futex: Validate atomic acquisition in futex_lock_pi_atomic()
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65
66 #include <asm/futex.h>
67
68 #include "rtmutex_common.h"
69
70 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
71 int __read_mostly futex_cmpxchg_enabled;
72 #endif
73
74 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
75
76 /*
77 * Futex flags used to encode options to functions and preserve them across
78 * restarts.
79 */
80 #define FLAGS_SHARED 0x01
81 #define FLAGS_CLOCKRT 0x02
82 #define FLAGS_HAS_TIMEOUT 0x04
83
84 /*
85 * Priority Inheritance state:
86 */
87 struct futex_pi_state {
88 /*
89 * list of 'owned' pi_state instances - these have to be
90 * cleaned up in do_exit() if the task exits prematurely:
91 */
92 struct list_head list;
93
94 /*
95 * The PI object:
96 */
97 struct rt_mutex pi_mutex;
98
99 struct task_struct *owner;
100 atomic_t refcount;
101
102 union futex_key key;
103 };
104
105 /**
106 * struct futex_q - The hashed futex queue entry, one per waiting task
107 * @list: priority-sorted list of tasks waiting on this futex
108 * @task: the task waiting on the futex
109 * @lock_ptr: the hash bucket lock
110 * @key: the key the futex is hashed on
111 * @pi_state: optional priority inheritance state
112 * @rt_waiter: rt_waiter storage for use with requeue_pi
113 * @requeue_pi_key: the requeue_pi target futex key
114 * @bitset: bitset for the optional bitmasked wakeup
115 *
116 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
117 * we can wake only the relevant ones (hashed queues may be shared).
118 *
119 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
120 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
121 * The order of wakeup is always to make the first condition true, then
122 * the second.
123 *
124 * PI futexes are typically woken before they are removed from the hash list via
125 * the rt_mutex code. See unqueue_me_pi().
126 */
127 struct futex_q {
128 struct plist_node list;
129
130 struct task_struct *task;
131 spinlock_t *lock_ptr;
132 union futex_key key;
133 struct futex_pi_state *pi_state;
134 struct rt_mutex_waiter *rt_waiter;
135 union futex_key *requeue_pi_key;
136 u32 bitset;
137 };
138
139 static const struct futex_q futex_q_init = {
140 /* list gets initialized in queue_me()*/
141 .key = FUTEX_KEY_INIT,
142 .bitset = FUTEX_BITSET_MATCH_ANY
143 };
144
145 /*
146 * Hash buckets are shared by all the futex_keys that hash to the same
147 * location. Each key may have multiple futex_q structures, one for each task
148 * waiting on a futex.
149 */
150 struct futex_hash_bucket {
151 spinlock_t lock;
152 struct plist_head chain;
153 };
154
155 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
156
157 /*
158 * We hash on the keys returned from get_futex_key (see below).
159 */
160 static struct futex_hash_bucket *hash_futex(union futex_key *key)
161 {
162 u32 hash = jhash2((u32*)&key->both.word,
163 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
164 key->both.offset);
165 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
166 }
167
168 /*
169 * Return 1 if two futex_keys are equal, 0 otherwise.
170 */
171 static inline int match_futex(union futex_key *key1, union futex_key *key2)
172 {
173 return (key1 && key2
174 && key1->both.word == key2->both.word
175 && key1->both.ptr == key2->both.ptr
176 && key1->both.offset == key2->both.offset);
177 }
178
179 /*
180 * Take a reference to the resource addressed by a key.
181 * Can be called while holding spinlocks.
182 *
183 */
184 static void get_futex_key_refs(union futex_key *key)
185 {
186 if (!key->both.ptr)
187 return;
188
189 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
190 case FUT_OFF_INODE:
191 ihold(key->shared.inode);
192 break;
193 case FUT_OFF_MMSHARED:
194 atomic_inc(&key->private.mm->mm_count);
195 break;
196 }
197 }
198
199 /*
200 * Drop a reference to the resource addressed by a key.
201 * The hash bucket spinlock must not be held.
202 */
203 static void drop_futex_key_refs(union futex_key *key)
204 {
205 if (!key->both.ptr) {
206 /* If we're here then we tried to put a key we failed to get */
207 WARN_ON_ONCE(1);
208 return;
209 }
210
211 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
212 case FUT_OFF_INODE:
213 iput(key->shared.inode);
214 break;
215 case FUT_OFF_MMSHARED:
216 mmdrop(key->private.mm);
217 break;
218 }
219 }
220
221 /**
222 * get_futex_key() - Get parameters which are the keys for a futex
223 * @uaddr: virtual address of the futex
224 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
225 * @key: address where result is stored.
226 * @rw: mapping needs to be read/write (values: VERIFY_READ,
227 * VERIFY_WRITE)
228 *
229 * Return: a negative error code or 0
230 *
231 * The key words are stored in *key on success.
232 *
233 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
234 * offset_within_page). For private mappings, it's (uaddr, current->mm).
235 * We can usually work out the index without swapping in the page.
236 *
237 * lock_page() might sleep, the caller should not hold a spinlock.
238 */
239 static int
240 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
241 {
242 unsigned long address = (unsigned long)uaddr;
243 struct mm_struct *mm = current->mm;
244 struct page *page, *page_head;
245 int err, ro = 0;
246
247 /*
248 * The futex address must be "naturally" aligned.
249 */
250 key->both.offset = address % PAGE_SIZE;
251 if (unlikely((address % sizeof(u32)) != 0))
252 return -EINVAL;
253 address -= key->both.offset;
254
255 /*
256 * PROCESS_PRIVATE futexes are fast.
257 * As the mm cannot disappear under us and the 'key' only needs
258 * virtual address, we dont even have to find the underlying vma.
259 * Note : We do have to check 'uaddr' is a valid user address,
260 * but access_ok() should be faster than find_vma()
261 */
262 if (!fshared) {
263 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
264 return -EFAULT;
265 key->private.mm = mm;
266 key->private.address = address;
267 get_futex_key_refs(key);
268 return 0;
269 }
270
271 again:
272 err = get_user_pages_fast(address, 1, 1, &page);
273 /*
274 * If write access is not required (eg. FUTEX_WAIT), try
275 * and get read-only access.
276 */
277 if (err == -EFAULT && rw == VERIFY_READ) {
278 err = get_user_pages_fast(address, 1, 0, &page);
279 ro = 1;
280 }
281 if (err < 0)
282 return err;
283 else
284 err = 0;
285
286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
287 page_head = page;
288 if (unlikely(PageTail(page))) {
289 put_page(page);
290 /* serialize against __split_huge_page_splitting() */
291 local_irq_disable();
292 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
293 page_head = compound_head(page);
294 /*
295 * page_head is valid pointer but we must pin
296 * it before taking the PG_lock and/or
297 * PG_compound_lock. The moment we re-enable
298 * irqs __split_huge_page_splitting() can
299 * return and the head page can be freed from
300 * under us. We can't take the PG_lock and/or
301 * PG_compound_lock on a page that could be
302 * freed from under us.
303 */
304 if (page != page_head) {
305 get_page(page_head);
306 put_page(page);
307 }
308 local_irq_enable();
309 } else {
310 local_irq_enable();
311 goto again;
312 }
313 }
314 #else
315 page_head = compound_head(page);
316 if (page != page_head) {
317 get_page(page_head);
318 put_page(page);
319 }
320 #endif
321
322 lock_page(page_head);
323
324 /*
325 * If page_head->mapping is NULL, then it cannot be a PageAnon
326 * page; but it might be the ZERO_PAGE or in the gate area or
327 * in a special mapping (all cases which we are happy to fail);
328 * or it may have been a good file page when get_user_pages_fast
329 * found it, but truncated or holepunched or subjected to
330 * invalidate_complete_page2 before we got the page lock (also
331 * cases which we are happy to fail). And we hold a reference,
332 * so refcount care in invalidate_complete_page's remove_mapping
333 * prevents drop_caches from setting mapping to NULL beneath us.
334 *
335 * The case we do have to guard against is when memory pressure made
336 * shmem_writepage move it from filecache to swapcache beneath us:
337 * an unlikely race, but we do need to retry for page_head->mapping.
338 */
339 if (!page_head->mapping) {
340 int shmem_swizzled = PageSwapCache(page_head);
341 unlock_page(page_head);
342 put_page(page_head);
343 if (shmem_swizzled)
344 goto again;
345 return -EFAULT;
346 }
347
348 /*
349 * Private mappings are handled in a simple way.
350 *
351 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
352 * it's a read-only handle, it's expected that futexes attach to
353 * the object not the particular process.
354 */
355 if (PageAnon(page_head)) {
356 /*
357 * A RO anonymous page will never change and thus doesn't make
358 * sense for futex operations.
359 */
360 if (ro) {
361 err = -EFAULT;
362 goto out;
363 }
364
365 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
366 key->private.mm = mm;
367 key->private.address = address;
368 } else {
369 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
370 key->shared.inode = page_head->mapping->host;
371 key->shared.pgoff = basepage_index(page);
372 }
373
374 get_futex_key_refs(key);
375
376 out:
377 unlock_page(page_head);
378 put_page(page_head);
379 return err;
380 }
381
382 static inline void put_futex_key(union futex_key *key)
383 {
384 drop_futex_key_refs(key);
385 }
386
387 /**
388 * fault_in_user_writeable() - Fault in user address and verify RW access
389 * @uaddr: pointer to faulting user space address
390 *
391 * Slow path to fixup the fault we just took in the atomic write
392 * access to @uaddr.
393 *
394 * We have no generic implementation of a non-destructive write to the
395 * user address. We know that we faulted in the atomic pagefault
396 * disabled section so we can as well avoid the #PF overhead by
397 * calling get_user_pages() right away.
398 */
399 static int fault_in_user_writeable(u32 __user *uaddr)
400 {
401 struct mm_struct *mm = current->mm;
402 int ret;
403
404 down_read(&mm->mmap_sem);
405 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
406 FAULT_FLAG_WRITE);
407 up_read(&mm->mmap_sem);
408
409 return ret < 0 ? ret : 0;
410 }
411
412 /**
413 * futex_top_waiter() - Return the highest priority waiter on a futex
414 * @hb: the hash bucket the futex_q's reside in
415 * @key: the futex key (to distinguish it from other futex futex_q's)
416 *
417 * Must be called with the hb lock held.
