Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 #include <linux/livepatch.h>
91
92 #include <asm/pgtable.h>
93 #include <asm/pgalloc.h>
94 #include <linux/uaccess.h>
95 #include <asm/mmu_context.h>
96 #include <asm/cacheflush.h>
97 #include <asm/tlbflush.h>
98
99 #include <trace/events/sched.h>
100
101 #define CREATE_TRACE_POINTS
102 #include <trace/events/task.h>
103
104 /*
105 * Minimum number of threads to boot the kernel
106 */
107 #define MIN_THREADS 20
108
109 /*
110 * Maximum number of threads
111 */
112 #define MAX_THREADS FUTEX_TID_MASK
113
114 /*
115 * Protected counters by write_lock_irq(&tasklist_lock)
116 */
117 unsigned long total_forks; /* Handle normal Linux uptimes. */
118 int nr_threads; /* The idle threads do not count.. */
119
120 int max_threads; /* tunable limit on nr_threads */
121
122 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
123
124 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
125
126 #ifdef CONFIG_PROVE_RCU
127 int lockdep_tasklist_lock_is_held(void)
128 {
129 return lockdep_is_held(&tasklist_lock);
130 }
131 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
132 #endif /* #ifdef CONFIG_PROVE_RCU */
133
134 int nr_processes(void)
135 {
136 int cpu;
137 int total = 0;
138
139 for_each_possible_cpu(cpu)
140 total += per_cpu(process_counts, cpu);
141
142 return total;
143 }
144
145 void __weak arch_release_task_struct(struct task_struct *tsk)
146 {
147 }
148
149 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
150 static struct kmem_cache *task_struct_cachep;
151
152 static inline struct task_struct *alloc_task_struct_node(int node)
153 {
154 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
155 }
156
157 static inline void free_task_struct(struct task_struct *tsk)
158 {
159 kmem_cache_free(task_struct_cachep, tsk);
160 }
161 #endif
162
163 void __weak arch_release_thread_stack(unsigned long *stack)
164 {
165 }
166
167 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
168
169 /*
170 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
171 * kmemcache based allocator.
172 */
173 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
174
175 #ifdef CONFIG_VMAP_STACK
176 /*
177 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
178 * flush. Try to minimize the number of calls by caching stacks.
179 */
180 #define NR_CACHED_STACKS 2
181 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
182 #endif
183
184 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
185 {
186 #ifdef CONFIG_VMAP_STACK
187 void *stack;
188 int i;
189
190 local_irq_disable();
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *s = this_cpu_read(cached_stacks[i]);
193
194 if (!s)
195 continue;
196 this_cpu_write(cached_stacks[i], NULL);
197
198 tsk->stack_vm_area = s;
199 local_irq_enable();
200 return s->addr;
201 }
202 local_irq_enable();
203
204 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
205 VMALLOC_START, VMALLOC_END,
206 THREADINFO_GFP | __GFP_HIGHMEM,
207 PAGE_KERNEL,
208 0, node, __builtin_return_address(0));
209
210 /*
211 * We can't call find_vm_area() in interrupt context, and
212 * free_thread_stack() can be called in interrupt context,
213 * so cache the vm_struct.
214 */
215 if (stack)
216 tsk->stack_vm_area = find_vm_area(stack);
217 return stack;
218 #else
219 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
220 THREAD_SIZE_ORDER);
221
222 return page ? page_address(page) : NULL;
223 #endif
224 }
225
226 static inline void free_thread_stack(struct task_struct *tsk)
227 {
228 #ifdef CONFIG_VMAP_STACK
229 if (task_stack_vm_area(tsk)) {
230 unsigned long flags;
231 int i;
232
233 local_irq_save(flags);
234 for (i = 0; i < NR_CACHED_STACKS; i++) {
235 if (this_cpu_read(cached_stacks[i]))
236 continue;
237
238 this_cpu_write(cached_stacks[i], tsk->stack_vm_area);
239 local_irq_restore(flags);
240 return;
241 }
242 local_irq_restore(flags);
243
244 vfree_atomic(tsk->stack);
245 return;
246 }
247 #endif
248
249 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
250 }
251 # else
252 static struct kmem_cache *thread_stack_cache;
253
254 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
255 int node)
256 {
257 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
258 }
259
260 static void free_thread_stack(struct task_struct *tsk)
261 {
262 kmem_cache_free(thread_stack_cache, tsk->stack);
263 }
264
265 void thread_stack_cache_init(void)
266 {
267 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
268 THREAD_SIZE, 0, NULL);
269 BUG_ON(thread_stack_cache == NULL);
270 }
271 # endif
272 #endif
273
274 /* SLAB cache for signal_struct structures (tsk->signal) */
275 static struct kmem_cache *signal_cachep;
276
277 /* SLAB cache for sighand_struct structures (tsk->sighand) */
278 struct kmem_cache *sighand_cachep;
279
280 /* SLAB cache for files_struct structures (tsk->files) */
281 struct kmem_cache *files_cachep;
282
283 /* SLAB cache for fs_struct structures (tsk->fs) */
284 struct kmem_cache *fs_cachep;
285
286 /* SLAB cache for vm_area_struct structures */
287 struct kmem_cache *vm_area_cachep;
288
289 /* SLAB cache for mm_struct structures (tsk->mm) */
290 static struct kmem_cache *mm_cachep;
291
292 static void account_kernel_stack(struct task_struct *tsk, int account)
293 {
294 void *stack = task_stack_page(tsk);
295 struct vm_struct *vm = task_stack_vm_area(tsk);
296
297 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
298
299 if (vm) {
300 int i;
301
302 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
303
304 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
305 mod_zone_page_state(page_zone(vm->pages[i]),
306 NR_KERNEL_STACK_KB,
307 PAGE_SIZE / 1024 * account);
308 }
309
310 /* All stack pages belong to the same memcg. */
311 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
312 account * (THREAD_SIZE / 1024));
313 } else {
314 /*
315 * All stack pages are in the same zone and belong to the
316 * same memcg.
