Merge branch 'fixes' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73
74 #include <asm/pgtable.h>
75 #include <asm/pgalloc.h>
76 #include <asm/uaccess.h>
77 #include <asm/mmu_context.h>
78 #include <asm/cacheflush.h>
79 #include <asm/tlbflush.h>
80
81 #include <trace/events/sched.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/task.h>
85
86 /*
87 * Protected counters by write_lock_irq(&tasklist_lock)
88 */
89 unsigned long total_forks; /* Handle normal Linux uptimes. */
90 int nr_threads; /* The idle threads do not count.. */
91
92 int max_threads; /* tunable limit on nr_threads */
93
94 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
95
96 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
97
98 #ifdef CONFIG_PROVE_RCU
99 int lockdep_tasklist_lock_is_held(void)
100 {
101 return lockdep_is_held(&tasklist_lock);
102 }
103 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
104 #endif /* #ifdef CONFIG_PROVE_RCU */
105
106 int nr_processes(void)
107 {
108 int cpu;
109 int total = 0;
110
111 for_each_possible_cpu(cpu)
112 total += per_cpu(process_counts, cpu);
113
114 return total;
115 }
116
117 void __weak arch_release_task_struct(struct task_struct *tsk)
118 {
119 }
120
121 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
122 static struct kmem_cache *task_struct_cachep;
123
124 static inline struct task_struct *alloc_task_struct_node(int node)
125 {
126 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
127 }
128
129 static inline void free_task_struct(struct task_struct *tsk)
130 {
131 kmem_cache_free(task_struct_cachep, tsk);
132 }
133 #endif
134
135 void __weak arch_release_thread_info(struct thread_info *ti)
136 {
137 }
138
139 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
140
141 /*
142 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
143 * kmemcache based allocator.
144 */
145 # if THREAD_SIZE >= PAGE_SIZE
146 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
147 int node)
148 {
149 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
150 THREAD_SIZE_ORDER);
151
152 return page ? page_address(page) : NULL;
153 }
154
155 static inline void free_thread_info(struct thread_info *ti)
156 {
157 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
158 }
159 # else
160 static struct kmem_cache *thread_info_cache;
161
162 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
163 int node)
164 {
165 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
166 }
167
168 static void free_thread_info(struct thread_info *ti)
169 {
170 kmem_cache_free(thread_info_cache, ti);
171 }
172
173 void thread_info_cache_init(void)
174 {
175 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
176 THREAD_SIZE, 0, NULL);
177 BUG_ON(thread_info_cache == NULL);
178 }
179 # endif
180 #endif
181
182 /* SLAB cache for signal_struct structures (tsk->signal) */
183 static struct kmem_cache *signal_cachep;
184
185 /* SLAB cache for sighand_struct structures (tsk->sighand) */
186 struct kmem_cache *sighand_cachep;
187
188 /* SLAB cache for files_struct structures (tsk->files) */
189 struct kmem_cache *files_cachep;
190
191 /* SLAB cache for fs_struct structures (tsk->fs) */
192 struct kmem_cache *fs_cachep;
193
194 /* SLAB cache for vm_area_struct structures */
195 struct kmem_cache *vm_area_cachep;
196
197 /* SLAB cache for mm_struct structures (tsk->mm) */
198 static struct kmem_cache *mm_cachep;
199
200 static void account_kernel_stack(struct thread_info *ti, int account)
201 {
202 struct zone *zone = page_zone(virt_to_page(ti));
203
204 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
205 }
206
207 void free_task(struct task_struct *tsk)
208 {
209 account_kernel_stack(tsk->stack, -1);
210 arch_release_thread_info(tsk->stack);
211 free_thread_info(tsk->stack);
212 rt_mutex_debug_task_free(tsk);
213 ftrace_graph_exit_task(tsk);
214 put_seccomp_filter(tsk);
215 arch_release_task_struct(tsk);
216 free_task_struct(tsk);
217 }
218 EXPORT_SYMBOL(free_task);
219
220 static inline void free_signal_struct(struct signal_struct *sig)
221 {
222 taskstats_tgid_free(sig);
223 sched_autogroup_exit(sig);
224 kmem_cache_free(signal_cachep, sig);
225 }
226
227 static inline void put_signal_struct(struct signal_struct *sig)
228 {
229 if (atomic_dec_and_test(&sig->sigcnt))
230 free_signal_struct(sig);
231 }
232
233 void __put_task_struct(struct task_struct *tsk)
234 {
235 WARN_ON(!tsk->exit_state);
236 WARN_ON(atomic_read(&tsk->usage));
237 WARN_ON(tsk == current);
238
239 security_task_free(tsk);
240 exit_creds(tsk);
241 delayacct_tsk_free(tsk);
242 put_signal_struct(tsk->signal);
243
244 if (!profile_handoff_task(tsk))
245 free_task(tsk);
246 }
247 EXPORT_SYMBOL_GPL(__put_task_struct);
248
249 void __init __weak arch_task_cache_init(void) { }
250
251 void __init fork_init(unsigned long mempages)
252 {
253 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
254 #ifndef ARCH_MIN_TASKALIGN
255 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
256 #endif
257 /* create a slab on which task_structs can be allocated */
258 task_struct_cachep =
259 kmem_cache_create("task_struct", sizeof(struct task_struct),
260 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
261 #endif
262
263 /* do the arch specific task caches init */
264 arch_task_cache_init();
265
266 /*
267 * The default maximum number of threads is set to a safe
268 * value: the thread structures can take up at most half
269 * of memory.
