base_type.
60 */
61 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
62 {
63
64 .clock_base =
65 {
66 {
67 .index = HRTIMER_BASE_MONOTONIC,
68 .clockid = CLOCK_MONOTONIC,
69 .get_time = &ktime_get,
70 .resolution = KTIME_LOW_RES,
71 },
72 {
73 .index = HRTIMER_BASE_REALTIME,
74 .clockid = CLOCK_REALTIME,
75 .get_time = &ktime_get_real,
76 .resolution = KTIME_LOW_RES,
77 },
78 {
79 .index = HRTIMER_BASE_BOOTTIME,
80 .clockid = CLOCK_BOOTTIME,
81 .get_time = &ktime_get_boottime,
82 .resolution = KTIME_LOW_RES,
83 },
84 }
85 };
86
87 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
88 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
89 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
90 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
91 };
92
93 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
94 {
95 return hrtimer_clock_to_base_table[clock_id];
96 }
97
98
99 /*
100 * Get the coarse grained time at the softirq based on xtime and
101 * wall_to_monotonic.
102 */
103 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
104 {
105 ktime_t xtim, mono, boot;
106 struct timespec xts, tom, slp;
107
108 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
109
110 xtim = timespec_to_ktime(xts);
111 mono = ktime_add(xtim, timespec_to_ktime(tom));
112 boot = ktime_add(mono, timespec_to_ktime(slp));
113 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
114 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
115 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
116 }
117
118 /*
119 * Functions and macros which are different for UP/SMP systems are kept in a
120 * single place
121 */
122 #ifdef CONFIG_SMP
123
124 /*
125 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126 * means that all timers which are tied to this base via timer->base are
127 * locked, and the base itself is locked too.
128 *
129 * So __run_timers/migrate_timers can safely modify all timers which could
130 * be found on the lists/queues.
131 *
132 * When the timer's base is locked, and the timer removed from list, it is
133 * possible to set timer->base = NULL and drop the lock: the timer remains
134 * locked.
135 */
136 static
137 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138 unsigned long *flags)
139 {
140 struct hrtimer_clock_base *base;
141
142 for (;;) {
143 base = timer->base;
144 if (likely(base != NULL)) {
145 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 if (likely(base == timer->base))
147 return base;
148 /* The timer has migrated to another CPU: */
149 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 }
151 cpu_relax();
152 }
153 }
154
155
156 /*
157 * Get the preferred target CPU for NOHZ
158 */
159 static int hrtimer_get_target(int this_cpu, int pinned)
160 {
161 #ifdef CONFIG_NO_HZ
162 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
163 return get_nohz_timer_target();
164 #endif
165 return this_cpu;
166 }
167
168 /*
169 * With HIGHRES=y we do not migrate the timer when it is expiring
170 * before the next event on the target cpu because we cannot reprogram
171 * the target cpu hardware and we would cause it to fire late.
172 *
173 * Called with cpu_base->lock of target cpu held.
174 */
175 static int
176 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
177 {
178 #ifdef CONFIG_HIGH_RES_TIMERS
179 ktime_t expires;
180
181 if (!new_base->cpu_base->hres_active)
182 return 0;
183
184 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
185 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
186 #else
187 return 0;
188 #endif
189 }
190
191 /*
192 * Switch the timer base to the current CPU when possible.
193 */
194 static inline struct hrtimer_clock_base *
195 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
196 int pinned)
197 {
198 struct hrtimer_clock_base *new_base;
199 struct hrtimer_cpu_base *new_cpu_base;
200 int this_cpu = smp_processor_id();
201 int cpu = hrtimer_get_target(this_cpu, pinned);
202 int basenum = base->index;
203
204 again:
205 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
206 new_base = &new_cpu_base->clock_base[basenum];
207
208 if (base != new_base) {
209 /*
210 * We are trying to move timer to new_base.
211 * However we can't change timer's base while it is running,
212 * so we keep it on the same CPU. No hassle vs. reprogramming
213 * the event source in the high resolution case. The softirq
214 * code will take care of this when the timer function has
215 * completed. There is no conflict as we hold the lock until
216 * the timer is enqueued.
217 */
218 if (unlikely(hrtimer_callback_running(timer)))
219 return base;
220
221 /* See the comment in lock_timer_base() */
222 timer->base = NULL;
223 raw_spin_unlock(&base->cpu_base->lock);
224 raw_spin_lock(&new_base->cpu_base->lock);
225
226 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
227 cpu = this_cpu;
228 raw_spin_unlock(&new_base->cpu_base->lock);
229 raw_spin_lock(&base->cpu_base->lock);
230 timer->base = base;
231 goto again;
232 }
233 timer->base = new_base;
234 }
235 return new_base;
236 }
237
238 #else /* CONFIG_SMP */
239
240 static inline struct hrtimer_clock_base *
241 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
242 {
243 struct hrtimer_clock_base *base = timer->base;
244
245 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
246
247 return base;
248 }
249
250 # define switch_hrtimer_base(t, b, p) (b)
251
252 #endif /* !CONFIG_SMP */
253
254 /*
255 * Functions for the union type storage format of ktime_t which are
256 * too large for inlining:
257 */
258 #if BITS_PER_LONG < 64
259 # ifndef CONFIG_KTIME_SCALAR
260 /**
261 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
262 * @kt: addend
263 * @nsec: the scalar nsec value to add
264 *
265 * Returns the sum of kt and nsec in ktime_t format
266 */
267 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
268 {
269 ktime_t tmp;
270
271 if (likely(nsec < NSEC_PER_SEC)) {
272 tmp.tv64 = nsec;
273 } else {
274 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
275
276 tmp = ktime_set((long)nsec, rem);
277 }
278
279 return ktime_add(kt, tmp);
280 }
281
282 EXPORT_SYMBOL_GPL(ktime_add_ns);
283
284 /**
285 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
286 * @kt: minuend
287 * @nsec: the scalar nsec value to subtract
288 *
289 * Returns the subtraction of @nsec from @kt in ktime_t format
290 */
291 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
292 {
293 ktime_t tmp;
294
295 if (likely(nsec < NSEC_PER_SEC)) {
296 tmp.tv64 = nsec;
297 } else {
298 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
299
300 tmp = ktime_set((long)nsec, rem);
301 }
302
303 return ktime_sub(kt, tmp);
304 }
305
306 EXPORT_SYMBOL_GPL(ktime_sub_ns);
