hrtimer: Remove overly verbose "switch to high res mode" message
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 #include <trace/events/timer.h>
52
53 /*
54 * The timer bases:
55 *
56 * Note: If we want to add new timer bases, we have to skip the two
57 * clock ids captured by the cpu-timers. We do this by holding empty
58 * entries rather than doing math adjustment of the clock ids.
59 * This ensures that we capture erroneous accesses to these clock ids
60 * rather than moving them into the range of valid clock id's.
61 */
62 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63 {
64
65 .clock_base =
66 {
67 {
68 .index = CLOCK_REALTIME,
69 .get_time = &ktime_get_real,
70 .resolution = KTIME_LOW_RES,
71 },
72 {
73 .index = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
76 },
77 }
78 };
79
80 /*
81 * Get the coarse grained time at the softirq based on xtime and
82 * wall_to_monotonic.
83 */
84 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
85 {
86 ktime_t xtim, tomono;
87 struct timespec xts, tom;
88 unsigned long seq;
89
90 do {
91 seq = read_seqbegin(&xtime_lock);
92 xts = current_kernel_time();
93 tom = wall_to_monotonic;
94 } while (read_seqretry(&xtime_lock, seq));
95
96 xtim = timespec_to_ktime(xts);
97 tomono = timespec_to_ktime(tom);
98 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
99 base->clock_base[CLOCK_MONOTONIC].softirq_time =
100 ktime_add(xtim, tomono);
101 }
102
103 /*
104 * Functions and macros which are different for UP/SMP systems are kept in a
105 * single place
106 */
107 #ifdef CONFIG_SMP
108
109 /*
110 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
111 * means that all timers which are tied to this base via timer->base are
112 * locked, and the base itself is locked too.
113 *
114 * So __run_timers/migrate_timers can safely modify all timers which could
115 * be found on the lists/queues.
116 *
117 * When the timer's base is locked, and the timer removed from list, it is
118 * possible to set timer->base = NULL and drop the lock: the timer remains
119 * locked.
120 */
121 static
122 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
123 unsigned long *flags)
124 {
125 struct hrtimer_clock_base *base;
126
127 for (;;) {
128 base = timer->base;
129 if (likely(base != NULL)) {
130 spin_lock_irqsave(&base->cpu_base->lock, *flags);
131 if (likely(base == timer->base))
132 return base;
133 /* The timer has migrated to another CPU: */
134 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
135 }
136 cpu_relax();
137 }
138 }
139
140
141 /*
142 * Get the preferred target CPU for NOHZ
143 */
144 static int hrtimer_get_target(int this_cpu, int pinned)
145 {
146 #ifdef CONFIG_NO_HZ
147 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
148 int preferred_cpu = get_nohz_load_balancer();
149
150 if (preferred_cpu >= 0)
151 return preferred_cpu;
152 }
153 #endif
154 return this_cpu;
155 }
156
157 /*
158 * With HIGHRES=y we do not migrate the timer when it is expiring
159 * before the next event on the target cpu because we cannot reprogram
160 * the target cpu hardware and we would cause it to fire late.
161 *
162 * Called with cpu_base->lock of target cpu held.
163 */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 ktime_t expires;
169
170 if (!new_base->cpu_base->hres_active)
171 return 0;
172
173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 return 0;
177 #endif
178 }
179
180 /*
181 * Switch the timer base to the current CPU when possible.
182 */
183 static inline struct hrtimer_clock_base *
184 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
185 int pinned)
186 {
187 struct hrtimer_clock_base *new_base;
188 struct hrtimer_cpu_base *new_cpu_base;
189 int this_cpu = smp_processor_id();
190 int cpu = hrtimer_get_target(this_cpu, pinned);
191
192 again:
193 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
194 new_base = &new_cpu_base->clock_base[base->index];
195
196 if (base != new_base) {
197 /*
198 * We are trying to move timer to new_base.
199 * However we can't change timer's base while it is running,
200 * so we keep it on the same CPU. No hassle vs. reprogramming
201 * the event source in the high resolution case. The softirq
202 * code will take care of this when the timer function has
203 * completed. There is no conflict as we hold the lock until
204 * the timer is enqueued.
205 */
206 if (unlikely(hrtimer_callback_running(timer)))
207 return base;
208
209 /* See the comment in lock_timer_base() */
210 timer->base = NULL;
211 spin_unlock(&base->cpu_base->lock);
212 spin_lock(&new_base->cpu_base->lock);
213
214 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
215 cpu = this_cpu;
216 spin_unlock(&new_base->cpu_base->lock);
217 spin_lock(&base->cpu_base->lock);
218 timer->base = base;
219 goto again;
220 }
221 timer->base = new_base;
222 }
223 return new_base;
224 }
225
226 #else /* CONFIG_SMP */
227
228 static inline struct hrtimer_clock_base *
229 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
230 {
231 struct hrtimer_clock_base *base = timer->base;
232
233 spin_lock_irqsave(&base->cpu_base->lock, *flags);
234
235 return base;
236 }
237
238 # define switch_hrtimer_base(t, b, p) (b)
239
240 #endif /* !CONFIG_SMP */
241
242 /*
243 * Functions for the union type storage format of ktime_t which are
244 * too large for inlining:
245 */
246 #if BITS_PER_LONG < 64
247 # ifndef CONFIG_KTIME_SCALAR
248 /**
249 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
250 * @kt: addend
251 * @nsec: the scalar nsec value to add
252 *
253 * Returns the sum of kt and nsec in ktime_t format
254 */
255 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
256 {
257 ktime_t tmp;
258