270 */
271 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
272
273 /*
274 * we need to allow at least 20 threads to boot a system
275 */
276 if (max_threads < 20)
277 max_threads = 20;
278
279 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
281 init_task.signal->rlim[RLIMIT_SIGPENDING] =
282 init_task.signal->rlim[RLIMIT_NPROC];
283 }
284
285 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
286 struct task_struct *src)
287 {
288 *dst = *src;
289 return 0;
290 }
291
292 static struct task_struct *dup_task_struct(struct task_struct *orig)
293 {
294 struct task_struct *tsk;
295 struct thread_info *ti;
296 unsigned long *stackend;
297 int node = tsk_fork_get_node(orig);
298 int err;
299
300 tsk = alloc_task_struct_node(node);
301 if (!tsk)
302 return NULL;
303
304 ti = alloc_thread_info_node(tsk, node);
305 if (!ti)
306 goto free_tsk;
307
308 err = arch_dup_task_struct(tsk, orig);
309 if (err)
310 goto free_ti;
311
312 tsk->stack = ti;
313
314 setup_thread_stack(tsk, orig);
315 clear_user_return_notifier(tsk);
316 clear_tsk_need_resched(tsk);
317 stackend = end_of_stack(tsk);
318 *stackend = STACK_END_MAGIC; /* for overflow detection */
319
320 #ifdef CONFIG_CC_STACKPROTECTOR
321 tsk->stack_canary = get_random_int();
322 #endif
323
324 /*
325 * One for us, one for whoever does the "release_task()" (usually
326 * parent)
327 */
328 atomic_set(&tsk->usage, 2);
329 #ifdef CONFIG_BLK_DEV_IO_TRACE
330 tsk->btrace_seq = 0;
331 #endif
332 tsk->splice_pipe = NULL;
333 tsk->task_frag.page = NULL;
334
335 account_kernel_stack(ti, 1);
336
337 return tsk;
338
339 free_ti:
340 free_thread_info(ti);
341 free_tsk:
342 free_task_struct(tsk);
343 return NULL;
344 }
345
346 #ifdef CONFIG_MMU
347 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
348 {
349 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
350 struct rb_node **rb_link, *rb_parent;
351 int retval;
352 unsigned long charge;
353 struct mempolicy *pol;
354
355 down_write(&oldmm->mmap_sem);
356 flush_cache_dup_mm(oldmm);
357 uprobe_dup_mmap(oldmm, mm);
358 /*
359 * Not linked in yet - no deadlock potential:
360 */
361 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
362
363 mm->locked_vm = 0;
364 mm->mmap = NULL;
365 mm->mmap_cache = NULL;
366 mm->free_area_cache = oldmm->mmap_base;
367 mm->cached_hole_size = ~0UL;
368 mm->map_count = 0;
369 cpumask_clear(mm_cpumask(mm));
370 mm->mm_rb = RB_ROOT;
371 rb_link = &mm->mm_rb.rb_node;
372 rb_parent = NULL;
373 pprev = &mm->mmap;
374 retval = ksm_fork(mm, oldmm);
375 if (retval)
376 goto out;
377 retval = khugepaged_fork(mm, oldmm);
378 if (retval)
379 goto out;
380
381 prev = NULL;
382 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
383 struct file *file;
384
385 if (mpnt->vm_flags & VM_DONTCOPY) {
386 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
387 -vma_pages(mpnt));
388 continue;
389 }
390 charge = 0;
391 if (mpnt->vm_flags & VM_ACCOUNT) {
392 unsigned long len = vma_pages(mpnt);
393
394 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
395 goto fail_nomem;
396 charge = len;
397 }
398 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
399 if (!tmp)
400 goto fail_nomem;
401 *tmp = *mpnt;
402 INIT_LIST_HEAD(&tmp->anon_vma_chain);
403 pol = mpol_dup(vma_policy(mpnt));
404 retval = PTR_ERR(pol);
405 if (IS_ERR(pol))
406 goto fail_nomem_policy;
407 vma_set_policy(tmp, pol);
408 tmp->vm_mm = mm;
409 if (anon_vma_fork(tmp, mpnt))
410 goto fail_nomem_anon_vma_fork;
411 tmp->vm_flags &= ~VM_LOCKED;
412 tmp->vm_next = tmp->vm_prev = NULL;
413 file = tmp->vm_file;
414 if (file) {
415 struct inode *inode = file->f_path.dentry->d_inode;
416 struct address_space *mapping = file->f_mapping;
417
418 get_file(file);
419 if (tmp->vm_flags & VM_DENYWRITE)
420 atomic_dec(&inode->i_writecount);
421 mutex_lock(&mapping->i_mmap_mutex);
422 if (tmp->vm_flags & VM_SHARED)
423 mapping->i_mmap_writable++;
424 flush_dcache_mmap_lock(mapping);
425 /* insert tmp into the share list, just after mpnt */
426 vma_prio_tree_add(tmp, mpnt);
427 flush_dcache_mmap_unlock(mapping);
428 mutex_unlock(&mapping->i_mmap_mutex);
429 }
430
431 /*
432 * Clear hugetlb-related page reserves for children. This only
433 * affects MAP_PRIVATE mappings. Faults generated by the child
434 * are not guaranteed to succeed, even if read-only
435 */
436 if (is_vm_hugetlb_page(tmp))
437 reset_vma_resv_huge_pages(tmp);
438
439 /*
440 * Link in the new vma and copy the page table entries.
441 */
442 *pprev = tmp;
443 pprev = &tmp->vm_next;
444 tmp->vm_prev = prev;
445 prev = tmp;
446
447 __vma_link_rb(mm, tmp, rb_link, rb_parent);
448 rb_link = &tmp->vm_rb.rb_right;
449 rb_parent = &tmp->vm_rb;
450
451 mm->map_count++;
452 retval = copy_page_range(mm, oldmm, mpnt);
453
454 if (tmp->vm_ops && tmp->vm_ops->open)
455 tmp->vm_ops->open(tmp);
456
457 if (retval)
458 goto out;
459 }
460 /* a new mm has just been created */
461 arch_dup_mmap(oldmm, mm);
462 retval = 0;
463 out:
464 up_write(&mm->mmap_sem);
465 flush_tlb_mm(oldmm);
466 up_write(&oldmm->mmap_sem);
467 return retval;
468 fail_nomem_anon_vma_fork:
469 mpol_put(pol);
470 fail_nomem_policy:
471 kmem_cache_free(vm_area_cachep, tmp);
472 fail_nomem:
473 retval = -ENOMEM;
474 vm_unacct_memory(charge);
475 goto out;
476 }
477
478 static inline int mm_alloc_pgd(struct mm_struct *mm)
479 {
480 mm->pgd = pgd_alloc(mm);
481 if (unlikely(!mm->pgd))
482 return -ENOMEM;
483 return 0;
484 }
485
486 static inline void mm_free_pgd(struct mm_struct *mm)
487 {
488 pgd_free(mm, mm->pgd);
489 }
490 #else
491 #define dup_mmap(mm, oldmm) (0)
492 #define mm_alloc_pgd(mm) (0)
493 #define mm_free_pgd(mm)
494 #endif /* CONFIG_MMU */
495
496 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
497
498 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
499 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
500
501 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
502
503 static int __init coredump_filter_setup(char *s)
504 {
505 default_dump_filter =
506 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
507 MMF_DUMP_FILTER_MASK;
508 return 1;
509 }
510
511 __setup("coredump_filter=", coredump_filter_setup);
512
513 #include <linux/init_task.h>
514
515 static void mm_init_aio(struct mm_struct *mm)
516 {
517 #ifdef CONFIG_AIO
518 spin_lock_init(&mm->ioctx_lock);
519 INIT_HLIST_HEAD(&mm->ioctx_list);
520 #endif
521 }
522
523 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
524 {
525 atomic_set(&mm->mm_users, 1);
526 atomic_set(&mm->mm_count, 1);
527 init_rwsem(&mm->mmap_sem);
528 INIT_LIST_HEAD(&mm->mmlist);
529 mm->flags = (current->mm) ?