307 # endif /* !CONFIG_KTIME_SCALAR */
308
309 /*
310 * Divide a ktime value by a nanosecond value
311 */
312 u64 ktime_divns(const ktime_t kt, s64 div)
313 {
314 u64 dclc;
315 int sft = 0;
316
317 dclc = ktime_to_ns(kt);
318 /* Make sure the divisor is less than 2^32: */
319 while (div >> 32) {
320 sft++;
321 div >>= 1;
322 }
323 dclc >>= sft;
324 do_div(dclc, (unsigned long) div);
325
326 return dclc;
327 }
328 #endif /* BITS_PER_LONG >= 64 */
329
330 /*
331 * Add two ktime values and do a safety check for overflow:
332 */
333 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
334 {
335 ktime_t res = ktime_add(lhs, rhs);
336
337 /*
338 * We use KTIME_SEC_MAX here, the maximum timeout which we can
339 * return to user space in a timespec:
340 */
341 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
342 res = ktime_set(KTIME_SEC_MAX, 0);
343
344 return res;
345 }
346
347 EXPORT_SYMBOL_GPL(ktime_add_safe);
348
349 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
350
351 static struct debug_obj_descr hrtimer_debug_descr;
352
353 static void *hrtimer_debug_hint(void *addr)
354 {
355 return ((struct hrtimer *) addr)->function;
356 }
357
358 /*
359 * fixup_init is called when:
360 * - an active object is initialized
361 */
362 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
363 {
364 struct hrtimer *timer = addr;
365
366 switch (state) {
367 case ODEBUG_STATE_ACTIVE:
368 hrtimer_cancel(timer);
369 debug_object_init(timer, &hrtimer_debug_descr);
370 return 1;
371 default:
372 return 0;
373 }
374 }
375
376 /*
377 * fixup_activate is called when:
378 * - an active object is activated
379 * - an unknown object is activated (might be a statically initialized object)
380 */
381 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
382 {
383 switch (state) {
384
385 case ODEBUG_STATE_NOTAVAILABLE:
386 WARN_ON_ONCE(1);
387 return 0;
388
389 case ODEBUG_STATE_ACTIVE:
390 WARN_ON(1);
391
392 default:
393 return 0;
394 }
395 }
396
397 /*
398 * fixup_free is called when:
399 * - an active object is freed
400 */
401 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
402 {
403 struct hrtimer *timer = addr;
404
405 switch (state) {
406 case ODEBUG_STATE_ACTIVE:
407 hrtimer_cancel(timer);
408 debug_object_free(timer, &hrtimer_debug_descr);
409 return 1;
410 default:
411 return 0;
412 }
413 }
414
415 static struct debug_obj_descr hrtimer_debug_descr = {
416 .name = "hrtimer",
417 .debug_hint = hrtimer_debug_hint,
418 .fixup_init = hrtimer_fixup_init,
419 .fixup_activate = hrtimer_fixup_activate,
420 .fixup_free = hrtimer_fixup_free,
421 };
422
423 static inline void debug_hrtimer_init(struct hrtimer *timer)
424 {
425 debug_object_init(timer, &hrtimer_debug_descr);
426 }
427
428 static inline void debug_hrtimer_activate(struct hrtimer *timer)
429 {
430 debug_object_activate(timer, &hrtimer_debug_descr);
431 }
432
433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
434 {
435 debug_object_deactivate(timer, &hrtimer_debug_descr);
436 }
437
438 static inline void debug_hrtimer_free(struct hrtimer *timer)
439 {
440 debug_object_free(timer, &hrtimer_debug_descr);
441 }
442
443 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
444 enum hrtimer_mode mode);
445
446 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
447 enum hrtimer_mode mode)
448 {
449 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
450 __hrtimer_init(timer, clock_id, mode);
451 }
452 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
453
454 void destroy_hrtimer_on_stack(struct hrtimer *timer)
455 {
456 debug_object_free(timer, &hrtimer_debug_descr);
457 }
458
459 #else
460 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
461 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
462 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463 #endif
464
465 static inline void
466 debug_init(struct hrtimer *timer, clockid_t clockid,
467 enum hrtimer_mode mode)
468 {
469 debug_hrtimer_init(timer);
470 trace_hrtimer_init(timer, clockid, mode);
471 }
472
473 static inline void debug_activate(struct hrtimer *timer)
474 {
475 debug_hrtimer_activate(timer);
476 trace_hrtimer_start(timer);
477 }
478
479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 debug_hrtimer_deactivate(timer);
482 trace_hrtimer_cancel(timer);
483 }
484
485 /* High resolution timer related functions */
486 #ifdef CONFIG_HIGH_RES_TIMERS
487
488 /*
489 * High resolution timer enabled ?
490 */
491 static int hrtimer_hres_enabled __read_mostly = 1;
492
493 /*
494 * Enable / Disable high resolution mode
495 */
496 static int __init setup_hrtimer_hres(char *str)
497 {
498 if (!strcmp(str, "off"))
499 hrtimer_hres_enabled = 0;
500 else if (!strcmp(str, "on"))
501 hrtimer_hres_enabled = 1;
502 else
503 return 0;
504 return 1;
505 }
506
507 __setup("highres=", setup_hrtimer_hres);
508
509 /*
510 * hrtimer_high_res_enabled - query, if the highres mode is enabled
511 */
512 static inline int hrtimer_is_hres_enabled(void)
513 {
514 return hrtimer_hres_enabled;
515 }
516
517 /*
518 * Is the high resolution mode active ?
519 */
520 static inline int hrtimer_hres_active(void)
521 {
522 return __this_cpu_read(hrtimer_bases.hres_active);
523 }
524
525 /*
526 * Reprogram the event source with checking both queues for the
527 * next event
528 * Called with interrupts disabled and base->lock held
529 */
530 static void
531 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
532 {
533 int i;
534 struct hrtimer_clock_base *base = cpu_base->clock_base;
535 ktime_t expires, expires_next;
536
537 expires_next.tv64 = KTIME_MAX;
538
539 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
540 struct hrtimer *timer;
541 struct timerqueue_node *next;
542
543 next = timerqueue_getnext(&base->active);
544 if (!next)
545 continue;
546 timer = container_of(next, struct hrtimer, node);
547
548 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
549 /*
550 * clock_was_set() has changed base->offset so the
551 * result might be negative. Fix it up to prevent a
552 * false positive in clockevents_program_event()
553 */
554 if (expires.tv64 < 0)
555 expires.tv64 = 0;
556 if (expires.tv64 < expires_next.tv64)
557 expires_next = expires;
558 }
559
560 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
561 return;
562
563 cpu_base->expires_next.tv64 = expires_next.tv64;
564
565 if (cpu_base->expires_next.tv64 != KTIME_MAX)
566 tick_program_event(cpu_base->expires_next, 1);
567 }
568
569 /*
570 * Shared reprogramming for clock_realtime and clock_monotonic
571 *
572 * When a timer is enqueued and expires earlier than the already enqueued
573 * timers, we have to check, whether it expires earlier than the timer for
574 * which the clock event device was armed.