259 if (likely(nsec < NSEC_PER_SEC)) {
260 tmp.tv64 = nsec;
261 } else {
262 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
263
264 tmp = ktime_set((long)nsec, rem);
265 }
266
267 return ktime_add(kt, tmp);
268 }
269
270 EXPORT_SYMBOL_GPL(ktime_add_ns);
271
272 /**
273 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
274 * @kt: minuend
275 * @nsec: the scalar nsec value to subtract
276 *
277 * Returns the subtraction of @nsec from @kt in ktime_t format
278 */
279 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
280 {
281 ktime_t tmp;
282
283 if (likely(nsec < NSEC_PER_SEC)) {
284 tmp.tv64 = nsec;
285 } else {
286 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_sub(kt, tmp);
292 }
293
294 EXPORT_SYMBOL_GPL(ktime_sub_ns);
295 # endif /* !CONFIG_KTIME_SCALAR */
296
297 /*
298 * Divide a ktime value by a nanosecond value
299 */
300 u64 ktime_divns(const ktime_t kt, s64 div)
301 {
302 u64 dclc;
303 int sft = 0;
304
305 dclc = ktime_to_ns(kt);
306 /* Make sure the divisor is less than 2^32: */
307 while (div >> 32) {
308 sft++;
309 div >>= 1;
310 }
311 dclc >>= sft;
312 do_div(dclc, (unsigned long) div);
313
314 return dclc;
315 }
316 #endif /* BITS_PER_LONG >= 64 */
317
318 /*
319 * Add two ktime values and do a safety check for overflow:
320 */
321 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
322 {
323 ktime_t res = ktime_add(lhs, rhs);
324
325 /*
326 * We use KTIME_SEC_MAX here, the maximum timeout which we can
327 * return to user space in a timespec:
328 */
329 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
330 res = ktime_set(KTIME_SEC_MAX, 0);
331
332 return res;
333 }
334
335 EXPORT_SYMBOL_GPL(ktime_add_safe);
336
337 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
338
339 static struct debug_obj_descr hrtimer_debug_descr;
340
341 /*
342 * fixup_init is called when:
343 * - an active object is initialized
344 */
345 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
346 {
347 struct hrtimer *timer = addr;
348
349 switch (state) {
350 case ODEBUG_STATE_ACTIVE:
351 hrtimer_cancel(timer);
352 debug_object_init(timer, &hrtimer_debug_descr);
353 return 1;
354 default:
355 return 0;
356 }
357 }
358
359 /*
360 * fixup_activate is called when:
361 * - an active object is activated
362 * - an unknown object is activated (might be a statically initialized object)
363 */
364 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
365 {
366 switch (state) {
367
368 case ODEBUG_STATE_NOTAVAILABLE:
369 WARN_ON_ONCE(1);
370 return 0;
371
372 case ODEBUG_STATE_ACTIVE:
373 WARN_ON(1);
374
375 default:
376 return 0;
377 }
378 }
379
380 /*
381 * fixup_free is called when:
382 * - an active object is freed
383 */
384 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
385 {
386 struct hrtimer *timer = addr;
387
388 switch (state) {
389 case ODEBUG_STATE_ACTIVE:
390 hrtimer_cancel(timer);
391 debug_object_free(timer, &hrtimer_debug_descr);
392 return 1;
393 default:
394 return 0;
395 }
396 }
397
398 static struct debug_obj_descr hrtimer_debug_descr = {
399 .name = "hrtimer",
400 .fixup_init = hrtimer_fixup_init,
401 .fixup_activate = hrtimer_fixup_activate,
402 .fixup_free = hrtimer_fixup_free,
403 };
404
405 static inline void debug_hrtimer_init(struct hrtimer *timer)
406 {
407 debug_object_init(timer, &hrtimer_debug_descr);
408 }
409
410 static inline void debug_hrtimer_activate(struct hrtimer *timer)
411 {
412 debug_object_activate(timer, &hrtimer_debug_descr);
413 }
414
415 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
416 {
417 debug_object_deactivate(timer, &hrtimer_debug_descr);
418 }
419
420 static inline void debug_hrtimer_free(struct hrtimer *timer)
421 {
422 debug_object_free(timer, &hrtimer_debug_descr);
423 }
424
425 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
426 enum hrtimer_mode mode);
427
428 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
429 enum hrtimer_mode mode)
430 {
431 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
432 __hrtimer_init(timer, clock_id, mode);
433 }
434 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
435
436 void destroy_hrtimer_on_stack(struct hrtimer *timer)
437 {
438 debug_object_free(timer, &hrtimer_debug_descr);
439 }
440
441 #else
442 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
443 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
444 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
445 #endif
446
447 static inline void
448 debug_init(struct hrtimer *timer, clockid_t clockid,
449 enum hrtimer_mode mode)
450 {
451 debug_hrtimer_init(timer);
452 trace_hrtimer_init(timer, clockid, mode);
453 }
454
455 static inline void debug_activate(struct hrtimer *timer)
456 {
457 debug_hrtimer_activate(timer);
458 trace_hrtimer_start(timer);
459 }
460
461 static inline void debug_deactivate(struct hrtimer *timer)
462 {
463 debug_hrtimer_deactivate(timer);
464 trace_hrtimer_cancel(timer);
465 }
466
467 /* High resolution timer related functions */
468 #ifdef CONFIG_HIGH_RES_TIMERS
469
470 /*
471 * High resolution timer enabled ?
472 */
473 static int hrtimer_hres_enabled __read_mostly = 1;
474
475 /*
476 * Enable / Disable high resolution mode
477 */
478 static int __init setup_hrtimer_hres(char *str)
479 {
480 if (!strcmp(str, "off"))
481 hrtimer_hres_enabled = 0;
482 else if (!strcmp(str, "on"))
483 hrtimer_hres_enabled = 1;
484 else
485 return 0;
486 return 1;
487 }
488
489 __setup("highres=", setup_hrtimer_hres);
490
491 /*
492 * hrtimer_high_res_enabled - query, if the highres mode is enabled
493 */
494 static inline int hrtimer_is_hres_enabled(void)
495 {
496 return hrtimer_hres_enabled;
497 }
498
499 /*
500 * Is the high resolution mode active ?