530 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
531 mm->core_state = NULL;
532 mm->nr_ptes = 0;
533 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
534 spin_lock_init(&mm->page_table_lock);
535 mm->free_area_cache = TASK_UNMAPPED_BASE;
536 mm->cached_hole_size = ~0UL;
537 mm_init_aio(mm);
538 mm_init_owner(mm, p);
539
540 if (likely(!mm_alloc_pgd(mm))) {
541 mm->def_flags = 0;
542 mmu_notifier_mm_init(mm);
543 return mm;
544 }
545
546 free_mm(mm);
547 return NULL;
548 }
549
550 static void check_mm(struct mm_struct *mm)
551 {
552 int i;
553
554 for (i = 0; i < NR_MM_COUNTERS; i++) {
555 long x = atomic_long_read(&mm->rss_stat.count[i]);
556
557 if (unlikely(x))
558 printk(KERN_ALERT "BUG: Bad rss-counter state "
559 "mm:%p idx:%d val:%ld\n", mm, i, x);
560 }
561
562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
563 VM_BUG_ON(mm->pmd_huge_pte);
564 #endif
565 }
566
567 /*
568 * Allocate and initialize an mm_struct.
569 */
570 struct mm_struct *mm_alloc(void)
571 {
572 struct mm_struct *mm;
573
574 mm = allocate_mm();
575 if (!mm)
576 return NULL;
577
578 memset(mm, 0, sizeof(*mm));
579 mm_init_cpumask(mm);
580 return mm_init(mm, current);
581 }
582
583 /*
584 * Called when the last reference to the mm
585 * is dropped: either by a lazy thread or by
586 * mmput. Free the page directory and the mm.
587 */
588 void __mmdrop(struct mm_struct *mm)
589 {
590 BUG_ON(mm == &init_mm);
591 mm_free_pgd(mm);
592 destroy_context(mm);
593 mmu_notifier_mm_destroy(mm);
594 check_mm(mm);
595 free_mm(mm);
596 }
597 EXPORT_SYMBOL_GPL(__mmdrop);
598
599 /*
600 * Decrement the use count and release all resources for an mm.
601 */
602 void mmput(struct mm_struct *mm)
603 {
604 might_sleep();
605
606 if (atomic_dec_and_test(&mm->mm_users)) {
607 uprobe_clear_state(mm);
608 exit_aio(mm);
609 ksm_exit(mm);
610 khugepaged_exit(mm); /* must run before exit_mmap */
611 exit_mmap(mm);
612 set_mm_exe_file(mm, NULL);
613 if (!list_empty(&mm->mmlist)) {
614 spin_lock(&mmlist_lock);
615 list_del(&mm->mmlist);
616 spin_unlock(&mmlist_lock);
617 }
618 if (mm->binfmt)
619 module_put(mm->binfmt->module);
620 mmdrop(mm);
621 }
622 }
623 EXPORT_SYMBOL_GPL(mmput);
624
625 /*
626 * We added or removed a vma mapping the executable. The vmas are only mapped
627 * during exec and are not mapped with the mmap system call.
628 * Callers must hold down_write() on the mm's mmap_sem for these
629 */
630 void added_exe_file_vma(struct mm_struct *mm)
631 {
632 mm->num_exe_file_vmas++;
633 }
634
635 void removed_exe_file_vma(struct mm_struct *mm)
636 {
637 mm->num_exe_file_vmas--;
638 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
639 fput(mm->exe_file);
640 mm->exe_file = NULL;
641 }
642
643 }
644
645 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
646 {
647 if (new_exe_file)
648 get_file(new_exe_file);
649 if (mm->exe_file)
650 fput(mm->exe_file);
651 mm->exe_file = new_exe_file;
652 mm->num_exe_file_vmas = 0;
653 }
654
655 struct file *get_mm_exe_file(struct mm_struct *mm)
656 {
657 struct file *exe_file;
658
659 /* We need mmap_sem to protect against races with removal of
660 * VM_EXECUTABLE vmas */
661 down_read(&mm->mmap_sem);
662 exe_file = mm->exe_file;
663 if (exe_file)
664 get_file(exe_file);
665 up_read(&mm->mmap_sem);
666 return exe_file;
667 }
668
669 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
670 {
671 /* It's safe to write the exe_file pointer without exe_file_lock because
672 * this is called during fork when the task is not yet in /proc */
673 newmm->exe_file = get_mm_exe_file(oldmm);
674 }
675
676 /**
677 * get_task_mm - acquire a reference to the task's mm
678 *
679 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
680 * this kernel workthread has transiently adopted a user mm with use_mm,
681 * to do its AIO) is not set and if so returns a reference to it, after
682 * bumping up the use count. User must release the mm via mmput()
683 * after use. Typically used by /proc and ptrace.
684 */
685 struct mm_struct *get_task_mm(struct task_struct *task)
686 {
687 struct mm_struct *mm;
688
689 task_lock(task);
690 mm = task->mm;
691 if (mm) {
692 if (task->flags & PF_KTHREAD)
693 mm = NULL;
694 else
695 atomic_inc(&mm->mm_users);
696 }
697 task_unlock(task);
698 return mm;
699 }
700 EXPORT_SYMBOL_GPL(get_task_mm);
701
702 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
703 {
704 struct mm_struct *mm;
705 int err;
706
707 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
708 if (err)
709 return ERR_PTR(err);
710
711 mm = get_task_mm(task);
712 if (mm && mm != current->mm &&
713 !ptrace_may_access(task, mode)) {
714 mmput(mm);
715 mm = ERR_PTR(-EACCES);
716 }
717 mutex_unlock(&task->signal->cred_guard_mutex);
718
719 return mm;
720 }
721
722 static void complete_vfork_done(struct task_struct *tsk)
723 {
724 struct completion *vfork;
725
726 task_lock(tsk);
727 vfork = tsk->vfork_done;
728 if (likely(vfork)) {
729 tsk->vfork_done = NULL;
730 complete(vfork);
731 }
732 task_unlock(tsk);
733 }
734
735 static int wait_for_vfork_done(struct task_struct *child,
736 struct completion *vfork)
737 {
738 int killed;
739
740 freezer_do_not_count();
741 killed = wait_for_completion_killable(vfork);
742 freezer_count();
743
744 if (killed) {
745 task_lock(child);
746 child->vfork_done = NULL;
747 task_unlock(child);
748 }
749
750 put_task_struct(child);
751 return killed;
752 }
753
754 /* Please note the differences between mmput and mm_release.
755 * mmput is called whenever we stop holding onto a mm_struct,
756 * error success whatever.
757 *
758 * mm_release is called after a mm_struct has been removed
759 * from the current process.
760 *
761 * This difference is important for error handling, when we
762 * only half set up a mm_struct for a new process and need to restore
763 * the old one. Because we mmput the new mm_struct before
764 * restoring the old one. . .
