futex-prevent-requeue-pi-on-same-futex.patch futex: Forbid uaddr == uaddr2 in futex_r...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65
66 #include <asm/futex.h>
67
68 #include "rtmutex_common.h"
69
70 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
71 int __read_mostly futex_cmpxchg_enabled;
72 #endif
73
74 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
75
76 /*
77 * Futex flags used to encode options to functions and preserve them across
78 * restarts.
79 */
80 #define FLAGS_SHARED 0x01
81 #define FLAGS_CLOCKRT 0x02
82 #define FLAGS_HAS_TIMEOUT 0x04
83
84 /*
85 * Priority Inheritance state:
86 */
87 struct futex_pi_state {
88 /*
89 * list of 'owned' pi_state instances - these have to be
90 * cleaned up in do_exit() if the task exits prematurely:
91 */
92 struct list_head list;
93
94 /*
95 * The PI object:
96 */
97 struct rt_mutex pi_mutex;
98
99 struct task_struct *owner;
100 atomic_t refcount;
101
102 union futex_key key;
103 };
104
105 /**
106 * struct futex_q - The hashed futex queue entry, one per waiting task
107 * @list: priority-sorted list of tasks waiting on this futex
108 * @task: the task waiting on the futex
109 * @lock_ptr: the hash bucket lock
110 * @key: the key the futex is hashed on
111 * @pi_state: optional priority inheritance state
112 * @rt_waiter: rt_waiter storage for use with requeue_pi
113 * @requeue_pi_key: the requeue_pi target futex key
114 * @bitset: bitset for the optional bitmasked wakeup
115 *
116 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
117 * we can wake only the relevant ones (hashed queues may be shared).
118 *
119 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
120 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
121 * The order of wakeup is always to make the first condition true, then
122 * the second.
123 *
124 * PI futexes are typically woken before they are removed from the hash list via
125 * the rt_mutex code. See unqueue_me_pi().
126 */
127 struct futex_q {
128 struct plist_node list;
129
130 struct task_struct *task;
131 spinlock_t *lock_ptr;
132 union futex_key key;
133 struct futex_pi_state *pi_state;
134 struct rt_mutex_waiter *rt_waiter;
135 union futex_key *requeue_pi_key;
136 u32 bitset;
137 };
138
139 static const struct futex_q futex_q_init = {
140 /* list gets initialized in queue_me()*/
141 .key = FUTEX_KEY_INIT,
142 .bitset = FUTEX_BITSET_MATCH_ANY
143 };
144
145 /*
146 * Hash buckets are shared by all the futex_keys that hash to the same
147 * location. Each key may have multiple futex_q structures, one for each task
148 * waiting on a futex.
149 */
150 struct futex_hash_bucket {
151 spinlock_t lock;
152 struct plist_head chain;
153 };
154
155 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
156
157 /*
158 * We hash on the keys returned from get_futex_key (see below).
159 */
160 static struct futex_hash_bucket *hash_futex(union futex_key *key)
161 {
162 u32 hash = jhash2((u32*)&key->both.word,
163 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
164 key->both.offset);
165 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
166 }
167
168 /*
169 * Return 1 if two futex_keys are equal, 0 otherwise.
170 */
171 static inline int match_futex(union futex_key *key1, union futex_key *key2)
172 {
173 return (key1 && key2
174 && key1->both.word == key2->both.word
175 && key1->both.ptr == key2->both.ptr
176 && key1->both.offset == key2->both.offset);
177 }
178
179 /*
180 * Take a reference to the resource addressed by a key.
181 * Can be called while holding spinlocks.
182 *
183 */
184 static void get_futex_key_refs(union futex_key *key)
185 {
186 if (!key->both.ptr)
187 return;
188
189 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
190 case FUT_OFF_INODE:
191 ihold(key->shared.inode);
192 break;
193 case FUT_OFF_MMSHARED:
194 atomic_inc(&key->private.mm->mm_count);
195 break;
196 }
197 }
198
199 /*
200 * Drop a reference to the resource addressed by a key.
201 * The hash bucket spinlock must not be held.
202 */
203 static void drop_futex_key_refs(union futex_key *key)
204 {
205 if (!key->both.ptr) {
206 /* If we're here then we tried to put a key we failed to get */
207 WARN_ON_ONCE(1);
208 return;
209 }
210
211 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
212 case FUT_OFF_INODE:
213 iput(key->shared.inode);
214 break;
215 case FUT_OFF_MMSHARED:
216 mmdrop(key->private.mm);
217 break;
218 }
219 }
220
221 /**
222 * get_futex_key() - Get parameters which are the keys for a futex
223 * @uaddr: virtual address of the futex
224 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
225 * @key: address where result is stored.
226 * @rw: mapping needs to be read/write (values: VERIFY_READ,
227 * VERIFY_WRITE)
228 *
229 * Return: a negative error code or 0
230 *
231 * The key words are stored in *key on success.
232 *
233 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
234 * offset_within_page). For private mappings, it's (uaddr, current->mm).
235 * We can usually work out the index without swapping in the page.
236 *
237 * lock_page() might sleep, the caller should not hold a spinlock.
238 */
239 static int
240 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
241 {
242 unsigned long address = (unsigned long)uaddr;
243 struct mm_struct *mm = current->mm;
244 struct page *page, *page_head;
245 int err, ro = 0;
246
247 /*
248 * The futex address must be "naturally" aligned.
249 */
250 key->both.offset = address % PAGE_SIZE;
251 if (unlikely((address % sizeof(u32)) != 0))
252 return -EINVAL;
253 address -= key->both.offset;
254
255 /*
256 * PROCESS_PRIVATE futexes are fast.
257 * As the mm cannot disappear under us and the 'key' only needs
258 * virtual address, we dont even have to find the underlying vma.
259 * Note : We do have to check 'uaddr' is a valid user address,
260 * but access_ok() should be faster than find_vma()
261 */
262 if (!fshared) {
263 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
264 return -EFAULT;
265 key->private.mm = mm;
266 key->private.address = address;
267 get_futex_key_refs(key);
268 return 0;
269 }
270
271 again:
272 err = get_user_pages_fast(address, 1, 1, &page);
273 /*
274 * If write access is not required (eg. FUTEX_WAIT), try
275 * and get read-only access.
276 */
277 if (err == -EFAULT && rw == VERIFY_READ) {
278 err = get_user_pages_fast(address, 1, 0, &page);
279 ro = 1;
280 }
281 if (err < 0)
282 return err;
283 else
284 err = 0;
285
286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 page_head = page;
288 if (unlikely(PageTail(page))) {
289 put_page(page);
290 /* serialize against __split_huge_page_splitting() */
291 local_irq_disable();
292 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
293 page_head = compound_head(page);
294 /*
295 * page_head is valid pointer but we must pin
296 * it before taking the PG_lock and/or
297 * PG_compound_lock. The moment we re-enable
298 * irqs __split_huge_page_splitting() can
299 * return and the head page can be freed from
300 * under us. We can't take the PG_lock and/or
301 * PG_compound_lock on a page that could be
302 * freed from under us.
303 */
304 if (page != page_head) {
305 get_page(page_head);
306 put_page(page);
307 }
308 local_irq_enable();
309 } else {
310 local_irq_enable();
311 goto again;
312 }
313 }
314 #else
315 page_head = compound_head(page);
316 if (page != page_head) {
317 get_page(page_head);
318 put_page(page);
319 }
320 #endif
321
322 lock_page(page_head);
323
324 /*
325 * If page_head->mapping is NULL, then it cannot be a PageAnon
326 * page; but it might be the ZERO_PAGE or in the gate area or
327 * in a special mapping (all cases which we are happy to fail);
328 * or it may have been a good file page when get_user_pages_fast
329 * found it, but truncated or holepunched or subjected to
330 * invalidate_complete_page2 before we got the page lock (also
331 * cases which we are happy to fail). And we hold a reference,
332 * so refcount care in invalidate_complete_page's remove_mapping
333 * prevents drop_caches from setting mapping to NULL beneath us.
334 *
335 * The case we do have to guard against is when memory pressure made
336 * shmem_writepage move it from filecache to swapcache beneath us:
337 * an unlikely race, but we do need to retry for page_head->mapping.
338 */
339 if (!page_head->mapping) {
340 int shmem_swizzled = PageSwapCache(page_head);
341 unlock_page(page_head);
342 put_page(page_head);
343 if (shmem_swizzled)
344 goto again;
345 return -EFAULT;
346 }
347
348 /*
349 * Private mappings are handled in a simple way.
350 *
351 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352 * it's a read-only handle, it's expected that futexes attach to
353 * the object not the particular process.
354 */
355 if (PageAnon(page_head)) {
356 /*
357 * A RO anonymous page will never change and thus doesn't make
358 * sense for futex operations.
359 */
360 if (ro) {
361 err = -EFAULT;
362 goto out;
363 }
364
365 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
366 key->private.mm = mm;
367 key->private.address = address;
368 } else {
369 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
370 key->shared.inode = page_head->mapping->host;
371 key->shared.pgoff = basepage_index(page);
372 }
373
374 get_futex_key_refs(key);
375
376 out:
377 unlock_page(page_head);
378 put_page(page_head);
379 return err;
380 }
381
382 static inline void put_futex_key(union futex_key *key)
383 {
384 drop_futex_key_refs(key);
385 }
386
387 /**
388 * fault_in_user_writeable() - Fault in user address and verify RW access
389 * @uaddr: pointer to faulting user space address
390 *
391 * Slow path to fixup the fault we just took in the atomic write
392 * access to @uaddr.
393 *
394 * We have no generic implementation of a non-destructive write to the
395 * user address. We know that we faulted in the atomic pagefault
396 * disabled section so we can as well avoid the #PF overhead by
397 * calling get_user_pages() right away.
398 */
399 static int fault_in_user_writeable(u32 __user *uaddr)
400 {
401 struct mm_struct *mm = current->mm;
402 int ret;
403
404 down_read(&mm->mmap_sem);
405 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406 FAULT_FLAG_WRITE);
407 up_read(&mm->mmap_sem);
408
409 return ret < 0 ? ret : 0;
410 }
411
412 /**
413 * futex_top_waiter() - Return the highest priority waiter on a futex
414 * @hb: the hash bucket the futex_q's reside in
415 * @key: the futex key (to distinguish it from other futex futex_q's)
416 *
417 * Must be called with the hb lock held.
