CRED: Differentiate objective and effective subjective credentials on a task
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/profile.h>
50 #include <linux/rmap.h>
51 #include <linux/acct.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/cn_proc.h>
54 #include <linux/freezer.h>
55 #include <linux/delayacct.h>
56 #include <linux/taskstats_kern.h>
57 #include <linux/random.h>
58 #include <linux/tty.h>
59 #include <linux/proc_fs.h>
60 #include <linux/blkdev.h>
61 #include <trace/sched.h>
62
63 #include <asm/pgtable.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/mmu_context.h>
67 #include <asm/cacheflush.h>
68 #include <asm/tlbflush.h>
69
70 /*
71 * Protected counters by write_lock_irq(&tasklist_lock)
72 */
73 unsigned long total_forks; /* Handle normal Linux uptimes. */
74 int nr_threads; /* The idle threads do not count.. */
75
76 int max_threads; /* tunable limit on nr_threads */
77
78 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
79
80 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
81
82 int nr_processes(void)
83 {
84 int cpu;
85 int total = 0;
86
87 for_each_online_cpu(cpu)
88 total += per_cpu(process_counts, cpu);
89
90 return total;
91 }
92
93 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
94 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
95 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
96 static struct kmem_cache *task_struct_cachep;
97 #endif
98
99 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
100 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
101 {
102 #ifdef CONFIG_DEBUG_STACK_USAGE
103 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
104 #else
105 gfp_t mask = GFP_KERNEL;
106 #endif
107 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
108 }
109
110 static inline void free_thread_info(struct thread_info *ti)
111 {
112 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
113 }
114 #endif
115
116 /* SLAB cache for signal_struct structures (tsk->signal) */
117 static struct kmem_cache *signal_cachep;
118
119 /* SLAB cache for sighand_struct structures (tsk->sighand) */
120 struct kmem_cache *sighand_cachep;
121
122 /* SLAB cache for files_struct structures (tsk->files) */
123 struct kmem_cache *files_cachep;
124
125 /* SLAB cache for fs_struct structures (tsk->fs) */
126 struct kmem_cache *fs_cachep;
127
128 /* SLAB cache for vm_area_struct structures */
129 struct kmem_cache *vm_area_cachep;
130
131 /* SLAB cache for mm_struct structures (tsk->mm) */
132 static struct kmem_cache *mm_cachep;
133
134 void free_task(struct task_struct *tsk)
135 {
136 prop_local_destroy_single(&tsk->dirties);
137 free_thread_info(tsk->stack);
138 rt_mutex_debug_task_free(tsk);
139 free_task_struct(tsk);
140 }
141 EXPORT_SYMBOL(free_task);
142
143 void __put_task_struct(struct task_struct *tsk)
144 {
145 WARN_ON(!tsk->exit_state);
146 WARN_ON(atomic_read(&tsk->usage));
147 WARN_ON(tsk == current);
148
149 put_cred(tsk->real_cred);
150 put_cred(tsk->cred);
151 delayacct_tsk_free(tsk);
152
153 if (!profile_handoff_task(tsk))
154 free_task(tsk);
155 }
156
157 /*
158 * macro override instead of weak attribute alias, to workaround
159 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
160 */
161 #ifndef arch_task_cache_init
162 #define arch_task_cache_init()
163 #endif
164
165 void __init fork_init(unsigned long mempages)
166 {
167 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
168 #ifndef ARCH_MIN_TASKALIGN
169 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
170 #endif
171 /* create a slab on which task_structs can be allocated */
172 task_struct_cachep =
173 kmem_cache_create("task_struct", sizeof(struct task_struct),
174 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
175 #endif
176
177 /* do the arch specific task caches init */
178 arch_task_cache_init();
179
180 /*
181 * The default maximum number of threads is set to a safe
182 * value: the thread structures can take up at most half
183 * of memory.
184 */
185 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
186
187 /*
188 * we need to allow at least 20 threads to boot a system
189 */
190 if(max_threads < 20)
191 max_threads = 20;
192
193 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
194 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
195 init_task.signal->rlim[RLIMIT_SIGPENDING] =
196 init_task.signal->rlim[RLIMIT_NPROC];
197 }
198
199 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
200 struct task_struct *src)
201 {
202 *dst = *src;
203 return 0;
204 }
205
206 static struct task_struct *dup_task_struct(struct task_struct *orig)
207 {
208 struct task_struct *tsk;
209 struct thread_info *ti;
210 int err;
211
212 prepare_to_copy(orig);
213
214 tsk = alloc_task_struct();
215 if (!tsk)
216 return NULL;
217
218 ti = alloc_thread_info(tsk);
219 if (!ti) {
220 free_task_struct(tsk);
221 return NULL;
222 }
223
224 err = arch_dup_task_struct(tsk, orig);
225 if (err)
226 goto out;
227
228 tsk->stack = ti;
229
230 err = prop_local_init_single(&tsk->dirties);
231 if (err)
232 goto out;
233
234 setup_thread_stack(tsk, orig);
235
236 #ifdef CONFIG_CC_STACKPROTECTOR
237 tsk->stack_canary = get_random_int();
238 #endif
239
240 /* One for us, one for whoever does the "release_task()" (usually parent) */
241 atomic_set(&tsk->usage,2);
242 atomic_set(&tsk->fs_excl, 0);
243 #ifdef CONFIG_BLK_DEV_IO_TRACE
244 tsk->btrace_seq = 0;
245 #endif
246 tsk->splice_pipe = NULL;