501 */
502 static inline int hrtimer_hres_active(void)
503 {
504 return __get_cpu_var(hrtimer_bases).hres_active;
505 }
506
507 /*
508 * Reprogram the event source with checking both queues for the
509 * next event
510 * Called with interrupts disabled and base->lock held
511 */
512 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
513 {
514 int i;
515 struct hrtimer_clock_base *base = cpu_base->clock_base;
516 ktime_t expires;
517
518 cpu_base->expires_next.tv64 = KTIME_MAX;
519
520 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
521 struct hrtimer *timer;
522
523 if (!base->first)
524 continue;
525 timer = rb_entry(base->first, struct hrtimer, node);
526 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
527 /*
528 * clock_was_set() has changed base->offset so the
529 * result might be negative. Fix it up to prevent a
530 * false positive in clockevents_program_event()
531 */
532 if (expires.tv64 < 0)
533 expires.tv64 = 0;
534 if (expires.tv64 < cpu_base->expires_next.tv64)
535 cpu_base->expires_next = expires;
536 }
537
538 if (cpu_base->expires_next.tv64 != KTIME_MAX)
539 tick_program_event(cpu_base->expires_next, 1);
540 }
541
542 /*
543 * Shared reprogramming for clock_realtime and clock_monotonic
544 *
545 * When a timer is enqueued and expires earlier than the already enqueued
546 * timers, we have to check, whether it expires earlier than the timer for
547 * which the clock event device was armed.
548 *
549 * Called with interrupts disabled and base->cpu_base.lock held
550 */
551 static int hrtimer_reprogram(struct hrtimer *timer,
552 struct hrtimer_clock_base *base)
553 {
554 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
555 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
556 int res;
557
558 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
559
560 /*
561 * When the callback is running, we do not reprogram the clock event
562 * device. The timer callback is either running on a different CPU or
563 * the callback is executed in the hrtimer_interrupt context. The
564 * reprogramming is handled either by the softirq, which called the
565 * callback or at the end of the hrtimer_interrupt.
566 */
567 if (hrtimer_callback_running(timer))
568 return 0;
569
570 /*
571 * CLOCK_REALTIME timer might be requested with an absolute
572 * expiry time which is less than base->offset. Nothing wrong
573 * about that, just avoid to call into the tick code, which
574 * has now objections against negative expiry values.
575 */
576 if (expires.tv64 < 0)
577 return -ETIME;
578
579 if (expires.tv64 >= expires_next->tv64)
580 return 0;
581
582 /*
583 * Clockevents returns -ETIME, when the event was in the past.
584 */
585 res = tick_program_event(expires, 0);
586 if (!IS_ERR_VALUE(res))
587 *expires_next = expires;
588 return res;
589 }
590
591
592 /*
593 * Retrigger next event is called after clock was set
594 *
595 * Called with interrupts disabled via on_each_cpu()
596 */
597 static void retrigger_next_event(void *arg)
598 {
599 struct hrtimer_cpu_base *base;
600 struct timespec realtime_offset;
601 unsigned long seq;
602
603 if (!hrtimer_hres_active())
604 return;
605
606 do {
607 seq = read_seqbegin(&xtime_lock);
608 set_normalized_timespec(&realtime_offset,
609 -wall_to_monotonic.tv_sec,
610 -wall_to_monotonic.tv_nsec);
611 } while (read_seqretry(&xtime_lock, seq));
612
613 base = &__get_cpu_var(hrtimer_bases);
614
615 /* Adjust CLOCK_REALTIME offset */
616 spin_lock(&base->lock);
617 base->clock_base[CLOCK_REALTIME].offset =
618 timespec_to_ktime(realtime_offset);
619
620 hrtimer_force_reprogram(base);
621 spin_unlock(&base->lock);
622 }
623
624 /*
625 * Clock realtime was set
626 *
627 * Change the offset of the realtime clock vs. the monotonic
628 * clock.
629 *
630 * We might have to reprogram the high resolution timer interrupt. On
631 * SMP we call the architecture specific code to retrigger _all_ high
632 * resolution timer interrupts. On UP we just disable interrupts and
633 * call the high resolution interrupt code.
634 */
635 void clock_was_set(void)
636 {
637 /* Retrigger the CPU local events everywhere */
638 on_each_cpu(retrigger_next_event, NULL, 1);
639 }
640
641 /*
642 * During resume we might have to reprogram the high resolution timer
643 * interrupt (on the local CPU):
644 */
645 void hres_timers_resume(void)
646 {
647 WARN_ONCE(!irqs_disabled(),
648 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
649
650 retrigger_next_event(NULL);
651 }
652
653 /*
654 * Initialize the high resolution related parts of cpu_base
655 */
656 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
657 {
658 base->expires_next.tv64 = KTIME_MAX;
659 base->hres_active = 0;
660 }
661
662 /*
663 * Initialize the high resolution related parts of a hrtimer
664 */
665 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
666 {
667 }
668
669
670 /*
671 * When High resolution timers are active, try to reprogram. Note, that in case
672 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
673 * check happens. The timer gets enqueued into the rbtree. The reprogramming
674 * and expiry check is done in the hrtimer_interrupt or in the softirq.
675 */
676 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
677 struct hrtimer_clock_base *base,
678 int wakeup)
679 {
680 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
681 if (wakeup) {
682 spin_unlock(&base->cpu_base->lock);
683 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
684 spin_lock(&base->cpu_base->lock);
685 } else
686 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
687
688 return 1;
689 }
690
691 return 0;
692 }
693
694 /*
695 * Switch to high resolution mode
696 */
697 static int hrtimer_switch_to_hres(void)
698 {
699 int cpu = smp_processor_id();
700 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
701 unsigned long flags;
702
703 if (base->hres_active)
704 return 1;
705
706 local_irq_save(flags);
707
708 if (tick_init_highres()) {
709 local_irq_restore(flags);
710 printk(KERN_WARNING "Could not switch to high resolution "
711 "mode on CPU %d\n", cpu);
712 return 0;
713 }
714 base->hres_active = 1;
715 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
716 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
717
718 tick_setup_sched_timer();
719
720 /* "Retrigger" the interrupt to get things going */
721 retrigger_next_event(NULL);
722 local_irq_restore(flags);
723 return 1;
724 }
725
726 #else
727
728 static inline int hrtimer_hres_active(void) { return 0; }
729 static inline int hrtimer_is_hres_enabled(void) { return 0; }
730 static inline int hrtimer_switch_to_hres(void) { return 0; }
731 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
732 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
733 struct hrtimer_clock_base *base,
734 int wakeup)
735 {
736 return 0;
737 }
738 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
739 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
740
741 #endif /* CONFIG_HIGH_RES_TIMERS */
742
743 #ifdef CONFIG_TIMER_STATS
744 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
745 {
746 if (timer->start_site)
747 return;
748
749 timer->start_site = addr;
750 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
751 timer->start_pid = current->pid;
752 }
753 #endif
754
755 /*
756 * Counterpart to lock_hrtimer_base above:
757 */
758 static inline
759 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
760 {
761 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
762 }
763
764 /**
765 * hrtimer_forward - forward the timer expiry
766 * @timer: hrtimer to forward
767 * @now: forward past this time
768 * @interval: the interval to forward
769 *
770 * Forward the timer expiry so it will expire in the future.