317 */
318 struct page *first_page = virt_to_page(stack);
319
320 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
321 THREAD_SIZE / 1024 * account);
322
323 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
324 account * (THREAD_SIZE / 1024));
325 }
326 }
327
328 static void release_task_stack(struct task_struct *tsk)
329 {
330 if (WARN_ON(tsk->state != TASK_DEAD))
331 return; /* Better to leak the stack than to free prematurely */
332
333 account_kernel_stack(tsk, -1);
334 arch_release_thread_stack(tsk->stack);
335 free_thread_stack(tsk);
336 tsk->stack = NULL;
337 #ifdef CONFIG_VMAP_STACK
338 tsk->stack_vm_area = NULL;
339 #endif
340 }
341
342 #ifdef CONFIG_THREAD_INFO_IN_TASK
343 void put_task_stack(struct task_struct *tsk)
344 {
345 if (atomic_dec_and_test(&tsk->stack_refcount))
346 release_task_stack(tsk);
347 }
348 #endif
349
350 void free_task(struct task_struct *tsk)
351 {
352 #ifndef CONFIG_THREAD_INFO_IN_TASK
353 /*
354 * The task is finally done with both the stack and thread_info,
355 * so free both.
356 */
357 release_task_stack(tsk);
358 #else
359 /*
360 * If the task had a separate stack allocation, it should be gone
361 * by now.
362 */
363 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
364 #endif
365 rt_mutex_debug_task_free(tsk);
366 ftrace_graph_exit_task(tsk);
367 put_seccomp_filter(tsk);
368 arch_release_task_struct(tsk);
369 if (tsk->flags & PF_KTHREAD)
370 free_kthread_struct(tsk);
371 free_task_struct(tsk);
372 }
373 EXPORT_SYMBOL(free_task);
374
375 static inline void free_signal_struct(struct signal_struct *sig)
376 {
377 taskstats_tgid_free(sig);
378 sched_autogroup_exit(sig);
379 /*
380 * __mmdrop is not safe to call from softirq context on x86 due to
381 * pgd_dtor so postpone it to the async context
382 */
383 if (sig->oom_mm)
384 mmdrop_async(sig->oom_mm);
385 kmem_cache_free(signal_cachep, sig);
386 }
387
388 static inline void put_signal_struct(struct signal_struct *sig)
389 {
390 if (atomic_dec_and_test(&sig->sigcnt))
391 free_signal_struct(sig);
392 }
393
394 void __put_task_struct(struct task_struct *tsk)
395 {
396 WARN_ON(!tsk->exit_state);
397 WARN_ON(atomic_read(&tsk->usage));
398 WARN_ON(tsk == current);
399
400 cgroup_free(tsk);
401 task_numa_free(tsk);
402 security_task_free(tsk);
403 exit_creds(tsk);
404 delayacct_tsk_free(tsk);
405 put_signal_struct(tsk->signal);
406
407 if (!profile_handoff_task(tsk))
408 free_task(tsk);
409 }
410 EXPORT_SYMBOL_GPL(__put_task_struct);
411
412 void __init __weak arch_task_cache_init(void) { }
413
414 /*
415 * set_max_threads
416 */
417 static void set_max_threads(unsigned int max_threads_suggested)
418 {
419 u64 threads;
420
421 /*
422 * The number of threads shall be limited such that the thread
423 * structures may only consume a small part of the available memory.