575 *
576 * Called with interrupts disabled and base->cpu_base.lock held
577 */
578 static int hrtimer_reprogram(struct hrtimer *timer,
579 struct hrtimer_clock_base *base)
580 {
581 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
582 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
583 int res;
584
585 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
586
587 /*
588 * When the callback is running, we do not reprogram the clock event
589 * device. The timer callback is either running on a different CPU or
590 * the callback is executed in the hrtimer_interrupt context. The
591 * reprogramming is handled either by the softirq, which called the
592 * callback or at the end of the hrtimer_interrupt.
593 */
594 if (hrtimer_callback_running(timer))
595 return 0;
596
597 /*
598 * CLOCK_REALTIME timer might be requested with an absolute
599 * expiry time which is less than base->offset. Nothing wrong
600 * about that, just avoid to call into the tick code, which
601 * has now objections against negative expiry values.
602 */
603 if (expires.tv64 < 0)
604 return -ETIME;
605
606 if (expires.tv64 >= cpu_base->expires_next.tv64)
607 return 0;
608
609 /*
610 * If a hang was detected in the last timer interrupt then we
611 * do not schedule a timer which is earlier than the expiry
612 * which we enforced in the hang detection. We want the system
613 * to make progress.
614 */
615 if (cpu_base->hang_detected)
616 return 0;
617
618 /*
619 * Clockevents returns -ETIME, when the event was in the past.
620 */
621 res = tick_program_event(expires, 0);
622 if (!IS_ERR_VALUE(res))
623 cpu_base->expires_next = expires;
624 return res;
625 }
626
627 /*
628 * Initialize the high resolution related parts of cpu_base
629 */
630 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
631 {
632 base->expires_next.tv64 = KTIME_MAX;
633 base->hres_active = 0;
634 }
635
636 /*
637 * When High resolution timers are active, try to reprogram. Note, that in case
638 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
639 * check happens. The timer gets enqueued into the rbtree. The reprogramming
640 * and expiry check is done in the hrtimer_interrupt or in the softirq.
641 */
642 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
643 struct hrtimer_clock_base *base,
644 int wakeup)
645 {
646 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
647 if (wakeup) {
648 raw_spin_unlock(&base->cpu_base->lock);
649 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
650 raw_spin_lock(&base->cpu_base->lock);
651 } else
652 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
653
654 return 1;
655 }
656
657 return 0;
658 }
659
660 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
661 {
662 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
663 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
664
665 return ktime_get_update_offsets(offs_real, offs_boot);
666 }
667
668 /*
669 * Retrigger next event is called after clock was set
670 *
671 * Called with interrupts disabled via on_each_cpu()
672 */
673 static void retrigger_next_event(void *arg)
674 {
675 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
676
677 if (!hrtimer_hres_active())
678 return;
679
680 raw_spin_lock(&base->lock);
681 hrtimer_update_base(base);
682 hrtimer_force_reprogram(base, 0);
683 raw_spin_unlock(&base->lock);
684 }
685
686 /*
687 * Switch to high resolution mode
688 */
689 static int hrtimer_switch_to_hres(void)
690 {
691 int i, cpu = smp_processor_id();
692 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
693 unsigned long flags;
694
695 if (base->hres_active)
696 return 1;
697
698 local_irq_save(flags);
699
700 if (tick_init_highres()) {
701 local_irq_restore(flags);
702 printk(KERN_WARNING "Could not switch to high resolution "
703 "mode on CPU %d\n", cpu);
704 return 0;
705 }
706 base->hres_active = 1;
707 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
708 base->clock_base[i].resolution = KTIME_HIGH_RES;
709
710 tick_setup_sched_timer();
711 /* "Retrigger" the interrupt to get things going */
712 retrigger_next_event(NULL);
713 local_irq_restore(flags);
714 return 1;
715 }
716
717 /*
718 * Called from timekeeping code to reprogramm the hrtimer interrupt
719 * device. If called from the timer interrupt context we defer it to
720 * softirq context.
721 */
722 void clock_was_set_delayed(void)
723 {
724 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
725
726 cpu_base->clock_was_set = 1;
727 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
728 }
729
730 #else
731
732 static inline int hrtimer_hres_active(void) { return 0; }
733 static inline int hrtimer_is_hres_enabled(void) { return 0; }
734 static inline int hrtimer_switch_to_hres(void) { return 0; }
735 static inline void
736 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
737 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
738 struct hrtimer_clock_base *base,
739 int wakeup)
740 {
741 return 0;
742 }
743 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
744 static inline void retrigger_next_event(void *arg) { }
745
746 #endif /* CONFIG_HIGH_RES_TIMERS */
747
748 /*
749 * Clock realtime was set
750 *
751 * Change the offset of the realtime clock vs. the monotonic
752 * clock.
753 *
754 * We might have to reprogram the high resolution timer interrupt. On
755 * SMP we call the architecture specific code to retrigger _all_ high
756 * resolution timer interrupts. On UP we just disable interrupts and
757 * call the high resolution interrupt code.
758 */
759 void clock_was_set(void)
760 {
761 #ifdef CONFIG_HIGH_RES_TIMERS
762 /* Retrigger the CPU local events everywhere */
763 on_each_cpu(retrigger_next_event, NULL, 1);
764 #endif
765 timerfd_clock_was_set();
766 }
767
768 /*
769 * During resume we might have to reprogram the high resolution timer
770 * interrupt (on the local CPU):
771 */
772 void hrtimers_resume(void)
773 {
774 WARN_ONCE(!irqs_disabled(),
775 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
776
777 retrigger_next_event(NULL);
778 timerfd_clock_was_set();
779 }
780
781 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
782 {
783 #ifdef CONFIG_TIMER_STATS
784 if (timer->start_site)
785 return;
786 timer->start_site = __builtin_return_address(0);
787 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
788 timer->start_pid = current->pid;
789 #endif
790 }
791
792 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
793 {
794 #ifdef CONFIG_TIMER_STATS
795 timer->start_site = NULL;
796 #endif
797 }
798
799 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
800 {
801 #ifdef CONFIG_TIMER_STATS
802 if (likely(!timer_stats_active))
803 return;
804 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
805 timer->function, timer->start_comm, 0);
806 #endif
807 }
808
809 /*
810 * Counterpart to lock_hrtimer_base above:
811 */
812 static inline
813 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
814 {
815 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
816 }
817
818 /**
819 * hrtimer_forward - forward the timer expiry
820 * @timer: hrtimer to forward
821 * @now: forward past this time
822 * @interval: the interval to forward
823 *
824 * Forward the timer expiry so it will expire in the future.