771 * Returns the number of overruns.
772 */
773 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
774 {
775 u64 orun = 1;
776 ktime_t delta;
777
778 delta = ktime_sub(now, hrtimer_get_expires(timer));
779
780 if (delta.tv64 < 0)
781 return 0;
782
783 if (interval.tv64 < timer->base->resolution.tv64)
784 interval.tv64 = timer->base->resolution.tv64;
785
786 if (unlikely(delta.tv64 >= interval.tv64)) {
787 s64 incr = ktime_to_ns(interval);
788
789 orun = ktime_divns(delta, incr);
790 hrtimer_add_expires_ns(timer, incr * orun);
791 if (hrtimer_get_expires_tv64(timer) > now.tv64)
792 return orun;
793 /*
794 * This (and the ktime_add() below) is the
795 * correction for exact:
796 */
797 orun++;
798 }
799 hrtimer_add_expires(timer, interval);
800
801 return orun;
802 }
803 EXPORT_SYMBOL_GPL(hrtimer_forward);
804
805 /*
806 * enqueue_hrtimer - internal function to (re)start a timer
807 *
808 * The timer is inserted in expiry order. Insertion into the
809 * red black tree is O(log(n)). Must hold the base lock.
810 *
811 * Returns 1 when the new timer is the leftmost timer in the tree.
812 */
813 static int enqueue_hrtimer(struct hrtimer *timer,
814 struct hrtimer_clock_base *base)
815 {
816 struct rb_node **link = &base->active.rb_node;
817 struct rb_node *parent = NULL;
818 struct hrtimer *entry;
819 int leftmost = 1;
820
821 debug_activate(timer);
822
823 /*
824 * Find the right place in the rbtree:
825 */
826 while (*link) {
827 parent = *link;
828 entry = rb_entry(parent, struct hrtimer, node);
829 /*
830 * We dont care about collisions. Nodes with
831 * the same expiry time stay together.
832 */
833 if (hrtimer_get_expires_tv64(timer) <
834 hrtimer_get_expires_tv64(entry)) {
835 link = &(*link)->rb_left;
836 } else {
837 link = &(*link)->rb_right;
838 leftmost = 0;
839 }
840 }
841
842 /*
843 * Insert the timer to the rbtree and check whether it
844 * replaces the first pending timer
845 */
846 if (leftmost)
847 base->first = &timer->node;
848
849 rb_link_node(&timer->node, parent, link);
850 rb_insert_color(&timer->node, &base->active);
851 /*
852 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
853 * state of a possibly running callback.
854 */
855 timer->state |= HRTIMER_STATE_ENQUEUED;
856
857 return leftmost;
858 }
859
860 /*
861 * __remove_hrtimer - internal function to remove a timer
862 *
863 * Caller must hold the base lock.
864 *
865 * High resolution timer mode reprograms the clock event device when the
866 * timer is the one which expires next. The caller can disable this by setting
867 * reprogram to zero. This is useful, when the context does a reprogramming
868 * anyway (e.g. timer interrupt)
869 */
870 static void __remove_hrtimer(struct hrtimer *timer,
871 struct hrtimer_clock_base *base,
872 unsigned long newstate, int reprogram)
873 {
874 if (timer->state & HRTIMER_STATE_ENQUEUED) {
875 /*
876 * Remove the timer from the rbtree and replace the
877 * first entry pointer if necessary.
878 */
879 if (base->first == &timer->node) {
880 base->first = rb_next(&timer->node);
881 /* Reprogram the clock event device. if enabled */
882 if (reprogram && hrtimer_hres_active())
883 hrtimer_force_reprogram(base->cpu_base);
884 }
885 rb_erase(&timer->node, &base->active);
886 }
887 timer->state = newstate;
888 }
889
890 /*
891 * remove hrtimer, called with base lock held
892 */
893 static inline int
894 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
895 {
896 if (hrtimer_is_queued(timer)) {
897 int reprogram;
898
899 /*
900 * Remove the timer and force reprogramming when high
901 * resolution mode is active and the timer is on the current
902 * CPU. If we remove a timer on another CPU, reprogramming is
903 * skipped. The interrupt event on this CPU is fired and
904 * reprogramming happens in the interrupt handler. This is a
905 * rare case and less expensive than a smp call.
906 */
907 debug_deactivate(timer);
908 timer_stats_hrtimer_clear_start_info(timer);
909 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
910 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
911 reprogram);
912 return 1;
913 }
914 return 0;
915 }
916
917 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
918 unsigned long delta_ns, const enum hrtimer_mode mode,
919 int wakeup)
920 {
921 struct hrtimer_clock_base *base, *new_base;
922 unsigned long flags;
923 int ret, leftmost;
924
925 base = lock_hrtimer_base(timer, &flags);
926
927 /* Remove an active timer from the queue: */
928 ret = remove_hrtimer(timer, base);
929
930 /* Switch the timer base, if necessary: */
931 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
932
933 if (mode & HRTIMER_MODE_REL) {
934 tim = ktime_add_safe(tim, new_base->get_time());
935 /*
936 * CONFIG_TIME_LOW_RES is a temporary way for architectures
937 * to signal that they simply return xtime in
938 * do_gettimeoffset(). In this case we want to round up by
939 * resolution when starting a relative timer, to avoid short
940 * timeouts. This will go away with the GTOD framework.
941 */
942 #ifdef CONFIG_TIME_LOW_RES
943 tim = ktime_add_safe(tim, base->resolution);
944 #endif
945 }
946
947 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
948
949 timer_stats_hrtimer_set_start_info(timer);
950
951 leftmost = enqueue_hrtimer(timer, new_base);
952
953 /*
954 * Only allow reprogramming if the new base is on this CPU.