765 * Eric Biederman 10 January 1998
766 */
767 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
768 {
769 /* Get rid of any futexes when releasing the mm */
770 #ifdef CONFIG_FUTEX
771 if (unlikely(tsk->robust_list)) {
772 exit_robust_list(tsk);
773 tsk->robust_list = NULL;
774 }
775 #ifdef CONFIG_COMPAT
776 if (unlikely(tsk->compat_robust_list)) {
777 compat_exit_robust_list(tsk);
778 tsk->compat_robust_list = NULL;
779 }
780 #endif
781 if (unlikely(!list_empty(&tsk->pi_state_list)))
782 exit_pi_state_list(tsk);
783 #endif
784
785 uprobe_free_utask(tsk);
786
787 /* Get rid of any cached register state */
788 deactivate_mm(tsk, mm);
789
790 /*
791 * If we're exiting normally, clear a user-space tid field if
792 * requested. We leave this alone when dying by signal, to leave
793 * the value intact in a core dump, and to save the unnecessary
794 * trouble, say, a killed vfork parent shouldn't touch this mm.
795 * Userland only wants this done for a sys_exit.
796 */
797 if (tsk->clear_child_tid) {
798 if (!(tsk->flags & PF_SIGNALED) &&
799 atomic_read(&mm->mm_users) > 1) {
800 /*
801 * We don't check the error code - if userspace has
802 * not set up a proper pointer then tough luck.
803 */
804 put_user(0, tsk->clear_child_tid);
805 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
806 1, NULL, NULL, 0);
807 }
808 tsk->clear_child_tid = NULL;
809 }
810
811 /*
812 * All done, finally we can wake up parent and return this mm to him.
813 * Also kthread_stop() uses this completion for synchronization.
814 */
815 if (tsk->vfork_done)
816 complete_vfork_done(tsk);
817 }
818
819 /*
820 * Allocate a new mm structure and copy contents from the
821 * mm structure of the passed in task structure.
822 */
823 struct mm_struct *dup_mm(struct task_struct *tsk)
824 {
825 struct mm_struct *mm, *oldmm = current->mm;
826 int err;
827
828 if (!oldmm)
829 return NULL;
830
831 mm = allocate_mm();
832 if (!mm)
833 goto fail_nomem;
834
835 memcpy(mm, oldmm, sizeof(*mm));
836 mm_init_cpumask(mm);
837
838 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
839 mm->pmd_huge_pte = NULL;
840 #endif
841 if (!mm_init(mm, tsk))
842 goto fail_nomem;
843
844 if (init_new_context(tsk, mm))
845 goto fail_nocontext;
846
847 dup_mm_exe_file(oldmm, mm);
848
849 err = dup_mmap(mm, oldmm);
850 if (err)
851 goto free_pt;
852
853 mm->hiwater_rss = get_mm_rss(mm);
854 mm->hiwater_vm = mm->total_vm;
855
856 if (mm->binfmt && !try_module_get(mm->binfmt->module))
857 goto free_pt;
858
859 return mm;
860
861 free_pt:
862 /* don't put binfmt in mmput, we haven't got module yet */
863 mm->binfmt = NULL;
864 mmput(mm);
865
866 fail_nomem:
867 return NULL;
868
869 fail_nocontext:
870 /*
871 * If init_new_context() failed, we cannot use mmput() to free the mm
872 * because it calls destroy_context()
873 */
874 mm_free_pgd(mm);
875 free_mm(mm);
876 return NULL;
877 }
878
879 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
880 {
881 struct mm_struct *mm, *oldmm;
882 int retval;
883
884 tsk->min_flt = tsk->maj_flt = 0;
885 tsk->nvcsw = tsk->nivcsw = 0;
886 #ifdef CONFIG_DETECT_HUNG_TASK
887 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
888 #endif
889
890 tsk->mm = NULL;
891 tsk->active_mm = NULL;
892
893 /*
894 * Are we cloning a kernel thread?
895 *
896 * We need to steal a active VM for that..
897 */
898 oldmm = current->mm;
899 if (!oldmm)
900 return 0;
901
902 if (clone_flags & CLONE_VM) {
903 atomic_inc(&oldmm->mm_users);
904 mm = oldmm;
905 goto good_mm;
906 }
907
908 retval = -ENOMEM;
909 mm = dup_mm(tsk);
910 if (!mm)
911 goto fail_nomem;
912
913 good_mm:
914 tsk->mm = mm;
915 tsk->active_mm = mm;
916 return 0;
917
918 fail_nomem:
919 return retval;
920 }
921
922 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
923 {
924 struct fs_struct *fs = current->fs;
925 if (clone_flags & CLONE_FS) {
926 /* tsk->fs is already what we want */
927 spin_lock(&fs->lock);
928 if (fs->in_exec) {
929 spin_unlock(&fs->lock);
930 return -EAGAIN;
931 }
932 fs->users++;
933 spin_unlock(&fs->lock);
934 return 0;
935 }
936 tsk->fs = copy_fs_struct(fs);
937 if (!tsk->fs)
938 return -ENOMEM;
939 return 0;
940 }
941
942 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
943 {
944 struct files_struct *oldf, *newf;
945 int error = 0;
946
947 /*
948 * A background process may not have any files ...
949 */
950 oldf = current->files;
951 if (!oldf)
952 goto out;
953
954 if (clone_flags & CLONE_FILES) {
955 atomic_inc(&oldf->count);
956 goto out;
957 }
958
959 newf = dup_fd(oldf, &error);
960 if (!newf)
961 goto out;
962
963 tsk->files = newf;
964 error = 0;
965 out:
966 return error;
967 }
968
969 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
970 {
971 #ifdef CONFIG_BLOCK
972 struct io_context *ioc = current->io_context;
973 struct io_context *new_ioc;
974
975 if (!ioc)
976 return 0;
977 /*
978 * Share io context with parent, if CLONE_IO is set
979 */
980 if (clone_flags & CLONE_IO) {
981 ioc_task_link(ioc);
982 tsk->io_context = ioc;
983 } else if (ioprio_valid(ioc->ioprio)) {
984 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
985 if (unlikely(!new_ioc))
986 return -ENOMEM;
987
988 new_ioc->ioprio = ioc->ioprio;
989 put_io_context(new_ioc);
990 }
991 #endif
992 return 0;
993 }
994
995 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
996 {
997 struct sighand_struct *sig;
998
999 if (clone_flags & CLONE_SIGHAND) {
1000 atomic_inc(&current->sighand->count);
1001 return 0;
1002 }
1003 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1004 rcu_assign_pointer(tsk->sighand, sig);
1005 if (!sig)
1006 return -ENOMEM;
1007 atomic_set(&sig->count, 1);
1008 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1009 return 0;
1010 }
1011
1012 void __cleanup_sighand(struct sighand_struct *sighand)
1013 {
1014 if (atomic_dec_and_test(&sighand->count)) {
1015 signalfd_cleanup(sighand);
1016 kmem_cache_free(sighand_cachep, sighand);
1017 }
1018 }
1019
1020
1021 /*
1022 * Initialize POSIX timer handling for a thread group.