247 return tsk;
248
249 out:
250 free_thread_info(ti);
251 free_task_struct(tsk);
252 return NULL;
253 }
254
255 #ifdef CONFIG_MMU
256 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
257 {
258 struct vm_area_struct *mpnt, *tmp, **pprev;
259 struct rb_node **rb_link, *rb_parent;
260 int retval;
261 unsigned long charge;
262 struct mempolicy *pol;
263
264 down_write(&oldmm->mmap_sem);
265 flush_cache_dup_mm(oldmm);
266 /*
267 * Not linked in yet - no deadlock potential:
268 */
269 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
270
271 mm->locked_vm = 0;
272 mm->mmap = NULL;
273 mm->mmap_cache = NULL;
274 mm->free_area_cache = oldmm->mmap_base;
275 mm->cached_hole_size = ~0UL;
276 mm->map_count = 0;
277 cpus_clear(mm->cpu_vm_mask);
278 mm->mm_rb = RB_ROOT;
279 rb_link = &mm->mm_rb.rb_node;
280 rb_parent = NULL;
281 pprev = &mm->mmap;
282
283 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
284 struct file *file;
285
286 if (mpnt->vm_flags & VM_DONTCOPY) {
287 long pages = vma_pages(mpnt);
288 mm->total_vm -= pages;
289 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
290 -pages);
291 continue;
292 }
293 charge = 0;
294 if (mpnt->vm_flags & VM_ACCOUNT) {
295 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
296 if (security_vm_enough_memory(len))
297 goto fail_nomem;
298 charge = len;
299 }
300 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
301 if (!tmp)
302 goto fail_nomem;
303 *tmp = *mpnt;
304 pol = mpol_dup(vma_policy(mpnt));
305 retval = PTR_ERR(pol);
306 if (IS_ERR(pol))
307 goto fail_nomem_policy;
308 vma_set_policy(tmp, pol);
309 tmp->vm_flags &= ~VM_LOCKED;
310 tmp->vm_mm = mm;
311 tmp->vm_next = NULL;
312 anon_vma_link(tmp);
313 file = tmp->vm_file;
314 if (file) {
315 struct inode *inode = file->f_path.dentry->d_inode;
316 get_file(file);
317 if (tmp->vm_flags & VM_DENYWRITE)
318 atomic_dec(&inode->i_writecount);
319
320 /* insert tmp into the share list, just after mpnt */
321 spin_lock(&file->f_mapping->i_mmap_lock);
322 tmp->vm_truncate_count = mpnt->vm_truncate_count;
323 flush_dcache_mmap_lock(file->f_mapping);
324 vma_prio_tree_add(tmp, mpnt);
325 flush_dcache_mmap_unlock(file->f_mapping);
326 spin_unlock(&file->f_mapping->i_mmap_lock);
327 }
328
329 /*
330 * Clear hugetlb-related page reserves for children. This only
331 * affects MAP_PRIVATE mappings. Faults generated by the child
332 * are not guaranteed to succeed, even if read-only
333 */
334 if (is_vm_hugetlb_page(tmp))
335 reset_vma_resv_huge_pages(tmp);
336
337 /*
338 * Link in the new vma and copy the page table entries.
339 */
340 *pprev = tmp;
341 pprev = &tmp->vm_next;
342
343 __vma_link_rb(mm, tmp, rb_link, rb_parent);
344 rb_link = &tmp->vm_rb.rb_right;
345 rb_parent = &tmp->vm_rb;
346
347 mm->map_count++;
348 retval = copy_page_range(mm, oldmm, mpnt);
349
350 if (tmp->vm_ops && tmp->vm_ops->open)
351 tmp->vm_ops->open(tmp);
352
353 if (retval)
354 goto out;
355 }
356 /* a new mm has just been created */
357 arch_dup_mmap(oldmm, mm);
358 retval = 0;
359 out:
360 up_write(&mm->mmap_sem);
361 flush_tlb_mm(oldmm);
362 up_write(&oldmm->mmap_sem);
363 return retval;
364 fail_nomem_policy:
365 kmem_cache_free(vm_area_cachep, tmp);
366 fail_nomem:
367 retval = -ENOMEM;
368 vm_unacct_memory(charge);
369 goto out;
370 }
371
372 static inline int mm_alloc_pgd(struct mm_struct * mm)
373 {
374 mm->pgd = pgd_alloc(mm);
375 if (unlikely(!mm->pgd))
376 return -ENOMEM;
377 return 0;
378 }
379
380 static inline void mm_free_pgd(struct mm_struct * mm)
381 {
382 pgd_free(mm, mm->pgd);
383 }
384 #else
385 #define dup_mmap(mm, oldmm) (0)
386 #define mm_alloc_pgd(mm) (0)
387 #define mm_free_pgd(mm)
388 #endif /* CONFIG_MMU */
389
390 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
391
392 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
393 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
394
395 #include <linux/init_task.h>
396
397 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
398 {
399 atomic_set(&mm->mm_users, 1);
400 atomic_set(&mm->mm_count, 1);
401 init_rwsem(&mm->mmap_sem);
402 INIT_LIST_HEAD(&mm->mmlist);
403 mm->flags = (current->mm) ? current->mm->flags
404 : MMF_DUMP_FILTER_DEFAULT;
405 mm->core_state = NULL;
406 mm->nr_ptes = 0;
407 set_mm_counter(mm, file_rss, 0);
408 set_mm_counter(mm, anon_rss, 0);
409 spin_lock_init(&mm->page_table_lock);
410 rwlock_init(&mm->ioctx_list_lock);
411 mm->ioctx_list = NULL;
412 mm->free_area_cache = TASK_UNMAPPED_BASE;
413 mm->cached_hole_size = ~0UL;
414 mm_init_owner(mm, p);
415
416 if (likely(!mm_alloc_pgd(mm))) {
417 mm->def_flags = 0;
418 mmu_notifier_mm_init(mm);
419 return mm;
420 }
421
422 free_mm(mm);
423 return NULL;
424 }
425
426 /*
427 * Allocate and initialize an mm_struct.
428 */
429 struct mm_struct * mm_alloc(void)
430 {
431 struct mm_struct * mm;
432
433 mm = allocate_mm();
434 if (mm) {
435 memset(mm, 0, sizeof(*mm));
436 mm = mm_init(mm, current);
437 }
438 return mm;
439 }
440
441 /*
442 * Called when the last reference to the mm
443 * is dropped: either by a lazy thread or by
444 * mmput. Free the page directory and the mm.
445 */
446 void __mmdrop(struct mm_struct *mm)
447 {
448 BUG_ON(mm == &init_mm);
449 mm_free_pgd(mm);
450 destroy_context(mm);
451 mmu_notifier_mm_destroy(mm);
452 free_mm(mm);
453 }
454 EXPORT_SYMBOL_GPL(__mmdrop);
455
456 /*
457 * Decrement the use count and release all resources for an mm.