955 * (it might still be on another CPU if the timer was pending)
956 *
957 * XXX send_remote_softirq() ?
958 */
959 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
960 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
961
962 unlock_hrtimer_base(timer, &flags);
963
964 return ret;
965 }
966
967 /**
968 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
969 * @timer: the timer to be added
970 * @tim: expiry time
971 * @delta_ns: "slack" range for the timer
972 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
973 *
974 * Returns:
975 * 0 on success
976 * 1 when the timer was active
977 */
978 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
979 unsigned long delta_ns, const enum hrtimer_mode mode)
980 {
981 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
982 }
983 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
984
985 /**
986 * hrtimer_start - (re)start an hrtimer on the current CPU
987 * @timer: the timer to be added
988 * @tim: expiry time
989 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
990 *
991 * Returns:
992 * 0 on success
993 * 1 when the timer was active
994 */
995 int
996 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
997 {
998 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
999 }
1000 EXPORT_SYMBOL_GPL(hrtimer_start);
1001
1002
1003 /**
1004 * hrtimer_try_to_cancel - try to deactivate a timer
1005 * @timer: hrtimer to stop
1006 *
1007 * Returns:
1008 * 0 when the timer was not active
1009 * 1 when the timer was active
1010 * -1 when the timer is currently excuting the callback function and
1011 * cannot be stopped
1012 */
1013 int hrtimer_try_to_cancel(struct hrtimer *timer)
1014 {
1015 struct hrtimer_clock_base *base;
1016 unsigned long flags;
1017 int ret = -1;
1018
1019 base = lock_hrtimer_base(timer, &flags);
1020
1021 if (!hrtimer_callback_running(timer))
1022 ret = remove_hrtimer(timer, base);
1023
1024 unlock_hrtimer_base(timer, &flags);
1025
1026 return ret;
1027
1028 }
1029 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1030
1031 /**
1032 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1033 * @timer: the timer to be cancelled
1034 *
1035 * Returns:
1036 * 0 when the timer was not active
1037 * 1 when the timer was active
1038 */
1039 int hrtimer_cancel(struct hrtimer *timer)
1040 {
1041 for (;;) {
1042 int ret = hrtimer_try_to_cancel(timer);
1043
1044 if (ret >= 0)
1045 return ret;
1046 cpu_relax();
1047 }
1048 }
1049 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1050
1051 /**
1052 * hrtimer_get_remaining - get remaining time for the timer
1053 * @timer: the timer to read
1054 */
1055 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1056 {
1057 struct hrtimer_clock_base *base;
1058 unsigned long flags;
1059 ktime_t rem;
1060
1061 base = lock_hrtimer_base(timer, &flags);
1062 rem = hrtimer_expires_remaining(timer);
1063 unlock_hrtimer_base(timer, &flags);
1064
1065 return rem;
1066 }
1067 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1068
1069 #ifdef CONFIG_NO_HZ
1070 /**
1071 * hrtimer_get_next_event - get the time until next expiry event
1072 *
1073 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1074 * is pending.
1075 */
1076 ktime_t hrtimer_get_next_event(void)
1077 {
1078 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1079 struct hrtimer_clock_base *base = cpu_base->clock_base;
1080 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1081 unsigned long flags;
1082 int i;
1083
1084 spin_lock_irqsave(&cpu_base->lock, flags);
1085
1086 if (!hrtimer_hres_active()) {
1087 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1088 struct hrtimer *timer;
1089
1090 if (!base->first)
1091 continue;
1092
1093 timer = rb_entry(base->first, struct hrtimer, node);
1094 delta.tv64 = hrtimer_get_expires_tv64(timer);
1095 delta = ktime_sub(delta, base->get_time());
1096 if (delta.tv64 < mindelta.tv64)
1097 mindelta.tv64 = delta.tv64;
1098 }
1099 }
1100
1101 spin_unlock_irqrestore(&cpu_base->lock, flags);
1102
1103 if (mindelta.tv64 < 0)
1104 mindelta.tv64 = 0;
1105 return mindelta;
1106 }
1107 #endif
1108
1109 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1110 enum hrtimer_mode mode)
1111 {
1112 struct hrtimer_cpu_base *cpu_base;
1113
1114 memset(timer, 0, sizeof(struct hrtimer));
1115
1116 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1117
1118 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1119 clock_id = CLOCK_MONOTONIC;
1120
1121 timer->base = &cpu_base->clock_base[clock_id];
1122 hrtimer_init_timer_hres(timer);
1123
1124 #ifdef CONFIG_TIMER_STATS
1125 timer->start_site = NULL;
1126 timer->start_pid = -1;
1127 memset(timer->start_comm, 0, TASK_COMM_LEN);
1128 #endif
1129 }
1130
1131 /**
1132 * hrtimer_init - initialize a timer to the given clock
1133 * @timer: the timer to be initialized
1134 * @clock_id: the clock to be used
1135 * @mode: timer mode abs/rel
1136 */
1137 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1138 enum hrtimer_mode mode)
1139 {
1140 debug_init(timer, clock_id, mode);
1141 __hrtimer_init(timer, clock_id, mode);
1142 }
1143 EXPORT_SYMBOL_GPL(hrtimer_init);
1144
1145 /**
1146 * hrtimer_get_res - get the timer resolution for a clock
1147 * @which_clock: which clock to query
1148 * @tp: pointer to timespec variable to store the resolution
1149 *
1150 * Store the resolution of the clock selected by @which_clock in the
1151 * variable pointed to by @tp.
1152 */
1153 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1154 {
1155 struct hrtimer_cpu_base *cpu_base;
1156
1157 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1158 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1159
1160 return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1163
1164 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1165 {
1166 struct hrtimer_clock_base *base = timer->base;
1167 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1168 enum hrtimer_restart (*fn)(struct hrtimer *);
1169 int restart;
1170
1171 WARN_ON(!irqs_disabled());
1172
1173 debug_deactivate(timer);
1174 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1175 timer_stats_account_hrtimer(timer);
1176 fn = timer->function;
1177
1178 /*
1179 * Because we run timers from hardirq context, there is no chance
1180 * they get migrated to another cpu, therefore its safe to unlock
1181 * the timer base.