424 */
425 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
426 threads = MAX_THREADS;
427 else
428 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
429 (u64) THREAD_SIZE * 8UL);
430
431 if (threads > max_threads_suggested)
432 threads = max_threads_suggested;
433
434 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
435 }
436
437 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
438 /* Initialized by the architecture: */
439 int arch_task_struct_size __read_mostly;
440 #endif
441
442 void __init fork_init(void)
443 {
444 int i;
445 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
446 #ifndef ARCH_MIN_TASKALIGN
447 #define ARCH_MIN_TASKALIGN 0
448 #endif
449 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
450
451 /* create a slab on which task_structs can be allocated */
452 task_struct_cachep = kmem_cache_create("task_struct",
453 arch_task_struct_size, align,
454 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
455 #endif
456
457 /* do the arch specific task caches init */
458 arch_task_cache_init();
459
460 set_max_threads(MAX_THREADS);
461
462 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
463 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
464 init_task.signal->rlim[RLIMIT_SIGPENDING] =
465 init_task.signal->rlim[RLIMIT_NPROC];
466
467 for (i = 0; i < UCOUNT_COUNTS; i++) {
468 init_user_ns.ucount_max[i] = max_threads/2;
469 }
470 }
471
472 int __weak arch_dup_task_struct(struct task_struct *dst,
473 struct task_struct *src)
474 {
475 *dst = *src;
476 return 0;
477 }
478
479 void set_task_stack_end_magic(struct task_struct *tsk)
480 {
481 unsigned long *stackend;
482
483 stackend = end_of_stack(tsk);
484 *stackend = STACK_END_MAGIC; /* for overflow detection */
485 }
486
487 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
488 {
489 struct task_struct *tsk;
490 unsigned long *stack;
491 struct vm_struct *stack_vm_area;
492 int err;
493
494 if (node == NUMA_NO_NODE)
495 node = tsk_fork_get_node(orig);
496 tsk = alloc_task_struct_node(node);
497 if (!tsk)
498 return NULL;
499
500 stack = alloc_thread_stack_node(tsk, node);
501 if (!stack)
502 goto free_tsk;
503
504 stack_vm_area = task_stack_vm_area(tsk);
505
506 err = arch_dup_task_struct(tsk, orig);
507
508 /*
509 * arch_dup_task_struct() clobbers the stack-related fields. Make
510 * sure they're properly initialized before using any stack-related
511 * functions again.
512 */
513 tsk->stack = stack;
514 #ifdef CONFIG_VMAP_STACK
515 tsk->stack_vm_area = stack_vm_area;
516 #endif
517 #ifdef CONFIG_THREAD_INFO_IN_TASK
518 atomic_set(&tsk->stack_refcount, 1);
519 #endif
520
521 if (err)
522 goto free_stack;
523
524 #ifdef CONFIG_SECCOMP
525 /*
526 * We must handle setting up seccomp filters once we're under
527 * the sighand lock in case orig has changed between now and
528 * then. Until then, filter must be NULL to avoid messing up
529 * the usage counts on the error path calling free_task.
530 */
531 tsk->seccomp.filter = NULL;
532 #endif
533
534 setup_thread_stack(tsk, orig);
535 clear_user_return_notifier(tsk);
536 clear_tsk_need_resched(tsk);
537 set_task_stack_end_magic(tsk);
538
539 #ifdef CONFIG_CC_STACKPROTECTOR
540 tsk->stack_canary = get_random_int();
541 #endif
542
543 /*
544 * One for us, one for whoever does the "release_task()" (usually
545 * parent)
546 */
547 atomic_set(&tsk->usage, 2);
548 #ifdef CONFIG_BLK_DEV_IO_TRACE
549 tsk->btrace_seq = 0;
550 #endif
551 tsk->splice_pipe = NULL;
552 tsk->task_frag.page = NULL;
553 tsk->wake_q.next = NULL;
554
555 account_kernel_stack(tsk, 1);
556
557 kcov_task_init(tsk);
558
559 return tsk;
560
561 free_stack:
562 free_thread_stack(tsk);
563 free_tsk:
564 free_task_struct(tsk);
565 return NULL;
566 }
567
568 #ifdef CONFIG_MMU
569 static __latent_entropy int dup_mmap(struct mm_struct *mm,
570 struct mm_struct *oldmm)
571 {
572 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
573 struct rb_node **rb_link, *rb_parent;
574 int retval;
575 unsigned long charge;
576 LIST_HEAD(uf);
577
578 uprobe_start_dup_mmap();
579 if (down_write_killable(&oldmm->mmap_sem)) {