458 */
459 void mmput(struct mm_struct *mm)
460 {
461 might_sleep();
462
463 if (atomic_dec_and_test(&mm->mm_users)) {
464 exit_aio(mm);
465 exit_mmap(mm);
466 set_mm_exe_file(mm, NULL);
467 if (!list_empty(&mm->mmlist)) {
468 spin_lock(&mmlist_lock);
469 list_del(&mm->mmlist);
470 spin_unlock(&mmlist_lock);
471 }
472 put_swap_token(mm);
473 mmdrop(mm);
474 }
475 }
476 EXPORT_SYMBOL_GPL(mmput);
477
478 /**
479 * get_task_mm - acquire a reference to the task's mm
480 *
481 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
482 * this kernel workthread has transiently adopted a user mm with use_mm,
483 * to do its AIO) is not set and if so returns a reference to it, after
484 * bumping up the use count. User must release the mm via mmput()
485 * after use. Typically used by /proc and ptrace.
486 */
487 struct mm_struct *get_task_mm(struct task_struct *task)
488 {
489 struct mm_struct *mm;
490
491 task_lock(task);
492 mm = task->mm;
493 if (mm) {
494 if (task->flags & PF_KTHREAD)
495 mm = NULL;
496 else
497 atomic_inc(&mm->mm_users);
498 }
499 task_unlock(task);
500 return mm;
501 }
502 EXPORT_SYMBOL_GPL(get_task_mm);
503
504 /* Please note the differences between mmput and mm_release.
505 * mmput is called whenever we stop holding onto a mm_struct,
506 * error success whatever.
507 *
508 * mm_release is called after a mm_struct has been removed
509 * from the current process.
510 *
511 * This difference is important for error handling, when we
512 * only half set up a mm_struct for a new process and need to restore
513 * the old one. Because we mmput the new mm_struct before
514 * restoring the old one. . .
515 * Eric Biederman 10 January 1998
516 */
517 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
518 {
519 struct completion *vfork_done = tsk->vfork_done;
520
521 /* Get rid of any cached register state */
522 deactivate_mm(tsk, mm);
523
524 /* notify parent sleeping on vfork() */
525 if (vfork_done) {
526 tsk->vfork_done = NULL;
527 complete(vfork_done);
528 }
529
530 /*
531 * If we're exiting normally, clear a user-space tid field if
532 * requested. We leave this alone when dying by signal, to leave
533 * the value intact in a core dump, and to save the unnecessary
534 * trouble otherwise. Userland only wants this done for a sys_exit.
535 */
536 if (tsk->clear_child_tid
537 && !(tsk->flags & PF_SIGNALED)
538 && atomic_read(&mm->mm_users) > 1) {
539 u32 __user * tidptr = tsk->clear_child_tid;
540 tsk->clear_child_tid = NULL;
541
542 /*
543 * We don't check the error code - if userspace has
544 * not set up a proper pointer then tough luck.
545 */
546 put_user(0, tidptr);
547 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
548 }
549 }
550
551 /*
552 * Allocate a new mm structure and copy contents from the
553 * mm structure of the passed in task structure.
554 */
555 struct mm_struct *dup_mm(struct task_struct *tsk)
556 {
557 struct mm_struct *mm, *oldmm = current->mm;
558 int err;
559
560 if (!oldmm)
561 return NULL;
562
563 mm = allocate_mm();
564 if (!mm)
565 goto fail_nomem;
566
567 memcpy(mm, oldmm, sizeof(*mm));
568
569 /* Initializing for Swap token stuff */
570 mm->token_priority = 0;
571 mm->last_interval = 0;
572
573 if (!mm_init(mm, tsk))
574 goto fail_nomem;
575
576 if (init_new_context(tsk, mm))
577 goto fail_nocontext;
578
579 dup_mm_exe_file(oldmm, mm);
580
581 err = dup_mmap(mm, oldmm);
582 if (err)
583 goto free_pt;
584
585 mm->hiwater_rss = get_mm_rss(mm);
586 mm->hiwater_vm = mm->total_vm;
587
588 return mm;
589
590 free_pt:
591 mmput(mm);
592
593 fail_nomem:
594 return NULL;
595
596 fail_nocontext:
597 /*
598 * If init_new_context() failed, we cannot use mmput() to free the mm
599 * because it calls destroy_context()
600 */
601 mm_free_pgd(mm);
602 free_mm(mm);
603 return NULL;
604 }
605
606 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
607 {
608 struct mm_struct * mm, *oldmm;
609 int retval;
610
611 tsk->min_flt = tsk->maj_flt = 0;
612 tsk->nvcsw = tsk->nivcsw = 0;
613
614 tsk->mm = NULL;
615 tsk->active_mm = NULL;
616
617 /*
618 * Are we cloning a kernel thread?
619 *
620 * We need to steal a active VM for that..
621 */
622 oldmm = current->mm;
623 if (!oldmm)
624 return 0;
625
626 if (clone_flags & CLONE_VM) {
627 atomic_inc(&oldmm->mm_users);
628 mm = oldmm;
629 goto good_mm;
630 }
631
632 retval = -ENOMEM;
633 mm = dup_mm(tsk);
634 if (!mm)
635 goto fail_nomem;
636
637 good_mm:
638 /* Initializing for Swap token stuff */
639 mm->token_priority = 0;
640 mm->last_interval = 0;
641
642 tsk->mm = mm;
643 tsk->active_mm = mm;
644 return 0;
645
646 fail_nomem:
647 return retval;
648 }
649
650 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
651 {
652 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
653 /* We don't need to lock fs - think why ;-) */
654 if (fs) {
655 atomic_set(&fs->count, 1);
656 rwlock_init(&fs->lock);
657 fs->umask = old->umask;
658 read_lock(&old->lock);
659 fs->root = old->root;
660 path_get(&old->root);
661 fs->pwd = old->pwd;
662 path_get(&old->pwd);
663 read_unlock(&old->lock);
664 }
665 return fs;
666 }
667
668 struct fs_struct *copy_fs_struct(struct fs_struct *old)
669 {
670 return __copy_fs_struct(old);
671 }
672
673 EXPORT_SYMBOL_GPL(copy_fs_struct);
674
675 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
676 {
677 if (clone_flags & CLONE_FS) {
678 atomic_inc(&current->fs->count);
679 return 0;
680 }
681 tsk->fs = __copy_fs_struct(current->fs);
682 if (!tsk->fs)
683 return -ENOMEM;
684 return 0;
685 }
686
687 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
688 {
689 struct files_struct *oldf, *newf;
690 int error = 0;
691
692 /*
693 * A background process may not have any files ...