418 */
419 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420 union futex_key *key)
421 {
422 struct futex_q *this;
423
424 plist_for_each_entry(this, &hb->chain, list) {
425 if (match_futex(&this->key, key))
426 return this;
427 }
428 return NULL;
429 }
430
431 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432 u32 uval, u32 newval)
433 {
434 int ret;
435
436 pagefault_disable();
437 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
438 pagefault_enable();
439
440 return ret;
441 }
442
443 static int get_futex_value_locked(u32 *dest, u32 __user *from)
444 {
445 int ret;
446
447 pagefault_disable();
448 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
449 pagefault_enable();
450
451 return ret ? -EFAULT : 0;
452 }
453
454
455 /*
456 * PI code:
457 */
458 static int refill_pi_state_cache(void)
459 {
460 struct futex_pi_state *pi_state;
461
462 if (likely(current->pi_state_cache))
463 return 0;
464
465 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
466
467 if (!pi_state)
468 return -ENOMEM;
469
470 INIT_LIST_HEAD(&pi_state->list);
471 /* pi_mutex gets initialized later */
472 pi_state->owner = NULL;
473 atomic_set(&pi_state->refcount, 1);
474 pi_state->key = FUTEX_KEY_INIT;
475
476 current->pi_state_cache = pi_state;
477
478 return 0;
479 }
480
481 static struct futex_pi_state * alloc_pi_state(void)
482 {
483 struct futex_pi_state *pi_state = current->pi_state_cache;
484
485 WARN_ON(!pi_state);
486 current->pi_state_cache = NULL;
487
488 return pi_state;
489 }
490
491 static void free_pi_state(struct futex_pi_state *pi_state)
492 {
493 if (!atomic_dec_and_test(&pi_state->refcount))
494 return;
495
496 /*
497 * If pi_state->owner is NULL, the owner is most probably dying
498 * and has cleaned up the pi_state already
499 */
500 if (pi_state->owner) {
501 raw_spin_lock_irq(&pi_state->owner->pi_lock);
502 list_del_init(&pi_state->list);
503 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
504
505 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506 }
507
508 if (current->pi_state_cache)
509 kfree(pi_state);
510 else {
511 /*
512 * pi_state->list is already empty.
513 * clear pi_state->owner.
514 * refcount is at 0 - put it back to 1.
515 */
516 pi_state->owner = NULL;
517 atomic_set(&pi_state->refcount, 1);
518 current->pi_state_cache = pi_state;
519 }
520 }
521
522 /*
523 * Look up the task based on what TID userspace gave us.
524 * We dont trust it.
525 */
526 static struct task_struct * futex_find_get_task(pid_t pid)
527 {
528 struct task_struct *p;
529
530 rcu_read_lock();
531 p = find_task_by_vpid(pid);
532 if (p)
533 get_task_struct(p);
534
535 rcu_read_unlock();
536
537 return p;
538 }
539
540 /*
541 * This task is holding PI mutexes at exit time => bad.
542 * Kernel cleans up PI-state, but userspace is likely hosed.
543 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 */
545 void exit_pi_state_list(struct task_struct *curr)
546 {
547 struct list_head *next, *head = &curr->pi_state_list;
548 struct futex_pi_state *pi_state;
549 struct futex_hash_bucket *hb;
550 union futex_key key = FUTEX_KEY_INIT;
551
552 if (!futex_cmpxchg_enabled)
553 return;
554 /*
555 * We are a ZOMBIE and nobody can enqueue itself on
556 * pi_state_list anymore, but we have to be careful
557 * versus waiters unqueueing themselves:
558 */
559 raw_spin_lock_irq(&curr->pi_lock);
560 while (!list_empty(head)) {
561
562 next = head->next;
563 pi_state = list_entry(next, struct futex_pi_state, list);
564 key = pi_state->key;
565 hb = hash_futex(&key);
566 raw_spin_unlock_irq(&curr->pi_lock);
567
568 spin_lock(&hb->lock);
569
570 raw_spin_lock_irq(&curr->pi_lock);
571 /*
572 * We dropped the pi-lock, so re-check whether this
573 * task still owns the PI-state:
574 */
575 if (head->next != next) {
576 spin_unlock(&hb->lock);
577 continue;
578 }
579
580 WARN_ON(pi_state->owner != curr);
581 WARN_ON(list_empty(&pi_state->list));
582 list_del_init(&pi_state->list);
583 pi_state->owner = NULL;
584 raw_spin_unlock_irq(&curr->pi_lock);
585
586 rt_mutex_unlock(&pi_state->pi_mutex);
587
588 spin_unlock(&hb->lock);
589
590 raw_spin_lock_irq(&curr->pi_lock);
591 }
592 raw_spin_unlock_irq(&curr->pi_lock);
593 }
594
595 static int
596 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
597 union futex_key *key, struct futex_pi_state **ps,
598 struct task_struct *task)
599 {
600 struct futex_pi_state *pi_state = NULL;
601 struct futex_q *this, *next;
602 struct plist_head *head;
603 struct task_struct *p;
604 pid_t pid = uval & FUTEX_TID_MASK;
605
606 head = &hb->chain;
607
608 plist_for_each_entry_safe(this, next, head, list) {
609 if (match_futex(&this->key, key)) {
610 /*
611 * Another waiter already exists - bump up
612 * the refcount and return its pi_state:
613 */
614 pi_state = this->pi_state;
615 /*
616 * Userspace might have messed up non-PI and PI futexes
617 */
618 if (unlikely(!pi_state))
619 return -EINVAL;
620
621 WARN_ON(!atomic_read(&pi_state->refcount));
622
623 /*
624 * When pi_state->owner is NULL then the owner died
625 * and another waiter is on the fly. pi_state->owner
626 * is fixed up by the task which acquires
627 * pi_state->rt_mutex.
628 *
629 * We do not check for pid == 0 which can happen when
630 * the owner died and robust_list_exit() cleared the
631 * TID.
632 */
633 if (pid && pi_state->owner) {
634 /*
635 * Bail out if user space manipulated the
636 * futex value.
637 */
638 if (pid != task_pid_vnr(pi_state->owner))
639 return -EINVAL;
640 }
641
642 /*
643 * Protect against a corrupted uval. If uval
644 * is 0x80000000 then pid is 0 and the waiter
645 * bit is set. So the deadlock check in the
646 * calling code has failed and we did not fall
647 * into the check above due to !pid.
648 */
649 if (task && pi_state->owner == task)
650 return -EDEADLK;
651
652 atomic_inc(&pi_state->refcount);
653 *ps = pi_state;
654
655 return 0;
656 }
657 }
658
659 /*
660 * We are the first waiter - try to look up the real owner and attach
661 * the new pi_state to it, but bail out when TID = 0
662 */
663 if (!pid)
664 return -ESRCH;
665 p = futex_find_get_task(pid);
666 if (!p)
667 return -ESRCH;
668
669 if (!p->mm) {
670 put_task_struct(p);
671 return -EPERM;
672 }
673
674 /*
675 * We need to look at the task state flags to figure out,
676 * whether the task is exiting. To protect against the do_exit
677 * change of the task flags, we do this protected by
678 * p->pi_lock:
679 */
680 raw_spin_lock_irq(&p->pi_lock);
681 if (unlikely(p->flags & PF_EXITING)) {
682 /*
683 * The task is on the way out. When PF_EXITPIDONE is
684 * set, we know that the task has finished the
685 * cleanup:
686 */
687 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
688
689 raw_spin_unlock_irq(&p->pi_lock);
690 put_task_struct(p);
691 return ret;
692 }
693
694 pi_state = alloc_pi_state();
695
696 /*
697 * Initialize the pi_mutex in locked state and make 'p'
698 * the owner of it:
699 */
700 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
701
702 /* Store the key for possible exit cleanups: */
703 pi_state->key = *key;
704
705 WARN_ON(!list_empty(&pi_state->list));
706 list_add(&pi_state->list, &p->pi_state_list);
707 pi_state->owner = p;
708 raw_spin_unlock_irq(&p->pi_lock);
709
710 put_task_struct(p);
711
712 *ps = pi_state;
713
714 return 0;
715 }
716
717 /**
718 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
719 * @uaddr: the pi futex user address
720 * @hb: the pi futex hash bucket
721 * @key: the futex key associated with uaddr and hb
722 * @ps: the pi_state pointer where we store the result of the
723 * lookup
724 * @task: the task to perform the atomic lock work for. This will
725 * be "current" except in the case of requeue pi.
726 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
727 *
728 * Return:
729 * 0 - ready to wait;
730 * 1 - acquired the lock;
731 * <0 - error
732 *
733 * The hb->lock and futex_key refs shall be held by the caller.
734 */
735 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
736 union futex_key *key,
737 struct futex_pi_state **ps,
738 struct task_struct *task, int set_waiters)
739 {
740 int lock_taken, ret, force_take = 0;
741 u32 uval, newval, curval, vpid = task_pid_vnr(task);
742
743 retry:
744 ret = lock_taken = 0;
745
746 /*
747 * To avoid races, we attempt to take the lock here again
748 * (by doing a 0 -> TID atomic cmpxchg), while holding all
749 * the locks. It will most likely not succeed.
750 */
751 newval = vpid;
752 if (set_waiters)
753 newval |= FUTEX_WAITERS;
754
755 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
756 return -EFAULT;
757
758 /*
759 * Detect deadlocks.
760 */
761 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
762 return -EDEADLK;
763
764 /*
765 * Surprise - we got the lock. Just return to userspace:
766 */
767 if (unlikely(!curval))
768 return 1;
769
770 uval = curval;
771
772 /*
773 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
774 * to wake at the next unlock.
775 */
776 newval = curval | FUTEX_WAITERS;
777
778 /*
779 * Should we force take the futex? See below.
780 */
781 if (unlikely(force_take)) {
782 /*
783 * Keep the OWNER_DIED and the WAITERS bit and set the
784 * new TID value.