825 * Returns the number of overruns.
826 */
827 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
828 {
829 u64 orun = 1;
830 ktime_t delta;
831
832 delta = ktime_sub(now, hrtimer_get_expires(timer));
833
834 if (delta.tv64 < 0)
835 return 0;
836
837 if (interval.tv64 < timer->base->resolution.tv64)
838 interval.tv64 = timer->base->resolution.tv64;
839
840 if (unlikely(delta.tv64 >= interval.tv64)) {
841 s64 incr = ktime_to_ns(interval);
842
843 orun = ktime_divns(delta, incr);
844 hrtimer_add_expires_ns(timer, incr * orun);
845 if (hrtimer_get_expires_tv64(timer) > now.tv64)
846 return orun;
847 /*
848 * This (and the ktime_add() below) is the
849 * correction for exact:
850 */
851 orun++;
852 }
853 hrtimer_add_expires(timer, interval);
854
855 return orun;
856 }
857 EXPORT_SYMBOL_GPL(hrtimer_forward);
858
859 /*
860 * enqueue_hrtimer - internal function to (re)start a timer
861 *
862 * The timer is inserted in expiry order. Insertion into the
863 * red black tree is O(log(n)). Must hold the base lock.
864 *
865 * Returns 1 when the new timer is the leftmost timer in the tree.
866 */
867 static int enqueue_hrtimer(struct hrtimer *timer,
868 struct hrtimer_clock_base *base)
869 {
870 debug_activate(timer);
871
872 timerqueue_add(&base->active, &timer->node);
873 base->cpu_base->active_bases |= 1 << base->index;
874
875 /*
876 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
877 * state of a possibly running callback.
878 */
879 timer->state |= HRTIMER_STATE_ENQUEUED;
880
881 return (&timer->node == base->active.next);
882 }
883
884 /*
885 * __remove_hrtimer - internal function to remove a timer
886 *
887 * Caller must hold the base lock.
888 *
889 * High resolution timer mode reprograms the clock event device when the
890 * timer is the one which expires next. The caller can disable this by setting
891 * reprogram to zero. This is useful, when the context does a reprogramming
892 * anyway (e.g. timer interrupt)
893 */
894 static void __remove_hrtimer(struct hrtimer *timer,
895 struct hrtimer_clock_base *base,
896 unsigned long newstate, int reprogram)
897 {
898 struct timerqueue_node *next_timer;
899 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
900 goto out;
901
902 next_timer = timerqueue_getnext(&base->active);
903 timerqueue_del(&base->active, &timer->node);
904 if (&timer->node == next_timer) {
905 #ifdef CONFIG_HIGH_RES_TIMERS
906 /* Reprogram the clock event device. if enabled */
907 if (reprogram && hrtimer_hres_active()) {
908 ktime_t expires;
909
910 expires = ktime_sub(hrtimer_get_expires(timer),
911 base->offset);
912 if (base->cpu_base->expires_next.tv64 == expires.tv64)
913 hrtimer_force_reprogram(base->cpu_base, 1);
914 }
915 #endif
916 }
917 if (!timerqueue_getnext(&base->active))
918 base->cpu_base->active_bases &= ~(1 << base->index);
919 out:
920 timer->state = newstate;
921 }
922
923 /*
924 * remove hrtimer, called with base lock held
925 */
926 static inline int
927 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
928 {
929 if (hrtimer_is_queued(timer)) {
930 unsigned long state;
931 int reprogram;
932
933 /*
934 * Remove the timer and force reprogramming when high
935 * resolution mode is active and the timer is on the current
936 * CPU. If we remove a timer on another CPU, reprogramming is
937 * skipped. The interrupt event on this CPU is fired and
938 * reprogramming happens in the interrupt handler. This is a
939 * rare case and less expensive than a smp call.
940 */
941 debug_deactivate(timer);
942 timer_stats_hrtimer_clear_start_info(timer);
943 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
944 /*
945 * We must preserve the CALLBACK state flag here,
946 * otherwise we could move the timer base in
947 * switch_hrtimer_base.
948 */
949 state = timer->state & HRTIMER_STATE_CALLBACK;
950 __remove_hrtimer(timer, base, state, reprogram);
951 return 1;
952 }
953 return 0;
954 }
955
956 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
957 unsigned long delta_ns, const enum hrtimer_mode mode,
958 int wakeup)
959 {
960 struct hrtimer_clock_base *base, *new_base;
961 unsigned long flags;
962 int ret, leftmost;
963
964 base = lock_hrtimer_base(timer, &flags);
965
966 /* Remove an active timer from the queue: */
967 ret = remove_hrtimer(timer, base);
968
969 /* Switch the timer base, if necessary: */
970 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
971
972 if (mode & HRTIMER_MODE_REL) {
973 tim = ktime_add_safe(tim, new_base->get_time());
974 /*
975 * CONFIG_TIME_LOW_RES is a temporary way for architectures
976 * to signal that they simply return xtime in
977 * do_gettimeoffset(). In this case we want to round up by
978 * resolution when starting a relative timer, to avoid short
979 * timeouts. This will go away with the GTOD framework.
980 */
981 #ifdef CONFIG_TIME_LOW_RES
982 tim = ktime_add_safe(tim, base->resolution);
983 #endif
984 }
985
986 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
987
988 timer_stats_hrtimer_set_start_info(timer);
989
990 leftmost = enqueue_hrtimer(timer, new_base);
991
992 /*
993 * Only allow reprogramming if the new base is on this CPU.
994 * (it might still be on another CPU if the timer was pending)
995 *
996 * XXX send_remote_softirq() ?