580 retval = -EINTR;
581 goto fail_uprobe_end;
582 }
583 flush_cache_dup_mm(oldmm);
584 uprobe_dup_mmap(oldmm, mm);
585 /*
586 * Not linked in yet - no deadlock potential:
587 */
588 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
589
590 /* No ordering required: file already has been exposed. */
591 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
592
593 mm->total_vm = oldmm->total_vm;
594 mm->data_vm = oldmm->data_vm;
595 mm->exec_vm = oldmm->exec_vm;
596 mm->stack_vm = oldmm->stack_vm;
597
598 rb_link = &mm->mm_rb.rb_node;
599 rb_parent = NULL;
600 pprev = &mm->mmap;
601 retval = ksm_fork(mm, oldmm);
602 if (retval)
603 goto out;
604 retval = khugepaged_fork(mm, oldmm);
605 if (retval)
606 goto out;
607
608 prev = NULL;
609 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
610 struct file *file;
611
612 if (mpnt->vm_flags & VM_DONTCOPY) {
613 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
614 continue;
615 }
616 charge = 0;
617 if (mpnt->vm_flags & VM_ACCOUNT) {
618 unsigned long len = vma_pages(mpnt);
619
620 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
621 goto fail_nomem;
622 charge = len;
623 }
624 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
625 if (!tmp)
626 goto fail_nomem;
627 *tmp = *mpnt;
628 INIT_LIST_HEAD(&tmp->anon_vma_chain);
629 retval = vma_dup_policy(mpnt, tmp);
630 if (retval)
631 goto fail_nomem_policy;
632 tmp->vm_mm = mm;
633 retval = dup_userfaultfd(tmp, &uf);
634 if (retval)
635 goto fail_nomem_anon_vma_fork;
636 if (anon_vma_fork(tmp, mpnt))
637 goto fail_nomem_anon_vma_fork;
638 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
639 tmp->vm_next = tmp->vm_prev = NULL;
640 file = tmp->vm_file;
641 if (file) {
642 struct inode *inode = file_inode(file);
643 struct address_space *mapping = file->f_mapping;
644
645 get_file(file);
646 if (tmp->vm_flags & VM_DENYWRITE)
647 atomic_dec(&inode->i_writecount);
648 i_mmap_lock_write(mapping);
649 if (tmp->vm_flags & VM_SHARED)
650 atomic_inc(&mapping->i_mmap_writable);
651 flush_dcache_mmap_lock(mapping);
652 /* insert tmp into the share list, just after mpnt */
653 vma_interval_tree_insert_after(tmp, mpnt,
654 &mapping->i_mmap);
655 flush_dcache_mmap_unlock(mapping);
656 i_mmap_unlock_write(mapping);
657 }
658
659 /*
660 * Clear hugetlb-related page reserves for children. This only
661 * affects MAP_PRIVATE mappings. Faults generated by the child
662 * are not guaranteed to succeed, even if read-only
663 */
664 if (is_vm_hugetlb_page(tmp))
665 reset_vma_resv_huge_pages(tmp);
666
667 /*
668 * Link in the new vma and copy the page table entries.
669 */
670 *pprev = tmp;
671 pprev = &tmp->vm_next;
672 tmp->vm_prev = prev;
673 prev = tmp;
674
675 __vma_link_rb(mm, tmp, rb_link, rb_parent);
676 rb_link = &tmp->vm_rb.rb_right;
677 rb_parent = &tmp->vm_rb;
678
679 mm->map_count++;
680 retval = copy_page_range(mm, oldmm, mpnt);
681
682 if (tmp->vm_ops && tmp->vm_ops->open)
683 tmp->vm_ops->open(tmp);
684
685 if (retval)
686 goto out;
687 }
688 /* a new mm has just been created */
689 arch_dup_mmap(oldmm, mm);
690 retval = 0;
691 out:
692 up_write(&mm->mmap_sem);
693 flush_tlb_mm(oldmm);
694 up_write(&oldmm->mmap_sem);
695 dup_userfaultfd_complete(&uf);
696 fail_uprobe_end:
697 uprobe_end_dup_mmap();
698 return retval;
699 fail_nomem_anon_vma_fork:
700 mpol_put(vma_policy(tmp));
701 fail_nomem_policy:
702 kmem_cache_free(vm_area_cachep, tmp);
703 fail_nomem:
704 retval = -ENOMEM;
705 vm_unacct_memory(charge);
706 goto out;
707 }
708
709 static inline int mm_alloc_pgd(struct mm_struct *mm)
710 {
711 mm->pgd = pgd_alloc(mm);
712 if (unlikely(!mm->pgd))
713 return -ENOMEM;
714 return 0;
715 }
716
717 static inline void mm_free_pgd(struct mm_struct *mm)
718 {
719 pgd_free(mm, mm->pgd);
720 }
721 #else
722 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
723 {
724 down_write(&oldmm->mmap_sem);
725 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
726 up_write(&oldmm->mmap_sem);
727 return 0;
728 }
729 #define mm_alloc_pgd(mm) (0)
730 #define mm_free_pgd(mm)
731 #endif /* CONFIG_MMU */
732