694 */
695 oldf = current->files;
696 if (!oldf)
697 goto out;
698
699 if (clone_flags & CLONE_FILES) {
700 atomic_inc(&oldf->count);
701 goto out;
702 }
703
704 newf = dup_fd(oldf, &error);
705 if (!newf)
706 goto out;
707
708 tsk->files = newf;
709 error = 0;
710 out:
711 return error;
712 }
713
714 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
715 {
716 #ifdef CONFIG_BLOCK
717 struct io_context *ioc = current->io_context;
718
719 if (!ioc)
720 return 0;
721 /*
722 * Share io context with parent, if CLONE_IO is set
723 */
724 if (clone_flags & CLONE_IO) {
725 tsk->io_context = ioc_task_link(ioc);
726 if (unlikely(!tsk->io_context))
727 return -ENOMEM;
728 } else if (ioprio_valid(ioc->ioprio)) {
729 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
730 if (unlikely(!tsk->io_context))
731 return -ENOMEM;
732
733 tsk->io_context->ioprio = ioc->ioprio;
734 }
735 #endif
736 return 0;
737 }
738
739 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
740 {
741 struct sighand_struct *sig;
742
743 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
744 atomic_inc(&current->sighand->count);
745 return 0;
746 }
747 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
748 rcu_assign_pointer(tsk->sighand, sig);
749 if (!sig)
750 return -ENOMEM;
751 atomic_set(&sig->count, 1);
752 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
753 return 0;
754 }
755
756 void __cleanup_sighand(struct sighand_struct *sighand)
757 {
758 if (atomic_dec_and_test(&sighand->count))
759 kmem_cache_free(sighand_cachep, sighand);
760 }
761
762
763 /*
764 * Initialize POSIX timer handling for a thread group.
765 */
766 static void posix_cpu_timers_init_group(struct signal_struct *sig)
767 {
768 /* Thread group counters. */
769 thread_group_cputime_init(sig);
770
771 /* Expiration times and increments. */
772 sig->it_virt_expires = cputime_zero;
773 sig->it_virt_incr = cputime_zero;
774 sig->it_prof_expires = cputime_zero;
775 sig->it_prof_incr = cputime_zero;
776
777 /* Cached expiration times. */
778 sig->cputime_expires.prof_exp = cputime_zero;
779 sig->cputime_expires.virt_exp = cputime_zero;
780 sig->cputime_expires.sched_exp = 0;
781
782 /* The timer lists. */
783 INIT_LIST_HEAD(&sig->cpu_timers[0]);
784 INIT_LIST_HEAD(&sig->cpu_timers[1]);
785 INIT_LIST_HEAD(&sig->cpu_timers[2]);
786 }
787
788 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
789 {
790 struct signal_struct *sig;
791 int ret;
792
793 if (clone_flags & CLONE_THREAD) {
794 ret = thread_group_cputime_clone_thread(current);
795 if (likely(!ret)) {
796 atomic_inc(&current->signal->count);
797 atomic_inc(&current->signal->live);
798 }
799 return ret;
800 }
801 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
802 tsk->signal = sig;
803 if (!sig)
804 return -ENOMEM;
805
806 atomic_set(&sig->count, 1);
807 atomic_set(&sig->live, 1);
808 init_waitqueue_head(&sig->wait_chldexit);
809 sig->flags = 0;
810 sig->group_exit_code = 0;
811 sig->group_exit_task = NULL;
812 sig->group_stop_count = 0;
813 sig->curr_target = tsk;
814 init_sigpending(&sig->shared_pending);
815 INIT_LIST_HEAD(&sig->posix_timers);
816
817 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
818 sig->it_real_incr.tv64 = 0;
819 sig->real_timer.function = it_real_fn;
820
821 sig->leader = 0; /* session leadership doesn't inherit */
822 sig->tty_old_pgrp = NULL;
823 sig->tty = NULL;
824
825 sig->cutime = sig->cstime = cputime_zero;
826 sig->gtime = cputime_zero;
827 sig->cgtime = cputime_zero;
828 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
829 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
830 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
831 task_io_accounting_init(&sig->ioac);
832 taskstats_tgid_init(sig);
833
834 task_lock(current->group_leader);
835 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
836 task_unlock(current->group_leader);
837
838 posix_cpu_timers_init_group(sig);
839
840 acct_init_pacct(&sig->pacct);
841
842 tty_audit_fork(sig);
843
844 return 0;
845 }
846
847 void __cleanup_signal(struct signal_struct *sig)
848 {
849 thread_group_cputime_free(sig);
850 tty_kref_put(sig->tty);
851 kmem_cache_free(signal_cachep, sig);
852 }
853
854 static void cleanup_signal(struct task_struct *tsk)
855 {
856 struct signal_struct *sig = tsk->signal;
857
858 atomic_dec(&sig->live);
859
860 if (atomic_dec_and_test(&sig->count))
861 __cleanup_signal(sig);
862 }
863
864 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
865 {
866 unsigned long new_flags = p->flags;
867
868 new_flags &= ~PF_SUPERPRIV;
869 new_flags |= PF_FORKNOEXEC;
870 new_flags |= PF_STARTING;
871 p->flags = new_flags;
872 clear_freeze_flag(p);
873 }
874
875 asmlinkage long sys_set_tid_address(int __user *tidptr)
876 {
877 current->clear_child_tid = tidptr;
878
879 return task_pid_vnr(current);
880 }
881
882 static void rt_mutex_init_task(struct task_struct *p)
883 {
884 spin_lock_init(&p->pi_lock);
885 #ifdef CONFIG_RT_MUTEXES
886 plist_head_init(&p->pi_waiters, &p->pi_lock);
887 p->pi_blocked_on = NULL;
888 #endif
889 }
890
891 #ifdef CONFIG_MM_OWNER
892 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
893 {
894 mm->owner = p;
895 }
896 #endif /* CONFIG_MM_OWNER */
897
898 /*
899 * Initialize POSIX timer handling for a single task.
900 */
901 static void posix_cpu_timers_init(struct task_struct *tsk)
902 {
903 tsk->cputime_expires.prof_exp = cputime_zero;
904 tsk->cputime_expires.virt_exp = cputime_zero;
905 tsk->cputime_expires.sched_exp = 0;
906 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
907 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
908 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
909 }
910
911 /*
912 * This creates a new process as a copy of the old one,
913 * but does not actually start it yet.
914 *
915 * It copies the registers, and all the appropriate
916 * parts of the process environment (as per the clone
917 * flags). The actual kick-off is left to the caller.