997 */
998 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
999 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
1000
1001 unlock_hrtimer_base(timer, &flags);
1002
1003 return ret;
1004 }
1005
1006 /**
1007 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1008 * @timer: the timer to be added
1009 * @tim: expiry time
1010 * @delta_ns: "slack" range for the timer
1011 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1012 *
1013 * Returns:
1014 * 0 on success
1015 * 1 when the timer was active
1016 */
1017 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1018 unsigned long delta_ns, const enum hrtimer_mode mode)
1019 {
1020 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1021 }
1022 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1023
1024 /**
1025 * hrtimer_start - (re)start an hrtimer on the current CPU
1026 * @timer: the timer to be added
1027 * @tim: expiry time
1028 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1029 *
1030 * Returns:
1031 * 0 on success
1032 * 1 when the timer was active
1033 */
1034 int
1035 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1036 {
1037 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1038 }
1039 EXPORT_SYMBOL_GPL(hrtimer_start);
1040
1041
1042 /**
1043 * hrtimer_try_to_cancel - try to deactivate a timer
1044 * @timer: hrtimer to stop
1045 *
1046 * Returns:
1047 * 0 when the timer was not active
1048 * 1 when the timer was active
1049 * -1 when the timer is currently excuting the callback function and
1050 * cannot be stopped
1051 */
1052 int hrtimer_try_to_cancel(struct hrtimer *timer)
1053 {
1054 struct hrtimer_clock_base *base;
1055 unsigned long flags;
1056 int ret = -1;
1057
1058 base = lock_hrtimer_base(timer, &flags);
1059
1060 if (!hrtimer_callback_running(timer))
1061 ret = remove_hrtimer(timer, base);
1062
1063 unlock_hrtimer_base(timer, &flags);
1064
1065 return ret;
1066
1067 }
1068 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1069
1070 /**
1071 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1072 * @timer: the timer to be cancelled
1073 *
1074 * Returns:
1075 * 0 when the timer was not active
1076 * 1 when the timer was active
1077 */
1078 int hrtimer_cancel(struct hrtimer *timer)
1079 {
1080 for (;;) {
1081 int ret = hrtimer_try_to_cancel(timer);
1082
1083 if (ret >= 0)
1084 return ret;
1085 cpu_relax();
1086 }
1087 }
1088 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1089
1090 /**
1091 * hrtimer_get_remaining - get remaining time for the timer
1092 * @timer: the timer to read
1093 */
1094 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1095 {
1096 unsigned long flags;
1097 ktime_t rem;
1098
1099 lock_hrtimer_base(timer, &flags);
1100 rem = hrtimer_expires_remaining(timer);
1101 unlock_hrtimer_base(timer, &flags);
1102
1103 return rem;
1104 }
1105 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1106
1107 #ifdef CONFIG_NO_HZ
1108 /**
1109 * hrtimer_get_next_event - get the time until next expiry event
1110 *
1111 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1112 * is pending.
1113 */
1114 ktime_t hrtimer_get_next_event(void)
1115 {
1116 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1117 struct hrtimer_clock_base *base = cpu_base->clock_base;
1118 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1119 unsigned long flags;
1120 int i;
1121
1122 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1123
1124 if (!hrtimer_hres_active()) {
1125 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1126 struct hrtimer *timer;
1127 struct timerqueue_node *next;
1128
1129 next = timerqueue_getnext(&base->active);
1130 if (!next)
1131 continue;
1132
1133 timer = container_of(next, struct hrtimer, node);
1134 delta.tv64 = hrtimer_get_expires_tv64(timer);
1135 delta = ktime_sub(delta, base->get_time());
1136 if (delta.tv64 < mindelta.tv64)
1137 mindelta.tv64 = delta.tv64;
1138 }
1139 }
1140
1141 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1142
1143 if (mindelta.tv64 < 0)
1144 mindelta.tv64 = 0;
1145 return mindelta;
1146 }
1147 #endif
1148
1149 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1150 enum hrtimer_mode mode)
1151 {
1152 struct hrtimer_cpu_base *cpu_base;
1153 int base;
1154
1155 memset(timer, 0, sizeof(struct hrtimer));
1156
1157 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1158
1159 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1160 clock_id = CLOCK_MONOTONIC;
1161
1162 base = hrtimer_clockid_to_base(clock_id);
1163 timer->base = &cpu_base->clock_base[base];
1164 timerqueue_init(&timer->node);
1165
1166 #ifdef CONFIG_TIMER_STATS
1167 timer->start_site = NULL;
1168 timer->start_pid = -1;
1169 memset(timer->start_comm, 0, TASK_COMM_LEN);
1170 #endif
1171 }
1172
1173 /**
1174 * hrtimer_init - initialize a timer to the given clock
1175 * @timer: the timer to be initialized
1176 * @clock_id: the clock to be used
1177 * @mode: timer mode abs/rel
1178 */
1179 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1180 enum hrtimer_mode mode)
1181 {
1182 debug_init(timer, clock_id, mode);
1183 __hrtimer_init(timer, clock_id, mode);
1184 }
1185 EXPORT_SYMBOL_GPL(hrtimer_init);
1186
1187 /**
1188 * hrtimer_get_res - get the timer resolution for a clock
1189 * @which_clock: which clock to query
1190 * @tp: pointer to timespec variable to store the resolution
1191 *
1192 * Store the resolution of the clock selected by @which_clock in the
1193 * variable pointed to by @tp.
1194 */
1195 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1196 {
1197 struct hrtimer_cpu_base *cpu_base;
1198 int base = hrtimer_clockid_to_base(which_clock);
1199
1200 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1201 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1202
1203 return 0;
1204 }
1205 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1206
1207 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1208 {
1209 struct hrtimer_clock_base *base = timer->base;
1210 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1211 enum hrtimer_restart (*fn)(struct hrtimer *);
1212 int restart;
1213
1214 WARN_ON(!irqs_disabled());
1215
1216 debug_deactivate(timer);
1217 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1218 timer_stats_account_hrtimer(timer);
1219 fn = timer->function;
1220
1221 /*
1222 * Because we run timers from hardirq context, there is no chance
1223 * they get migrated to another cpu, therefore its safe to unlock
1224 * the timer base.