733 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
734
735 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
736 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
737
738 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
739
740 static int __init coredump_filter_setup(char *s)
741 {
742 default_dump_filter =
743 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
744 MMF_DUMP_FILTER_MASK;
745 return 1;
746 }
747
748 __setup("coredump_filter=", coredump_filter_setup);
749
750 #include <linux/init_task.h>
751
752 static void mm_init_aio(struct mm_struct *mm)
753 {
754 #ifdef CONFIG_AIO
755 spin_lock_init(&mm->ioctx_lock);
756 mm->ioctx_table = NULL;
757 #endif
758 }
759
760 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
761 {
762 #ifdef CONFIG_MEMCG
763 mm->owner = p;
764 #endif
765 }
766
767 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
768 struct user_namespace *user_ns)
769 {
770 mm->mmap = NULL;
771 mm->mm_rb = RB_ROOT;
772 mm->vmacache_seqnum = 0;
773 atomic_set(&mm->mm_users, 1);
774 atomic_set(&mm->mm_count, 1);
775 init_rwsem(&mm->mmap_sem);
776 INIT_LIST_HEAD(&mm->mmlist);
777 mm->core_state = NULL;
778 atomic_long_set(&mm->nr_ptes, 0);
779 mm_nr_pmds_init(mm);
780 mm->map_count = 0;
781 mm->locked_vm = 0;
782 mm->pinned_vm = 0;
783 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
784 spin_lock_init(&mm->page_table_lock);
785 mm_init_cpumask(mm);
786 mm_init_aio(mm);
787 mm_init_owner(mm, p);
788 mmu_notifier_mm_init(mm);
789 clear_tlb_flush_pending(mm);
790 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
791 mm->pmd_huge_pte = NULL;
792 #endif
793
794 if (current->mm) {
795 mm->flags = current->mm->flags & MMF_INIT_MASK;
796 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
797 } else {
798 mm->flags = default_dump_filter;
799 mm->def_flags = 0;
800 }
801
802 if (mm_alloc_pgd(mm))
803 goto fail_nopgd;
804
805 if (init_new_context(p, mm))
806 goto fail_nocontext;
807
808 mm->user_ns = get_user_ns(user_ns);
809 return mm;
810
811 fail_nocontext:
812 mm_free_pgd(mm);
813 fail_nopgd:
814 free_mm(mm);
815 return NULL;
816 }
817
818 static void check_mm(struct mm_struct *mm)
819 {
820 int i;
821
822 for (i = 0; i < NR_MM_COUNTERS; i++) {
823 long x = atomic_long_read(&mm->rss_stat.count[i]);
824
825 if (unlikely(x))
826 printk(KERN_ALERT "BUG: Bad rss-counter state "
827 "mm:%p idx:%d val:%ld\n", mm, i, x);
828 }
829
830 if (atomic_long_read(&mm->nr_ptes))
831 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
832 atomic_long_read(&mm->nr_ptes));
833 if (mm_nr_pmds(mm))
834 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
835 mm_nr_pmds(mm));
836
837 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
838 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
839 #endif
840 }
841
842 /*
843 * Allocate and initialize an mm_struct.
844 */
845 struct mm_struct *mm_alloc(void)
846 {
847 struct mm_struct *mm;
848
849 mm = allocate_mm();
850 if (!mm)
851 return NULL;
852
853 memset(mm, 0, sizeof(*mm));
854 return mm_init(mm, current, current_user_ns());
855 }
856
857 /*
858 * Called when the last reference to the mm
859 * is dropped: either by a lazy thread or by
860 * mmput. Free the page directory and the mm.
861 */
862 void __mmdrop(struct mm_struct *mm)
863 {
864 BUG_ON(mm == &init_mm);
865 mm_free_pgd(mm);
866 destroy_context(mm);
867 mmu_notifier_mm_destroy(mm);
868 check_mm(mm);
869 put_user_ns(mm->user_ns);
870 free_mm(mm);
871 }
872 EXPORT_SYMBOL_GPL(__mmdrop);
873
874 static inline void __mmput(struct mm_struct *mm)
875 {
876 VM_BUG_ON(atomic_read(&mm->mm_users));
877
878 uprobe_clear_state(mm);
879 exit_aio(mm);
880 ksm_exit(mm);
881 khugepaged_exit(mm); /* must run before exit_mmap */
882 exit_mmap(mm);
883 mm_put_huge_zero_page(mm);
884 set_mm_exe_file(mm, NULL);
885 if (!list_empty(&mm->mmlist)) {
886 spin_lock(&mmlist_lock);
887 list_del(&mm->mmlist);
888 spin_unlock(&mmlist_lock);
889 }
890 if (mm->binfmt)
891 module_put(mm->binfmt->module);
892 set_bit(MMF_OOM_SKIP, &mm->flags);
893 mmdrop(mm);
894 }
895
896 /*
897 * Decrement the use count and release all resources for an mm.