418 */
419 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
420 union futex_key *key)
421 {
422 struct futex_q *this;
423
424 plist_for_each_entry(this, &hb->chain, list) {
425 if (match_futex(&this->key, key))
426 return this;
427 }
428 return NULL;
429 }
430
431 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
432 u32 uval, u32 newval)
433 {
434 int ret;
435
436 pagefault_disable();
437 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
438 pagefault_enable();
439
440 return ret;
441 }
442
443 static int get_futex_value_locked(u32 *dest, u32 __user *from)
444 {
445 int ret;
446
447 pagefault_disable();
448 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
449 pagefault_enable();
450
451 return ret ? -EFAULT : 0;
452 }
453
454
455 /*
456 * PI code:
457 */
458 static int refill_pi_state_cache(void)
459 {
460 struct futex_pi_state *pi_state;
461
462 if (likely(current->pi_state_cache))
463 return 0;
464
465 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
466
467 if (!pi_state)
468 return -ENOMEM;
469
470 INIT_LIST_HEAD(&pi_state->list);
471 /* pi_mutex gets initialized later */
472 pi_state->owner = NULL;
473 atomic_set(&pi_state->refcount, 1);
474 pi_state->key = FUTEX_KEY_INIT;
475
476 current->pi_state_cache = pi_state;
477
478 return 0;
479 }
480
481 static struct futex_pi_state * alloc_pi_state(void)
482 {
483 struct futex_pi_state *pi_state = current->pi_state_cache;
484
485 WARN_ON(!pi_state);
486 current->pi_state_cache = NULL;
487
488 return pi_state;
489 }
490
491 static void free_pi_state(struct futex_pi_state *pi_state)
492 {
493 if (!atomic_dec_and_test(&pi_state->refcount))
494 return;
495
496 /*
497 * If pi_state->owner is NULL, the owner is most probably dying
498 * and has cleaned up the pi_state already
499 */
500 if (pi_state->owner) {
501 raw_spin_lock_irq(&pi_state->owner->pi_lock);
502 list_del_init(&pi_state->list);
503 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
504
505 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
506 }
507
508 if (current->pi_state_cache)
509 kfree(pi_state);
510 else {
511 /*
512 * pi_state->list is already empty.
513 * clear pi_state->owner.
514 * refcount is at 0 - put it back to 1.
515 */
516 pi_state->owner = NULL;
517 atomic_set(&pi_state->refcount, 1);
518 current->pi_state_cache = pi_state;
519 }
520 }
521
522 /*
523 * Look up the task based on what TID userspace gave us.
524 * We dont trust it.
525 */
526 static struct task_struct * futex_find_get_task(pid_t pid)
527 {
528 struct task_struct *p;
529
530 rcu_read_lock();
531 p = find_task_by_vpid(pid);
532 if (p)
533 get_task_struct(p);
534
535 rcu_read_unlock();
536
537 return p;
538 }
539
540 /*
541 * This task is holding PI mutexes at exit time => bad.
542 * Kernel cleans up PI-state, but userspace is likely hosed.
543 * (Robust-futex cleanup is separate and might save the day for userspace.)
544 */
545 void exit_pi_state_list(struct task_struct *curr)
546 {
547 struct list_head *next, *head = &curr->pi_state_list;
548 struct futex_pi_state *pi_state;
549 struct futex_hash_bucket *hb;
550 union futex_key key = FUTEX_KEY_INIT;
551
552 if (!futex_cmpxchg_enabled)
553 return;
554 /*
555 * We are a ZOMBIE and nobody can enqueue itself on
556 * pi_state_list anymore, but we have to be careful
557 * versus waiters unqueueing themselves:
558 */
559 raw_spin_lock_irq(&curr->pi_lock);
560 while (!list_empty(head)) {
561
562 next = head->next;
563 pi_state = list_entry(next, struct futex_pi_state, list);
564 key = pi_state->key;
565 hb = hash_futex(&key);
566 raw_spin_unlock_irq(&curr->pi_lock);
567
568 spin_lock(&hb->lock);
569
570 raw_spin_lock_irq(&curr->pi_lock);
571 /*
572 * We dropped the pi-lock, so re-check whether this
573 * task still owns the PI-state:
574 */
575 if (head->next != next) {
576 spin_unlock(&hb->lock);
577 continue;
578 }
579
580 WARN_ON(pi_state->owner != curr);
581 WARN_ON(list_empty(&pi_state->list));
582 list_del_init(&pi_state->list);
583 pi_state->owner = NULL;
584 raw_spin_unlock_irq(&curr->pi_lock);
585
586 rt_mutex_unlock(&pi_state->pi_mutex);
587
588 spin_unlock(&hb->lock);
589
590 raw_spin_lock_irq(&curr->pi_lock);
591 }
592 raw_spin_unlock_irq(&curr->pi_lock);
593 }
594
595 static int
596 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
597 union futex_key *key, struct futex_pi_state **ps,
598 struct task_struct *task)
599 {
600 struct futex_pi_state *pi_state = NULL;
601 struct futex_q *this, *next;
602 struct plist_head *head;
603 struct task_struct *p;
604 pid_t pid = uval & FUTEX_TID_MASK;
605
606 head = &hb->chain;
607
608 plist_for_each_entry_safe(this, next, head, list) {
609 if (match_futex(&this->key, key)) {
610 /*
611 * Another waiter already exists - bump up
612 * the refcount and return its pi_state:
613 */
614 pi_state = this->pi_state;
615 /*
616 * Userspace might have messed up non-PI and PI futexes
617 */
618 if (unlikely(!pi_state))
619 return -EINVAL;
620
621 WARN_ON(!atomic_read(&pi_state->refcount));
622
623 /*
624 * When pi_state->owner is NULL then the owner died
625 * and another waiter is on the fly. pi_state->owner
626 * is fixed up by the task which acquires
627 * pi_state->rt_mutex.
628 *
629 * We do not check for pid == 0 which can happen when
630 * the owner died and robust_list_exit() cleared the
631 * TID.
632 */
633 if (pid && pi_state->owner) {
634 /*
635 * Bail out if user space manipulated the
636 * futex value.
637 */
638 if (pid != task_pid_vnr(pi_state->owner))
639 return -EINVAL;
640 }
641
642 /*
643 * Protect against a corrupted uval. If uval
644 * is 0x80000000 then pid is 0 and the waiter
645 * bit is set. So the deadlock check in the
646 * calling code has failed and we did not fall
647 * into the check above due to !pid.
648 */
649 if (task && pi_state->owner == task)
650 return -EDEADLK;
651
652 atomic_inc(&pi_state->refcount);
653 *ps = pi_state;
654
655 return 0;
656 }
657 }
658
659 /*
660 * We are the first waiter - try to look up the real owner and attach
661 * the new pi_state to it, but bail out when TID = 0
662 */
663 if (!pid)
664 return -ESRCH;
665 p = futex_find_get_task(pid);
666 if (!p)
667 return -ESRCH;
668
669 if (!p->mm) {
670 put_task_struct(p);
671 return -EPERM;
672 }
673
674 /*
675 * We need to look at the task state flags to figure out,
676 * whether the task is exiting. To protect against the do_exit
677 * change of the task flags, we do this protected by
678 * p->pi_lock:
679 */
680 raw_spin_lock_irq(&p->pi_lock);
681 if (unlikely(p->flags & PF_EXITING)) {
682 /*
683 * The task is on the way out. When PF_EXITPIDONE is
684 * set, we know that the task has finished the
685 * cleanup:
686 */
687 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
688
689 raw_spin_unlock_irq(&p->pi_lock);
690 put_task_struct(p);
691 return ret;
692 }
693
694 pi_state = alloc_pi_state();
695
696 /*
697 * Initialize the pi_mutex in locked state and make 'p'
698 * the owner of it:
699 */
700 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
701
702 /* Store the key for possible exit cleanups: */
703 pi_state->key = *key;
704
705 WARN_ON(!list_empty(&pi_state->list));
706 list_add(&pi_state->list, &p->pi_state_list);
707 pi_state->owner = p;
708 raw_spin_unlock_irq(&p->pi_lock);
709
710 put_task_struct(p);
711
712 *ps = pi_state;
713
714 return 0;
715 }
716
717 /**
718 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
719 * @uaddr: the pi futex user address
720 * @hb: the pi futex hash bucket
721 * @key: the futex key associated with uaddr and hb
722 * @ps: the pi_state pointer where we store the result of the
723 * lookup
724 * @task: the task to perform the atomic lock work for. This will
725 * be "current" except in the case of requeue pi.
726 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
727 *
728 * Return:
729 * 0 - ready to wait;
730 * 1 - acquired the lock;
731 * <0 - error
732 *
733 * The hb->lock and futex_key refs shall be held by the caller.
734 */
735 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
736 union futex_key *key,
737 struct futex_pi_state **ps,
738 struct task_struct *task, int set_waiters)
739 {
740 int lock_taken, ret, force_take = 0;
741 u32 uval, newval, curval, vpid = task_pid_vnr(task);
742
743 retry:
744 ret = lock_taken = 0;
745
746 /*
747 * To avoid races, we attempt to take the lock here again
748 * (by doing a 0 -> TID atomic cmpxchg), while holding all
749 * the locks. It will most likely not succeed.
750 */
751 newval = vpid;
752 if (set_waiters)
753 newval |= FUTEX_WAITERS;
754
755 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
756 return -EFAULT;
757
758 /*
759 * Detect deadlocks.
760 */
761 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
762 return -EDEADLK;
763
764 /*
765 * Surprise - we got the lock, but we do not trust user space at all.
766 */
767 if (unlikely(!curval)) {
768 /*
769 * We verify whether there is kernel state for this
770 * futex. If not, we can safely assume, that the 0 ->
771 * TID transition is correct. If state exists, we do
772 * not bother to fixup the user space state as it was
773 * corrupted already.
774 */
775 return futex_top_waiter(hb, key) ? -EINVAL : 1;
776 }
777
778 uval = curval;
779
780 /*
781 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
782 * to wake at the next unlock.
783 */
784 newval = curval | FUTEX_WAITERS;
785
786 /*
787 * Should we force take the futex? See below.