785 */
786 newval = (curval & ~FUTEX_TID_MASK) | vpid;
787 force_take = 0;
788 lock_taken = 1;
789 }
790
791 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
792 return -EFAULT;
793 if (unlikely(curval != uval))
794 goto retry;
795
796 /*
797 * We took the lock due to forced take over.
798 */
799 if (unlikely(lock_taken))
800 return 1;
801
802 /*
803 * We dont have the lock. Look up the PI state (or create it if
804 * we are the first waiter):
805 */
806 ret = lookup_pi_state(uval, hb, key, ps, task);
807
808 if (unlikely(ret)) {
809 switch (ret) {
810 case -ESRCH:
811 /*
812 * We failed to find an owner for this
813 * futex. So we have no pi_state to block
814 * on. This can happen in two cases:
815 *
816 * 1) The owner died
817 * 2) A stale FUTEX_WAITERS bit
818 *
819 * Re-read the futex value.
820 */
821 if (get_futex_value_locked(&curval, uaddr))
822 return -EFAULT;
823
824 /*
825 * If the owner died or we have a stale
826 * WAITERS bit the owner TID in the user space
827 * futex is 0.
828 */
829 if (!(curval & FUTEX_TID_MASK)) {
830 force_take = 1;
831 goto retry;
832 }
833 default:
834 break;
835 }
836 }
837
838 return ret;
839 }
840
841 /**
842 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
843 * @q: The futex_q to unqueue
844 *
845 * The q->lock_ptr must not be NULL and must be held by the caller.
846 */
847 static void __unqueue_futex(struct futex_q *q)
848 {
849 struct futex_hash_bucket *hb;
850
851 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
852 || WARN_ON(plist_node_empty(&q->list)))
853 return;
854
855 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
856 plist_del(&q->list, &hb->chain);
857 }
858
859 /*
860 * The hash bucket lock must be held when this is called.
861 * Afterwards, the futex_q must not be accessed.
862 */
863 static void wake_futex(struct futex_q *q)
864 {
865 struct task_struct *p = q->task;
866
867 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
868 return;
869
870 /*
871 * We set q->lock_ptr = NULL _before_ we wake up the task. If
872 * a non-futex wake up happens on another CPU then the task
873 * might exit and p would dereference a non-existing task
874 * struct. Prevent this by holding a reference on p across the
875 * wake up.
876 */
877 get_task_struct(p);
878
879 __unqueue_futex(q);
880 /*
881 * The waiting task can free the futex_q as soon as
882 * q->lock_ptr = NULL is written, without taking any locks. A
883 * memory barrier is required here to prevent the following
884 * store to lock_ptr from getting ahead of the plist_del.
885 */
886 smp_wmb();
887 q->lock_ptr = NULL;
888
889 wake_up_state(p, TASK_NORMAL);
890 put_task_struct(p);
891 }
892
893 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
894 {
895 struct task_struct *new_owner;
896 struct futex_pi_state *pi_state = this->pi_state;
897 u32 uninitialized_var(curval), newval;
898
899 if (!pi_state)
900 return -EINVAL;
901
902 /*
903 * If current does not own the pi_state then the futex is
904 * inconsistent and user space fiddled with the futex value.
905 */
906 if (pi_state->owner != current)
907 return -EINVAL;
908
909 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
910 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
911
912 /*
913 * It is possible that the next waiter (the one that brought
914 * this owner to the kernel) timed out and is no longer
915 * waiting on the lock.
916 */
917 if (!new_owner)
918 new_owner = this->task;
919
920 /*
921 * We pass it to the next owner. (The WAITERS bit is always
922 * kept enabled while there is PI state around. We must also
923 * preserve the owner died bit.)
924 */
925 if (!(uval & FUTEX_OWNER_DIED)) {
926 int ret = 0;
927
928 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
929
930 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
931 ret = -EFAULT;
932 else if (curval != uval)
933 ret = -EINVAL;
934 if (ret) {
935 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
936 return ret;
937 }
938 }
939
940 raw_spin_lock_irq(&pi_state->owner->pi_lock);
941 WARN_ON(list_empty(&pi_state->list));
942 list_del_init(&pi_state->list);
943 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
944
945 raw_spin_lock_irq(&new_owner->pi_lock);
946 WARN_ON(!list_empty(&pi_state->list));
947 list_add(&pi_state->list, &new_owner->pi_state_list);
948 pi_state->owner = new_owner;
949 raw_spin_unlock_irq(&new_owner->pi_lock);
950
951 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
952 rt_mutex_unlock(&pi_state->pi_mutex);
953
954 return 0;
955 }
956
957 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
958 {
959 u32 uninitialized_var(oldval);
960
961 /*
962 * There is no waiter, so we unlock the futex. The owner died
963 * bit has not to be preserved here. We are the owner:
964 */
965 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
966 return -EFAULT;
967 if (oldval != uval)
968 return -EAGAIN;
969
970 return 0;
971 }
972
973 /*
974 * Express the locking dependencies for lockdep:
975 */
976 static inline void
977 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
978 {
979 if (hb1 <= hb2) {
980 spin_lock(&hb1->lock);
981 if (hb1 < hb2)
982 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
983 } else { /* hb1 > hb2 */
984 spin_lock(&hb2->lock);
985 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
986 }
987 }
988
989 static inline void
990 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
991 {
992 spin_unlock(&hb1->lock);
993 if (hb1 != hb2)
994 spin_unlock(&hb2->lock);
995 }
996
997 /*
998 * Wake up waiters matching bitset queued on this futex (uaddr).
999 */
1000 static int
1001 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1002 {
1003 struct futex_hash_bucket *hb;
1004 struct futex_q *this, *next;
1005 struct plist_head *head;
1006 union futex_key key = FUTEX_KEY_INIT;
1007 int ret;
1008
1009 if (!bitset)
1010 return -EINVAL;
1011
1012 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1013 if (unlikely(ret != 0))
1014 goto out;
1015
1016 hb = hash_futex(&key);
1017 spin_lock(&hb->lock);
1018 head = &hb->chain;
1019
1020 plist_for_each_entry_safe(this, next, head, list) {
1021 if (match_futex (&this->key, &key)) {
1022 if (this->pi_state || this->rt_waiter) {
1023 ret = -EINVAL;
1024 break;
1025 }
1026
1027 /* Check if one of the bits is set in both bitsets */
1028 if (!(this->bitset & bitset))
1029 continue;
1030
1031 wake_futex(this);
1032 if (++ret >= nr_wake)
1033 break;
1034 }
1035 }
1036
1037 spin_unlock(&hb->lock);
1038 put_futex_key(&key);
1039 out:
1040 return ret;
1041 }
1042
1043 /*
1044 * Wake up all waiters hashed on the physical page that is mapped
1045 * to this virtual address:
1046 */
1047 static int
1048 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1049 int nr_wake, int nr_wake2, int op)
1050 {
1051 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1052 struct futex_hash_bucket *hb1, *hb2;
1053 struct plist_head *head;
1054 struct futex_q *this, *next;
1055 int ret, op_ret;
1056
1057 retry:
1058 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1059 if (unlikely(ret != 0))
1060 goto out;
1061 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1062 if (unlikely(ret != 0))
1063 goto out_put_key1;
1064
1065 hb1 = hash_futex(&key1);
1066 hb2 = hash_futex(&key2);
1067
1068 retry_private:
1069 double_lock_hb(hb1, hb2);
1070 op_ret = futex_atomic_op_inuser(op, uaddr2);
1071 if (unlikely(op_ret < 0)) {
1072
1073 double_unlock_hb(hb1, hb2);
1074
1075 #ifndef CONFIG_MMU
1076 /*
1077 * we don't get EFAULT from MMU faults if we don't have an MMU,
1078 * but we might get them from range checking
1079 */
1080 ret = op_ret;
1081 goto out_put_keys;
1082 #endif
1083
1084 if (unlikely(op_ret != -EFAULT)) {
1085 ret = op_ret;
1086 goto out_put_keys;
1087 }
1088
1089 ret = fault_in_user_writeable(uaddr2);
1090 if (ret)
1091 goto out_put_keys;
1092
1093 if (!(flags & FLAGS_SHARED))
1094 goto retry_private;
1095
1096 put_futex_key(&key2);
1097 put_futex_key(&key1);
1098 goto retry;
1099 }
1100
1101 head = &hb1->chain;
1102
1103 plist_for_each_entry_safe(this, next, head, list) {
1104 if (match_futex (&this->key, &key1)) {
1105 if (this->pi_state || this->rt_waiter) {
1106 ret = -EINVAL;
1107 goto out_unlock;
1108 }
1109 wake_futex(this);
1110 if (++ret >= nr_wake)
1111 break;
1112 }
1113 }
1114
1115 if (op_ret > 0) {
1116 head = &hb2->chain;
1117
1118 op_ret = 0;
1119 plist_for_each_entry_safe(this, next, head, list) {
1120 if (match_futex (&this->key, &key2)) {
1121 if (this->pi_state || this->rt_waiter) {
1122 ret = -EINVAL;
1123 goto out_unlock;
1124 }
1125 wake_futex(this);
1126 if (++op_ret >= nr_wake2)
1127 break;
1128 }
1129 }
1130 ret += op_ret;
1131 }
1132
1133 out_unlock:
1134 double_unlock_hb(hb1, hb2);
1135 out_put_keys:
1136 put_futex_key(&key2);
1137 out_put_key1:
1138 put_futex_key(&key1);
1139 out:
1140 return ret;
1141 }
1142
1143 /**
1144 * requeue_futex() - Requeue a futex_q from one hb to another
1145 * @q: the futex_q to requeue
1146 * @hb1: the source hash_bucket
1147 * @hb2: the target hash_bucket
1148 * @key2: the new key for the requeued futex_q
1149 */
1150 static inline
1151 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1152 struct futex_hash_bucket *hb2, union futex_key *key2)
1153 {
1154
1155 /*
1156 * If key1 and key2 hash to the same bucket, no need to
1157 * requeue.