1182 */
1183 spin_unlock(&cpu_base->lock);
1184 trace_hrtimer_expire_entry(timer, now);
1185 restart = fn(timer);
1186 trace_hrtimer_expire_exit(timer);
1187 spin_lock(&cpu_base->lock);
1188
1189 /*
1190 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1191 * we do not reprogramm the event hardware. Happens either in
1192 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1193 */
1194 if (restart != HRTIMER_NORESTART) {
1195 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1196 enqueue_hrtimer(timer, base);
1197 }
1198 timer->state &= ~HRTIMER_STATE_CALLBACK;
1199 }
1200
1201 #ifdef CONFIG_HIGH_RES_TIMERS
1202
1203 static int force_clock_reprogram;
1204
1205 /*
1206 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1207 * is hanging, which could happen with something that slows the interrupt
1208 * such as the tracing. Then we force the clock reprogramming for each future
1209 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1210 * threshold that we will overwrite.
1211 * The next tick event will be scheduled to 3 times we currently spend on
1212 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1213 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1214 * let it running without serious starvation.
1215 */
1216
1217 static inline void
1218 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1219 ktime_t try_time)
1220 {
1221 force_clock_reprogram = 1;
1222 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1223 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1224 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1225 }
1226 /*
1227 * High resolution timer interrupt
1228 * Called with interrupts disabled
1229 */
1230 void hrtimer_interrupt(struct clock_event_device *dev)
1231 {
1232 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1233 struct hrtimer_clock_base *base;
1234 ktime_t expires_next, now;
1235 int nr_retries = 0;
1236 int i;
1237
1238 BUG_ON(!cpu_base->hres_active);
1239 cpu_base->nr_events++;
1240 dev->next_event.tv64 = KTIME_MAX;
1241
1242 retry:
1243 /* 5 retries is enough to notice a hang */
1244 if (!(++nr_retries % 5))
1245 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1246
1247 now = ktime_get();
1248
1249 expires_next.tv64 = KTIME_MAX;
1250
1251 spin_lock(&cpu_base->lock);
1252 /*
1253 * We set expires_next to KTIME_MAX here with cpu_base->lock
1254 * held to prevent that a timer is enqueued in our queue via
1255 * the migration code. This does not affect enqueueing of
1256 * timers which run their callback and need to be requeued on
1257 * this CPU.
1258 */
1259 cpu_base->expires_next.tv64 = KTIME_MAX;
1260
1261 base = cpu_base->clock_base;
1262
1263 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1264 ktime_t basenow;
1265 struct rb_node *node;
1266
1267 basenow = ktime_add(now, base->offset);
1268
1269 while ((node = base->first)) {
1270 struct hrtimer *timer;
1271
1272 timer = rb_entry(node, struct hrtimer, node);
1273
1274 /*
1275 * The immediate goal for using the softexpires is
1276 * minimizing wakeups, not running timers at the
1277 * earliest interrupt after their soft expiration.
1278 * This allows us to avoid using a Priority Search
1279 * Tree, which can answer a stabbing querry for
1280 * overlapping intervals and instead use the simple
1281 * BST we already have.
1282 * We don't add extra wakeups by delaying timers that
1283 * are right-of a not yet expired timer, because that
1284 * timer will have to trigger a wakeup anyway.
1285 */
1286
1287 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1288 ktime_t expires;
1289
1290 expires = ktime_sub(hrtimer_get_expires(timer),
1291 base->offset);
1292 if (expires.tv64 < expires_next.tv64)
1293 expires_next = expires;
1294 break;
1295 }
1296
1297 __run_hrtimer(timer, &basenow);
1298 }
1299 base++;
1300 }
1301
1302 /*
1303 * Store the new expiry value so the migration code can verify
1304 * against it.
1305 */
1306 cpu_base->expires_next = expires_next;
1307 spin_unlock(&cpu_base->lock);
1308
1309 /* Reprogramming necessary ? */
1310 if (expires_next.tv64 != KTIME_MAX) {
1311 if (tick_program_event(expires_next, force_clock_reprogram))
1312 goto retry;
1313 }
1314 }
1315
1316 /*
1317 * local version of hrtimer_peek_ahead_timers() called with interrupts
1318 * disabled.
1319 */
1320 static void __hrtimer_peek_ahead_timers(void)
1321 {
1322 struct tick_device *td;
1323
1324 if (!hrtimer_hres_active())
1325 return;
1326
1327 td = &__get_cpu_var(tick_cpu_device);
1328 if (td && td->evtdev)
1329 hrtimer_interrupt(td->evtdev);
1330 }
1331
1332 /**
1333 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1334 *
1335 * hrtimer_peek_ahead_timers will peek at the timer queue of
1336 * the current cpu and check if there are any timers for which
1337 * the soft expires time has passed. If any such timers exist,
1338 * they are run immediately and then removed from the timer queue.
1339 *
1340 */
1341 void hrtimer_peek_ahead_timers(void)
1342 {
1343 unsigned long flags;
1344
1345 local_irq_save(flags);
1346 __hrtimer_peek_ahead_timers();
1347 local_irq_restore(flags);
1348 }
1349
1350 static void run_hrtimer_softirq(struct softirq_action *h)
1351 {
1352 hrtimer_peek_ahead_timers();
1353 }
1354
1355 #else /* CONFIG_HIGH_RES_TIMERS */
1356
1357 static inline void __hrtimer_peek_ahead_timers(void) { }
1358
1359 #endif /* !CONFIG_HIGH_RES_TIMERS */
1360
1361 /*
1362 * Called from timer softirq every jiffy, expire hrtimers:
1363 *
1364 * For HRT its the fall back code to run the softirq in the timer
1365 * softirq context in case the hrtimer initialization failed or has
1366 * not been done yet.