918 */
919 static struct task_struct *copy_process(unsigned long clone_flags,
920 unsigned long stack_start,
921 struct pt_regs *regs,
922 unsigned long stack_size,
923 int __user *child_tidptr,
924 struct pid *pid,
925 int trace)
926 {
927 int retval;
928 struct task_struct *p;
929 int cgroup_callbacks_done = 0;
930
931 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
932 return ERR_PTR(-EINVAL);
933
934 /*
935 * Thread groups must share signals as well, and detached threads
936 * can only be started up within the thread group.
937 */
938 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
939 return ERR_PTR(-EINVAL);
940
941 /*
942 * Shared signal handlers imply shared VM. By way of the above,
943 * thread groups also imply shared VM. Blocking this case allows
944 * for various simplifications in other code.
945 */
946 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
947 return ERR_PTR(-EINVAL);
948
949 retval = security_task_create(clone_flags);
950 if (retval)
951 goto fork_out;
952
953 retval = -ENOMEM;
954 p = dup_task_struct(current);
955 if (!p)
956 goto fork_out;
957
958 rt_mutex_init_task(p);
959
960 #ifdef CONFIG_PROVE_LOCKING
961 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
962 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
963 #endif
964 retval = -EAGAIN;
965 if (atomic_read(&p->real_cred->user->processes) >=
966 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
967 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
968 p->real_cred->user != current->nsproxy->user_ns->root_user)
969 goto bad_fork_free;
970 }
971
972 retval = copy_creds(p, clone_flags);
973 if (retval < 0)
974 goto bad_fork_free;
975
976 /*
977 * If multiple threads are within copy_process(), then this check
978 * triggers too late. This doesn't hurt, the check is only there
979 * to stop root fork bombs.
980 */
981 if (nr_threads >= max_threads)
982 goto bad_fork_cleanup_count;
983
984 if (!try_module_get(task_thread_info(p)->exec_domain->module))
985 goto bad_fork_cleanup_count;
986
987 if (p->binfmt && !try_module_get(p->binfmt->module))
988 goto bad_fork_cleanup_put_domain;
989
990 p->did_exec = 0;
991 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
992 copy_flags(clone_flags, p);
993 INIT_LIST_HEAD(&p->children);
994 INIT_LIST_HEAD(&p->sibling);
995 #ifdef CONFIG_PREEMPT_RCU
996 p->rcu_read_lock_nesting = 0;
997 p->rcu_flipctr_idx = 0;
998 #endif /* #ifdef CONFIG_PREEMPT_RCU */
999 p->vfork_done = NULL;
1000 spin_lock_init(&p->alloc_lock);
1001
1002 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1003 init_sigpending(&p->pending);
1004
1005 p->utime = cputime_zero;
1006 p->stime = cputime_zero;
1007 p->gtime = cputime_zero;
1008 p->utimescaled = cputime_zero;
1009 p->stimescaled = cputime_zero;
1010 p->prev_utime = cputime_zero;
1011 p->prev_stime = cputime_zero;
1012
1013 p->default_timer_slack_ns = current->timer_slack_ns;
1014
1015 #ifdef CONFIG_DETECT_SOFTLOCKUP
1016 p->last_switch_count = 0;
1017 p->last_switch_timestamp = 0;
1018 #endif
1019
1020 task_io_accounting_init(&p->ioac);
1021 acct_clear_integrals(p);
1022
1023 posix_cpu_timers_init(p);
1024
1025 p->lock_depth = -1; /* -1 = no lock */
1026 do_posix_clock_monotonic_gettime(&p->start_time);
1027 p->real_start_time = p->start_time;
1028 monotonic_to_bootbased(&p->real_start_time);
1029 p->io_context = NULL;
1030 p->audit_context = NULL;
1031 cgroup_fork(p);
1032 #ifdef CONFIG_NUMA
1033 p->mempolicy = mpol_dup(p->mempolicy);
1034 if (IS_ERR(p->mempolicy)) {
1035 retval = PTR_ERR(p->mempolicy);
1036 p->mempolicy = NULL;
1037 goto bad_fork_cleanup_cgroup;
1038 }
1039 mpol_fix_fork_child_flag(p);
1040 #endif
1041 #ifdef CONFIG_TRACE_IRQFLAGS
1042 p->irq_events = 0;
1043 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1044 p->hardirqs_enabled = 1;
1045 #else
1046 p->hardirqs_enabled = 0;
1047 #endif
1048 p->hardirq_enable_ip = 0;
1049 p->hardirq_enable_event = 0;
1050 p->hardirq_disable_ip = _THIS_IP_;
1051 p->hardirq_disable_event = 0;
1052 p->softirqs_enabled = 1;
1053 p->softirq_enable_ip = _THIS_IP_;
1054 p->softirq_enable_event = 0;
1055 p->softirq_disable_ip = 0;
1056 p->softirq_disable_event = 0;
1057 p->hardirq_context = 0;
1058 p->softirq_context = 0;
1059 #endif
1060 #ifdef CONFIG_LOCKDEP
1061 p->lockdep_depth = 0; /* no locks held yet */
1062 p->curr_chain_key = 0;
1063 p->lockdep_recursion = 0;
1064 #endif
1065
1066 #ifdef CONFIG_DEBUG_MUTEXES
1067 p->blocked_on = NULL; /* not blocked yet */
1068 #endif
1069
1070 /* Perform scheduler related setup. Assign this task to a CPU. */
1071 sched_fork(p, clone_flags);
1072
1073 if ((retval = audit_alloc(p)))
1074 goto bad_fork_cleanup_policy;
1075 /* copy all the process information */
1076 if ((retval = copy_semundo(clone_flags, p)))
1077 goto bad_fork_cleanup_audit;
1078 if ((retval = copy_files(clone_flags, p)))
1079 goto bad_fork_cleanup_semundo;
1080 if ((retval = copy_fs(clone_flags, p)))
1081 goto bad_fork_cleanup_files;
1082 if ((retval = copy_sighand(clone_flags, p)))
1083 goto bad_fork_cleanup_fs;
1084 if ((retval = copy_signal(clone_flags, p)))
1085 goto bad_fork_cleanup_sighand;
1086 if ((retval = copy_mm(clone_flags, p)))
1087 goto bad_fork_cleanup_signal;
1088 if ((retval = copy_namespaces(clone_flags, p)))
1089 goto bad_fork_cleanup_mm;
1090 if ((retval = copy_io(clone_flags, p)))
1091 goto bad_fork_cleanup_namespaces;
1092 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1093 if (retval)
1094 goto bad_fork_cleanup_io;
1095
1096 if (pid != &init_struct_pid) {
1097 retval = -ENOMEM;
1098 pid = alloc_pid(task_active_pid_ns(p));
1099 if (!pid)
1100 goto bad_fork_cleanup_io;
1101
1102 if (clone_flags & CLONE_NEWPID) {
1103 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1104 if (retval < 0)
1105 goto bad_fork_free_pid;
1106 }
1107 }
1108
1109 p->pid = pid_nr(pid);
1110 p->tgid = p->pid;
1111 if (clone_flags & CLONE_THREAD)
1112 p->tgid = current->tgid;
1113
1114 if (current->nsproxy != p->nsproxy) {
1115 retval = ns_cgroup_clone(p, pid);
1116 if (retval)
1117 goto bad_fork_free_pid;
1118 }
1119
1120 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1121 /*
1122 * Clear TID on mm_release()?