1023 */
1024 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1025 {
1026 unsigned long cpu_limit;
1027
1028 /* Thread group counters. */
1029 thread_group_cputime_init(sig);
1030
1031 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1032 if (cpu_limit != RLIM_INFINITY) {
1033 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1034 sig->cputimer.running = 1;
1035 }
1036
1037 /* The timer lists. */
1038 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1039 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1040 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1041 }
1042
1043 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1044 {
1045 struct signal_struct *sig;
1046
1047 if (clone_flags & CLONE_THREAD)
1048 return 0;
1049
1050 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1051 tsk->signal = sig;
1052 if (!sig)
1053 return -ENOMEM;
1054
1055 sig->nr_threads = 1;
1056 atomic_set(&sig->live, 1);
1057 atomic_set(&sig->sigcnt, 1);
1058 init_waitqueue_head(&sig->wait_chldexit);
1059 if (clone_flags & CLONE_NEWPID)
1060 sig->flags |= SIGNAL_UNKILLABLE;
1061 sig->curr_target = tsk;
1062 init_sigpending(&sig->shared_pending);
1063 INIT_LIST_HEAD(&sig->posix_timers);
1064
1065 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1066 sig->real_timer.function = it_real_fn;
1067
1068 task_lock(current->group_leader);
1069 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1070 task_unlock(current->group_leader);
1071
1072 posix_cpu_timers_init_group(sig);
1073
1074 tty_audit_fork(sig);
1075 sched_autogroup_fork(sig);
1076
1077 #ifdef CONFIG_CGROUPS
1078 init_rwsem(&sig->group_rwsem);
1079 #endif
1080
1081 sig->oom_adj = current->signal->oom_adj;
1082 sig->oom_score_adj = current->signal->oom_score_adj;
1083 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1084
1085 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1086 current->signal->is_child_subreaper;
1087
1088 mutex_init(&sig->cred_guard_mutex);
1089
1090 return 0;
1091 }
1092
1093 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1094 {
1095 unsigned long new_flags = p->flags;
1096
1097 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1098 new_flags |= PF_FORKNOEXEC;
1099 p->flags = new_flags;
1100 }
1101
1102 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1103 {
1104 current->clear_child_tid = tidptr;
1105
1106 return task_pid_vnr(current);
1107 }
1108
1109 static void rt_mutex_init_task(struct task_struct *p)
1110 {
1111 raw_spin_lock_init(&p->pi_lock);
1112 #ifdef CONFIG_RT_MUTEXES
1113 plist_head_init(&p->pi_waiters);
1114 p->pi_blocked_on = NULL;
1115 #endif
1116 }
1117
1118 #ifdef CONFIG_MM_OWNER
1119 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1120 {
1121 mm->owner = p;
1122 }
1123 #endif /* CONFIG_MM_OWNER */
1124
1125 /*
1126 * Initialize POSIX timer handling for a single task.
1127 */
1128 static void posix_cpu_timers_init(struct task_struct *tsk)
1129 {
1130 tsk->cputime_expires.prof_exp = 0;
1131 tsk->cputime_expires.virt_exp = 0;
1132 tsk->cputime_expires.sched_exp = 0;
1133 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1134 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1135 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1136 }
1137
1138 /*
1139 * This creates a new process as a copy of the old one,
1140 * but does not actually start it yet.
1141 *
1142 * It copies the registers, and all the appropriate
1143 * parts of the process environment (as per the clone
1144 * flags). The actual kick-off is left to the caller.
1145 */
1146 static struct task_struct *copy_process(unsigned long clone_flags,
1147 unsigned long stack_start,
1148 struct pt_regs *regs,
1149 unsigned long stack_size,
1150 int __user *child_tidptr,
1151 struct pid *pid,
1152 int trace)
1153 {
1154 int retval;
1155 struct task_struct *p;
1156 int cgroup_callbacks_done = 0;
1157
1158 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1159 return ERR_PTR(-EINVAL);
1160
1161 /*
1162 * Thread groups must share signals as well, and detached threads
1163 * can only be started up within the thread group.
1164 */
1165 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1166 return ERR_PTR(-EINVAL);
1167
1168 /*
1169 * Shared signal handlers imply shared VM. By way of the above,
1170 * thread groups also imply shared VM. Blocking this case allows
1171 * for various simplifications in other code.
1172 */
1173 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1174 return ERR_PTR(-EINVAL);
1175
1176 /*
1177 * Siblings of global init remain as zombies on exit since they are
1178 * not reaped by their parent (swapper). To solve this and to avoid
1179 * multi-rooted process trees, prevent global and container-inits
1180 * from creating siblings.
1181 */
1182 if ((clone_flags & CLONE_PARENT) &&
1183 current->signal->flags & SIGNAL_UNKILLABLE)
1184 return ERR_PTR(-EINVAL);
1185
1186 retval = security_task_create(clone_flags);
1187 if (retval)
1188 goto fork_out;
1189
1190 retval = -ENOMEM;
1191 p = dup_task_struct(current);
1192 if (!p)
1193 goto fork_out;
1194
1195 ftrace_graph_init_task(p);
1196 get_seccomp_filter(p);
1197
1198 rt_mutex_init_task(p);
1199
1200 #ifdef CONFIG_PROVE_LOCKING
1201 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1202 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1203 #endif
1204 retval = -EAGAIN;
1205 if (atomic_read(&p->real_cred->user->processes) >=
1206 task_rlimit(p, RLIMIT_NPROC)) {
1207 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1208 p->real_cred->user != INIT_USER)
1209 goto bad_fork_free;
1210 }
1211 current->flags &= ~PF_NPROC_EXCEEDED;
1212
1213 retval = copy_creds(p, clone_flags);
1214 if (retval < 0)
1215 goto bad_fork_free;
1216
1217 /*
1218 * If multiple threads are within copy_process(), then this check
1219 * triggers too late. This doesn't hurt, the check is only there
1220 * to stop root fork bombs.