1225 */
1226 raw_spin_unlock(&cpu_base->lock);
1227 trace_hrtimer_expire_entry(timer, now);
1228 restart = fn(timer);
1229 trace_hrtimer_expire_exit(timer);
1230 raw_spin_lock(&cpu_base->lock);
1231
1232 /*
1233 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1234 * we do not reprogramm the event hardware. Happens either in
1235 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1236 */
1237 if (restart != HRTIMER_NORESTART) {
1238 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1239 enqueue_hrtimer(timer, base);
1240 }
1241
1242 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1243
1244 timer->state &= ~HRTIMER_STATE_CALLBACK;
1245 }
1246
1247 #ifdef CONFIG_HIGH_RES_TIMERS
1248
1249 /*
1250 * High resolution timer interrupt
1251 * Called with interrupts disabled
1252 */
1253 void hrtimer_interrupt(struct clock_event_device *dev)
1254 {
1255 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1256 ktime_t expires_next, now, entry_time, delta;
1257 int i, retries = 0;
1258
1259 BUG_ON(!cpu_base->hres_active);
1260 cpu_base->nr_events++;
1261 dev->next_event.tv64 = KTIME_MAX;
1262
1263 raw_spin_lock(&cpu_base->lock);
1264 entry_time = now = hrtimer_update_base(cpu_base);
1265 retry:
1266 expires_next.tv64 = KTIME_MAX;
1267 /*
1268 * We set expires_next to KTIME_MAX here with cpu_base->lock
1269 * held to prevent that a timer is enqueued in our queue via
1270 * the migration code. This does not affect enqueueing of
1271 * timers which run their callback and need to be requeued on
1272 * this CPU.
1273 */
1274 cpu_base->expires_next.tv64 = KTIME_MAX;
1275
1276 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1277 struct hrtimer_clock_base *base;
1278 struct timerqueue_node *node;
1279 ktime_t basenow;
1280
1281 if (!(cpu_base->active_bases & (1 << i)))
1282 continue;
1283
1284 base = cpu_base->clock_base + i;
1285 basenow = ktime_add(now, base->offset);
1286
1287 while ((node = timerqueue_getnext(&base->active))) {
1288 struct hrtimer *timer;
1289
1290 timer = container_of(node, struct hrtimer, node);
1291
1292 /*
1293 * The immediate goal for using the softexpires is
1294 * minimizing wakeups, not running timers at the
1295 * earliest interrupt after their soft expiration.
1296 * This allows us to avoid using a Priority Search
1297 * Tree, which can answer a stabbing querry for
1298 * overlapping intervals and instead use the simple
1299 * BST we already have.
1300 * We don't add extra wakeups by delaying timers that
1301 * are right-of a not yet expired timer, because that
1302 * timer will have to trigger a wakeup anyway.
1303 */
1304
1305 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1306 ktime_t expires;
1307
1308 expires = ktime_sub(hrtimer_get_expires(timer),
1309 base->offset);
1310 if (expires.tv64 < expires_next.tv64)
1311 expires_next = expires;
1312 break;
1313 }
1314
1315 __run_hrtimer(timer, &basenow);
1316 }
1317 }
1318
1319 /*
1320 * Store the new expiry value so the migration code can verify
1321 * against it.
1322 */
1323 cpu_base->expires_next = expires_next;
1324 raw_spin_unlock(&cpu_base->lock);
1325
1326 /* Reprogramming necessary ? */
1327 if (expires_next.tv64 == KTIME_MAX ||
1328 !tick_program_event(expires_next, 0)) {
1329 cpu_base->hang_detected = 0;
1330 return;
1331 }
1332
1333 /*
1334 * The next timer was already expired due to:
1335 * - tracing
1336 * - long lasting callbacks
1337 * - being scheduled away when running in a VM
1338 *
1339 * We need to prevent that we loop forever in the hrtimer
1340 * interrupt routine. We give it 3 attempts to avoid
1341 * overreacting on some spurious event.
1342 *
1343 * Acquire base lock for updating the offsets and retrieving
1344 * the current time.
1345 */
1346 raw_spin_lock(&cpu_base->lock);
1347 now = hrtimer_update_base(cpu_base);
1348 cpu_base->nr_retries++;
1349 if (++retries < 3)
1350 goto retry;
1351 /*
1352 * Give the system a chance to do something else than looping
1353 * here. We stored the entry time, so we know exactly how long
1354 * we spent here. We schedule the next event this amount of
1355 * time away.
1356 */
1357 cpu_base->nr_hangs++;
1358 cpu_base->hang_detected = 1;
1359 raw_spin_unlock(&cpu_base->lock);
1360 delta = ktime_sub(now, entry_time);
1361 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1362 cpu_base->max_hang_time = delta;
1363 /*
1364 * Limit it to a sensible value as we enforce a longer
1365 * delay. Give the CPU at least 100ms to catch up.
1366 */
1367 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1368 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1369 else
1370 expires_next = ktime_add(now, delta);
1371 tick_program_event(expires_next, 1);
1372 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1373 ktime_to_ns(delta));
1374 }
1375
1376 /*
1377 * local version of hrtimer_peek_ahead_timers() called with interrupts
1378 * disabled.
1379 */
1380 static void __hrtimer_peek_ahead_timers(void)
1381 {
1382 struct tick_device *td;
1383
1384 if (!hrtimer_hres_active())
1385 return;
1386
1387 td = &__get_cpu_var(tick_cpu_device);
1388 if (td && td->evtdev)
1389 hrtimer_interrupt(td->evtdev);
1390 }
1391
1392 /**
1393 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1394 *
1395 * hrtimer_peek_ahead_timers will peek at the timer queue of
1396 * the current cpu and check if there are any timers for which
1397 * the soft expires time has passed. If any such timers exist,
1398 * they are run immediately and then removed from the timer queue.
1399 *
1400 */
1401 void hrtimer_peek_ahead_timers(void)
1402 {
1403 unsigned long flags;
1404
1405 local_irq_save(flags);
1406 __hrtimer_peek_ahead_timers();
1407 local_irq_restore(flags);
1408 }
1409
1410 static void run_hrtimer_softirq(struct softirq_action *h)
1411 {
1412 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1413
1414 if (cpu_base->clock_was_set) {
1415 cpu_base->clock_was_set = 0;
1416 clock_was_set();
1417 }
1418
1419 hrtimer_peek_ahead_timers();
1420 }
1421
1422 #else /* CONFIG_HIGH_RES_TIMERS */
1423
1424 static inline void __hrtimer_peek_ahead_timers(void) { }
1425
1426 #endif /* !CONFIG_HIGH_RES_TIMERS */
1427
1428 /*
1429 * Called from timer softirq every jiffy, expire hrtimers:
1430 *
1431 * For HRT its the fall back code to run the softirq in the timer
1432 * softirq context in case the hrtimer initialization failed or has
1433 * not been done yet.
1434 */
1435 void hrtimer_run_pending(void)
1436 {
1437 if (hrtimer_hres_active())
1438 return;
1439
1440 /*
1441 * This _is_ ugly: We have to check in the softirq context,
1442 * whether we can switch to highres and / or nohz mode. The
1443 * clocksource switch happens in the timer interrupt with
1444 * xtime_lock held. Notification from there only sets the
1445 * check bit in the tick_oneshot code, otherwise we might
1446 * deadlock vs. xtime_lock.