1158 */
1159 if (likely(&hb1->chain != &hb2->chain)) {
1160 plist_del(&q->list, &hb1->chain);
1161 plist_add(&q->list, &hb2->chain);
1162 q->lock_ptr = &hb2->lock;
1163 }
1164 get_futex_key_refs(key2);
1165 q->key = *key2;
1166 }
1167
1168 /**
1169 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1170 * @q: the futex_q
1171 * @key: the key of the requeue target futex
1172 * @hb: the hash_bucket of the requeue target futex
1173 *
1174 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1175 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1176 * to the requeue target futex so the waiter can detect the wakeup on the right
1177 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1178 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1179 * to protect access to the pi_state to fixup the owner later. Must be called
1180 * with both q->lock_ptr and hb->lock held.
1181 */
1182 static inline
1183 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1184 struct futex_hash_bucket *hb)
1185 {
1186 get_futex_key_refs(key);
1187 q->key = *key;
1188
1189 __unqueue_futex(q);
1190
1191 WARN_ON(!q->rt_waiter);
1192 q->rt_waiter = NULL;
1193
1194 q->lock_ptr = &hb->lock;
1195
1196 wake_up_state(q->task, TASK_NORMAL);
1197 }
1198
1199 /**
1200 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1201 * @pifutex: the user address of the to futex
1202 * @hb1: the from futex hash bucket, must be locked by the caller
1203 * @hb2: the to futex hash bucket, must be locked by the caller
1204 * @key1: the from futex key
1205 * @key2: the to futex key
1206 * @ps: address to store the pi_state pointer
1207 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1208 *
1209 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1210 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1211 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1212 * hb1 and hb2 must be held by the caller.
1213 *
1214 * Return:
1215 * 0 - failed to acquire the lock atomically;
1216 * >0 - acquired the lock, return value is vpid of the top_waiter
1217 * <0 - error
1218 */
1219 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1220 struct futex_hash_bucket *hb1,
1221 struct futex_hash_bucket *hb2,
1222 union futex_key *key1, union futex_key *key2,
1223 struct futex_pi_state **ps, int set_waiters)
1224 {
1225 struct futex_q *top_waiter = NULL;
1226 u32 curval;
1227 int ret, vpid;
1228
1229 if (get_futex_value_locked(&curval, pifutex))
1230 return -EFAULT;
1231
1232 /*
1233 * Find the top_waiter and determine if there are additional waiters.
1234 * If the caller intends to requeue more than 1 waiter to pifutex,
1235 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1236 * as we have means to handle the possible fault. If not, don't set
1237 * the bit unecessarily as it will force the subsequent unlock to enter
1238 * the kernel.
1239 */
1240 top_waiter = futex_top_waiter(hb1, key1);
1241
1242 /* There are no waiters, nothing for us to do. */
1243 if (!top_waiter)
1244 return 0;
1245
1246 /* Ensure we requeue to the expected futex. */
1247 if (!match_futex(top_waiter->requeue_pi_key, key2))
1248 return -EINVAL;
1249
1250 /*
1251 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1252 * the contended case or if set_waiters is 1. The pi_state is returned
1253 * in ps in contended cases.
1254 */
1255 vpid = task_pid_vnr(top_waiter->task);
1256 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1257 set_waiters);
1258 if (ret == 1) {
1259 requeue_pi_wake_futex(top_waiter, key2, hb2);
1260 return vpid;
1261 }
1262 return ret;
1263 }
1264
1265 /**
1266 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1267 * @uaddr1: source futex user address
1268 * @flags: futex flags (FLAGS_SHARED, etc.)
1269 * @uaddr2: target futex user address
1270 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1271 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1272 * @cmpval: @uaddr1 expected value (or %NULL)
1273 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1274 * pi futex (pi to pi requeue is not supported)
1275 *
1276 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1277 * uaddr2 atomically on behalf of the top waiter.
1278 *
1279 * Return:
1280 * >=0 - on success, the number of tasks requeued or woken;
1281 * <0 - on error
1282 */
1283 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1284 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1285 u32 *cmpval, int requeue_pi)
1286 {
1287 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1288 int drop_count = 0, task_count = 0, ret;
1289 struct futex_pi_state *pi_state = NULL;
1290 struct futex_hash_bucket *hb1, *hb2;
1291 struct plist_head *head1;
1292 struct futex_q *this, *next;
1293
1294 if (requeue_pi) {
1295 /*
1296 * Requeue PI only works on two distinct uaddrs. This
1297 * check is only valid for private futexes. See below.
1298 */
1299 if (uaddr1 == uaddr2)
1300 return -EINVAL;
1301
1302 /*
1303 * requeue_pi requires a pi_state, try to allocate it now
1304 * without any locks in case it fails.
1305 */
1306 if (refill_pi_state_cache())
1307 return -ENOMEM;
1308 /*
1309 * requeue_pi must wake as many tasks as it can, up to nr_wake
1310 * + nr_requeue, since it acquires the rt_mutex prior to
1311 * returning to userspace, so as to not leave the rt_mutex with
1312 * waiters and no owner. However, second and third wake-ups
1313 * cannot be predicted as they involve race conditions with the
1314 * first wake and a fault while looking up the pi_state. Both
1315 * pthread_cond_signal() and pthread_cond_broadcast() should
1316 * use nr_wake=1.
1317 */
1318 if (nr_wake != 1)
1319 return -EINVAL;
1320 }
1321
1322 retry:
1323 if (pi_state != NULL) {
1324 /*
1325 * We will have to lookup the pi_state again, so free this one
1326 * to keep the accounting correct.
1327 */
1328 free_pi_state(pi_state);
1329 pi_state = NULL;
1330 }
1331
1332 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1333 if (unlikely(ret != 0))
1334 goto out;
1335 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1336 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1337 if (unlikely(ret != 0))
1338 goto out_put_key1;
1339
1340 /*
1341 * The check above which compares uaddrs is not sufficient for
1342 * shared futexes. We need to compare the keys:
1343 */
1344 if (requeue_pi && match_futex(&key1, &key2)) {
1345 ret = -EINVAL;
1346 goto out_put_keys;
1347 }
1348
1349 hb1 = hash_futex(&key1);
1350 hb2 = hash_futex(&key2);
1351
1352 retry_private:
1353 double_lock_hb(hb1, hb2);
1354
1355 if (likely(cmpval != NULL)) {
1356 u32 curval;
1357
1358 ret = get_futex_value_locked(&curval, uaddr1);
1359
1360 if (unlikely(ret)) {
1361 double_unlock_hb(hb1, hb2);
1362
1363 ret = get_user(curval, uaddr1);
1364 if (ret)
1365 goto out_put_keys;
1366
1367 if (!(flags & FLAGS_SHARED))
1368 goto retry_private;
1369
1370 put_futex_key(&key2);
1371 put_futex_key(&key1);
1372 goto retry;
1373 }
1374 if (curval != *cmpval) {
1375 ret = -EAGAIN;
1376 goto out_unlock;
1377 }
1378 }
1379
1380 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1381 /*
1382 * Attempt to acquire uaddr2 and wake the top waiter. If we
1383 * intend to requeue waiters, force setting the FUTEX_WAITERS
1384 * bit. We force this here where we are able to easily handle
1385 * faults rather in the requeue loop below.
1386 */
1387 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1388 &key2, &pi_state, nr_requeue);
1389
1390 /*
1391 * At this point the top_waiter has either taken uaddr2 or is
1392 * waiting on it. If the former, then the pi_state will not
1393 * exist yet, look it up one more time to ensure we have a
1394 * reference to it. If the lock was taken, ret contains the
1395 * vpid of the top waiter task.
1396 */
1397 if (ret > 0) {
1398 WARN_ON(pi_state);
1399 drop_count++;
1400 task_count++;
1401 /*
1402 * If we acquired the lock, then the user
1403 * space value of uaddr2 should be vpid. It
1404 * cannot be changed by the top waiter as it
1405 * is blocked on hb2 lock if it tries to do
1406 * so. If something fiddled with it behind our
1407 * back the pi state lookup might unearth
1408 * it. So we rather use the known value than
1409 * rereading and handing potential crap to
1410 * lookup_pi_state.
1411 */
1412 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1413 }
1414
1415 switch (ret) {
1416 case 0:
1417 break;
1418 case -EFAULT:
1419 double_unlock_hb(hb1, hb2);
1420 put_futex_key(&key2);
1421 put_futex_key(&key1);
1422 ret = fault_in_user_writeable(uaddr2);
1423 if (!ret)
1424 goto retry;
1425 goto out;
1426 case -EAGAIN:
1427 /* The owner was exiting, try again. */
1428 double_unlock_hb(hb1, hb2);
1429 put_futex_key(&key2);
1430 put_futex_key(&key1);
1431 cond_resched();
1432 goto retry;
1433 default:
1434 goto out_unlock;
1435 }
1436 }
1437
1438 head1 = &hb1->chain;
1439 plist_for_each_entry_safe(this, next, head1, list) {
1440 if (task_count - nr_wake >= nr_requeue)
1441 break;
1442
1443 if (!match_futex(&this->key, &key1))
1444 continue;
1445
1446 /*
1447 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1448 * be paired with each other and no other futex ops.
1449 *
1450 * We should never be requeueing a futex_q with a pi_state,
1451 * which is awaiting a futex_unlock_pi().
1452 */
1453 if ((requeue_pi && !this->rt_waiter) ||
1454 (!requeue_pi && this->rt_waiter) ||
1455 this->pi_state) {
1456 ret = -EINVAL;
1457 break;
1458 }
1459
1460 /*
1461 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1462 * lock, we already woke the top_waiter. If not, it will be
1463 * woken by futex_unlock_pi().
1464 */
1465 if (++task_count <= nr_wake && !requeue_pi) {
1466 wake_futex(this);
1467 continue;
1468 }
1469
1470 /* Ensure we requeue to the expected futex for requeue_pi. */
1471 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1472 ret = -EINVAL;
1473 break;
1474 }
1475
1476 /*
1477 * Requeue nr_requeue waiters and possibly one more in the case
1478 * of requeue_pi if we couldn't acquire the lock atomically.