1123 */
1124 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1125 #ifdef CONFIG_FUTEX
1126 p->robust_list = NULL;
1127 #ifdef CONFIG_COMPAT
1128 p->compat_robust_list = NULL;
1129 #endif
1130 INIT_LIST_HEAD(&p->pi_state_list);
1131 p->pi_state_cache = NULL;
1132 #endif
1133 /*
1134 * sigaltstack should be cleared when sharing the same VM
1135 */
1136 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1137 p->sas_ss_sp = p->sas_ss_size = 0;
1138
1139 /*
1140 * Syscall tracing should be turned off in the child regardless
1141 * of CLONE_PTRACE.
1142 */
1143 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1144 #ifdef TIF_SYSCALL_EMU
1145 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1146 #endif
1147 clear_all_latency_tracing(p);
1148
1149 /* Our parent execution domain becomes current domain
1150 These must match for thread signalling to apply */
1151 p->parent_exec_id = p->self_exec_id;
1152
1153 /* ok, now we should be set up.. */
1154 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1155 p->pdeath_signal = 0;
1156 p->exit_state = 0;
1157
1158 /*
1159 * Ok, make it visible to the rest of the system.
1160 * We dont wake it up yet.
1161 */
1162 p->group_leader = p;
1163 INIT_LIST_HEAD(&p->thread_group);
1164
1165 /* Now that the task is set up, run cgroup callbacks if
1166 * necessary. We need to run them before the task is visible
1167 * on the tasklist. */
1168 cgroup_fork_callbacks(p);
1169 cgroup_callbacks_done = 1;
1170
1171 /* Need tasklist lock for parent etc handling! */
1172 write_lock_irq(&tasklist_lock);
1173
1174 /*
1175 * The task hasn't been attached yet, so its cpus_allowed mask will
1176 * not be changed, nor will its assigned CPU.
1177 *
1178 * The cpus_allowed mask of the parent may have changed after it was
1179 * copied first time - so re-copy it here, then check the child's CPU
1180 * to ensure it is on a valid CPU (and if not, just force it back to
1181 * parent's CPU). This avoids alot of nasty races.
1182 */
1183 p->cpus_allowed = current->cpus_allowed;
1184 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1185 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1186 !cpu_online(task_cpu(p))))
1187 set_task_cpu(p, smp_processor_id());
1188
1189 /* CLONE_PARENT re-uses the old parent */
1190 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1191 p->real_parent = current->real_parent;
1192 else
1193 p->real_parent = current;
1194
1195 spin_lock(&current->sighand->siglock);
1196
1197 /*
1198 * Process group and session signals need to be delivered to just the
1199 * parent before the fork or both the parent and the child after the
1200 * fork. Restart if a signal comes in before we add the new process to
1201 * it's process group.
1202 * A fatal signal pending means that current will exit, so the new
1203 * thread can't slip out of an OOM kill (or normal SIGKILL).
1204 */
1205 recalc_sigpending();
1206 if (signal_pending(current)) {
1207 spin_unlock(&current->sighand->siglock);
1208 write_unlock_irq(&tasklist_lock);
1209 retval = -ERESTARTNOINTR;
1210 goto bad_fork_free_pid;
1211 }
1212
1213 if (clone_flags & CLONE_THREAD) {
1214 p->group_leader = current->group_leader;
1215 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1216 }
1217
1218 if (likely(p->pid)) {
1219 list_add_tail(&p->sibling, &p->real_parent->children);
1220 tracehook_finish_clone(p, clone_flags, trace);
1221
1222 if (thread_group_leader(p)) {
1223 if (clone_flags & CLONE_NEWPID)
1224 p->nsproxy->pid_ns->child_reaper = p;
1225
1226 p->signal->leader_pid = pid;
1227 tty_kref_put(p->signal->tty);
1228 p->signal->tty = tty_kref_get(current->signal->tty);
1229 set_task_pgrp(p, task_pgrp_nr(current));
1230 set_task_session(p, task_session_nr(current));
1231 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1232 attach_pid(p, PIDTYPE_SID, task_session(current));
1233 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1234 __get_cpu_var(process_counts)++;
1235 }
1236 attach_pid(p, PIDTYPE_PID, pid);
1237 nr_threads++;
1238 }
1239
1240 total_forks++;
1241 spin_unlock(&current->sighand->siglock);
1242 write_unlock_irq(&tasklist_lock);
1243 proc_fork_connector(p);
1244 cgroup_post_fork(p);
1245 return p;
1246
1247 bad_fork_free_pid:
1248 if (pid != &init_struct_pid)
1249 free_pid(pid);
1250 bad_fork_cleanup_io:
1251 put_io_context(p->io_context);
1252 bad_fork_cleanup_namespaces:
1253 exit_task_namespaces(p);
1254 bad_fork_cleanup_mm:
1255 if (p->mm)
1256 mmput(p->mm);
1257 bad_fork_cleanup_signal:
1258 cleanup_signal(p);
1259 bad_fork_cleanup_sighand:
1260 __cleanup_sighand(p->sighand);
1261 bad_fork_cleanup_fs:
1262 exit_fs(p); /* blocking */
1263 bad_fork_cleanup_files:
1264 exit_files(p); /* blocking */
1265 bad_fork_cleanup_semundo:
1266 exit_sem(p);
1267 bad_fork_cleanup_audit:
1268 audit_free(p);
1269 bad_fork_cleanup_policy:
1270 #ifdef CONFIG_NUMA
1271 mpol_put(p->mempolicy);
1272 bad_fork_cleanup_cgroup:
1273 #endif
1274 cgroup_exit(p, cgroup_callbacks_done);
1275 delayacct_tsk_free(p);
1276 if (p->binfmt)
1277 module_put(p->binfmt->module);
1278 bad_fork_cleanup_put_domain:
1279 module_put(task_thread_info(p)->exec_domain->module);
1280 bad_fork_cleanup_count:
1281 atomic_dec(&p->cred->user->processes);
1282 put_cred(p->real_cred);
1283 put_cred(p->cred);
1284 bad_fork_free:
1285 free_task(p);
1286 fork_out:
1287 return ERR_PTR(retval);
1288 }
1289
1290 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1291 {
1292 memset(regs, 0, sizeof(struct pt_regs));
1293 return regs;
1294 }
1295
1296 struct task_struct * __cpuinit fork_idle(int cpu)
1297 {
1298 struct task_struct *task;
1299 struct pt_regs regs;
1300
1301 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1302 &init_struct_pid, 0);
1303 if (!IS_ERR(task))
1304 init_idle(task, cpu);
1305
1306 return task;
1307 }
1308
1309 /*
1310 * Ok, this is the main fork-routine.