1447 */
1448 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1449 hrtimer_switch_to_hres();
1450 }
1451
1452 /*
1453 * Called from hardirq context every jiffy
1454 */
1455 void hrtimer_run_queues(void)
1456 {
1457 struct timerqueue_node *node;
1458 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1459 struct hrtimer_clock_base *base;
1460 int index, gettime = 1;
1461
1462 if (hrtimer_hres_active())
1463 return;
1464
1465 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1466 base = &cpu_base->clock_base[index];
1467 if (!timerqueue_getnext(&base->active))
1468 continue;
1469
1470 if (gettime) {
1471 hrtimer_get_softirq_time(cpu_base);
1472 gettime = 0;
1473 }
1474
1475 raw_spin_lock(&cpu_base->lock);
1476
1477 while ((node = timerqueue_getnext(&base->active))) {
1478 struct hrtimer *timer;
1479
1480 timer = container_of(node, struct hrtimer, node);
1481 if (base->softirq_time.tv64 <=
1482 hrtimer_get_expires_tv64(timer))
1483 break;
1484
1485 __run_hrtimer(timer, &base->softirq_time);
1486 }
1487 raw_spin_unlock(&cpu_base->lock);
1488 }
1489 }
1490
1491 /*
1492 * Sleep related functions:
1493 */
1494 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1495 {
1496 struct hrtimer_sleeper *t =
1497 container_of(timer, struct hrtimer_sleeper, timer);
1498 struct task_struct *task = t->task;
1499
1500 t->task = NULL;
1501 if (task)
1502 wake_up_process(task);
1503
1504 return HRTIMER_NORESTART;
1505 }
1506
1507 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1508 {
1509 sl->timer.function = hrtimer_wakeup;
1510 sl->task = task;
1511 }
1512 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1513
1514 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1515 {
1516 hrtimer_init_sleeper(t, current);
1517
1518 do {
1519 set_current_state(TASK_INTERRUPTIBLE);
1520 hrtimer_start_expires(&t->timer, mode);
1521 if (!hrtimer_active(&t->timer))
1522 t->task = NULL;
1523
1524 if (likely(t->task))
1525 schedule();
1526
1527 hrtimer_cancel(&t->timer);
1528 mode = HRTIMER_MODE_ABS;
1529
1530 } while (t->task && !signal_pending(current));
1531
1532 __set_current_state(TASK_RUNNING);
1533
1534 return t->task == NULL;
1535 }
1536
1537 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1538 {
1539 struct timespec rmt;
1540 ktime_t rem;
1541
1542 rem = hrtimer_expires_remaining(timer);
1543 if (rem.tv64 <= 0)
1544 return 0;
1545 rmt = ktime_to_timespec(rem);
1546
1547 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1548 return -EFAULT;
1549
1550 return 1;
1551 }
1552
1553 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1554 {
1555 struct hrtimer_sleeper t;
1556 struct timespec __user *rmtp;
1557 int ret = 0;
1558
1559 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1560 HRTIMER_MODE_ABS);
1561 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1562
1563 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1564 goto out;
1565
1566 rmtp = restart->nanosleep.rmtp;
1567 if (rmtp) {
1568 ret = update_rmtp(&t.timer, rmtp);
1569 if (ret <= 0)
1570 goto out;
1571 }
1572
1573 /* The other values in restart are already filled in */
1574 ret = -ERESTART_RESTARTBLOCK;
1575 out:
1576 destroy_hrtimer_on_stack(&t.timer);
1577 return ret;
1578 }
1579
1580 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1581 const enum hrtimer_mode mode, const clockid_t clockid)
1582 {
1583 struct restart_block *restart;
1584 struct hrtimer_sleeper t;
1585 int ret = 0;
1586 unsigned long slack;
1587
1588 slack = current->timer_slack_ns;
1589 if (rt_task(current))
1590 slack = 0;
1591
1592 hrtimer_init_on_stack(&t.timer, clockid, mode);
1593 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1594 if (do_nanosleep(&t, mode))
1595 goto out;
1596
1597 /* Absolute timers do not update the rmtp value and restart: */
1598 if (mode == HRTIMER_MODE_ABS) {
1599 ret = -ERESTARTNOHAND;
1600 goto out;
1601 }
1602
1603 if (rmtp) {
1604 ret = update_rmtp(&t.timer, rmtp);
1605 if (ret <= 0)
1606 goto out;
1607 }
1608
1609 restart = &current_thread_info()->restart_block;
1610 restart->fn = hrtimer_nanosleep_restart;
1611 restart->nanosleep.clockid = t.timer.base->clockid;
1612 restart->nanosleep.rmtp = rmtp;
1613 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1614
1615 ret = -ERESTART_RESTARTBLOCK;
1616 out:
1617 destroy_hrtimer_on_stack(&t.timer);
1618 return ret;
1619 }
1620
1621 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1622 struct timespec __user *, rmtp)
1623 {
1624 struct timespec tu;
1625
1626 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1627 return -EFAULT;
1628
1629 if (!timespec_valid(&tu))
1630 return -EINVAL;
1631
1632 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1633 }
1634
1635 /*
1636 * Functions related to boot-time initialization:
1637 */
1638 static void __cpuinit init_hrtimers_cpu(int cpu)
1639 {
1640 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1641 int i;
1642
1643 raw_spin_lock_init(&cpu_base->lock);
1644
1645 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1646 cpu_base->clock_base[i].cpu_base = cpu_base;
1647 timerqueue_init_head(&cpu_base->clock_base[i].active);
1648 }
1649
1650 hrtimer_init_hres(cpu_base);
1651 }
1652
1653 #ifdef CONFIG_HOTPLUG_CPU
1654
1655 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1656 struct hrtimer_clock_base *new_base)
1657 {
1658 struct hrtimer *timer;
1659 struct timerqueue_node *node;
1660
1661 while ((node = timerqueue_getnext(&old_base->active))) {
1662 timer = container_of(node, struct hrtimer, node);
1663 BUG_ON(hrtimer_callback_running(timer));
1664 debug_deactivate(timer);
1665
1666 /*
1667 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1668 * timer could be seen as !active and just vanish away
1669 * under us on another CPU
1670 */
1671 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1672 timer->base = new_base;
1673 /*
1674 * Enqueue the timers on the new cpu. This does not
1675 * reprogram the event device in case the timer
1676 * expires before the earliest on this CPU, but we run
1677 * hrtimer_interrupt after we migrated everything to
1678 * sort out already expired timers and reprogram the
1679 * event device.