1367 */
1368 void hrtimer_run_pending(void)
1369 {
1370 if (hrtimer_hres_active())
1371 return;
1372
1373 /*
1374 * This _is_ ugly: We have to check in the softirq context,
1375 * whether we can switch to highres and / or nohz mode. The
1376 * clocksource switch happens in the timer interrupt with
1377 * xtime_lock held. Notification from there only sets the
1378 * check bit in the tick_oneshot code, otherwise we might
1379 * deadlock vs. xtime_lock.
1380 */
1381 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1382 hrtimer_switch_to_hres();
1383 }
1384
1385 /*
1386 * Called from hardirq context every jiffy
1387 */
1388 void hrtimer_run_queues(void)
1389 {
1390 struct rb_node *node;
1391 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1392 struct hrtimer_clock_base *base;
1393 int index, gettime = 1;
1394
1395 if (hrtimer_hres_active())
1396 return;
1397
1398 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1399 base = &cpu_base->clock_base[index];
1400
1401 if (!base->first)
1402 continue;
1403
1404 if (gettime) {
1405 hrtimer_get_softirq_time(cpu_base);
1406 gettime = 0;
1407 }
1408
1409 spin_lock(&cpu_base->lock);
1410
1411 while ((node = base->first)) {
1412 struct hrtimer *timer;
1413
1414 timer = rb_entry(node, struct hrtimer, node);
1415 if (base->softirq_time.tv64 <=
1416 hrtimer_get_expires_tv64(timer))
1417 break;
1418
1419 __run_hrtimer(timer, &base->softirq_time);
1420 }
1421 spin_unlock(&cpu_base->lock);
1422 }
1423 }
1424
1425 /*
1426 * Sleep related functions:
1427 */
1428 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1429 {
1430 struct hrtimer_sleeper *t =
1431 container_of(timer, struct hrtimer_sleeper, timer);
1432 struct task_struct *task = t->task;
1433
1434 t->task = NULL;
1435 if (task)
1436 wake_up_process(task);
1437
1438 return HRTIMER_NORESTART;
1439 }
1440
1441 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1442 {
1443 sl->timer.function = hrtimer_wakeup;
1444 sl->task = task;
1445 }
1446 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1447
1448 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1449 {
1450 hrtimer_init_sleeper(t, current);
1451
1452 do {
1453 set_current_state(TASK_INTERRUPTIBLE);
1454 hrtimer_start_expires(&t->timer, mode);
1455 if (!hrtimer_active(&t->timer))
1456 t->task = NULL;
1457
1458 if (likely(t->task))
1459 schedule();
1460
1461 hrtimer_cancel(&t->timer);
1462 mode = HRTIMER_MODE_ABS;
1463
1464 } while (t->task && !signal_pending(current));
1465
1466 __set_current_state(TASK_RUNNING);
1467
1468 return t->task == NULL;
1469 }
1470
1471 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1472 {
1473 struct timespec rmt;
1474 ktime_t rem;
1475
1476 rem = hrtimer_expires_remaining(timer);
1477 if (rem.tv64 <= 0)
1478 return 0;
1479 rmt = ktime_to_timespec(rem);
1480
1481 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1482 return -EFAULT;
1483
1484 return 1;
1485 }
1486
1487 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1488 {
1489 struct hrtimer_sleeper t;
1490 struct timespec __user *rmtp;
1491 int ret = 0;
1492
1493 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1494 HRTIMER_MODE_ABS);
1495 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1496
1497 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1498 goto out;
1499
1500 rmtp = restart->nanosleep.rmtp;
1501 if (rmtp) {
1502 ret = update_rmtp(&t.timer, rmtp);
1503 if (ret <= 0)
1504 goto out;
1505 }
1506
1507 /* The other values in restart are already filled in */
1508 ret = -ERESTART_RESTARTBLOCK;
1509 out:
1510 destroy_hrtimer_on_stack(&t.timer);
1511 return ret;
1512 }
1513
1514 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1515 const enum hrtimer_mode mode, const clockid_t clockid)
1516 {
1517 struct restart_block *restart;
1518 struct hrtimer_sleeper t;
1519 int ret = 0;
1520 unsigned long slack;
1521
1522 slack = current->timer_slack_ns;
1523 if (rt_task(current))
1524 slack = 0;
1525
1526 hrtimer_init_on_stack(&t.timer, clockid, mode);
1527 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1528 if (do_nanosleep(&t, mode))
1529 goto out;
1530
1531 /* Absolute timers do not update the rmtp value and restart: */
1532 if (mode == HRTIMER_MODE_ABS) {
1533 ret = -ERESTARTNOHAND;
1534 goto out;
1535 }
1536
1537 if (rmtp) {
1538 ret = update_rmtp(&t.timer, rmtp);
1539 if (ret <= 0)
1540 goto out;
1541 }
1542
1543 restart = &current_thread_info()->restart_block;
1544 restart->fn = hrtimer_nanosleep_restart;
1545 restart->nanosleep.index = t.timer.base->index;
1546 restart->nanosleep.rmtp = rmtp;
1547 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1548
1549 ret = -ERESTART_RESTARTBLOCK;
1550 out:
1551 destroy_hrtimer_on_stack(&t.timer);
1552 return ret;
1553 }
1554
1555 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1556 struct timespec __user *, rmtp)
1557 {
1558 struct timespec tu;
1559
1560 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1561 return -EFAULT;
1562
1563 if (!timespec_valid(&tu))
1564 return -EINVAL;
1565
1566 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1567 }
1568
1569 /*
1570 * Functions related to boot-time initialization:
1571 */
1572 static void __cpuinit init_hrtimers_cpu(int cpu)
1573 {
1574 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1575 int i;
1576
1577 spin_lock_init(&cpu_base->lock);
1578
1579 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1580 cpu_base->clock_base[i].cpu_base = cpu_base;
1581
1582 hrtimer_init_hres(cpu_base);
1583 }
1584
1585 #ifdef CONFIG_HOTPLUG_CPU
1586
1587 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1588 struct hrtimer_clock_base *new_base)
1589 {
1590 struct hrtimer *timer;
1591 struct rb_node *node;
1592
1593 while ((node = rb_first(&old_base->active))) {
1594 timer = rb_entry(node, struct hrtimer, node);
1595 BUG_ON(hrtimer_callback_running(timer));
1596 debug_deactivate(timer);
1597
1598 /*
1599 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1600 * timer could be seen as !active and just vanish away
1601 * under us on another CPU
1602 */
1603 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1604 timer->base = new_base;
1605 /*
1606 * Enqueue the timers on the new cpu. This does not
1607 * reprogram the event device in case the timer
1608 * expires before the earliest on this CPU, but we run
1609 * hrtimer_interrupt after we migrated everything to
1610 * sort out already expired timers and reprogram the
1611 * event device.