1479 */
1480 if (requeue_pi) {
1481 /* Prepare the waiter to take the rt_mutex. */
1482 atomic_inc(&pi_state->refcount);
1483 this->pi_state = pi_state;
1484 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1485 this->rt_waiter,
1486 this->task, 1);
1487 if (ret == 1) {
1488 /* We got the lock. */
1489 requeue_pi_wake_futex(this, &key2, hb2);
1490 drop_count++;
1491 continue;
1492 } else if (ret) {
1493 /* -EDEADLK */
1494 this->pi_state = NULL;
1495 free_pi_state(pi_state);
1496 goto out_unlock;
1497 }
1498 }
1499 requeue_futex(this, hb1, hb2, &key2);
1500 drop_count++;
1501 }
1502
1503 out_unlock:
1504 double_unlock_hb(hb1, hb2);
1505
1506 /*
1507 * drop_futex_key_refs() must be called outside the spinlocks. During
1508 * the requeue we moved futex_q's from the hash bucket at key1 to the
1509 * one at key2 and updated their key pointer. We no longer need to
1510 * hold the references to key1.
1511 */
1512 while (--drop_count >= 0)
1513 drop_futex_key_refs(&key1);
1514
1515 out_put_keys:
1516 put_futex_key(&key2);
1517 out_put_key1:
1518 put_futex_key(&key1);
1519 out:
1520 if (pi_state != NULL)
1521 free_pi_state(pi_state);
1522 return ret ? ret : task_count;
1523 }
1524
1525 /* The key must be already stored in q->key. */
1526 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1527 __acquires(&hb->lock)
1528 {
1529 struct futex_hash_bucket *hb;
1530
1531 hb = hash_futex(&q->key);
1532 q->lock_ptr = &hb->lock;
1533
1534 spin_lock(&hb->lock);
1535 return hb;
1536 }
1537
1538 static inline void
1539 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1540 __releases(&hb->lock)
1541 {
1542 spin_unlock(&hb->lock);
1543 }
1544
1545 /**
1546 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1547 * @q: The futex_q to enqueue
1548 * @hb: The destination hash bucket
1549 *
1550 * The hb->lock must be held by the caller, and is released here. A call to
1551 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1552 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1553 * or nothing if the unqueue is done as part of the wake process and the unqueue
1554 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1555 * an example).
1556 */
1557 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1558 __releases(&hb->lock)
1559 {
1560 int prio;
1561
1562 /*
1563 * The priority used to register this element is
1564 * - either the real thread-priority for the real-time threads
1565 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1566 * - or MAX_RT_PRIO for non-RT threads.
1567 * Thus, all RT-threads are woken first in priority order, and
1568 * the others are woken last, in FIFO order.
1569 */
1570 prio = min(current->normal_prio, MAX_RT_PRIO);
1571
1572 plist_node_init(&q->list, prio);
1573 plist_add(&q->list, &hb->chain);
1574 q->task = current;
1575 spin_unlock(&hb->lock);
1576 }
1577
1578 /**
1579 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1580 * @q: The futex_q to unqueue
1581 *
1582 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1583 * be paired with exactly one earlier call to queue_me().
1584 *
1585 * Return:
1586 * 1 - if the futex_q was still queued (and we removed unqueued it);
1587 * 0 - if the futex_q was already removed by the waking thread
1588 */
1589 static int unqueue_me(struct futex_q *q)
1590 {
1591 spinlock_t *lock_ptr;
1592 int ret = 0;
1593
1594 /* In the common case we don't take the spinlock, which is nice. */
1595 retry:
1596 lock_ptr = q->lock_ptr;
1597 barrier();
1598 if (lock_ptr != NULL) {
1599 spin_lock(lock_ptr);
1600 /*
1601 * q->lock_ptr can change between reading it and
1602 * spin_lock(), causing us to take the wrong lock. This
1603 * corrects the race condition.
1604 *
1605 * Reasoning goes like this: if we have the wrong lock,
1606 * q->lock_ptr must have changed (maybe several times)
1607 * between reading it and the spin_lock(). It can
1608 * change again after the spin_lock() but only if it was
1609 * already changed before the spin_lock(). It cannot,
1610 * however, change back to the original value. Therefore
1611 * we can detect whether we acquired the correct lock.
1612 */
1613 if (unlikely(lock_ptr != q->lock_ptr)) {
1614 spin_unlock(lock_ptr);
1615 goto retry;
1616 }
1617 __unqueue_futex(q);
1618
1619 BUG_ON(q->pi_state);
1620
1621 spin_unlock(lock_ptr);
1622 ret = 1;
1623 }
1624
1625 drop_futex_key_refs(&q->key);
1626 return ret;
1627 }
1628
1629 /*
1630 * PI futexes can not be requeued and must remove themself from the
1631 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1632 * and dropped here.
1633 */
1634 static void unqueue_me_pi(struct futex_q *q)
1635 __releases(q->lock_ptr)
1636 {
1637 __unqueue_futex(q);
1638
1639 BUG_ON(!q->pi_state);
1640 free_pi_state(q->pi_state);
1641 q->pi_state = NULL;
1642
1643 spin_unlock(q->lock_ptr);
1644 }
1645
1646 /*
1647 * Fixup the pi_state owner with the new owner.
1648 *
1649 * Must be called with hash bucket lock held and mm->sem held for non
1650 * private futexes.
1651 */
1652 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1653 struct task_struct *newowner)
1654 {
1655 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1656 struct futex_pi_state *pi_state = q->pi_state;
1657 struct task_struct *oldowner = pi_state->owner;
1658 u32 uval, uninitialized_var(curval), newval;
1659 int ret;
1660
1661 /* Owner died? */
1662 if (!pi_state->owner)
1663 newtid |= FUTEX_OWNER_DIED;
1664
1665 /*
1666 * We are here either because we stole the rtmutex from the
1667 * previous highest priority waiter or we are the highest priority
1668 * waiter but failed to get the rtmutex the first time.
1669 * We have to replace the newowner TID in the user space variable.
1670 * This must be atomic as we have to preserve the owner died bit here.
1671 *
1672 * Note: We write the user space value _before_ changing the pi_state
1673 * because we can fault here. Imagine swapped out pages or a fork
1674 * that marked all the anonymous memory readonly for cow.
1675 *
1676 * Modifying pi_state _before_ the user space value would
1677 * leave the pi_state in an inconsistent state when we fault
1678 * here, because we need to drop the hash bucket lock to
1679 * handle the fault. This might be observed in the PID check
1680 * in lookup_pi_state.
1681 */
1682 retry:
1683 if (get_futex_value_locked(&uval, uaddr))
1684 goto handle_fault;
1685
1686 while (1) {
1687 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1688
1689 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1690 goto handle_fault;
1691 if (curval == uval)
1692 break;
1693 uval = curval;
1694 }
1695
1696 /*
1697 * We fixed up user space. Now we need to fix the pi_state
1698 * itself.
1699 */
1700 if (pi_state->owner != NULL) {
1701 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1702 WARN_ON(list_empty(&pi_state->list));
1703 list_del_init(&pi_state->list);
1704 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1705 }
1706
1707 pi_state->owner = newowner;
1708
1709 raw_spin_lock_irq(&newowner->pi_lock);
1710 WARN_ON(!list_empty(&pi_state->list));
1711 list_add(&pi_state->list, &newowner->pi_state_list);
1712 raw_spin_unlock_irq(&newowner->pi_lock);
1713 return 0;
1714
1715 /*
1716 * To handle the page fault we need to drop the hash bucket
1717 * lock here. That gives the other task (either the highest priority
1718 * waiter itself or the task which stole the rtmutex) the
1719 * chance to try the fixup of the pi_state. So once we are
1720 * back from handling the fault we need to check the pi_state
1721 * after reacquiring the hash bucket lock and before trying to
1722 * do another fixup. When the fixup has been done already we
1723 * simply return.
1724 */
1725 handle_fault:
1726 spin_unlock(q->lock_ptr);
1727
1728 ret = fault_in_user_writeable(uaddr);
1729
1730 spin_lock(q->lock_ptr);
1731
1732 /*
1733 * Check if someone else fixed it for us:
1734 */
1735 if (pi_state->owner != oldowner)
1736 return 0;
1737
1738 if (ret)
1739 return ret;
1740
1741 goto retry;
1742 }
1743
1744 static long futex_wait_restart(struct restart_block *restart);
1745
1746 /**
1747 * fixup_owner() - Post lock pi_state and corner case management
1748 * @uaddr: user address of the futex
1749 * @q: futex_q (contains pi_state and access to the rt_mutex)
1750 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1751 *
1752 * After attempting to lock an rt_mutex, this function is called to cleanup
1753 * the pi_state owner as well as handle race conditions that may allow us to
1754 * acquire the lock. Must be called with the hb lock held.
1755 *
1756 * Return:
1757 * 1 - success, lock taken;
1758 * 0 - success, lock not taken;
1759 * <0 - on error (-EFAULT)
1760 */
1761 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1762 {
1763 struct task_struct *owner;
1764 int ret = 0;
1765
1766 if (locked) {
1767 /*
1768 * Got the lock. We might not be the anticipated owner if we
1769 * did a lock-steal - fix up the PI-state in that case:
1770 */
1771 if (q->pi_state->owner != current)
1772 ret = fixup_pi_state_owner(uaddr, q, current);
1773 goto out;
1774 }
1775
1776 /*
1777 * Catch the rare case, where the lock was released when we were on the
1778 * way back before we locked the hash bucket.
1779 */
1780 if (q->pi_state->owner == current) {
1781 /*
1782 * Try to get the rt_mutex now. This might fail as some other
1783 * task acquired the rt_mutex after we removed ourself from the
1784 * rt_mutex waiters list.
1785 */
1786 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1787 locked = 1;
1788 goto out;
1789 }
1790
1791 /*
1792 * pi_state is incorrect, some other task did a lock steal and
1793 * we returned due to timeout or signal without taking the
1794 * rt_mutex. Too late.
1795 */
1796 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1797 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1798 if (!owner)
1799 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1800 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1801 ret = fixup_pi_state_owner(uaddr, q, owner);
1802 goto out;
1803 }
1804
1805 /*
1806 * Paranoia check. If we did not take the lock, then we should not be
1807 * the owner of the rt_mutex.