1311 *
1312 * It copies the process, and if successful kick-starts
1313 * it and waits for it to finish using the VM if required.
1314 */
1315 long do_fork(unsigned long clone_flags,
1316 unsigned long stack_start,
1317 struct pt_regs *regs,
1318 unsigned long stack_size,
1319 int __user *parent_tidptr,
1320 int __user *child_tidptr)
1321 {
1322 struct task_struct *p;
1323 int trace = 0;
1324 long nr;
1325
1326 /*
1327 * We hope to recycle these flags after 2.6.26
1328 */
1329 if (unlikely(clone_flags & CLONE_STOPPED)) {
1330 static int __read_mostly count = 100;
1331
1332 if (count > 0 && printk_ratelimit()) {
1333 char comm[TASK_COMM_LEN];
1334
1335 count--;
1336 printk(KERN_INFO "fork(): process `%s' used deprecated "
1337 "clone flags 0x%lx\n",
1338 get_task_comm(comm, current),
1339 clone_flags & CLONE_STOPPED);
1340 }
1341 }
1342
1343 /*
1344 * When called from kernel_thread, don't do user tracing stuff.
1345 */
1346 if (likely(user_mode(regs)))
1347 trace = tracehook_prepare_clone(clone_flags);
1348
1349 p = copy_process(clone_flags, stack_start, regs, stack_size,
1350 child_tidptr, NULL, trace);
1351 /*
1352 * Do this prior waking up the new thread - the thread pointer
1353 * might get invalid after that point, if the thread exits quickly.
1354 */
1355 if (!IS_ERR(p)) {
1356 struct completion vfork;
1357
1358 trace_sched_process_fork(current, p);
1359
1360 nr = task_pid_vnr(p);
1361
1362 if (clone_flags & CLONE_PARENT_SETTID)
1363 put_user(nr, parent_tidptr);
1364
1365 if (clone_flags & CLONE_VFORK) {
1366 p->vfork_done = &vfork;
1367 init_completion(&vfork);
1368 }
1369
1370 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1371
1372 /*
1373 * We set PF_STARTING at creation in case tracing wants to
1374 * use this to distinguish a fully live task from one that
1375 * hasn't gotten to tracehook_report_clone() yet. Now we
1376 * clear it and set the child going.
1377 */
1378 p->flags &= ~PF_STARTING;
1379
1380 if (unlikely(clone_flags & CLONE_STOPPED)) {
1381 /*
1382 * We'll start up with an immediate SIGSTOP.
1383 */
1384 sigaddset(&p->pending.signal, SIGSTOP);
1385 set_tsk_thread_flag(p, TIF_SIGPENDING);
1386 __set_task_state(p, TASK_STOPPED);
1387 } else {
1388 wake_up_new_task(p, clone_flags);
1389 }
1390
1391 tracehook_report_clone_complete(trace, regs,
1392 clone_flags, nr, p);
1393
1394 if (clone_flags & CLONE_VFORK) {
1395 freezer_do_not_count();
1396 wait_for_completion(&vfork);
1397 freezer_count();
1398 tracehook_report_vfork_done(p, nr);
1399 }
1400 } else {
1401 nr = PTR_ERR(p);
1402 }
1403 return nr;
1404 }
1405
1406 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1407 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1408 #endif
1409
1410 static void sighand_ctor(void *data)
1411 {
1412 struct sighand_struct *sighand = data;
1413
1414 spin_lock_init(&sighand->siglock);
1415 init_waitqueue_head(&sighand->signalfd_wqh);
1416 }
1417
1418 void __init proc_caches_init(void)
1419 {
1420 sighand_cachep = kmem_cache_create("sighand_cache",
1421 sizeof(struct sighand_struct), 0,
1422 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1423 sighand_ctor);
1424 signal_cachep = kmem_cache_create("signal_cache",
1425 sizeof(struct signal_struct), 0,
1426 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1427 files_cachep = kmem_cache_create("files_cache",
1428 sizeof(struct files_struct), 0,
1429 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1430 fs_cachep = kmem_cache_create("fs_cache",
1431 sizeof(struct fs_struct), 0,
1432 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1433 vm_area_cachep = kmem_cache_create("vm_area_struct",
1434 sizeof(struct vm_area_struct), 0,
1435 SLAB_PANIC, NULL);
1436 mm_cachep = kmem_cache_create("mm_struct",
1437 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1438 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1439 }
1440
1441 /*
1442 * Check constraints on flags passed to the unshare system call and
1443 * force unsharing of additional process context as appropriate.
1444 */
1445 static void check_unshare_flags(unsigned long *flags_ptr)
1446 {
1447 /*
1448 * If unsharing a thread from a thread group, must also
1449 * unshare vm.
1450 */
1451 if (*flags_ptr & CLONE_THREAD)
1452 *flags_ptr |= CLONE_VM;
1453
1454 /*
1455 * If unsharing vm, must also unshare signal handlers.
1456 */
1457 if (*flags_ptr & CLONE_VM)
1458 *flags_ptr |= CLONE_SIGHAND;
1459
1460 /*
1461 * If unsharing signal handlers and the task was created
1462 * using CLONE_THREAD, then must unshare the thread
1463 */
1464 if ((*flags_ptr & CLONE_SIGHAND) &&
1465 (atomic_read(&current->signal->count) > 1))
1466 *flags_ptr |= CLONE_THREAD;
1467
1468 /*
1469 * If unsharing namespace, must also unshare filesystem information.