898 */
899 void mmput(struct mm_struct *mm)
900 {
901 might_sleep();
902
903 if (atomic_dec_and_test(&mm->mm_users))
904 __mmput(mm);
905 }
906 EXPORT_SYMBOL_GPL(mmput);
907
908 #ifdef CONFIG_MMU
909 static void mmput_async_fn(struct work_struct *work)
910 {
911 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
912 __mmput(mm);
913 }
914
915 void mmput_async(struct mm_struct *mm)
916 {
917 if (atomic_dec_and_test(&mm->mm_users)) {
918 INIT_WORK(&mm->async_put_work, mmput_async_fn);
919 schedule_work(&mm->async_put_work);
920 }
921 }
922 #endif
923
924 /**
925 * set_mm_exe_file - change a reference to the mm's executable file
926 *
927 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
928 *
929 * Main users are mmput() and sys_execve(). Callers prevent concurrent
930 * invocations: in mmput() nobody alive left, in execve task is single
931 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
932 * mm->exe_file, but does so without using set_mm_exe_file() in order
933 * to do avoid the need for any locks.
934 */
935 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
936 {
937 struct file *old_exe_file;
938
939 /*
940 * It is safe to dereference the exe_file without RCU as
941 * this function is only called if nobody else can access
942 * this mm -- see comment above for justification.
943 */
944 old_exe_file = rcu_dereference_raw(mm->exe_file);
945
946 if (new_exe_file)
947 get_file(new_exe_file);
948 rcu_assign_pointer(mm->exe_file, new_exe_file);
949 if (old_exe_file)
950 fput(old_exe_file);
951 }
952
953 /**
954 * get_mm_exe_file - acquire a reference to the mm's executable file
955 *
956 * Returns %NULL if mm has no associated executable file.
957 * User must release file via fput().
958 */
959 struct file *get_mm_exe_file(struct mm_struct *mm)
960 {
961 struct file *exe_file;
962
963 rcu_read_lock();
964 exe_file = rcu_dereference(mm->exe_file);
965 if (exe_file && !get_file_rcu(exe_file))
966 exe_file = NULL;
967 rcu_read_unlock();
968 return exe_file;
969 }
970 EXPORT_SYMBOL(get_mm_exe_file);
971
972 /**
973 * get_task_exe_file - acquire a reference to the task's executable file
974 *
975 * Returns %NULL if task's mm (if any) has no associated executable file or
976 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
977 * User must release file via fput().
978 */
979 struct file *get_task_exe_file(struct task_struct *task)
980 {
981 struct file *exe_file = NULL;
982 struct mm_struct *mm;
983
984 task_lock(task);
985 mm = task->mm;
986 if (mm) {
987 if (!(task->flags & PF_KTHREAD))
988 exe_file = get_mm_exe_file(mm);
989 }
990 task_unlock(task);
991 return exe_file;
992 }
993 EXPORT_SYMBOL(get_task_exe_file);
994
995 /**
996 * get_task_mm - acquire a reference to the task's mm
997 *
998 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
999 * this kernel workthread has transiently adopted a user mm with use_mm,
1000 * to do its AIO) is not set and if so returns a reference to it, after
1001 * bumping up the use count. User must release the mm via mmput()
1002 * after use. Typically used by /proc and ptrace.