1612 */
1613 enqueue_hrtimer(timer, new_base);
1614
1615 /* Clear the migration state bit */
1616 timer->state &= ~HRTIMER_STATE_MIGRATE;
1617 }
1618 }
1619
1620 static void migrate_hrtimers(int scpu)
1621 {
1622 struct hrtimer_cpu_base *old_base, *new_base;
1623 int i;
1624
1625 BUG_ON(cpu_online(scpu));
1626 tick_cancel_sched_timer(scpu);
1627
1628 local_irq_disable();
1629 old_base = &per_cpu(hrtimer_bases, scpu);
1630 new_base = &__get_cpu_var(hrtimer_bases);
1631 /*
1632 * The caller is globally serialized and nobody else
1633 * takes two locks at once, deadlock is not possible.
1634 */
1635 spin_lock(&new_base->lock);
1636 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1637
1638 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1639 migrate_hrtimer_list(&old_base->clock_base[i],
1640 &new_base->clock_base[i]);
1641 }
1642
1643 spin_unlock(&old_base->lock);
1644 spin_unlock(&new_base->lock);
1645
1646 /* Check, if we got expired work to do */
1647 __hrtimer_peek_ahead_timers();
1648 local_irq_enable();
1649 }
1650
1651 #endif /* CONFIG_HOTPLUG_CPU */
1652
1653 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1654 unsigned long action, void *hcpu)
1655 {
1656 int scpu = (long)hcpu;
1657
1658 switch (action) {
1659
1660 case CPU_UP_PREPARE:
1661 case CPU_UP_PREPARE_FROZEN:
1662 init_hrtimers_cpu(scpu);
1663 break;
1664
1665 #ifdef CONFIG_HOTPLUG_CPU
1666 case CPU_DYING:
1667 case CPU_DYING_FROZEN:
1668 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1669 break;
1670 case CPU_DEAD:
1671 case CPU_DEAD_FROZEN:
1672 {
1673 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1674 migrate_hrtimers(scpu);
1675 break;
1676 }
1677 #endif
1678
1679 default:
1680 break;
1681 }
1682
1683 return NOTIFY_OK;
1684 }
1685
1686 static struct notifier_block __cpuinitdata hrtimers_nb = {
1687 .notifier_call = hrtimer_cpu_notify,
1688 };
1689
1690 void __init hrtimers_init(void)
1691 {
1692 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1693 (void *)(long)smp_processor_id());
1694 register_cpu_notifier(&hrtimers_nb);
1695 #ifdef CONFIG_HIGH_RES_TIMERS
1696 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1697 #endif
1698 }
1699
1700 /**
1701 * schedule_hrtimeout_range - sleep until timeout
1702 * @expires: timeout value (ktime_t)
1703 * @delta: slack in expires timeout (ktime_t)
1704 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1705 *
1706 * Make the current task sleep until the given expiry time has
1707 * elapsed. The routine will return immediately unless
1708 * the current task state has been set (see set_current_state()).
1709 *
1710 * The @delta argument gives the kernel the freedom to schedule the
1711 * actual wakeup to a time that is both power and performance friendly.
1712 * The kernel give the normal best effort behavior for "@expires+@delta",
1713 * but may decide to fire the timer earlier, but no earlier than @expires.
1714 *
1715 * You can set the task state as follows -
1716 *
1717 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1718 * pass before the routine returns.
1719 *
1720 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1721 * delivered to the current task.
1722 *
1723 * The current task state is guaranteed to be TASK_RUNNING when this
1724 * routine returns.
1725 *
1726 * Returns 0 when the timer has expired otherwise -EINTR
1727 */
1728 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1729 const enum hrtimer_mode mode)
1730 {
1731 struct hrtimer_sleeper t;
1732
1733 /*
1734 * Optimize when a zero timeout value is given. It does not
1735 * matter whether this is an absolute or a relative time.
1736 */
1737 if (expires && !expires->tv64) {
1738 __set_current_state(TASK_RUNNING);
1739 return 0;
1740 }
1741
1742 /*
1743 * A NULL parameter means "inifinte"
1744 */
1745 if (!expires) {
1746 schedule();
1747 __set_current_state(TASK_RUNNING);
1748 return -EINTR;
1749 }
1750
1751 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1752 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1753
1754 hrtimer_init_sleeper(&t, current);
1755
1756 hrtimer_start_expires(&t.timer, mode);
1757 if (!hrtimer_active(&t.timer))
1758 t.task = NULL;
1759
1760 if (likely(t.task))
1761 schedule();
1762
1763 hrtimer_cancel(&t.timer);
1764 destroy_hrtimer_on_stack(&t.timer);
1765
1766 __set_current_state(TASK_RUNNING);
1767
1768 return !t.task ? 0 : -EINTR;
1769 }
1770 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1771
1772 /**
1773 * schedule_hrtimeout - sleep until timeout
1774 * @expires: timeout value (ktime_t)
1775 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1776 *
1777 * Make the current task sleep until the given expiry time has
1778 * elapsed. The routine will return immediately unless
1779 * the current task state has been set (see set_current_state()).
1780 *
1781 * You can set the task state as follows -
1782 *
1783 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1784 * pass before the routine returns.
1785 *
1786 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1787 * delivered to the current task.
1788 *
1789 * The current task state is guaranteed to be TASK_RUNNING when this
1790 * routine returns.
1791 *
1792 * Returns 0 when the timer has expired otherwise -EINTR
1793 */
1794 int __sched schedule_hrtimeout(ktime_t *expires,
1795 const enum hrtimer_mode mode)
1796 {
1797 return schedule_hrtimeout_range(expires, 0, mode);
1798 }
1799 EXPORT_SYMBOL_GPL(schedule_hrtimeout);