788 */
789 if (unlikely(force_take)) {
790 /*
791 * Keep the OWNER_DIED and the WAITERS bit and set the
792 * new TID value.
793 */
794 newval = (curval & ~FUTEX_TID_MASK) | vpid;
795 force_take = 0;
796 lock_taken = 1;
797 }
798
799 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
800 return -EFAULT;
801 if (unlikely(curval != uval))
802 goto retry;
803
804 /*
805 * We took the lock due to forced take over.
806 */
807 if (unlikely(lock_taken))
808 return 1;
809
810 /*
811 * We dont have the lock. Look up the PI state (or create it if
812 * we are the first waiter):
813 */
814 ret = lookup_pi_state(uval, hb, key, ps, task);
815
816 if (unlikely(ret)) {
817 switch (ret) {
818 case -ESRCH:
819 /*
820 * We failed to find an owner for this
821 * futex. So we have no pi_state to block
822 * on. This can happen in two cases:
823 *
824 * 1) The owner died
825 * 2) A stale FUTEX_WAITERS bit
826 *
827 * Re-read the futex value.
828 */
829 if (get_futex_value_locked(&curval, uaddr))
830 return -EFAULT;
831
832 /*
833 * If the owner died or we have a stale
834 * WAITERS bit the owner TID in the user space
835 * futex is 0.
836 */
837 if (!(curval & FUTEX_TID_MASK)) {
838 force_take = 1;
839 goto retry;
840 }
841 default:
842 break;
843 }
844 }
845
846 return ret;
847 }
848
849 /**
850 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
851 * @q: The futex_q to unqueue
852 *
853 * The q->lock_ptr must not be NULL and must be held by the caller.
854 */
855 static void __unqueue_futex(struct futex_q *q)
856 {
857 struct futex_hash_bucket *hb;
858
859 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
860 || WARN_ON(plist_node_empty(&q->list)))
861 return;
862
863 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
864 plist_del(&q->list, &hb->chain);
865 }
866
867 /*
868 * The hash bucket lock must be held when this is called.
869 * Afterwards, the futex_q must not be accessed.
870 */
871 static void wake_futex(struct futex_q *q)
872 {
873 struct task_struct *p = q->task;
874
875 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
876 return;
877
878 /*
879 * We set q->lock_ptr = NULL _before_ we wake up the task. If
880 * a non-futex wake up happens on another CPU then the task
881 * might exit and p would dereference a non-existing task
882 * struct. Prevent this by holding a reference on p across the
883 * wake up.
884 */
885 get_task_struct(p);
886
887 __unqueue_futex(q);
888 /*
889 * The waiting task can free the futex_q as soon as
890 * q->lock_ptr = NULL is written, without taking any locks. A
891 * memory barrier is required here to prevent the following
892 * store to lock_ptr from getting ahead of the plist_del.
893 */
894 smp_wmb();
895 q->lock_ptr = NULL;
896
897 wake_up_state(p, TASK_NORMAL);
898 put_task_struct(p);
899 }
900
901 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
902 {
903 struct task_struct *new_owner;
904 struct futex_pi_state *pi_state = this->pi_state;
905 u32 uninitialized_var(curval), newval;
906
907 if (!pi_state)
908 return -EINVAL;
909
910 /*
911 * If current does not own the pi_state then the futex is
912 * inconsistent and user space fiddled with the futex value.
913 */
914 if (pi_state->owner != current)
915 return -EINVAL;
916
917 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
918 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
919
920 /*
921 * It is possible that the next waiter (the one that brought
922 * this owner to the kernel) timed out and is no longer
923 * waiting on the lock.
924 */
925 if (!new_owner)
926 new_owner = this->task;
927
928 /*
929 * We pass it to the next owner. (The WAITERS bit is always
930 * kept enabled while there is PI state around. We must also
931 * preserve the owner died bit.)
932 */
933 if (!(uval & FUTEX_OWNER_DIED)) {
934 int ret = 0;
935
936 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
937
938 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
939 ret = -EFAULT;
940 else if (curval != uval)
941 ret = -EINVAL;
942 if (ret) {
943 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
944 return ret;
945 }
946 }
947
948 raw_spin_lock_irq(&pi_state->owner->pi_lock);
949 WARN_ON(list_empty(&pi_state->list));
950 list_del_init(&pi_state->list);
951 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
952
953 raw_spin_lock_irq(&new_owner->pi_lock);
954 WARN_ON(!list_empty(&pi_state->list));
955 list_add(&pi_state->list, &new_owner->pi_state_list);
956 pi_state->owner = new_owner;
957 raw_spin_unlock_irq(&new_owner->pi_lock);
958
959 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
960 rt_mutex_unlock(&pi_state->pi_mutex);
961
962 return 0;
963 }
964
965 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
966 {
967 u32 uninitialized_var(oldval);
968
969 /*
970 * There is no waiter, so we unlock the futex. The owner died
971 * bit has not to be preserved here. We are the owner:
972 */
973 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
974 return -EFAULT;
975 if (oldval != uval)
976 return -EAGAIN;
977
978 return 0;
979 }
980
981 /*
982 * Express the locking dependencies for lockdep:
983 */
984 static inline void
985 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
986 {
987 if (hb1 <= hb2) {
988 spin_lock(&hb1->lock);
989 if (hb1 < hb2)
990 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
991 } else { /* hb1 > hb2 */
992 spin_lock(&hb2->lock);
993 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
994 }
995 }
996
997 static inline void
998 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
999 {
1000 spin_unlock(&hb1->lock);
1001 if (hb1 != hb2)
1002 spin_unlock(&hb2->lock);
1003 }
1004
1005 /*
1006 * Wake up waiters matching bitset queued on this futex (uaddr).
1007 */
1008 static int
1009 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1010 {
1011 struct futex_hash_bucket *hb;
1012 struct futex_q *this, *next;
1013 struct plist_head *head;
1014 union futex_key key = FUTEX_KEY_INIT;
1015 int ret;
1016
1017 if (!bitset)
1018 return -EINVAL;
1019
1020 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1021 if (unlikely(ret != 0))
1022 goto out;
1023
1024 hb = hash_futex(&key);
1025 spin_lock(&hb->lock);
1026 head = &hb->chain;
1027
1028 plist_for_each_entry_safe(this, next, head, list) {
1029 if (match_futex (&this->key, &key)) {
1030 if (this->pi_state || this->rt_waiter) {
1031 ret = -EINVAL;
1032 break;
1033 }
1034
1035 /* Check if one of the bits is set in both bitsets */
1036 if (!(this->bitset & bitset))
1037 continue;
1038
1039 wake_futex(this);
1040 if (++ret >= nr_wake)
1041 break;
1042 }
1043 }
1044
1045 spin_unlock(&hb->lock);
1046 put_futex_key(&key);
1047 out:
1048 return ret;
1049 }
1050
1051 /*
1052 * Wake up all waiters hashed on the physical page that is mapped
1053 * to this virtual address:
1054 */
1055 static int
1056 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1057 int nr_wake, int nr_wake2, int op)
1058 {
1059 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1060 struct futex_hash_bucket *hb1, *hb2;
1061 struct plist_head *head;
1062 struct futex_q *this, *next;
1063 int ret, op_ret;
1064
1065 retry:
1066 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1067 if (unlikely(ret != 0))
1068 goto out;
1069 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1070 if (unlikely(ret != 0))
1071 goto out_put_key1;
1072
1073 hb1 = hash_futex(&key1);
1074 hb2 = hash_futex(&key2);
1075
1076 retry_private:
1077 double_lock_hb(hb1, hb2);
1078 op_ret = futex_atomic_op_inuser(op, uaddr2);
1079 if (unlikely(op_ret < 0)) {
1080
1081 double_unlock_hb(hb1, hb2);
1082
1083 #ifndef CONFIG_MMU
1084 /*
1085 * we don't get EFAULT from MMU faults if we don't have an MMU,
1086 * but we might get them from range checking
1087 */
1088 ret = op_ret;
1089 goto out_put_keys;
1090 #endif
1091
1092 if (unlikely(op_ret != -EFAULT)) {
1093 ret = op_ret;
1094 goto out_put_keys;
1095 }
1096
1097 ret = fault_in_user_writeable(uaddr2);
1098 if (ret)
1099 goto out_put_keys;
1100
1101 if (!(flags & FLAGS_SHARED))
1102 goto retry_private;
1103
1104 put_futex_key(&key2);
1105 put_futex_key(&key1);
1106 goto retry;
1107 }
1108
1109 head = &hb1->chain;
1110
1111 plist_for_each_entry_safe(this, next, head, list) {
1112 if (match_futex (&this->key, &key1)) {
1113 if (this->pi_state || this->rt_waiter) {
1114 ret = -EINVAL;
1115 goto out_unlock;
1116 }
1117 wake_futex(this);
1118 if (++ret >= nr_wake)
1119 break;
1120 }
1121 }
1122
1123 if (op_ret > 0) {
1124 head = &hb2->chain;
1125
1126 op_ret = 0;
1127 plist_for_each_entry_safe(this, next, head, list) {
1128 if (match_futex (&this->key, &key2)) {
1129 if (this->pi_state || this->rt_waiter) {
1130 ret = -EINVAL;
1131 goto out_unlock;
1132 }
1133 wake_futex(this);
1134 if (++op_ret >= nr_wake2)
1135 break;
1136 }
1137 }
1138 ret += op_ret;
1139 }
1140
1141 out_unlock:
1142 double_unlock_hb(hb1, hb2);
1143 out_put_keys:
1144 put_futex_key(&key2);
1145 out_put_key1:
1146 put_futex_key(&key1);
1147 out:
1148 return ret;
1149 }
1150
1151 /**
1152 * requeue_futex() - Requeue a futex_q from one hb to another
1153 * @q: the futex_q to requeue
1154 * @hb1: the source hash_bucket
1155 * @hb2: the target hash_bucket
1156 * @key2: the new key for the requeued futex_q
1157 */
1158 static inline
1159 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1160 struct futex_hash_bucket *hb2, union futex_key *key2)
1161 {
1162
1163 /*
1164 * If key1 and key2 hash to the same bucket, no need to
1165 * requeue.