1808 */
1809 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1810 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1811 "pi-state %p\n", ret,
1812 q->pi_state->pi_mutex.owner,
1813 q->pi_state->owner);
1814
1815 out:
1816 return ret ? ret : locked;
1817 }
1818
1819 /**
1820 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1821 * @hb: the futex hash bucket, must be locked by the caller
1822 * @q: the futex_q to queue up on
1823 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1824 */
1825 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1826 struct hrtimer_sleeper *timeout)
1827 {
1828 /*
1829 * The task state is guaranteed to be set before another task can
1830 * wake it. set_current_state() is implemented using set_mb() and
1831 * queue_me() calls spin_unlock() upon completion, both serializing
1832 * access to the hash list and forcing another memory barrier.
1833 */
1834 set_current_state(TASK_INTERRUPTIBLE);
1835 queue_me(q, hb);
1836
1837 /* Arm the timer */
1838 if (timeout) {
1839 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1840 if (!hrtimer_active(&timeout->timer))
1841 timeout->task = NULL;
1842 }
1843
1844 /*
1845 * If we have been removed from the hash list, then another task
1846 * has tried to wake us, and we can skip the call to schedule().
1847 */
1848 if (likely(!plist_node_empty(&q->list))) {
1849 /*
1850 * If the timer has already expired, current will already be
1851 * flagged for rescheduling. Only call schedule if there
1852 * is no timeout, or if it has yet to expire.
1853 */
1854 if (!timeout || timeout->task)
1855 schedule();
1856 }
1857 __set_current_state(TASK_RUNNING);
1858 }
1859
1860 /**
1861 * futex_wait_setup() - Prepare to wait on a futex
1862 * @uaddr: the futex userspace address
1863 * @val: the expected value
1864 * @flags: futex flags (FLAGS_SHARED, etc.)
1865 * @q: the associated futex_q
1866 * @hb: storage for hash_bucket pointer to be returned to caller
1867 *
1868 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1869 * compare it with the expected value. Handle atomic faults internally.
1870 * Return with the hb lock held and a q.key reference on success, and unlocked
1871 * with no q.key reference on failure.
1872 *
1873 * Return:
1874 * 0 - uaddr contains val and hb has been locked;
1875 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1876 */
1877 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1878 struct futex_q *q, struct futex_hash_bucket **hb)
1879 {
1880 u32 uval;
1881 int ret;
1882
1883 /*
1884 * Access the page AFTER the hash-bucket is locked.
1885 * Order is important:
1886 *
1887 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1888 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1889 *
1890 * The basic logical guarantee of a futex is that it blocks ONLY
1891 * if cond(var) is known to be true at the time of blocking, for
1892 * any cond. If we locked the hash-bucket after testing *uaddr, that
1893 * would open a race condition where we could block indefinitely with
1894 * cond(var) false, which would violate the guarantee.
1895 *
1896 * On the other hand, we insert q and release the hash-bucket only
1897 * after testing *uaddr. This guarantees that futex_wait() will NOT
1898 * absorb a wakeup if *uaddr does not match the desired values
1899 * while the syscall executes.
1900 */
1901 retry:
1902 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1903 if (unlikely(ret != 0))
1904 return ret;
1905
1906 retry_private:
1907 *hb = queue_lock(q);
1908
1909 ret = get_futex_value_locked(&uval, uaddr);
1910
1911 if (ret) {
1912 queue_unlock(q, *hb);
1913
1914 ret = get_user(uval, uaddr);
1915 if (ret)
1916 goto out;
1917
1918 if (!(flags & FLAGS_SHARED))
1919 goto retry_private;
1920
1921 put_futex_key(&q->key);
1922 goto retry;
1923 }
1924
1925 if (uval != val) {
1926 queue_unlock(q, *hb);
1927 ret = -EWOULDBLOCK;
1928 }
1929
1930 out:
1931 if (ret)
1932 put_futex_key(&q->key);
1933 return ret;
1934 }
1935
1936 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1937 ktime_t *abs_time, u32 bitset)
1938 {
1939 struct hrtimer_sleeper timeout, *to = NULL;
1940 struct restart_block *restart;
1941 struct futex_hash_bucket *hb;
1942 struct futex_q q = futex_q_init;
1943 int ret;
1944
1945 if (!bitset)
1946 return -EINVAL;
1947 q.bitset = bitset;
1948
1949 if (abs_time) {
1950 to = &timeout;
1951
1952 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1953 CLOCK_REALTIME : CLOCK_MONOTONIC,
1954 HRTIMER_MODE_ABS);
1955 hrtimer_init_sleeper(to, current);
1956 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1957 current->timer_slack_ns);
1958 }
1959
1960 retry:
1961 /*
1962 * Prepare to wait on uaddr. On success, holds hb lock and increments
1963 * q.key refs.
1964 */
1965 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1966 if (ret)
1967 goto out;
1968
1969 /* queue_me and wait for wakeup, timeout, or a signal. */
1970 futex_wait_queue_me(hb, &q, to);
1971
1972 /* If we were woken (and unqueued), we succeeded, whatever. */
1973 ret = 0;
1974 /* unqueue_me() drops q.key ref */
1975 if (!unqueue_me(&q))
1976 goto out;
1977 ret = -ETIMEDOUT;
1978 if (to && !to->task)
1979 goto out;
1980
1981 /*
1982 * We expect signal_pending(current), but we might be the
1983 * victim of a spurious wakeup as well.
1984 */
1985 if (!signal_pending(current))
1986 goto retry;
1987
1988 ret = -ERESTARTSYS;
1989 if (!abs_time)
1990 goto out;
1991
1992 restart = &current_thread_info()->restart_block;
1993 restart->fn = futex_wait_restart;
1994 restart->futex.uaddr = uaddr;
1995 restart->futex.val = val;
1996 restart->futex.time = abs_time->tv64;
1997 restart->futex.bitset = bitset;
1998 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1999
2000 ret = -ERESTART_RESTARTBLOCK;
2001
2002 out:
2003 if (to) {
2004 hrtimer_cancel(&to->timer);
2005 destroy_hrtimer_on_stack(&to->timer);
2006 }
2007 return ret;
2008 }
2009
2010
2011 static long futex_wait_restart(struct restart_block *restart)
2012 {
2013 u32 __user *uaddr = restart->futex.uaddr;
2014 ktime_t t, *tp = NULL;
2015
2016 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2017 t.tv64 = restart->futex.time;
2018 tp = &t;
2019 }
2020 restart->fn = do_no_restart_syscall;
2021
2022 return (long)futex_wait(uaddr, restart->futex.flags,
2023 restart->futex.val, tp, restart->futex.bitset);
2024 }
2025
2026
2027 /*
2028 * Userspace tried a 0 -> TID atomic transition of the futex value
2029 * and failed. The kernel side here does the whole locking operation:
2030 * if there are waiters then it will block, it does PI, etc. (Due to
2031 * races the kernel might see a 0 value of the futex too.)
2032 */
2033 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2034 ktime_t *time, int trylock)
2035 {
2036 struct hrtimer_sleeper timeout, *to = NULL;
2037 struct futex_hash_bucket *hb;
2038 struct futex_q q = futex_q_init;
2039 int res, ret;
2040
2041 if (refill_pi_state_cache())
2042 return -ENOMEM;
2043
2044 if (time) {
2045 to = &timeout;
2046 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2047 HRTIMER_MODE_ABS);
2048 hrtimer_init_sleeper(to, current);
2049 hrtimer_set_expires(&to->timer, *time);
2050 }
2051
2052 retry:
2053 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2054 if (unlikely(ret != 0))
2055 goto out;
2056
2057 retry_private:
2058 hb = queue_lock(&q);
2059
2060 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2061 if (unlikely(ret)) {
2062 switch (ret) {
2063 case 1:
2064 /* We got the lock. */
2065 ret = 0;
2066 goto out_unlock_put_key;
2067 case -EFAULT:
2068 goto uaddr_faulted;
2069 case -EAGAIN:
2070 /*
2071 * Task is exiting and we just wait for the
2072 * exit to complete.
2073 */
2074 queue_unlock(&q, hb);
2075 put_futex_key(&q.key);
2076 cond_resched();
2077 goto retry;
2078 default:
2079 goto out_unlock_put_key;
2080 }
2081 }
2082
2083 /*
2084 * Only actually queue now that the atomic ops are done:
2085 */
2086 queue_me(&q, hb);
2087
2088 WARN_ON(!q.pi_state);
2089 /*
2090 * Block on the PI mutex:
2091 */
2092 if (!trylock)
2093 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2094 else {
2095 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2096 /* Fixup the trylock return value: */
2097 ret = ret ? 0 : -EWOULDBLOCK;
2098 }
2099
2100 spin_lock(q.lock_ptr);
2101 /*
2102 * Fixup the pi_state owner and possibly acquire the lock if we
2103 * haven't already.
2104 */
2105 res = fixup_owner(uaddr, &q, !ret);
2106 /*
2107 * If fixup_owner() returned an error, proprogate that. If it acquired
2108 * the lock, clear our -ETIMEDOUT or -EINTR.
2109 */
2110 if (res)
2111 ret = (res < 0) ? res : 0;
2112
2113 /*
2114 * If fixup_owner() faulted and was unable to handle the fault, unlock
2115 * it and return the fault to userspace.
2116 */
2117 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2118 rt_mutex_unlock(&q.pi_state->pi_mutex);
2119
2120 /* Unqueue and drop the lock */
2121 unqueue_me_pi(&q);
2122
2123 goto out_put_key;
2124
2125 out_unlock_put_key:
2126 queue_unlock(&q, hb);
2127
2128 out_put_key:
2129 put_futex_key(&q.key);
2130 out:
2131 if (to)
2132 destroy_hrtimer_on_stack(&to->timer);
2133 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2134
2135 uaddr_faulted:
2136 queue_unlock(&q, hb);
2137
2138 ret = fault_in_user_writeable(uaddr);
2139 if (ret)
2140 goto out_put_key;
2141
2142 if (!(flags & FLAGS_SHARED))
2143 goto retry_private;
2144
2145 put_futex_key(&q.key);
2146 goto retry;
2147 }
2148
2149 /*
2150 * Userspace attempted a TID -> 0 atomic transition, and failed.
2151 * This is the in-kernel slowpath: we look up the PI state (if any),
2152 * and do the rt-mutex unlock.