1221 */
1222 retval = -EAGAIN;
1223 if (nr_threads >= max_threads)
1224 goto bad_fork_cleanup_count;
1225
1226 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1227 goto bad_fork_cleanup_count;
1228
1229 p->did_exec = 0;
1230 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1231 copy_flags(clone_flags, p);
1232 INIT_LIST_HEAD(&p->children);
1233 INIT_LIST_HEAD(&p->sibling);
1234 rcu_copy_process(p);
1235 p->vfork_done = NULL;
1236 spin_lock_init(&p->alloc_lock);
1237
1238 init_sigpending(&p->pending);
1239
1240 p->utime = p->stime = p->gtime = 0;
1241 p->utimescaled = p->stimescaled = 0;
1242 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1243 p->prev_utime = p->prev_stime = 0;
1244 #endif
1245 #if defined(SPLIT_RSS_COUNTING)
1246 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1247 #endif
1248
1249 p->default_timer_slack_ns = current->timer_slack_ns;
1250
1251 task_io_accounting_init(&p->ioac);
1252 acct_clear_integrals(p);
1253
1254 posix_cpu_timers_init(p);
1255
1256 do_posix_clock_monotonic_gettime(&p->start_time);
1257 p->real_start_time = p->start_time;
1258 monotonic_to_bootbased(&p->real_start_time);
1259 p->io_context = NULL;
1260 p->audit_context = NULL;
1261 if (clone_flags & CLONE_THREAD)
1262 threadgroup_change_begin(current);
1263 cgroup_fork(p);
1264 #ifdef CONFIG_NUMA
1265 p->mempolicy = mpol_dup(p->mempolicy);
1266 if (IS_ERR(p->mempolicy)) {
1267 retval = PTR_ERR(p->mempolicy);
1268 p->mempolicy = NULL;
1269 goto bad_fork_cleanup_cgroup;
1270 }
1271 mpol_fix_fork_child_flag(p);
1272 #endif
1273 #ifdef CONFIG_CPUSETS
1274 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1275 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1276 seqcount_init(&p->mems_allowed_seq);
1277 #endif
1278 #ifdef CONFIG_TRACE_IRQFLAGS
1279 p->irq_events = 0;
1280 p->hardirqs_enabled = 0;
1281 p->hardirq_enable_ip = 0;
1282 p->hardirq_enable_event = 0;
1283 p->hardirq_disable_ip = _THIS_IP_;
1284 p->hardirq_disable_event = 0;
1285 p->softirqs_enabled = 1;
1286 p->softirq_enable_ip = _THIS_IP_;
1287 p->softirq_enable_event = 0;
1288 p->softirq_disable_ip = 0;
1289 p->softirq_disable_event = 0;
1290 p->hardirq_context = 0;
1291 p->softirq_context = 0;
1292 #endif
1293 #ifdef CONFIG_LOCKDEP
1294 p->lockdep_depth = 0; /* no locks held yet */
1295 p->curr_chain_key = 0;
1296 p->lockdep_recursion = 0;
1297 #endif
1298
1299 #ifdef CONFIG_DEBUG_MUTEXES
1300 p->blocked_on = NULL; /* not blocked yet */
1301 #endif
1302 #ifdef CONFIG_MEMCG
1303 p->memcg_batch.do_batch = 0;
1304 p->memcg_batch.memcg = NULL;
1305 #endif
1306
1307 /* Perform scheduler related setup. Assign this task to a CPU. */
1308 sched_fork(p);
1309
1310 retval = perf_event_init_task(p);
1311 if (retval)
1312 goto bad_fork_cleanup_policy;
1313 retval = audit_alloc(p);
1314 if (retval)
1315 goto bad_fork_cleanup_policy;
1316 /* copy all the process information */
1317 retval = copy_semundo(clone_flags, p);
1318 if (retval)
1319 goto bad_fork_cleanup_audit;
1320 retval = copy_files(clone_flags, p);
1321 if (retval)
1322 goto bad_fork_cleanup_semundo;
1323 retval = copy_fs(clone_flags, p);
1324 if (retval)
1325 goto bad_fork_cleanup_files;
1326 retval = copy_sighand(clone_flags, p);
1327 if (retval)
1328 goto bad_fork_cleanup_fs;
1329 retval = copy_signal(clone_flags, p);
1330 if (retval)
1331 goto bad_fork_cleanup_sighand;
1332 retval = copy_mm(clone_flags, p);
1333 if (retval)
1334 goto bad_fork_cleanup_signal;
1335 retval = copy_namespaces(clone_flags, p);
1336 if (retval)
1337 goto bad_fork_cleanup_mm;
1338 retval = copy_io(clone_flags, p);
1339 if (retval)
1340 goto bad_fork_cleanup_namespaces;
1341 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1342 if (retval)
1343 goto bad_fork_cleanup_io;
1344
1345 if (pid != &init_struct_pid) {
1346 retval = -ENOMEM;
1347 pid = alloc_pid(p->nsproxy->pid_ns);
1348 if (!pid)
1349 goto bad_fork_cleanup_io;
1350 }
1351
1352 p->pid = pid_nr(pid);
1353 p->tgid = p->pid;
1354 if (clone_flags & CLONE_THREAD)
1355 p->tgid = current->tgid;
1356
1357 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1358 /*
1359 * Clear TID on mm_release()?
1360 */
1361 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1362 #ifdef CONFIG_BLOCK
1363 p->plug = NULL;
1364 #endif
1365 #ifdef CONFIG_FUTEX
1366 p->robust_list = NULL;
1367 #ifdef CONFIG_COMPAT
1368 p->compat_robust_list = NULL;
1369 #endif
1370 INIT_LIST_HEAD(&p->pi_state_list);
1371 p->pi_state_cache = NULL;
1372 #endif
1373 uprobe_copy_process(p);
1374 /*
1375 * sigaltstack should be cleared when sharing the same VM
1376 */
1377 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1378 p->sas_ss_sp = p->sas_ss_size = 0;
1379
1380 /*
1381 * Syscall tracing and stepping should be turned off in the
1382 * child regardless of CLONE_PTRACE.
1383 */
1384 user_disable_single_step(p);
1385 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1386 #ifdef TIF_SYSCALL_EMU
1387 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1388 #endif
1389 clear_all_latency_tracing(p);
1390
1391 /* ok, now we should be set up.. */
1392 if (clone_flags & CLONE_THREAD)
1393 p->exit_signal = -1;
1394 else if (clone_flags & CLONE_PARENT)
1395 p->exit_signal = current->group_leader->exit_signal;
1396 else
1397 p->exit_signal = (clone_flags & CSIGNAL);
1398
1399 p->pdeath_signal = 0;
1400 p->exit_state = 0;
1401
1402 p->nr_dirtied = 0;
1403 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1404 p->dirty_paused_when = 0;
1405
1406 /*
1407 * Ok, make it visible to the rest of the system.
1408 * We dont wake it up yet.
1409 */
1410 p->group_leader = p;
1411 INIT_LIST_HEAD(&p->thread_group);
1412 p->task_works = NULL;
1413
1414 /* Now that the task is set up, run cgroup callbacks if
1415 * necessary. We need to run them before the task is visible
1416 * on the tasklist. */
1417 cgroup_fork_callbacks(p);
1418 cgroup_callbacks_done = 1;
1419
1420 /* Need tasklist lock for parent etc handling! */
1421 write_lock_irq(&tasklist_lock);
1422
1423 /* CLONE_PARENT re-uses the old parent */
1424 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1425 p->real_parent = current->real_parent;
1426 p->parent_exec_id = current->parent_exec_id;
1427 } else {
1428 p->real_parent = current;
1429 p->parent_exec_id = current->self_exec_id;
1430 }
1431
1432 spin_lock(&current->sighand->siglock);
1433
1434 /*
1435 * Process group and session signals need to be delivered to just the
1436 * parent before the fork or both the parent and the child after the
1437 * fork. Restart if a signal comes in before we add the new process to
1438 * it's process group.