1166 */
1167 if (likely(&hb1->chain != &hb2->chain)) {
1168 plist_del(&q->list, &hb1->chain);
1169 plist_add(&q->list, &hb2->chain);
1170 q->lock_ptr = &hb2->lock;
1171 }
1172 get_futex_key_refs(key2);
1173 q->key = *key2;
1174 }
1175
1176 /**
1177 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1178 * @q: the futex_q
1179 * @key: the key of the requeue target futex
1180 * @hb: the hash_bucket of the requeue target futex
1181 *
1182 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1183 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1184 * to the requeue target futex so the waiter can detect the wakeup on the right
1185 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1186 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1187 * to protect access to the pi_state to fixup the owner later. Must be called
1188 * with both q->lock_ptr and hb->lock held.
1189 */
1190 static inline
1191 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1192 struct futex_hash_bucket *hb)
1193 {
1194 get_futex_key_refs(key);
1195 q->key = *key;
1196
1197 __unqueue_futex(q);
1198
1199 WARN_ON(!q->rt_waiter);
1200 q->rt_waiter = NULL;
1201
1202 q->lock_ptr = &hb->lock;
1203
1204 wake_up_state(q->task, TASK_NORMAL);
1205 }
1206
1207 /**
1208 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1209 * @pifutex: the user address of the to futex
1210 * @hb1: the from futex hash bucket, must be locked by the caller
1211 * @hb2: the to futex hash bucket, must be locked by the caller
1212 * @key1: the from futex key
1213 * @key2: the to futex key
1214 * @ps: address to store the pi_state pointer
1215 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1216 *
1217 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1218 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1219 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1220 * hb1 and hb2 must be held by the caller.
1221 *
1222 * Return:
1223 * 0 - failed to acquire the lock atomically;
1224 * >0 - acquired the lock, return value is vpid of the top_waiter
1225 * <0 - error
1226 */
1227 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1228 struct futex_hash_bucket *hb1,
1229 struct futex_hash_bucket *hb2,
1230 union futex_key *key1, union futex_key *key2,
1231 struct futex_pi_state **ps, int set_waiters)
1232 {
1233 struct futex_q *top_waiter = NULL;
1234 u32 curval;
1235 int ret, vpid;
1236
1237 if (get_futex_value_locked(&curval, pifutex))
1238 return -EFAULT;
1239
1240 /*
1241 * Find the top_waiter and determine if there are additional waiters.
1242 * If the caller intends to requeue more than 1 waiter to pifutex,
1243 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1244 * as we have means to handle the possible fault. If not, don't set
1245 * the bit unecessarily as it will force the subsequent unlock to enter
1246 * the kernel.
1247 */
1248 top_waiter = futex_top_waiter(hb1, key1);
1249
1250 /* There are no waiters, nothing for us to do. */
1251 if (!top_waiter)
1252 return 0;
1253
1254 /* Ensure we requeue to the expected futex. */
1255 if (!match_futex(top_waiter->requeue_pi_key, key2))
1256 return -EINVAL;
1257
1258 /*
1259 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1260 * the contended case or if set_waiters is 1. The pi_state is returned
1261 * in ps in contended cases.
1262 */
1263 vpid = task_pid_vnr(top_waiter->task);
1264 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1265 set_waiters);
1266 if (ret == 1) {
1267 requeue_pi_wake_futex(top_waiter, key2, hb2);
1268 return vpid;
1269 }
1270 return ret;
1271 }
1272
1273 /**
1274 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1275 * @uaddr1: source futex user address
1276 * @flags: futex flags (FLAGS_SHARED, etc.)
1277 * @uaddr2: target futex user address
1278 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1279 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1280 * @cmpval: @uaddr1 expected value (or %NULL)
1281 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1282 * pi futex (pi to pi requeue is not supported)
1283 *
1284 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1285 * uaddr2 atomically on behalf of the top waiter.
1286 *
1287 * Return:
1288 * >=0 - on success, the number of tasks requeued or woken;
1289 * <0 - on error
1290 */
1291 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1292 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1293 u32 *cmpval, int requeue_pi)
1294 {
1295 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1296 int drop_count = 0, task_count = 0, ret;
1297 struct futex_pi_state *pi_state = NULL;
1298 struct futex_hash_bucket *hb1, *hb2;
1299 struct plist_head *head1;
1300 struct futex_q *this, *next;
1301
1302 if (requeue_pi) {
1303 /*
1304 * Requeue PI only works on two distinct uaddrs. This
1305 * check is only valid for private futexes. See below.
1306 */
1307 if (uaddr1 == uaddr2)
1308 return -EINVAL;
1309
1310 /*
1311 * requeue_pi requires a pi_state, try to allocate it now
1312 * without any locks in case it fails.
1313 */
1314 if (refill_pi_state_cache())
1315 return -ENOMEM;
1316 /*
1317 * requeue_pi must wake as many tasks as it can, up to nr_wake
1318 * + nr_requeue, since it acquires the rt_mutex prior to
1319 * returning to userspace, so as to not leave the rt_mutex with
1320 * waiters and no owner. However, second and third wake-ups
1321 * cannot be predicted as they involve race conditions with the
1322 * first wake and a fault while looking up the pi_state. Both
1323 * pthread_cond_signal() and pthread_cond_broadcast() should
1324 * use nr_wake=1.
1325 */
1326 if (nr_wake != 1)
1327 return -EINVAL;
1328 }
1329
1330 retry:
1331 if (pi_state != NULL) {
1332 /*
1333 * We will have to lookup the pi_state again, so free this one
1334 * to keep the accounting correct.
1335 */
1336 free_pi_state(pi_state);
1337 pi_state = NULL;
1338 }
1339
1340 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1341 if (unlikely(ret != 0))
1342 goto out;
1343 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1344 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1345 if (unlikely(ret != 0))
1346 goto out_put_key1;
1347
1348 /*
1349 * The check above which compares uaddrs is not sufficient for
1350 * shared futexes. We need to compare the keys:
1351 */
1352 if (requeue_pi && match_futex(&key1, &key2)) {
1353 ret = -EINVAL;
1354 goto out_put_keys;
1355 }
1356
1357 hb1 = hash_futex(&key1);
1358 hb2 = hash_futex(&key2);
1359
1360 retry_private:
1361 double_lock_hb(hb1, hb2);
1362
1363 if (likely(cmpval != NULL)) {
1364 u32 curval;
1365
1366 ret = get_futex_value_locked(&curval, uaddr1);
1367
1368 if (unlikely(ret)) {
1369 double_unlock_hb(hb1, hb2);
1370
1371 ret = get_user(curval, uaddr1);
1372 if (ret)
1373 goto out_put_keys;
1374
1375 if (!(flags & FLAGS_SHARED))
1376 goto retry_private;
1377
1378 put_futex_key(&key2);
1379 put_futex_key(&key1);
1380 goto retry;
1381 }
1382 if (curval != *cmpval) {
1383 ret = -EAGAIN;
1384 goto out_unlock;
1385 }
1386 }
1387
1388 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1389 /*
1390 * Attempt to acquire uaddr2 and wake the top waiter. If we
1391 * intend to requeue waiters, force setting the FUTEX_WAITERS
1392 * bit. We force this here where we are able to easily handle
1393 * faults rather in the requeue loop below.
1394 */
1395 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1396 &key2, &pi_state, nr_requeue);
1397
1398 /*
1399 * At this point the top_waiter has either taken uaddr2 or is
1400 * waiting on it. If the former, then the pi_state will not
1401 * exist yet, look it up one more time to ensure we have a
1402 * reference to it. If the lock was taken, ret contains the
1403 * vpid of the top waiter task.
1404 */
1405 if (ret > 0) {
1406 WARN_ON(pi_state);
1407 drop_count++;
1408 task_count++;
1409 /*
1410 * If we acquired the lock, then the user
1411 * space value of uaddr2 should be vpid. It
1412 * cannot be changed by the top waiter as it
1413 * is blocked on hb2 lock if it tries to do
1414 * so. If something fiddled with it behind our
1415 * back the pi state lookup might unearth
1416 * it. So we rather use the known value than
1417 * rereading and handing potential crap to
1418 * lookup_pi_state.
1419 */
1420 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1421 }
1422
1423 switch (ret) {
1424 case 0:
1425 break;
1426 case -EFAULT:
1427 double_unlock_hb(hb1, hb2);
1428 put_futex_key(&key2);
1429 put_futex_key(&key1);
1430 ret = fault_in_user_writeable(uaddr2);
1431 if (!ret)
1432 goto retry;
1433 goto out;
1434 case -EAGAIN:
1435 /* The owner was exiting, try again. */
1436 double_unlock_hb(hb1, hb2);
1437 put_futex_key(&key2);
1438 put_futex_key(&key1);
1439 cond_resched();
1440 goto retry;
1441 default:
1442 goto out_unlock;
1443 }
1444 }
1445
1446 head1 = &hb1->chain;
1447 plist_for_each_entry_safe(this, next, head1, list) {
1448 if (task_count - nr_wake >= nr_requeue)
1449 break;
1450
1451 if (!match_futex(&this->key, &key1))
1452 continue;
1453
1454 /*
1455 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1456 * be paired with each other and no other futex ops.
1457 *
1458 * We should never be requeueing a futex_q with a pi_state,
1459 * which is awaiting a futex_unlock_pi().
1460 */
1461 if ((requeue_pi && !this->rt_waiter) ||
1462 (!requeue_pi && this->rt_waiter) ||
1463 this->pi_state) {
1464 ret = -EINVAL;
1465 break;
1466 }
1467
1468 /*
1469 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1470 * lock, we already woke the top_waiter. If not, it will be
1471 * woken by futex_unlock_pi().
1472 */
1473 if (++task_count <= nr_wake && !requeue_pi) {
1474 wake_futex(this);
1475 continue;
1476 }
1477
1478 /* Ensure we requeue to the expected futex for requeue_pi. */
1479 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1480 ret = -EINVAL;
1481 break;
1482 }
1483
1484 /*
1485 * Requeue nr_requeue waiters and possibly one more in the case
1486 * of requeue_pi if we couldn't acquire the lock atomically.