2153 */
2154 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2155 {
2156 struct futex_hash_bucket *hb;
2157 struct futex_q *this, *next;
2158 struct plist_head *head;
2159 union futex_key key = FUTEX_KEY_INIT;
2160 u32 uval, vpid = task_pid_vnr(current);
2161 int ret;
2162
2163 retry:
2164 if (get_user(uval, uaddr))
2165 return -EFAULT;
2166 /*
2167 * We release only a lock we actually own:
2168 */
2169 if ((uval & FUTEX_TID_MASK) != vpid)
2170 return -EPERM;
2171
2172 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2173 if (unlikely(ret != 0))
2174 goto out;
2175
2176 hb = hash_futex(&key);
2177 spin_lock(&hb->lock);
2178
2179 /*
2180 * To avoid races, try to do the TID -> 0 atomic transition
2181 * again. If it succeeds then we can return without waking
2182 * anyone else up:
2183 */
2184 if (!(uval & FUTEX_OWNER_DIED) &&
2185 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2186 goto pi_faulted;
2187 /*
2188 * Rare case: we managed to release the lock atomically,
2189 * no need to wake anyone else up:
2190 */
2191 if (unlikely(uval == vpid))
2192 goto out_unlock;
2193
2194 /*
2195 * Ok, other tasks may need to be woken up - check waiters
2196 * and do the wakeup if necessary:
2197 */
2198 head = &hb->chain;
2199
2200 plist_for_each_entry_safe(this, next, head, list) {
2201 if (!match_futex (&this->key, &key))
2202 continue;
2203 ret = wake_futex_pi(uaddr, uval, this);
2204 /*
2205 * The atomic access to the futex value
2206 * generated a pagefault, so retry the
2207 * user-access and the wakeup:
2208 */
2209 if (ret == -EFAULT)
2210 goto pi_faulted;
2211 goto out_unlock;
2212 }
2213 /*
2214 * No waiters - kernel unlocks the futex:
2215 */
2216 if (!(uval & FUTEX_OWNER_DIED)) {
2217 ret = unlock_futex_pi(uaddr, uval);
2218 if (ret == -EFAULT)
2219 goto pi_faulted;
2220 }
2221
2222 out_unlock:
2223 spin_unlock(&hb->lock);
2224 put_futex_key(&key);
2225
2226 out:
2227 return ret;
2228
2229 pi_faulted:
2230 spin_unlock(&hb->lock);
2231 put_futex_key(&key);
2232
2233 ret = fault_in_user_writeable(uaddr);
2234 if (!ret)
2235 goto retry;
2236
2237 return ret;
2238 }
2239
2240 /**
2241 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2242 * @hb: the hash_bucket futex_q was original enqueued on
2243 * @q: the futex_q woken while waiting to be requeued
2244 * @key2: the futex_key of the requeue target futex
2245 * @timeout: the timeout associated with the wait (NULL if none)
2246 *
2247 * Detect if the task was woken on the initial futex as opposed to the requeue
2248 * target futex. If so, determine if it was a timeout or a signal that caused
2249 * the wakeup and return the appropriate error code to the caller. Must be
2250 * called with the hb lock held.
2251 *
2252 * Return:
2253 * 0 = no early wakeup detected;
2254 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2255 */
2256 static inline
2257 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2258 struct futex_q *q, union futex_key *key2,
2259 struct hrtimer_sleeper *timeout)
2260 {
2261 int ret = 0;
2262
2263 /*
2264 * With the hb lock held, we avoid races while we process the wakeup.
2265 * We only need to hold hb (and not hb2) to ensure atomicity as the
2266 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2267 * It can't be requeued from uaddr2 to something else since we don't
2268 * support a PI aware source futex for requeue.
2269 */
2270 if (!match_futex(&q->key, key2)) {
2271 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2272 /*
2273 * We were woken prior to requeue by a timeout or a signal.
2274 * Unqueue the futex_q and determine which it was.
2275 */
2276 plist_del(&q->list, &hb->chain);
2277
2278 /* Handle spurious wakeups gracefully */
2279 ret = -EWOULDBLOCK;
2280 if (timeout && !timeout->task)
2281 ret = -ETIMEDOUT;
2282 else if (signal_pending(current))
2283 ret = -ERESTARTNOINTR;
2284 }
2285 return ret;
2286 }
2287
2288 /**
2289 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2290 * @uaddr: the futex we initially wait on (non-pi)
2291 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2292 * the same type, no requeueing from private to shared, etc.
2293 * @val: the expected value of uaddr
2294 * @abs_time: absolute timeout
2295 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2296 * @uaddr2: the pi futex we will take prior to returning to user-space
2297 *
2298 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2299 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2300 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2301 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2302 * without one, the pi logic would not know which task to boost/deboost, if
2303 * there was a need to.
2304 *
2305 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2306 * via the following--
2307 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2308 * 2) wakeup on uaddr2 after a requeue
2309 * 3) signal
2310 * 4) timeout
2311 *
2312 * If 3, cleanup and return -ERESTARTNOINTR.
2313 *
2314 * If 2, we may then block on trying to take the rt_mutex and return via:
2315 * 5) successful lock
2316 * 6) signal
2317 * 7) timeout
2318 * 8) other lock acquisition failure
2319 *
2320 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2321 *
2322 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2323 *
2324 * Return:
2325 * 0 - On success;
2326 * <0 - On error
2327 */
2328 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2329 u32 val, ktime_t *abs_time, u32 bitset,
2330 u32 __user *uaddr2)
2331 {
2332 struct hrtimer_sleeper timeout, *to = NULL;
2333 struct rt_mutex_waiter rt_waiter;
2334 struct rt_mutex *pi_mutex = NULL;
2335 struct futex_hash_bucket *hb;
2336 union futex_key key2 = FUTEX_KEY_INIT;
2337 struct futex_q q = futex_q_init;
2338 int res, ret;
2339
2340 if (uaddr == uaddr2)
2341 return -EINVAL;
2342
2343 if (!bitset)
2344 return -EINVAL;
2345
2346 if (abs_time) {
2347 to = &timeout;
2348 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2349 CLOCK_REALTIME : CLOCK_MONOTONIC,
2350 HRTIMER_MODE_ABS);
2351 hrtimer_init_sleeper(to, current);
2352 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2353 current->timer_slack_ns);
2354 }
2355
2356 /*
2357 * The waiter is allocated on our stack, manipulated by the requeue
2358 * code while we sleep on uaddr.
2359 */
2360 debug_rt_mutex_init_waiter(&rt_waiter);
2361 rt_waiter.task = NULL;
2362
2363 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2364 if (unlikely(ret != 0))
2365 goto out;
2366
2367 q.bitset = bitset;
2368 q.rt_waiter = &rt_waiter;
2369 q.requeue_pi_key = &key2;
2370
2371 /*
2372 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2373 * count.
2374 */
2375 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2376 if (ret)
2377 goto out_key2;
2378
2379 /*
2380 * The check above which compares uaddrs is not sufficient for
2381 * shared futexes. We need to compare the keys:
2382 */
2383 if (match_futex(&q.key, &key2)) {
2384 ret = -EINVAL;
2385 goto out_put_keys;
2386 }
2387
2388 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2389 futex_wait_queue_me(hb, &q, to);
2390
2391 spin_lock(&hb->lock);
2392 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2393 spin_unlock(&hb->lock);
2394 if (ret)
2395 goto out_put_keys;
2396
2397 /*
2398 * In order for us to be here, we know our q.key == key2, and since
2399 * we took the hb->lock above, we also know that futex_requeue() has
2400 * completed and we no longer have to concern ourselves with a wakeup
2401 * race with the atomic proxy lock acquisition by the requeue code. The
2402 * futex_requeue dropped our key1 reference and incremented our key2
2403 * reference count.
2404 */
2405
2406 /* Check if the requeue code acquired the second futex for us. */
2407 if (!q.rt_waiter) {
2408 /*
2409 * Got the lock. We might not be the anticipated owner if we
2410 * did a lock-steal - fix up the PI-state in that case.
2411 */
2412 if (q.pi_state && (q.pi_state->owner != current)) {
2413 spin_lock(q.lock_ptr);
2414 ret = fixup_pi_state_owner(uaddr2, &q, current);
2415 spin_unlock(q.lock_ptr);
2416 }
2417 } else {
2418 /*
2419 * We have been woken up by futex_unlock_pi(), a timeout, or a
2420 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2421 * the pi_state.
2422 */
2423 WARN_ON(!q.pi_state);
2424 pi_mutex = &q.pi_state->pi_mutex;
2425 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2426 debug_rt_mutex_free_waiter(&rt_waiter);
2427
2428 spin_lock(q.lock_ptr);
2429 /*
2430 * Fixup the pi_state owner and possibly acquire the lock if we
2431 * haven't already.
2432 */
2433 res = fixup_owner(uaddr2, &q, !ret);
2434 /*
2435 * If fixup_owner() returned an error, proprogate that. If it
2436 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2437 */
2438 if (res)
2439 ret = (res < 0) ? res : 0;
2440
2441 /* Unqueue and drop the lock. */
2442 unqueue_me_pi(&q);
2443 }
2444
2445 /*
2446 * If fixup_pi_state_owner() faulted and was unable to handle the
2447 * fault, unlock the rt_mutex and return the fault to userspace.
2448 */
2449 if (ret == -EFAULT) {
2450 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2451 rt_mutex_unlock(pi_mutex);
2452 } else if (ret == -EINTR) {
2453 /*
2454 * We've already been requeued, but cannot restart by calling
2455 * futex_lock_pi() directly. We could restart this syscall, but
2456 * it would detect that the user space "val" changed and return
2457 * -EWOULDBLOCK. Save the overhead of the restart and return
2458 * -EWOULDBLOCK directly.
2459 */
2460 ret = -EWOULDBLOCK;
2461 }
2462
2463 out_put_keys:
2464 put_futex_key(&q.key);
2465 out_key2:
2466 put_futex_key(&key2);
2467
2468 out:
2469 if (to) {
2470 hrtimer_cancel(&to->timer);
2471 destroy_hrtimer_on_stack(&to->timer);
2472 }
2473 return ret;
2474 }
2475
2476 /*
2477 * Support for robust futexes: the kernel cleans up held futexes at
2478 * thread exit time.