1003 */
1004 struct mm_struct *get_task_mm(struct task_struct *task)
1005 {
1006 struct mm_struct *mm;
1007
1008 task_lock(task);
1009 mm = task->mm;
1010 if (mm) {
1011 if (task->flags & PF_KTHREAD)
1012 mm = NULL;
1013 else
1014 mmget(mm);
1015 }
1016 task_unlock(task);
1017 return mm;
1018 }
1019 EXPORT_SYMBOL_GPL(get_task_mm);
1020
1021 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1022 {
1023 struct mm_struct *mm;
1024 int err;
1025
1026 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1027 if (err)
1028 return ERR_PTR(err);
1029
1030 mm = get_task_mm(task);
1031 if (mm && mm != current->mm &&
1032 !ptrace_may_access(task, mode)) {
1033 mmput(mm);
1034 mm = ERR_PTR(-EACCES);
1035 }
1036 mutex_unlock(&task->signal->cred_guard_mutex);
1037
1038 return mm;
1039 }
1040
1041 static void complete_vfork_done(struct task_struct *tsk)
1042 {
1043 struct completion *vfork;
1044
1045 task_lock(tsk);
1046 vfork = tsk->vfork_done;
1047 if (likely(vfork)) {
1048 tsk->vfork_done = NULL;
1049 complete(vfork);
1050 }
1051 task_unlock(tsk);
1052 }
1053
1054 static int wait_for_vfork_done(struct task_struct *child,
1055 struct completion *vfork)
1056 {
1057 int killed;
1058
1059 freezer_do_not_count();
1060 killed = wait_for_completion_killable(vfork);
1061 freezer_count();
1062
1063 if (killed) {
1064 task_lock(child);
1065 child->vfork_done = NULL;
1066 task_unlock(child);
1067 }
1068
1069 put_task_struct(child);
1070 return killed;
1071 }
1072
1073 /* Please note the differences between mmput and mm_release.
1074 * mmput is called whenever we stop holding onto a mm_struct,
1075 * error success whatever.
1076 *
1077 * mm_release is called after a mm_struct has been removed
1078 * from the current process.
1079 *
1080 * This difference is important for error handling, when we
1081 * only half set up a mm_struct for a new process and need to restore
1082 * the old one. Because we mmput the new mm_struct before
1083 * restoring the old one. . .
1084 * Eric Biederman 10 January 1998
1085 */
1086 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1087 {
1088 /* Get rid of any futexes when releasing the mm */
1089 #ifdef CONFIG_FUTEX
1090 if (unlikely(tsk->robust_list)) {
1091 exit_robust_list(tsk);
1092 tsk->robust_list = NULL;
1093 }
1094 #ifdef CONFIG_COMPAT
1095 if (unlikely(tsk->compat_robust_list)) {
1096 compat_exit_robust_list(tsk);
1097 tsk->compat_robust_list = NULL;
1098 }
1099 #endif
1100 if (unlikely(!list_empty(&tsk->pi_state_list)))
1101 exit_pi_state_list(tsk);
1102 #endif
1103
1104 uprobe_free_utask(tsk);
1105
1106 /* Get rid of any cached register state */
1107 deactivate_mm(tsk, mm);
1108
1109 /*
1110 * Signal userspace if we're not exiting with a core dump
1111 * because we want to leave the value intact for debugging
1112 * purposes.
1113 */
1114 if (tsk->clear_child_tid) {
1115 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1116 atomic_read(&mm->mm_users) > 1) {
1117 /*
1118 * We don't check the error code - if userspace has
1119 * not set up a proper pointer then tough luck.
1120 */
1121 put_user(0, tsk->clear_child_tid);
1122 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1123 1, NULL, NULL, 0);
1124 }
1125 tsk->clear_child_tid = NULL;
1126 }
1127
1128 /*
1129 * All done, finally we can wake up parent and return this mm to him.
1130 * Also kthread_stop() uses this completion for synchronization.
1131 */
1132 if (tsk->vfork_done)
1133 complete_vfork_done(tsk);
1134 }
1135
1136 /*
1137 * Allocate a new mm structure and copy contents from the
1138 * mm structure of the passed in task structure.
1139 */
1140 static struct mm_struct *dup_mm(struct task_struct *tsk)
1141 {
1142 struct mm_struct *mm, *oldmm = current->mm;
1143 int err;
1144
1145 mm = allocate_mm();
1146 if (!mm)
1147 goto fail_nomem;
1148
1149 memcpy(mm, oldmm, sizeof(*mm));
1150
1151 if (!mm_init(mm, tsk, mm->user_ns))
1152 goto fail_nomem;
1153
1154 err = dup_mmap(mm, oldmm);
1155 if (err)
1156 goto free_pt;
1157
1158 mm->hiwater_rss = get_mm_rss(mm);
1159 mm->hiwater_vm = mm->total_vm;
1160
1161 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1162 goto free_pt;
1163
1164 return mm;
1165
1166 free_pt:
1167 /* don't put binfmt in mmput, we haven't got module yet */
1168 mm->binfmt = NULL;
1169 mmput(mm);
1170
1171 fail_nomem:
1172 return NULL;
1173 }
1174
1175 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1176 {
1177 struct mm_struct *mm, *oldmm;
1178 int retval;
1179
1180 tsk->min_flt = tsk->maj_flt = 0;
1181 tsk->nvcsw = tsk->nivcsw = 0;
1182 #ifdef CONFIG_DETECT_HUNG_TASK
1183 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1184 #endif
1185
1186 tsk->mm = NULL;
1187 tsk->active_mm = NULL;
1188
1189 /*
1190 * Are we cloning a kernel thread?