1487 */
1488 if (requeue_pi) {
1489 /* Prepare the waiter to take the rt_mutex. */
1490 atomic_inc(&pi_state->refcount);
1491 this->pi_state = pi_state;
1492 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1493 this->rt_waiter,
1494 this->task, 1);
1495 if (ret == 1) {
1496 /* We got the lock. */
1497 requeue_pi_wake_futex(this, &key2, hb2);
1498 drop_count++;
1499 continue;
1500 } else if (ret) {
1501 /* -EDEADLK */
1502 this->pi_state = NULL;
1503 free_pi_state(pi_state);
1504 goto out_unlock;
1505 }
1506 }
1507 requeue_futex(this, hb1, hb2, &key2);
1508 drop_count++;
1509 }
1510
1511 out_unlock:
1512 double_unlock_hb(hb1, hb2);
1513
1514 /*
1515 * drop_futex_key_refs() must be called outside the spinlocks. During
1516 * the requeue we moved futex_q's from the hash bucket at key1 to the
1517 * one at key2 and updated their key pointer. We no longer need to
1518 * hold the references to key1.
1519 */
1520 while (--drop_count >= 0)
1521 drop_futex_key_refs(&key1);
1522
1523 out_put_keys:
1524 put_futex_key(&key2);
1525 out_put_key1:
1526 put_futex_key(&key1);
1527 out:
1528 if (pi_state != NULL)
1529 free_pi_state(pi_state);
1530 return ret ? ret : task_count;
1531 }
1532
1533 /* The key must be already stored in q->key. */
1534 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1535 __acquires(&hb->lock)
1536 {
1537 struct futex_hash_bucket *hb;
1538
1539 hb = hash_futex(&q->key);
1540 q->lock_ptr = &hb->lock;
1541
1542 spin_lock(&hb->lock);
1543 return hb;
1544 }
1545
1546 static inline void
1547 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1548 __releases(&hb->lock)
1549 {
1550 spin_unlock(&hb->lock);
1551 }
1552
1553 /**
1554 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1555 * @q: The futex_q to enqueue
1556 * @hb: The destination hash bucket
1557 *
1558 * The hb->lock must be held by the caller, and is released here. A call to
1559 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1560 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1561 * or nothing if the unqueue is done as part of the wake process and the unqueue
1562 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1563 * an example).
1564 */
1565 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1566 __releases(&hb->lock)
1567 {
1568 int prio;
1569
1570 /*
1571 * The priority used to register this element is
1572 * - either the real thread-priority for the real-time threads
1573 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1574 * - or MAX_RT_PRIO for non-RT threads.
1575 * Thus, all RT-threads are woken first in priority order, and
1576 * the others are woken last, in FIFO order.
1577 */
1578 prio = min(current->normal_prio, MAX_RT_PRIO);
1579
1580 plist_node_init(&q->list, prio);
1581 plist_add(&q->list, &hb->chain);
1582 q->task = current;
1583 spin_unlock(&hb->lock);
1584 }
1585
1586 /**
1587 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1588 * @q: The futex_q to unqueue
1589 *
1590 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1591 * be paired with exactly one earlier call to queue_me().
1592 *
1593 * Return:
1594 * 1 - if the futex_q was still queued (and we removed unqueued it);
1595 * 0 - if the futex_q was already removed by the waking thread
1596 */
1597 static int unqueue_me(struct futex_q *q)
1598 {
1599 spinlock_t *lock_ptr;
1600 int ret = 0;
1601
1602 /* In the common case we don't take the spinlock, which is nice. */
1603 retry:
1604 lock_ptr = q->lock_ptr;
1605 barrier();
1606 if (lock_ptr != NULL) {
1607 spin_lock(lock_ptr);
1608 /*
1609 * q->lock_ptr can change between reading it and
1610 * spin_lock(), causing us to take the wrong lock. This
1611 * corrects the race condition.
1612 *
1613 * Reasoning goes like this: if we have the wrong lock,
1614 * q->lock_ptr must have changed (maybe several times)
1615 * between reading it and the spin_lock(). It can
1616 * change again after the spin_lock() but only if it was
1617 * already changed before the spin_lock(). It cannot,
1618 * however, change back to the original value. Therefore
1619 * we can detect whether we acquired the correct lock.
1620 */
1621 if (unlikely(lock_ptr != q->lock_ptr)) {
1622 spin_unlock(lock_ptr);
1623 goto retry;
1624 }
1625 __unqueue_futex(q);
1626
1627 BUG_ON(q->pi_state);
1628
1629 spin_unlock(lock_ptr);
1630 ret = 1;
1631 }
1632
1633 drop_futex_key_refs(&q->key);
1634 return ret;
1635 }
1636
1637 /*
1638 * PI futexes can not be requeued and must remove themself from the
1639 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1640 * and dropped here.
1641 */
1642 static void unqueue_me_pi(struct futex_q *q)
1643 __releases(q->lock_ptr)
1644 {
1645 __unqueue_futex(q);
1646
1647 BUG_ON(!q->pi_state);
1648 free_pi_state(q->pi_state);
1649 q->pi_state = NULL;
1650
1651 spin_unlock(q->lock_ptr);
1652 }
1653
1654 /*
1655 * Fixup the pi_state owner with the new owner.
1656 *
1657 * Must be called with hash bucket lock held and mm->sem held for non
1658 * private futexes.
1659 */
1660 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1661 struct task_struct *newowner)
1662 {
1663 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1664 struct futex_pi_state *pi_state = q->pi_state;
1665 struct task_struct *oldowner = pi_state->owner;
1666 u32 uval, uninitialized_var(curval), newval;
1667 int ret;
1668
1669 /* Owner died? */
1670 if (!pi_state->owner)
1671 newtid |= FUTEX_OWNER_DIED;
1672
1673 /*
1674 * We are here either because we stole the rtmutex from the
1675 * previous highest priority waiter or we are the highest priority
1676 * waiter but failed to get the rtmutex the first time.
1677 * We have to replace the newowner TID in the user space variable.
1678 * This must be atomic as we have to preserve the owner died bit here.
1679 *
1680 * Note: We write the user space value _before_ changing the pi_state
1681 * because we can fault here. Imagine swapped out pages or a fork
1682 * that marked all the anonymous memory readonly for cow.
1683 *
1684 * Modifying pi_state _before_ the user space value would
1685 * leave the pi_state in an inconsistent state when we fault
1686 * here, because we need to drop the hash bucket lock to
1687 * handle the fault. This might be observed in the PID check
1688 * in lookup_pi_state.
1689 */
1690 retry:
1691 if (get_futex_value_locked(&uval, uaddr))
1692 goto handle_fault;
1693
1694 while (1) {
1695 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1696
1697 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1698 goto handle_fault;
1699 if (curval == uval)
1700 break;
1701 uval = curval;
1702 }
1703
1704 /*
1705 * We fixed up user space. Now we need to fix the pi_state
1706 * itself.
1707 */
1708 if (pi_state->owner != NULL) {
1709 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1710 WARN_ON(list_empty(&pi_state->list));
1711 list_del_init(&pi_state->list);
1712 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1713 }
1714
1715 pi_state->owner = newowner;
1716
1717 raw_spin_lock_irq(&newowner->pi_lock);
1718 WARN_ON(!list_empty(&pi_state->list));
1719 list_add(&pi_state->list, &newowner->pi_state_list);
1720 raw_spin_unlock_irq(&newowner->pi_lock);
1721 return 0;
1722
1723 /*
1724 * To handle the page fault we need to drop the hash bucket
1725 * lock here. That gives the other task (either the highest priority
1726 * waiter itself or the task which stole the rtmutex) the
1727 * chance to try the fixup of the pi_state. So once we are
1728 * back from handling the fault we need to check the pi_state
1729 * after reacquiring the hash bucket lock and before trying to
1730 * do another fixup. When the fixup has been done already we
1731 * simply return.
1732 */
1733 handle_fault:
1734 spin_unlock(q->lock_ptr);
1735
1736 ret = fault_in_user_writeable(uaddr);
1737
1738 spin_lock(q->lock_ptr);
1739
1740 /*
1741 * Check if someone else fixed it for us:
1742 */
1743 if (pi_state->owner != oldowner)
1744 return 0;
1745
1746 if (ret)
1747 return ret;
1748
1749 goto retry;
1750 }
1751
1752 static long futex_wait_restart(struct restart_block *restart);
1753
1754 /**
1755 * fixup_owner() - Post lock pi_state and corner case management
1756 * @uaddr: user address of the futex
1757 * @q: futex_q (contains pi_state and access to the rt_mutex)
1758 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1759 *
1760 * After attempting to lock an rt_mutex, this function is called to cleanup
1761 * the pi_state owner as well as handle race conditions that may allow us to
1762 * acquire the lock. Must be called with the hb lock held.
1763 *
1764 * Return:
1765 * 1 - success, lock taken;
1766 * 0 - success, lock not taken;
1767 * <0 - on error (-EFAULT)
1768 */
1769 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1770 {
1771 struct task_struct *owner;
1772 int ret = 0;
1773
1774 if (locked) {
1775 /*
1776 * Got the lock. We might not be the anticipated owner if we
1777 * did a lock-steal - fix up the PI-state in that case:
1778 */
1779 if (q->pi_state->owner != current)
1780 ret = fixup_pi_state_owner(uaddr, q, current);
1781 goto out;
1782 }
1783
1784 /*
1785 * Catch the rare case, where the lock was released when we were on the
1786 * way back before we locked the hash bucket.
1787 */
1788 if (q->pi_state->owner == current) {
1789 /*
1790 * Try to get the rt_mutex now. This might fail as some other
1791 * task acquired the rt_mutex after we removed ourself from the
1792 * rt_mutex waiters list.
1793 */
1794 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1795 locked = 1;
1796 goto out;
1797 }
1798
1799 /*
1800 * pi_state is incorrect, some other task did a lock steal and
1801 * we returned due to timeout or signal without taking the
1802 * rt_mutex. Too late.
1803 */
1804 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1805 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1806 if (!owner)
1807 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1808 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1809 ret = fixup_pi_state_owner(uaddr, q, owner);
1810 goto out;
1811 }
1812
1813 /*
1814 * Paranoia check. If we did not take the lock, then we should not be
1815 * the owner of the rt_mutex.