2479 *
2480 * Implementation: user-space maintains a per-thread list of locks it
2481 * is holding. Upon do_exit(), the kernel carefully walks this list,
2482 * and marks all locks that are owned by this thread with the
2483 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2484 * always manipulated with the lock held, so the list is private and
2485 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2486 * field, to allow the kernel to clean up if the thread dies after
2487 * acquiring the lock, but just before it could have added itself to
2488 * the list. There can only be one such pending lock.
2489 */
2490
2491 /**
2492 * sys_set_robust_list() - Set the robust-futex list head of a task
2493 * @head: pointer to the list-head
2494 * @len: length of the list-head, as userspace expects
2495 */
2496 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2497 size_t, len)
2498 {
2499 if (!futex_cmpxchg_enabled)
2500 return -ENOSYS;
2501 /*
2502 * The kernel knows only one size for now:
2503 */
2504 if (unlikely(len != sizeof(*head)))
2505 return -EINVAL;
2506
2507 current->robust_list = head;
2508
2509 return 0;
2510 }
2511
2512 /**
2513 * sys_get_robust_list() - Get the robust-futex list head of a task
2514 * @pid: pid of the process [zero for current task]
2515 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2516 * @len_ptr: pointer to a length field, the kernel fills in the header size
2517 */
2518 SYSCALL_DEFINE3(get_robust_list, int, pid,
2519 struct robust_list_head __user * __user *, head_ptr,
2520 size_t __user *, len_ptr)
2521 {
2522 struct robust_list_head __user *head;
2523 unsigned long ret;
2524 struct task_struct *p;
2525
2526 if (!futex_cmpxchg_enabled)
2527 return -ENOSYS;
2528
2529 rcu_read_lock();
2530
2531 ret = -ESRCH;
2532 if (!pid)
2533 p = current;
2534 else {
2535 p = find_task_by_vpid(pid);
2536 if (!p)
2537 goto err_unlock;
2538 }
2539
2540 ret = -EPERM;
2541 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2542 goto err_unlock;
2543
2544 head = p->robust_list;
2545 rcu_read_unlock();
2546
2547 if (put_user(sizeof(*head), len_ptr))
2548 return -EFAULT;
2549 return put_user(head, head_ptr);
2550
2551 err_unlock:
2552 rcu_read_unlock();
2553
2554 return ret;
2555 }
2556
2557 /*
2558 * Process a futex-list entry, check whether it's owned by the
2559 * dying task, and do notification if so:
2560 */
2561 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2562 {
2563 u32 uval, uninitialized_var(nval), mval;
2564
2565 retry:
2566 if (get_user(uval, uaddr))
2567 return -1;
2568
2569 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2570 /*
2571 * Ok, this dying thread is truly holding a futex
2572 * of interest. Set the OWNER_DIED bit atomically
2573 * via cmpxchg, and if the value had FUTEX_WAITERS
2574 * set, wake up a waiter (if any). (We have to do a
2575 * futex_wake() even if OWNER_DIED is already set -
2576 * to handle the rare but possible case of recursive
2577 * thread-death.) The rest of the cleanup is done in
2578 * userspace.
2579 */
2580 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2581 /*
2582 * We are not holding a lock here, but we want to have
2583 * the pagefault_disable/enable() protection because
2584 * we want to handle the fault gracefully. If the
2585 * access fails we try to fault in the futex with R/W
2586 * verification via get_user_pages. get_user() above
2587 * does not guarantee R/W access. If that fails we
2588 * give up and leave the futex locked.
2589 */
2590 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2591 if (fault_in_user_writeable(uaddr))
2592 return -1;
2593 goto retry;
2594 }
2595 if (nval != uval)
2596 goto retry;
2597
2598 /*
2599 * Wake robust non-PI futexes here. The wakeup of
2600 * PI futexes happens in exit_pi_state():
2601 */
2602 if (!pi && (uval & FUTEX_WAITERS))
2603 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2604 }
2605 return 0;
2606 }
2607
2608 /*
2609 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2610 */
2611 static inline int fetch_robust_entry(struct robust_list __user **entry,
2612 struct robust_list __user * __user *head,
2613 unsigned int *pi)
2614 {
2615 unsigned long uentry;
2616
2617 if (get_user(uentry, (unsigned long __user *)head))
2618 return -EFAULT;
2619
2620 *entry = (void __user *)(uentry & ~1UL);
2621 *pi = uentry & 1;
2622
2623 return 0;
2624 }
2625
2626 /*
2627 * Walk curr->robust_list (very carefully, it's a userspace list!)
2628 * and mark any locks found there dead, and notify any waiters.
2629 *
2630 * We silently return on any sign of list-walking problem.
2631 */
2632 void exit_robust_list(struct task_struct *curr)
2633 {
2634 struct robust_list_head __user *head = curr->robust_list;
2635 struct robust_list __user *entry, *next_entry, *pending;
2636 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2637 unsigned int uninitialized_var(next_pi);
2638 unsigned long futex_offset;
2639 int rc;
2640
2641 if (!futex_cmpxchg_enabled)
2642 return;
2643
2644 /*
2645 * Fetch the list head (which was registered earlier, via
2646 * sys_set_robust_list()):
2647 */
2648 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2649 return;
2650 /*
2651 * Fetch the relative futex offset:
2652 */
2653 if (get_user(futex_offset, &head->futex_offset))
2654 return;
2655 /*
2656 * Fetch any possibly pending lock-add first, and handle it
2657 * if it exists:
2658 */
2659 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2660 return;
2661
2662 next_entry = NULL; /* avoid warning with gcc */
2663 while (entry != &head->list) {
2664 /*
2665 * Fetch the next entry in the list before calling
2666 * handle_futex_death:
2667 */
2668 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2669 /*
2670 * A pending lock might already be on the list, so
2671 * don't process it twice:
2672 */
2673 if (entry != pending)
2674 if (handle_futex_death((void __user *)entry + futex_offset,
2675 curr, pi))
2676 return;
2677 if (rc)
2678 return;
2679 entry = next_entry;
2680 pi = next_pi;
2681 /*
2682 * Avoid excessively long or circular lists:
2683 */
2684 if (!--limit)
2685 break;
2686
2687 cond_resched();
2688 }
2689
2690 if (pending)
2691 handle_futex_death((void __user *)pending + futex_offset,
2692 curr, pip);
2693 }
2694
2695 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2696 u32 __user *uaddr2, u32 val2, u32 val3)
2697 {
2698 int cmd = op & FUTEX_CMD_MASK;
2699 unsigned int flags = 0;
2700
2701 if (!(op & FUTEX_PRIVATE_FLAG))
2702 flags |= FLAGS_SHARED;
2703
2704 if (op & FUTEX_CLOCK_REALTIME) {
2705 flags |= FLAGS_CLOCKRT;
2706 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2707 return -ENOSYS;
2708 }
2709
2710 switch (cmd) {
2711 case FUTEX_LOCK_PI:
2712 case FUTEX_UNLOCK_PI:
2713 case FUTEX_TRYLOCK_PI:
2714 case FUTEX_WAIT_REQUEUE_PI:
2715 case FUTEX_CMP_REQUEUE_PI:
2716 if (!futex_cmpxchg_enabled)
2717 return -ENOSYS;
2718 }
2719
2720 switch (cmd) {
2721 case FUTEX_WAIT:
2722 val3 = FUTEX_BITSET_MATCH_ANY;
2723 case FUTEX_WAIT_BITSET:
2724 return futex_wait(uaddr, flags, val, timeout, val3);
2725 case FUTEX_WAKE:
2726 val3 = FUTEX_BITSET_MATCH_ANY;
2727 case FUTEX_WAKE_BITSET:
2728 return futex_wake(uaddr, flags, val, val3);
2729 case FUTEX_REQUEUE:
2730 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2731 case FUTEX_CMP_REQUEUE:
2732 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2733 case FUTEX_WAKE_OP:
2734 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2735 case FUTEX_LOCK_PI:
2736 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2737 case FUTEX_UNLOCK_PI:
2738 return futex_unlock_pi(uaddr, flags);
2739 case FUTEX_TRYLOCK_PI:
2740 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2741 case FUTEX_WAIT_REQUEUE_PI:
2742 val3 = FUTEX_BITSET_MATCH_ANY;
2743 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2744 uaddr2);
2745 case FUTEX_CMP_REQUEUE_PI:
2746 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2747 }
2748 return -ENOSYS;
2749 }
2750
2751
2752 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2753 struct timespec __user *, utime, u32 __user *, uaddr2,
2754 u32, val3)
2755 {
2756 struct timespec ts;
2757 ktime_t t, *tp = NULL;
2758 u32 val2 = 0;
2759 int cmd = op & FUTEX_CMD_MASK;
2760
2761 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2762 cmd == FUTEX_WAIT_BITSET ||
2763 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2764 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2765 return -EFAULT;
2766 if (!timespec_valid(&ts))
2767 return -EINVAL;
2768
2769 t = timespec_to_ktime(ts);
2770 if (cmd == FUTEX_WAIT)
2771 t = ktime_add_safe(ktime_get(), t);
2772 tp = &t;
2773 }
2774 /*
2775 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2776 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2777 */
2778 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2779 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2780 val2 = (u32) (unsigned long) utime;
2781
2782 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2783 }
2784
2785 static void __init futex_detect_cmpxchg(void)
2786 {
2787 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2788 u32 curval;
2789
2790 /*
2791 * This will fail and we want it. Some arch implementations do
2792 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2793 * functionality. We want to know that before we call in any
2794 * of the complex code paths. Also we want to prevent
2795 * registration of robust lists in that case. NULL is
2796 * guaranteed to fault and we get -EFAULT on functional
2797 * implementation, the non-functional ones will return
2798 * -ENOSYS.
2799 */
2800 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2801 futex_cmpxchg_enabled = 1;
2802 #endif
2803 }
2804
2805 static int __init futex_init(void)
2806 {
2807 int i;
2808
2809 futex_detect_cmpxchg();
2810
2811 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2812 plist_head_init(&futex_queues[i].chain);
2813 spin_lock_init(&futex_queues[i].lock);
2814 }
2815
2816 return 0;
2817 }
2818 __initcall(futex_init);