1439 * A fatal signal pending means that current will exit, so the new
1440 * thread can't slip out of an OOM kill (or normal SIGKILL).
1441 */
1442 recalc_sigpending();
1443 if (signal_pending(current)) {
1444 spin_unlock(&current->sighand->siglock);
1445 write_unlock_irq(&tasklist_lock);
1446 retval = -ERESTARTNOINTR;
1447 goto bad_fork_free_pid;
1448 }
1449
1450 if (clone_flags & CLONE_THREAD) {
1451 current->signal->nr_threads++;
1452 atomic_inc(&current->signal->live);
1453 atomic_inc(&current->signal->sigcnt);
1454 p->group_leader = current->group_leader;
1455 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1456 }
1457
1458 if (likely(p->pid)) {
1459 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1460
1461 if (thread_group_leader(p)) {
1462 if (is_child_reaper(pid))
1463 p->nsproxy->pid_ns->child_reaper = p;
1464
1465 p->signal->leader_pid = pid;
1466 p->signal->tty = tty_kref_get(current->signal->tty);
1467 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1468 attach_pid(p, PIDTYPE_SID, task_session(current));
1469 list_add_tail(&p->sibling, &p->real_parent->children);
1470 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1471 __this_cpu_inc(process_counts);
1472 }
1473 attach_pid(p, PIDTYPE_PID, pid);
1474 nr_threads++;
1475 }
1476
1477 total_forks++;
1478 spin_unlock(&current->sighand->siglock);
1479 write_unlock_irq(&tasklist_lock);
1480 proc_fork_connector(p);
1481 cgroup_post_fork(p);
1482 if (clone_flags & CLONE_THREAD)
1483 threadgroup_change_end(current);
1484 perf_event_fork(p);
1485
1486 trace_task_newtask(p, clone_flags);
1487
1488 return p;
1489
1490 bad_fork_free_pid:
1491 if (pid != &init_struct_pid)
1492 free_pid(pid);
1493 bad_fork_cleanup_io:
1494 if (p->io_context)
1495 exit_io_context(p);
1496 bad_fork_cleanup_namespaces:
1497 if (unlikely(clone_flags & CLONE_NEWPID))
1498 pid_ns_release_proc(p->nsproxy->pid_ns);
1499 exit_task_namespaces(p);
1500 bad_fork_cleanup_mm:
1501 if (p->mm)
1502 mmput(p->mm);
1503 bad_fork_cleanup_signal:
1504 if (!(clone_flags & CLONE_THREAD))
1505 free_signal_struct(p->signal);
1506 bad_fork_cleanup_sighand:
1507 __cleanup_sighand(p->sighand);
1508 bad_fork_cleanup_fs:
1509 exit_fs(p); /* blocking */
1510 bad_fork_cleanup_files:
1511 exit_files(p); /* blocking */
1512 bad_fork_cleanup_semundo:
1513 exit_sem(p);
1514 bad_fork_cleanup_audit:
1515 audit_free(p);
1516 bad_fork_cleanup_policy:
1517 perf_event_free_task(p);
1518 #ifdef CONFIG_NUMA
1519 mpol_put(p->mempolicy);
1520 bad_fork_cleanup_cgroup:
1521 #endif
1522 if (clone_flags & CLONE_THREAD)
1523 threadgroup_change_end(current);
1524 cgroup_exit(p, cgroup_callbacks_done);
1525 delayacct_tsk_free(p);
1526 module_put(task_thread_info(p)->exec_domain->module);
1527 bad_fork_cleanup_count:
1528 atomic_dec(&p->cred->user->processes);
1529 exit_creds(p);
1530 bad_fork_free:
1531 free_task(p);
1532 fork_out:
1533 return ERR_PTR(retval);
1534 }
1535
1536 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1537 {
1538 memset(regs, 0, sizeof(struct pt_regs));
1539 return regs;
1540 }
1541
1542 static inline void init_idle_pids(struct pid_link *links)
1543 {
1544 enum pid_type type;
1545
1546 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1547 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1548 links[type].pid = &init_struct_pid;
1549 }
1550 }
1551
1552 struct task_struct * __cpuinit fork_idle(int cpu)
1553 {
1554 struct task_struct *task;
1555 struct pt_regs regs;
1556
1557 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1558 &init_struct_pid, 0);
1559 if (!IS_ERR(task)) {
1560 init_idle_pids(task->pids);
1561 init_idle(task, cpu);
1562 }
1563
1564 return task;
1565 }
1566
1567 /*
1568 * Ok, this is the main fork-routine.
1569 *
1570 * It copies the process, and if successful kick-starts
1571 * it and waits for it to finish using the VM if required.
1572 */
1573 long do_fork(unsigned long clone_flags,
1574 unsigned long stack_start,
1575 struct pt_regs *regs,
1576 unsigned long stack_size,
1577 int __user *parent_tidptr,
1578 int __user *child_tidptr)
1579 {
1580 struct task_struct *p;
1581 int trace = 0;
1582 long nr;
1583
1584 /*
1585 * Do some preliminary argument and permissions checking before we
1586 * actually start allocating stuff
1587 */
1588 if (clone_flags & CLONE_NEWUSER) {
1589 if (clone_flags & CLONE_THREAD)
1590 return -EINVAL;
1591 /* hopefully this check will go away when userns support is
1592 * complete
1593 */
1594 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1595 !capable(CAP_SETGID))
1596 return -EPERM;
1597 }
1598
1599 /*
1600 * Determine whether and which event to report to ptracer. When
1601 * called from kernel_thread or CLONE_UNTRACED is explicitly
1602 * requested, no event is reported; otherwise, report if the event
1603 * for the type of forking is enabled.
1604 */
1605 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1606 if (clone_flags & CLONE_VFORK)
1607 trace = PTRACE_EVENT_VFORK;
1608 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1609 trace = PTRACE_EVENT_CLONE;
1610 else
1611 trace = PTRACE_EVENT_FORK;
1612
1613 if (likely(!ptrace_event_enabled(current, trace)))
1614 trace = 0;
1615 }
1616
1617 p = copy_process(clone_flags, stack_start, regs, stack_size,
1618 child_tidptr, NULL, trace);
1619 /*
1620 * Do this prior waking up the new thread - the thread pointer
1621 * might get invalid after that point, if the thread exits quickly.