1816 */
1817 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1818 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1819 "pi-state %p\n", ret,
1820 q->pi_state->pi_mutex.owner,
1821 q->pi_state->owner);
1822
1823 out:
1824 return ret ? ret : locked;
1825 }
1826
1827 /**
1828 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1829 * @hb: the futex hash bucket, must be locked by the caller
1830 * @q: the futex_q to queue up on
1831 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1832 */
1833 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1834 struct hrtimer_sleeper *timeout)
1835 {
1836 /*
1837 * The task state is guaranteed to be set before another task can
1838 * wake it. set_current_state() is implemented using set_mb() and
1839 * queue_me() calls spin_unlock() upon completion, both serializing
1840 * access to the hash list and forcing another memory barrier.
1841 */
1842 set_current_state(TASK_INTERRUPTIBLE);
1843 queue_me(q, hb);
1844
1845 /* Arm the timer */
1846 if (timeout) {
1847 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1848 if (!hrtimer_active(&timeout->timer))
1849 timeout->task = NULL;
1850 }
1851
1852 /*
1853 * If we have been removed from the hash list, then another task
1854 * has tried to wake us, and we can skip the call to schedule().
1855 */
1856 if (likely(!plist_node_empty(&q->list))) {
1857 /*
1858 * If the timer has already expired, current will already be
1859 * flagged for rescheduling. Only call schedule if there
1860 * is no timeout, or if it has yet to expire.
1861 */
1862 if (!timeout || timeout->task)
1863 schedule();
1864 }
1865 __set_current_state(TASK_RUNNING);
1866 }
1867
1868 /**
1869 * futex_wait_setup() - Prepare to wait on a futex
1870 * @uaddr: the futex userspace address
1871 * @val: the expected value
1872 * @flags: futex flags (FLAGS_SHARED, etc.)
1873 * @q: the associated futex_q
1874 * @hb: storage for hash_bucket pointer to be returned to caller
1875 *
1876 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1877 * compare it with the expected value. Handle atomic faults internally.
1878 * Return with the hb lock held and a q.key reference on success, and unlocked
1879 * with no q.key reference on failure.
1880 *
1881 * Return:
1882 * 0 - uaddr contains val and hb has been locked;
1883 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1884 */
1885 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1886 struct futex_q *q, struct futex_hash_bucket **hb)
1887 {
1888 u32 uval;
1889 int ret;
1890
1891 /*
1892 * Access the page AFTER the hash-bucket is locked.
1893 * Order is important:
1894 *
1895 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1896 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1897 *
1898 * The basic logical guarantee of a futex is that it blocks ONLY
1899 * if cond(var) is known to be true at the time of blocking, for
1900 * any cond. If we locked the hash-bucket after testing *uaddr, that
1901 * would open a race condition where we could block indefinitely with
1902 * cond(var) false, which would violate the guarantee.
1903 *
1904 * On the other hand, we insert q and release the hash-bucket only
1905 * after testing *uaddr. This guarantees that futex_wait() will NOT
1906 * absorb a wakeup if *uaddr does not match the desired values
1907 * while the syscall executes.
1908 */
1909 retry:
1910 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1911 if (unlikely(ret != 0))
1912 return ret;
1913
1914 retry_private:
1915 *hb = queue_lock(q);
1916
1917 ret = get_futex_value_locked(&uval, uaddr);
1918
1919 if (ret) {
1920 queue_unlock(q, *hb);
1921
1922 ret = get_user(uval, uaddr);
1923 if (ret)
1924 goto out;
1925
1926 if (!(flags & FLAGS_SHARED))
1927 goto retry_private;
1928
1929 put_futex_key(&q->key);
1930 goto retry;
1931 }
1932
1933 if (uval != val) {
1934 queue_unlock(q, *hb);
1935 ret = -EWOULDBLOCK;
1936 }
1937
1938 out:
1939 if (ret)
1940 put_futex_key(&q->key);
1941 return ret;
1942 }
1943
1944 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1945 ktime_t *abs_time, u32 bitset)
1946 {
1947 struct hrtimer_sleeper timeout, *to = NULL;
1948 struct restart_block *restart;
1949 struct futex_hash_bucket *hb;
1950 struct futex_q q = futex_q_init;
1951 int ret;
1952
1953 if (!bitset)
1954 return -EINVAL;
1955 q.bitset = bitset;
1956
1957 if (abs_time) {
1958 to = &timeout;
1959
1960 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1961 CLOCK_REALTIME : CLOCK_MONOTONIC,
1962 HRTIMER_MODE_ABS);
1963 hrtimer_init_sleeper(to, current);
1964 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1965 current->timer_slack_ns);
1966 }
1967
1968 retry:
1969 /*
1970 * Prepare to wait on uaddr. On success, holds hb lock and increments
1971 * q.key refs.
1972 */
1973 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1974 if (ret)
1975 goto out;
1976
1977 /* queue_me and wait for wakeup, timeout, or a signal. */
1978 futex_wait_queue_me(hb, &q, to);
1979
1980 /* If we were woken (and unqueued), we succeeded, whatever. */
1981 ret = 0;
1982 /* unqueue_me() drops q.key ref */
1983 if (!unqueue_me(&q))
1984 goto out;
1985 ret = -ETIMEDOUT;
1986 if (to && !to->task)
1987 goto out;
1988
1989 /*
1990 * We expect signal_pending(current), but we might be the
1991 * victim of a spurious wakeup as well.
1992 */
1993 if (!signal_pending(current))
1994 goto retry;
1995
1996 ret = -ERESTARTSYS;
1997 if (!abs_time)
1998 goto out;
1999
2000 restart = &current_thread_info()->restart_block;
2001 restart->fn = futex_wait_restart;
2002 restart->futex.uaddr = uaddr;
2003 restart->futex.val = val;
2004 restart->futex.time = abs_time->tv64;
2005 restart->futex.bitset = bitset;
2006 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2007
2008 ret = -ERESTART_RESTARTBLOCK;
2009
2010 out:
2011 if (to) {
2012 hrtimer_cancel(&to->timer);
2013 destroy_hrtimer_on_stack(&to->timer);
2014 }
2015 return ret;
2016 }
2017
2018
2019 static long futex_wait_restart(struct restart_block *restart)
2020 {
2021 u32 __user *uaddr = restart->futex.uaddr;
2022 ktime_t t, *tp = NULL;
2023
2024 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2025 t.tv64 = restart->futex.time;
2026 tp = &t;
2027 }
2028 restart->fn = do_no_restart_syscall;
2029
2030 return (long)futex_wait(uaddr, restart->futex.flags,
2031 restart->futex.val, tp, restart->futex.bitset);
2032 }
2033
2034
2035 /*
2036 * Userspace tried a 0 -> TID atomic transition of the futex value
2037 * and failed. The kernel side here does the whole locking operation:
2038 * if there are waiters then it will block, it does PI, etc. (Due to
2039 * races the kernel might see a 0 value of the futex too.)
2040 */
2041 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2042 ktime_t *time, int trylock)
2043 {
2044 struct hrtimer_sleeper timeout, *to = NULL;
2045 struct futex_hash_bucket *hb;
2046 struct futex_q q = futex_q_init;
2047 int res, ret;
2048
2049 if (refill_pi_state_cache())
2050 return -ENOMEM;
2051
2052 if (time) {
2053 to = &timeout;
2054 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2055 HRTIMER_MODE_ABS);
2056 hrtimer_init_sleeper(to, current);
2057 hrtimer_set_expires(&to->timer, *time);
2058 }
2059
2060 retry:
2061 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2062 if (unlikely(ret != 0))
2063 goto out;
2064
2065 retry_private:
2066 hb = queue_lock(&q);
2067
2068 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2069 if (unlikely(ret)) {
2070 switch (ret) {
2071 case 1:
2072 /* We got the lock. */
2073 ret = 0;
2074 goto out_unlock_put_key;
2075 case -EFAULT:
2076 goto uaddr_faulted;
2077 case -EAGAIN:
2078 /*
2079 * Task is exiting and we just wait for the
2080 * exit to complete.
2081 */
2082 queue_unlock(&q, hb);
2083 put_futex_key(&q.key);
2084 cond_resched();
2085 goto retry;
2086 default:
2087 goto out_unlock_put_key;
2088 }
2089 }
2090
2091 /*
2092 * Only actually queue now that the atomic ops are done:
2093 */
2094 queue_me(&q, hb);
2095
2096 WARN_ON(!q.pi_state);
2097 /*
2098 * Block on the PI mutex:
2099 */
2100 if (!trylock)
2101 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2102 else {
2103 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2104 /* Fixup the trylock return value: */
2105 ret = ret ? 0 : -EWOULDBLOCK;
2106 }
2107
2108 spin_lock(q.lock_ptr);
2109 /*
2110 * Fixup the pi_state owner and possibly acquire the lock if we
2111 * haven't already.
2112 */
2113 res = fixup_owner(uaddr, &q, !ret);
2114 /*
2115 * If fixup_owner() returned an error, proprogate that. If it acquired
2116 * the lock, clear our -ETIMEDOUT or -EINTR.
2117 */
2118 if (res)
2119 ret = (res < 0) ? res : 0;
2120
2121 /*
2122 * If fixup_owner() faulted and was unable to handle the fault, unlock
2123 * it and return the fault to userspace.
2124 */
2125 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2126 rt_mutex_unlock(&q.pi_state->pi_mutex);
2127
2128 /* Unqueue and drop the lock */
2129 unqueue_me_pi(&q);
2130
2131 goto out_put_key;
2132
2133 out_unlock_put_key:
2134 queue_unlock(&q, hb);
2135
2136 out_put_key:
2137 put_futex_key(&q.key);
2138 out:
2139 if (to)
2140 destroy_hrtimer_on_stack(&to->timer);
2141 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2142
2143 uaddr_faulted:
2144 queue_unlock(&q, hb);
2145
2146 ret = fault_in_user_writeable(uaddr);
2147 if (ret)
2148 goto out_put_key;
2149
2150 if (!(flags & FLAGS_SHARED))
2151 goto retry_private;
2152
2153 put_futex_key(&q.key);
2154 goto retry;
2155 }
2156
2157 /*
2158 * Userspace attempted a TID -> 0 atomic transition, and failed.
2159 * This is the in-kernel slowpath: we look up the PI state (if any),
2160 * and do the rt-mutex unlock.