1470 */
1471 if (*flags_ptr & CLONE_NEWNS)
1472 *flags_ptr |= CLONE_FS;
1473 }
1474
1475 /*
1476 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1477 */
1478 static int unshare_thread(unsigned long unshare_flags)
1479 {
1480 if (unshare_flags & CLONE_THREAD)
1481 return -EINVAL;
1482
1483 return 0;
1484 }
1485
1486 /*
1487 * Unshare the filesystem structure if it is being shared
1488 */
1489 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1490 {
1491 struct fs_struct *fs = current->fs;
1492
1493 if ((unshare_flags & CLONE_FS) &&
1494 (fs && atomic_read(&fs->count) > 1)) {
1495 *new_fsp = __copy_fs_struct(current->fs);
1496 if (!*new_fsp)
1497 return -ENOMEM;
1498 }
1499
1500 return 0;
1501 }
1502
1503 /*
1504 * Unsharing of sighand is not supported yet
1505 */
1506 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1507 {
1508 struct sighand_struct *sigh = current->sighand;
1509
1510 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1511 return -EINVAL;
1512 else
1513 return 0;
1514 }
1515
1516 /*
1517 * Unshare vm if it is being shared
1518 */
1519 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1520 {
1521 struct mm_struct *mm = current->mm;
1522
1523 if ((unshare_flags & CLONE_VM) &&
1524 (mm && atomic_read(&mm->mm_users) > 1)) {
1525 return -EINVAL;
1526 }
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * Unshare file descriptor table if it is being shared
1533 */
1534 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1535 {
1536 struct files_struct *fd = current->files;
1537 int error = 0;
1538
1539 if ((unshare_flags & CLONE_FILES) &&
1540 (fd && atomic_read(&fd->count) > 1)) {
1541 *new_fdp = dup_fd(fd, &error);
1542 if (!*new_fdp)
1543 return error;
1544 }
1545
1546 return 0;
1547 }
1548
1549 /*
1550 * unshare allows a process to 'unshare' part of the process
1551 * context which was originally shared using clone. copy_*
1552 * functions used by do_fork() cannot be used here directly
1553 * because they modify an inactive task_struct that is being
1554 * constructed. Here we are modifying the current, active,
1555 * task_struct.
1556 */
1557 asmlinkage long sys_unshare(unsigned long unshare_flags)
1558 {
1559 int err = 0;
1560 struct fs_struct *fs, *new_fs = NULL;
1561 struct sighand_struct *new_sigh = NULL;
1562 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1563 struct files_struct *fd, *new_fd = NULL;
1564 struct nsproxy *new_nsproxy = NULL;
1565 int do_sysvsem = 0;
1566
1567 check_unshare_flags(&unshare_flags);
1568
1569 /* Return -EINVAL for all unsupported flags */
1570 err = -EINVAL;
1571 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1572 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1573 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1574 CLONE_NEWNET))
1575 goto bad_unshare_out;
1576
1577 /*
1578 * CLONE_NEWIPC must also detach from the undolist: after switching
1579 * to a new ipc namespace, the semaphore arrays from the old
1580 * namespace are unreachable.
1581 */
1582 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1583 do_sysvsem = 1;
1584 if ((err = unshare_thread(unshare_flags)))
1585 goto bad_unshare_out;
1586 if ((err = unshare_fs(unshare_flags, &new_fs)))
1587 goto bad_unshare_cleanup_thread;
1588 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1589 goto bad_unshare_cleanup_fs;
1590 if ((err = unshare_vm(unshare_flags, &new_mm)))
1591 goto bad_unshare_cleanup_sigh;
1592 if ((err = unshare_fd(unshare_flags, &new_fd)))
1593 goto bad_unshare_cleanup_vm;
1594 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1595 new_fs)))
1596 goto bad_unshare_cleanup_fd;
1597
1598 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1599 if (do_sysvsem) {
1600 /*
1601 * CLONE_SYSVSEM is equivalent to sys_exit().
1602 */
1603 exit_sem(current);
1604 }
1605
1606 if (new_nsproxy) {
1607 switch_task_namespaces(current, new_nsproxy);
1608 new_nsproxy = NULL;
1609 }
1610
1611 task_lock(current);
1612
1613 if (new_fs) {
1614 fs = current->fs;
1615 current->fs = new_fs;
1616 new_fs = fs;
1617 }
1618
1619 if (new_mm) {
1620 mm = current->mm;
1621 active_mm = current->active_mm;
1622 current->mm = new_mm;
1623 current->active_mm = new_mm;
1624 activate_mm(active_mm, new_mm);
1625 new_mm = mm;
1626 }
1627
1628 if (new_fd) {
1629 fd = current->files;
1630 current->files = new_fd;
1631 new_fd = fd;
1632 }
1633
1634 task_unlock(current);
1635 }
1636
1637 if (new_nsproxy)
1638 put_nsproxy(new_nsproxy);
1639
1640 bad_unshare_cleanup_fd:
1641 if (new_fd)
1642 put_files_struct(new_fd);
1643
1644 bad_unshare_cleanup_vm:
1645 if (new_mm)
1646 mmput(new_mm);
1647
1648 bad_unshare_cleanup_sigh:
1649 if (new_sigh)
1650 if (atomic_dec_and_test(&new_sigh->count))
1651 kmem_cache_free(sighand_cachep, new_sigh);
1652
1653 bad_unshare_cleanup_fs:
1654 if (new_fs)
1655 put_fs_struct(new_fs);
1656
1657 bad_unshare_cleanup_thread:
1658 bad_unshare_out:
1659 return err;
1660 }
1661
1662 /*
1663 * Helper to unshare the files of the current task.
1664 * We don't want to expose copy_files internals to
1665 * the exec layer of the kernel.
1666 */
1667
1668 int unshare_files(struct files_struct **displaced)
1669 {
1670 struct task_struct *task = current;
1671 struct files_struct *copy = NULL;
1672 int error;
1673
1674 error = unshare_fd(CLONE_FILES, &copy);
1675 if (error || !copy) {
1676 *displaced = NULL;
1677 return error;
1678 }
1679 *displaced = task->files;
1680 task_lock(task);
1681 task->files = copy;
1682 task_unlock(task);
1683 return 0;
1684 }