1622 */
1623 if (!IS_ERR(p)) {
1624 struct completion vfork;
1625
1626 trace_sched_process_fork(current, p);
1627
1628 nr = task_pid_vnr(p);
1629
1630 if (clone_flags & CLONE_PARENT_SETTID)
1631 put_user(nr, parent_tidptr);
1632
1633 if (clone_flags & CLONE_VFORK) {
1634 p->vfork_done = &vfork;
1635 init_completion(&vfork);
1636 get_task_struct(p);
1637 }
1638
1639 wake_up_new_task(p);
1640
1641 /* forking complete and child started to run, tell ptracer */
1642 if (unlikely(trace))
1643 ptrace_event(trace, nr);
1644
1645 if (clone_flags & CLONE_VFORK) {
1646 if (!wait_for_vfork_done(p, &vfork))
1647 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1648 }
1649 } else {
1650 nr = PTR_ERR(p);
1651 }
1652 return nr;
1653 }
1654
1655 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1656 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1657 #endif
1658
1659 static void sighand_ctor(void *data)
1660 {
1661 struct sighand_struct *sighand = data;
1662
1663 spin_lock_init(&sighand->siglock);
1664 init_waitqueue_head(&sighand->signalfd_wqh);
1665 }
1666
1667 void __init proc_caches_init(void)
1668 {
1669 sighand_cachep = kmem_cache_create("sighand_cache",
1670 sizeof(struct sighand_struct), 0,
1671 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1672 SLAB_NOTRACK, sighand_ctor);
1673 signal_cachep = kmem_cache_create("signal_cache",
1674 sizeof(struct signal_struct), 0,
1675 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1676 files_cachep = kmem_cache_create("files_cache",
1677 sizeof(struct files_struct), 0,
1678 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1679 fs_cachep = kmem_cache_create("fs_cache",
1680 sizeof(struct fs_struct), 0,
1681 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1682 /*
1683 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1684 * whole struct cpumask for the OFFSTACK case. We could change
1685 * this to *only* allocate as much of it as required by the
1686 * maximum number of CPU's we can ever have. The cpumask_allocation
1687 * is at the end of the structure, exactly for that reason.
1688 */
1689 mm_cachep = kmem_cache_create("mm_struct",
1690 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1691 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1692 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1693 mmap_init();
1694 nsproxy_cache_init();
1695 }
1696
1697 /*
1698 * Check constraints on flags passed to the unshare system call.
1699 */
1700 static int check_unshare_flags(unsigned long unshare_flags)
1701 {
1702 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1703 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1704 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1705 return -EINVAL;
1706 /*
1707 * Not implemented, but pretend it works if there is nothing to
1708 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1709 * needs to unshare vm.
1710 */
1711 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1712 /* FIXME: get_task_mm() increments ->mm_users */
1713 if (atomic_read(&current->mm->mm_users) > 1)
1714 return -EINVAL;
1715 }
1716
1717 return 0;
1718 }
1719
1720 /*
1721 * Unshare the filesystem structure if it is being shared
1722 */
1723 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1724 {
1725 struct fs_struct *fs = current->fs;
1726
1727 if (!(unshare_flags & CLONE_FS) || !fs)
1728 return 0;
1729
1730 /* don't need lock here; in the worst case we'll do useless copy */
1731 if (fs->users == 1)
1732 return 0;
1733
1734 *new_fsp = copy_fs_struct(fs);
1735 if (!*new_fsp)
1736 return -ENOMEM;
1737
1738 return 0;
1739 }
1740
1741 /*
1742 * Unshare file descriptor table if it is being shared
1743 */
1744 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1745 {
1746 struct files_struct *fd = current->files;
1747 int error = 0;
1748
1749 if ((unshare_flags & CLONE_FILES) &&
1750 (fd && atomic_read(&fd->count) > 1)) {
1751 *new_fdp = dup_fd(fd, &error);
1752 if (!*new_fdp)
1753 return error;
1754 }
1755
1756 return 0;
1757 }
1758
1759 /*
1760 * unshare allows a process to 'unshare' part of the process
1761 * context which was originally shared using clone. copy_*
1762 * functions used by do_fork() cannot be used here directly
1763 * because they modify an inactive task_struct that is being
1764 * constructed. Here we are modifying the current, active,
1765 * task_struct.
1766 */
1767 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1768 {
1769 struct fs_struct *fs, *new_fs = NULL;
1770 struct files_struct *fd, *new_fd = NULL;
1771 struct nsproxy *new_nsproxy = NULL;
1772 int do_sysvsem = 0;
1773 int err;
1774
1775 err = check_unshare_flags(unshare_flags);
1776 if (err)
1777 goto bad_unshare_out;
1778
1779 /*
1780 * If unsharing namespace, must also unshare filesystem information.
1781 */
1782 if (unshare_flags & CLONE_NEWNS)
1783 unshare_flags |= CLONE_FS;
1784 /*
1785 * CLONE_NEWIPC must also detach from the undolist: after switching
1786 * to a new ipc namespace, the semaphore arrays from the old
1787 * namespace are unreachable.
1788 */
1789 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1790 do_sysvsem = 1;
1791 err = unshare_fs(unshare_flags, &new_fs);
1792 if (err)
1793 goto bad_unshare_out;
1794 err = unshare_fd(unshare_flags, &new_fd);
1795 if (err)
1796 goto bad_unshare_cleanup_fs;
1797 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1798 if (err)
1799 goto bad_unshare_cleanup_fd;
1800
1801 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1802 if (do_sysvsem) {
1803 /*
1804 * CLONE_SYSVSEM is equivalent to sys_exit().
1805 */
1806 exit_sem(current);
1807 }
1808
1809 if (new_nsproxy) {
1810 switch_task_namespaces(current, new_nsproxy);
1811 new_nsproxy = NULL;
1812 }
1813
1814 task_lock(current);
1815
1816 if (new_fs) {
1817 fs = current->fs;
1818 spin_lock(&fs->lock);
1819 current->fs = new_fs;
1820 if (--fs->users)
1821 new_fs = NULL;
1822 else
1823 new_fs = fs;
1824 spin_unlock(&fs->lock);
1825 }
1826
1827 if (new_fd) {
1828 fd = current->files;
1829 current->files = new_fd;
1830 new_fd = fd;
1831 }
1832
1833 task_unlock(current);
1834 }
1835
1836 if (new_nsproxy)
1837 put_nsproxy(new_nsproxy);
1838
1839 bad_unshare_cleanup_fd:
1840 if (new_fd)
1841 put_files_struct(new_fd);
1842
1843 bad_unshare_cleanup_fs:
1844 if (new_fs)
1845 free_fs_struct(new_fs);
1846
1847 bad_unshare_out:
1848 return err;
1849 }
1850
1851 /*
1852 * Helper to unshare the files of the current task.
1853 * We don't want to expose copy_files internals to
1854 * the exec layer of the kernel.
1855 */
1856
1857 int unshare_files(struct files_struct **displaced)
1858 {
1859 struct task_struct *task = current;
1860 struct files_struct *copy = NULL;
1861 int error;
1862
1863 error = unshare_fd(CLONE_FILES, &copy);
1864 if (error || !copy) {
1865 *displaced = NULL;
1866 return error;
1867 }
1868 *displaced = task->files;
1869 task_lock(task);
1870 task->files = copy;
1871 task_unlock(task);
1872 return 0;
1873 }