2161 */
2162 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2163 {
2164 struct futex_hash_bucket *hb;
2165 struct futex_q *this, *next;
2166 struct plist_head *head;
2167 union futex_key key = FUTEX_KEY_INIT;
2168 u32 uval, vpid = task_pid_vnr(current);
2169 int ret;
2170
2171 retry:
2172 if (get_user(uval, uaddr))
2173 return -EFAULT;
2174 /*
2175 * We release only a lock we actually own:
2176 */
2177 if ((uval & FUTEX_TID_MASK) != vpid)
2178 return -EPERM;
2179
2180 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2181 if (unlikely(ret != 0))
2182 goto out;
2183
2184 hb = hash_futex(&key);
2185 spin_lock(&hb->lock);
2186
2187 /*
2188 * To avoid races, try to do the TID -> 0 atomic transition
2189 * again. If it succeeds then we can return without waking
2190 * anyone else up:
2191 */
2192 if (!(uval & FUTEX_OWNER_DIED) &&
2193 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2194 goto pi_faulted;
2195 /*
2196 * Rare case: we managed to release the lock atomically,
2197 * no need to wake anyone else up:
2198 */
2199 if (unlikely(uval == vpid))
2200 goto out_unlock;
2201
2202 /*
2203 * Ok, other tasks may need to be woken up - check waiters
2204 * and do the wakeup if necessary:
2205 */
2206 head = &hb->chain;
2207
2208 plist_for_each_entry_safe(this, next, head, list) {
2209 if (!match_futex (&this->key, &key))
2210 continue;
2211 ret = wake_futex_pi(uaddr, uval, this);
2212 /*
2213 * The atomic access to the futex value
2214 * generated a pagefault, so retry the
2215 * user-access and the wakeup:
2216 */
2217 if (ret == -EFAULT)
2218 goto pi_faulted;
2219 goto out_unlock;
2220 }
2221 /*
2222 * No waiters - kernel unlocks the futex:
2223 */
2224 if (!(uval & FUTEX_OWNER_DIED)) {
2225 ret = unlock_futex_pi(uaddr, uval);
2226 if (ret == -EFAULT)
2227 goto pi_faulted;
2228 }
2229
2230 out_unlock:
2231 spin_unlock(&hb->lock);
2232 put_futex_key(&key);
2233
2234 out:
2235 return ret;
2236
2237 pi_faulted:
2238 spin_unlock(&hb->lock);
2239 put_futex_key(&key);
2240
2241 ret = fault_in_user_writeable(uaddr);
2242 if (!ret)
2243 goto retry;
2244
2245 return ret;
2246 }
2247
2248 /**
2249 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2250 * @hb: the hash_bucket futex_q was original enqueued on
2251 * @q: the futex_q woken while waiting to be requeued
2252 * @key2: the futex_key of the requeue target futex
2253 * @timeout: the timeout associated with the wait (NULL if none)
2254 *
2255 * Detect if the task was woken on the initial futex as opposed to the requeue
2256 * target futex. If so, determine if it was a timeout or a signal that caused
2257 * the wakeup and return the appropriate error code to the caller. Must be
2258 * called with the hb lock held.
2259 *
2260 * Return:
2261 * 0 = no early wakeup detected;
2262 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2263 */
2264 static inline
2265 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2266 struct futex_q *q, union futex_key *key2,
2267 struct hrtimer_sleeper *timeout)
2268 {
2269 int ret = 0;
2270
2271 /*
2272 * With the hb lock held, we avoid races while we process the wakeup.
2273 * We only need to hold hb (and not hb2) to ensure atomicity as the
2274 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2275 * It can't be requeued from uaddr2 to something else since we don't
2276 * support a PI aware source futex for requeue.
2277 */
2278 if (!match_futex(&q->key, key2)) {
2279 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2280 /*
2281 * We were woken prior to requeue by a timeout or a signal.
2282 * Unqueue the futex_q and determine which it was.
2283 */
2284 plist_del(&q->list, &hb->chain);
2285
2286 /* Handle spurious wakeups gracefully */
2287 ret = -EWOULDBLOCK;
2288 if (timeout && !timeout->task)
2289 ret = -ETIMEDOUT;
2290 else if (signal_pending(current))
2291 ret = -ERESTARTNOINTR;
2292 }
2293 return ret;
2294 }
2295
2296 /**
2297 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2298 * @uaddr: the futex we initially wait on (non-pi)
2299 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2300 * the same type, no requeueing from private to shared, etc.
2301 * @val: the expected value of uaddr
2302 * @abs_time: absolute timeout
2303 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2304 * @uaddr2: the pi futex we will take prior to returning to user-space
2305 *
2306 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2307 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2308 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2309 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2310 * without one, the pi logic would not know which task to boost/deboost, if
2311 * there was a need to.
2312 *
2313 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2314 * via the following--
2315 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2316 * 2) wakeup on uaddr2 after a requeue
2317 * 3) signal
2318 * 4) timeout
2319 *
2320 * If 3, cleanup and return -ERESTARTNOINTR.
2321 *
2322 * If 2, we may then block on trying to take the rt_mutex and return via:
2323 * 5) successful lock
2324 * 6) signal
2325 * 7) timeout
2326 * 8) other lock acquisition failure
2327 *
2328 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2329 *
2330 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2331 *
2332 * Return:
2333 * 0 - On success;
2334 * <0 - On error
2335 */
2336 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2337 u32 val, ktime_t *abs_time, u32 bitset,
2338 u32 __user *uaddr2)
2339 {
2340 struct hrtimer_sleeper timeout, *to = NULL;
2341 struct rt_mutex_waiter rt_waiter;
2342 struct rt_mutex *pi_mutex = NULL;
2343 struct futex_hash_bucket *hb;
2344 union futex_key key2 = FUTEX_KEY_INIT;
2345 struct futex_q q = futex_q_init;
2346 int res, ret;
2347
2348 if (uaddr == uaddr2)
2349 return -EINVAL;
2350
2351 if (!bitset)
2352 return -EINVAL;
2353
2354 if (abs_time) {
2355 to = &timeout;
2356 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2357 CLOCK_REALTIME : CLOCK_MONOTONIC,
2358 HRTIMER_MODE_ABS);
2359 hrtimer_init_sleeper(to, current);
2360 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2361 current->timer_slack_ns);
2362 }
2363
2364 /*
2365 * The waiter is allocated on our stack, manipulated by the requeue
2366 * code while we sleep on uaddr.
2367 */
2368 debug_rt_mutex_init_waiter(&rt_waiter);
2369 rt_waiter.task = NULL;
2370
2371 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2372 if (unlikely(ret != 0))
2373 goto out;
2374
2375 q.bitset = bitset;
2376 q.rt_waiter = &rt_waiter;
2377 q.requeue_pi_key = &key2;
2378
2379 /*
2380 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2381 * count.
2382 */
2383 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2384 if (ret)
2385 goto out_key2;
2386
2387 /*
2388 * The check above which compares uaddrs is not sufficient for
2389 * shared futexes. We need to compare the keys:
2390 */
2391 if (match_futex(&q.key, &key2)) {
2392 ret = -EINVAL;
2393 goto out_put_keys;
2394 }
2395
2396 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2397 futex_wait_queue_me(hb, &q, to);
2398
2399 spin_lock(&hb->lock);
2400 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2401 spin_unlock(&hb->lock);
2402 if (ret)
2403 goto out_put_keys;
2404
2405 /*
2406 * In order for us to be here, we know our q.key == key2, and since
2407 * we took the hb->lock above, we also know that futex_requeue() has
2408 * completed and we no longer have to concern ourselves with a wakeup
2409 * race with the atomic proxy lock acquisition by the requeue code. The
2410 * futex_requeue dropped our key1 reference and incremented our key2
2411 * reference count.
2412 */
2413
2414 /* Check if the requeue code acquired the second futex for us. */
2415 if (!q.rt_waiter) {
2416 /*
2417 * Got the lock. We might not be the anticipated owner if we
2418 * did a lock-steal - fix up the PI-state in that case.
2419 */
2420 if (q.pi_state && (q.pi_state->owner != current)) {
2421 spin_lock(q.lock_ptr);
2422 ret = fixup_pi_state_owner(uaddr2, &q, current);
2423 spin_unlock(q.lock_ptr);
2424 }
2425 } else {
2426 /*
2427 * We have been woken up by futex_unlock_pi(), a timeout, or a
2428 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2429 * the pi_state.
2430 */
2431 WARN_ON(!q.pi_state);
2432 pi_mutex = &q.pi_state->pi_mutex;
2433 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2434 debug_rt_mutex_free_waiter(&rt_waiter);
2435
2436 spin_lock(q.lock_ptr);
2437 /*
2438 * Fixup the pi_state owner and possibly acquire the lock if we
2439 * haven't already.
2440 */
2441 res = fixup_owner(uaddr2, &q, !ret);
2442 /*
2443 * If fixup_owner() returned an error, proprogate that. If it
2444 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2445 */
2446 if (res)
2447 ret = (res < 0) ? res : 0;
2448
2449 /* Unqueue and drop the lock. */
2450 unqueue_me_pi(&q);
2451 }
2452
2453 /*
2454 * If fixup_pi_state_owner() faulted and was unable to handle the
2455 * fault, unlock the rt_mutex and return the fault to userspace.
2456 */
2457 if (ret == -EFAULT) {
2458 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2459 rt_mutex_unlock(pi_mutex);
2460 } else if (ret == -EINTR) {
2461 /*
2462 * We've already been requeued, but cannot restart by calling
2463 * futex_lock_pi() directly. We could restart this syscall, but
2464 * it would detect that the user space "val" changed and return
2465 * -EWOULDBLOCK. Save the overhead of the restart and return
2466 * -EWOULDBLOCK directly.
2467 */
2468 ret = -EWOULDBLOCK;
2469 }
2470
2471 out_put_keys:
2472 put_futex_key(&q.key);
2473 out_key2:
2474 put_futex_key(&key2);
2475
2476 out:
2477 if (to) {
2478 hrtimer_cancel(&to->timer);
2479 destroy_hrtimer_on_stack(&to->timer);
2480 }
2481 return ret;
2482 }
2483
2484 /*
2485 * Support for robust futexes: the kernel cleans up held futexes at
2486 * thread exit time.