1680 */
1681 enqueue_hrtimer(timer, new_base);
1682
1683 /* Clear the migration state bit */
1684 timer->state &= ~HRTIMER_STATE_MIGRATE;
1685 }
1686 }
1687
1688 static void migrate_hrtimers(int scpu)
1689 {
1690 struct hrtimer_cpu_base *old_base, *new_base;
1691 int i;
1692
1693 BUG_ON(cpu_online(scpu));
1694 tick_cancel_sched_timer(scpu);
1695
1696 local_irq_disable();
1697 old_base = &per_cpu(hrtimer_bases, scpu);
1698 new_base = &__get_cpu_var(hrtimer_bases);
1699 /*
1700 * The caller is globally serialized and nobody else
1701 * takes two locks at once, deadlock is not possible.
1702 */
1703 raw_spin_lock(&new_base->lock);
1704 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1705
1706 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1707 migrate_hrtimer_list(&old_base->clock_base[i],
1708 &new_base->clock_base[i]);
1709 }
1710
1711 raw_spin_unlock(&old_base->lock);
1712 raw_spin_unlock(&new_base->lock);
1713
1714 /* Check, if we got expired work to do */
1715 __hrtimer_peek_ahead_timers();
1716 local_irq_enable();
1717 }
1718
1719 #endif /* CONFIG_HOTPLUG_CPU */
1720
1721 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1722 unsigned long action, void *hcpu)
1723 {
1724 int scpu = (long)hcpu;
1725
1726 switch (action) {
1727
1728 case CPU_UP_PREPARE:
1729 case CPU_UP_PREPARE_FROZEN:
1730 init_hrtimers_cpu(scpu);
1731 break;
1732
1733 #ifdef CONFIG_HOTPLUG_CPU
1734 case CPU_DYING:
1735 case CPU_DYING_FROZEN:
1736 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1737 break;
1738 case CPU_DEAD:
1739 case CPU_DEAD_FROZEN:
1740 {
1741 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1742 migrate_hrtimers(scpu);
1743 break;
1744 }
1745 #endif
1746
1747 default:
1748 break;
1749 }
1750
1751 return NOTIFY_OK;
1752 }
1753
1754 static struct notifier_block __cpuinitdata hrtimers_nb = {
1755 .notifier_call = hrtimer_cpu_notify,
1756 };
1757
1758 void __init hrtimers_init(void)
1759 {
1760 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1761 (void *)(long)smp_processor_id());
1762 register_cpu_notifier(&hrtimers_nb);
1763 #ifdef CONFIG_HIGH_RES_TIMERS
1764 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1765 #endif
1766 }
1767
1768 /**
1769 * schedule_hrtimeout_range_clock - sleep until timeout
1770 * @expires: timeout value (ktime_t)
1771 * @delta: slack in expires timeout (ktime_t)
1772 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1773 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1774 */
1775 int __sched
1776 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1777 const enum hrtimer_mode mode, int clock)
1778 {
1779 struct hrtimer_sleeper t;
1780
1781 /*
1782 * Optimize when a zero timeout value is given. It does not
1783 * matter whether this is an absolute or a relative time.
1784 */
1785 if (expires && !expires->tv64) {
1786 __set_current_state(TASK_RUNNING);
1787 return 0;
1788 }
1789
1790 /*
1791 * A NULL parameter means "infinite"
1792 */
1793 if (!expires) {
1794 schedule();
1795 __set_current_state(TASK_RUNNING);
1796 return -EINTR;
1797 }
1798
1799 hrtimer_init_on_stack(&t.timer, clock, mode);
1800 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1801
1802 hrtimer_init_sleeper(&t, current);
1803
1804 hrtimer_start_expires(&t.timer, mode);
1805 if (!hrtimer_active(&t.timer))
1806 t.task = NULL;
1807
1808 if (likely(t.task))
1809 schedule();
1810
1811 hrtimer_cancel(&t.timer);
1812 destroy_hrtimer_on_stack(&t.timer);
1813
1814 __set_current_state(TASK_RUNNING);
1815
1816 return !t.task ? 0 : -EINTR;
1817 }
1818
1819 /**
1820 * schedule_hrtimeout_range - sleep until timeout
1821 * @expires: timeout value (ktime_t)
1822 * @delta: slack in expires timeout (ktime_t)
1823 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1824 *
1825 * Make the current task sleep until the given expiry time has
1826 * elapsed. The routine will return immediately unless
1827 * the current task state has been set (see set_current_state()).
1828 *
1829 * The @delta argument gives the kernel the freedom to schedule the
1830 * actual wakeup to a time that is both power and performance friendly.
1831 * The kernel give the normal best effort behavior for "@expires+@delta",
1832 * but may decide to fire the timer earlier, but no earlier than @expires.
1833 *
1834 * You can set the task state as follows -
1835 *
1836 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1837 * pass before the routine returns.
1838 *
1839 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1840 * delivered to the current task.
1841 *
1842 * The current task state is guaranteed to be TASK_RUNNING when this
1843 * routine returns.
1844 *
1845 * Returns 0 when the timer has expired otherwise -EINTR
1846 */
1847 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1848 const enum hrtimer_mode mode)
1849 {
1850 return schedule_hrtimeout_range_clock(expires, delta, mode,
1851 CLOCK_MONOTONIC);
1852 }
1853 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1854
1855 /**
1856 * schedule_hrtimeout - sleep until timeout
1857 * @expires: timeout value (ktime_t)
1858 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1859 *
1860 * Make the current task sleep until the given expiry time has
1861 * elapsed. The routine will return immediately unless
1862 * the current task state has been set (see set_current_state()).
1863 *
1864 * You can set the task state as follows -
1865 *
1866 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1867 * pass before the routine returns.
1868 *
1869 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1870 * delivered to the current task.
1871 *
1872 * The current task state is guaranteed to be TASK_RUNNING when this
1873 * routine returns.
1874 *
1875 * Returns 0 when the timer has expired otherwise -EINTR
1876 */
1877 int __sched schedule_hrtimeout(ktime_t *expires,
1878 const enum hrtimer_mode mode)
1879 {
1880 return schedule_hrtimeout_range(expires, 0, mode);
1881 }
1882 EXPORT_SYMBOL_GPL(schedule_hrtimeout);