2487 *
2488 * Implementation: user-space maintains a per-thread list of locks it
2489 * is holding. Upon do_exit(), the kernel carefully walks this list,
2490 * and marks all locks that are owned by this thread with the
2491 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2492 * always manipulated with the lock held, so the list is private and
2493 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2494 * field, to allow the kernel to clean up if the thread dies after
2495 * acquiring the lock, but just before it could have added itself to
2496 * the list. There can only be one such pending lock.
2497 */
2498
2499 /**
2500 * sys_set_robust_list() - Set the robust-futex list head of a task
2501 * @head: pointer to the list-head
2502 * @len: length of the list-head, as userspace expects
2503 */
2504 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2505 size_t, len)
2506 {
2507 if (!futex_cmpxchg_enabled)
2508 return -ENOSYS;
2509 /*
2510 * The kernel knows only one size for now:
2511 */
2512 if (unlikely(len != sizeof(*head)))
2513 return -EINVAL;
2514
2515 current->robust_list = head;
2516
2517 return 0;
2518 }
2519
2520 /**
2521 * sys_get_robust_list() - Get the robust-futex list head of a task
2522 * @pid: pid of the process [zero for current task]
2523 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2524 * @len_ptr: pointer to a length field, the kernel fills in the header size
2525 */
2526 SYSCALL_DEFINE3(get_robust_list, int, pid,
2527 struct robust_list_head __user * __user *, head_ptr,
2528 size_t __user *, len_ptr)
2529 {
2530 struct robust_list_head __user *head;
2531 unsigned long ret;
2532 struct task_struct *p;
2533
2534 if (!futex_cmpxchg_enabled)
2535 return -ENOSYS;
2536
2537 rcu_read_lock();
2538
2539 ret = -ESRCH;
2540 if (!pid)
2541 p = current;
2542 else {
2543 p = find_task_by_vpid(pid);
2544 if (!p)
2545 goto err_unlock;
2546 }
2547
2548 ret = -EPERM;
2549 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2550 goto err_unlock;
2551
2552 head = p->robust_list;
2553 rcu_read_unlock();
2554
2555 if (put_user(sizeof(*head), len_ptr))
2556 return -EFAULT;
2557 return put_user(head, head_ptr);
2558
2559 err_unlock:
2560 rcu_read_unlock();
2561
2562 return ret;
2563 }
2564
2565 /*
2566 * Process a futex-list entry, check whether it's owned by the
2567 * dying task, and do notification if so:
2568 */
2569 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2570 {
2571 u32 uval, uninitialized_var(nval), mval;
2572
2573 retry:
2574 if (get_user(uval, uaddr))
2575 return -1;
2576
2577 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2578 /*
2579 * Ok, this dying thread is truly holding a futex
2580 * of interest. Set the OWNER_DIED bit atomically
2581 * via cmpxchg, and if the value had FUTEX_WAITERS
2582 * set, wake up a waiter (if any). (We have to do a
2583 * futex_wake() even if OWNER_DIED is already set -
2584 * to handle the rare but possible case of recursive
2585 * thread-death.) The rest of the cleanup is done in
2586 * userspace.
2587 */
2588 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2589 /*
2590 * We are not holding a lock here, but we want to have
2591 * the pagefault_disable/enable() protection because
2592 * we want to handle the fault gracefully. If the
2593 * access fails we try to fault in the futex with R/W
2594 * verification via get_user_pages. get_user() above
2595 * does not guarantee R/W access. If that fails we
2596 * give up and leave the futex locked.
2597 */
2598 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2599 if (fault_in_user_writeable(uaddr))
2600 return -1;
2601 goto retry;
2602 }
2603 if (nval != uval)
2604 goto retry;
2605
2606 /*
2607 * Wake robust non-PI futexes here. The wakeup of
2608 * PI futexes happens in exit_pi_state():
2609 */
2610 if (!pi && (uval & FUTEX_WAITERS))
2611 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2612 }
2613 return 0;
2614 }
2615
2616 /*
2617 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2618 */
2619 static inline int fetch_robust_entry(struct robust_list __user **entry,
2620 struct robust_list __user * __user *head,
2621 unsigned int *pi)
2622 {
2623 unsigned long uentry;
2624
2625 if (get_user(uentry, (unsigned long __user *)head))
2626 return -EFAULT;
2627
2628 *entry = (void __user *)(uentry & ~1UL);
2629 *pi = uentry & 1;
2630
2631 return 0;
2632 }
2633
2634 /*
2635 * Walk curr->robust_list (very carefully, it's a userspace list!)
2636 * and mark any locks found there dead, and notify any waiters.
2637 *
2638 * We silently return on any sign of list-walking problem.
2639 */
2640 void exit_robust_list(struct task_struct *curr)
2641 {
2642 struct robust_list_head __user *head = curr->robust_list;
2643 struct robust_list __user *entry, *next_entry, *pending;
2644 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2645 unsigned int uninitialized_var(next_pi);
2646 unsigned long futex_offset;
2647 int rc;
2648
2649 if (!futex_cmpxchg_enabled)
2650 return;
2651
2652 /*
2653 * Fetch the list head (which was registered earlier, via
2654 * sys_set_robust_list()):
2655 */
2656 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2657 return;
2658 /*
2659 * Fetch the relative futex offset:
2660 */
2661 if (get_user(futex_offset, &head->futex_offset))
2662 return;
2663 /*
2664 * Fetch any possibly pending lock-add first, and handle it
2665 * if it exists:
2666 */
2667 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2668 return;
2669
2670 next_entry = NULL; /* avoid warning with gcc */
2671 while (entry != &head->list) {
2672 /*
2673 * Fetch the next entry in the list before calling
2674 * handle_futex_death:
2675 */
2676 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2677 /*
2678 * A pending lock might already be on the list, so
2679 * don't process it twice:
2680 */
2681 if (entry != pending)
2682 if (handle_futex_death((void __user *)entry + futex_offset,
2683 curr, pi))
2684 return;
2685 if (rc)
2686 return;
2687 entry = next_entry;
2688 pi = next_pi;
2689 /*
2690 * Avoid excessively long or circular lists:
2691 */
2692 if (!--limit)
2693 break;
2694
2695 cond_resched();
2696 }
2697
2698 if (pending)
2699 handle_futex_death((void __user *)pending + futex_offset,
2700 curr, pip);
2701 }
2702
2703 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2704 u32 __user *uaddr2, u32 val2, u32 val3)
2705 {
2706 int cmd = op & FUTEX_CMD_MASK;
2707 unsigned int flags = 0;
2708
2709 if (!(op & FUTEX_PRIVATE_FLAG))
2710 flags |= FLAGS_SHARED;
2711
2712 if (op & FUTEX_CLOCK_REALTIME) {
2713 flags |= FLAGS_CLOCKRT;
2714 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2715 return -ENOSYS;
2716 }
2717
2718 switch (cmd) {
2719 case FUTEX_LOCK_PI:
2720 case FUTEX_UNLOCK_PI:
2721 case FUTEX_TRYLOCK_PI:
2722 case FUTEX_WAIT_REQUEUE_PI:
2723 case FUTEX_CMP_REQUEUE_PI:
2724 if (!futex_cmpxchg_enabled)
2725 return -ENOSYS;
2726 }
2727
2728 switch (cmd) {
2729 case FUTEX_WAIT:
2730 val3 = FUTEX_BITSET_MATCH_ANY;
2731 case FUTEX_WAIT_BITSET:
2732 return futex_wait(uaddr, flags, val, timeout, val3);
2733 case FUTEX_WAKE:
2734 val3 = FUTEX_BITSET_MATCH_ANY;
2735 case FUTEX_WAKE_BITSET:
2736 return futex_wake(uaddr, flags, val, val3);
2737 case FUTEX_REQUEUE:
2738 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2739 case FUTEX_CMP_REQUEUE:
2740 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2741 case FUTEX_WAKE_OP:
2742 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2743 case FUTEX_LOCK_PI:
2744 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2745 case FUTEX_UNLOCK_PI:
2746 return futex_unlock_pi(uaddr, flags);
2747 case FUTEX_TRYLOCK_PI:
2748 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2749 case FUTEX_WAIT_REQUEUE_PI:
2750 val3 = FUTEX_BITSET_MATCH_ANY;
2751 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2752 uaddr2);
2753 case FUTEX_CMP_REQUEUE_PI:
2754 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2755 }
2756 return -ENOSYS;
2757 }
2758
2759
2760 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2761 struct timespec __user *, utime, u32 __user *, uaddr2,
2762 u32, val3)
2763 {
2764 struct timespec ts;
2765 ktime_t t, *tp = NULL;
2766 u32 val2 = 0;
2767 int cmd = op & FUTEX_CMD_MASK;
2768
2769 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2770 cmd == FUTEX_WAIT_BITSET ||
2771 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2772 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2773 return -EFAULT;
2774 if (!timespec_valid(&ts))
2775 return -EINVAL;
2776
2777 t = timespec_to_ktime(ts);
2778 if (cmd == FUTEX_WAIT)
2779 t = ktime_add_safe(ktime_get(), t);
2780 tp = &t;
2781 }
2782 /*
2783 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2784 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2785 */
2786 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2787 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2788 val2 = (u32) (unsigned long) utime;
2789
2790 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2791 }
2792
2793 static void __init futex_detect_cmpxchg(void)
2794 {
2795 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2796 u32 curval;
2797
2798 /*
2799 * This will fail and we want it. Some arch implementations do
2800 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2801 * functionality. We want to know that before we call in any
2802 * of the complex code paths. Also we want to prevent
2803 * registration of robust lists in that case. NULL is
2804 * guaranteed to fault and we get -EFAULT on functional
2805 * implementation, the non-functional ones will return
2806 * -ENOSYS.
2807 */
2808 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2809 futex_cmpxchg_enabled = 1;
2810 #endif
2811 }
2812
2813 static int __init futex_init(void)
2814 {
2815 int i;
2816
2817 futex_detect_cmpxchg();
2818
2819 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2820 plist_head_init(&futex_queues[i].chain);
2821 spin_lock_init(&futex_queues[i].lock);
2822 }
2823
2824 return 0;
2825 }
2826 __initcall(futex_init);