1191 *
1192 * We need to steal a active VM for that..
1193 */
1194 oldmm = current->mm;
1195 if (!oldmm)
1196 return 0;
1197
1198 /* initialize the new vmacache entries */
1199 vmacache_flush(tsk);
1200
1201 if (clone_flags & CLONE_VM) {
1202 mmget(oldmm);
1203 mm = oldmm;
1204 goto good_mm;
1205 }
1206
1207 retval = -ENOMEM;
1208 mm = dup_mm(tsk);
1209 if (!mm)
1210 goto fail_nomem;
1211
1212 good_mm:
1213 tsk->mm = mm;
1214 tsk->active_mm = mm;
1215 return 0;
1216
1217 fail_nomem:
1218 return retval;
1219 }
1220
1221 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1222 {
1223 struct fs_struct *fs = current->fs;
1224 if (clone_flags & CLONE_FS) {
1225 /* tsk->fs is already what we want */
1226 spin_lock(&fs->lock);
1227 if (fs->in_exec) {
1228 spin_unlock(&fs->lock);
1229 return -EAGAIN;
1230 }
1231 fs->users++;
1232 spin_unlock(&fs->lock);
1233 return 0;
1234 }
1235 tsk->fs = copy_fs_struct(fs);
1236 if (!tsk->fs)
1237 return -ENOMEM;
1238 return 0;
1239 }
1240
1241 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1242 {
1243 struct files_struct *oldf, *newf;
1244 int error = 0;
1245
1246 /*
1247 * A background process may not have any files ...
1248 */
1249 oldf = current->files;
1250 if (!oldf)
1251 goto out;
1252
1253 if (clone_flags & CLONE_FILES) {
1254 atomic_inc(&oldf->count);
1255 goto out;
1256 }
1257
1258 newf = dup_fd(oldf, &error);
1259 if (!newf)
1260 goto out;
1261
1262 tsk->files = newf;
1263 error = 0;
1264 out:
1265 return error;
1266 }
1267
1268 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1269 {
1270 #ifdef CONFIG_BLOCK
1271 struct io_context *ioc = current->io_context;
1272 struct io_context *new_ioc;
1273
1274 if (!ioc)
1275 return 0;
1276 /*
1277 * Share io context with parent, if CLONE_IO is set
1278 */
1279 if (clone_flags & CLONE_IO) {
1280 ioc_task_link(ioc);
1281 tsk->io_context = ioc;
1282 } else if (ioprio_valid(ioc->ioprio)) {
1283 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1284 if (unlikely(!new_ioc))
1285 return -ENOMEM;
1286
1287 new_ioc->ioprio = ioc->ioprio;
1288 put_io_context(new_ioc);
1289 }
1290 #endif
1291 return 0;
1292 }
1293
1294 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1295 {
1296 struct sighand_struct *sig;
1297
1298 if (clone_flags & CLONE_SIGHAND) {
1299 atomic_inc(&current->sighand->count);
1300 return 0;
1301 }
1302 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1303 rcu_assign_pointer(tsk->sighand, sig);
1304 if (!sig)
1305 return -ENOMEM;
1306
1307 atomic_set(&sig->count, 1);
1308 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1309 return 0;
1310 }
1311
1312 void __cleanup_sighand(struct sighand_struct *sighand)
1313 {
1314 if (atomic_dec_and_test(&sighand->count)) {
1315 signalfd_cleanup(sighand);
1316 /*
1317 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1318 * without an RCU grace period, see __lock_task_sighand().
1319 */
1320 kmem_cache_free(sighand_cachep, sighand);
1321 }
1322 }
1323
1324 #ifdef CONFIG_POSIX_TIMERS
1325 /*
1326 * Initialize POSIX timer handling for a thread group.
1327 */
1328 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1329 {
1330 unsigned long cpu_limit;
1331
1332 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1333 if (cpu_limit != RLIM_INFINITY) {
1334 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1335 sig->cputimer.running = true;
1336 }
1337
1338 /* The timer lists. */
1339 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1340 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1341 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1342 }
1343 #else
1344 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1345 #endif
1346
1347 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1348 {
1349 struct signal_struct *sig;
1350
1351 if (clone_flags & CLONE_THREAD)
1352 return 0;
1353
1354 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1355 tsk->signal = sig;
1356 if (!sig)
1357 return -ENOMEM;
1358
1359 sig->nr_threads = 1;
1360 atomic_set(&sig->live, 1);
1361 atomic_set(&sig->sigcnt, 1);
1362
1363 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1364 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1365 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1366
1367 init_waitqueue_head(&sig->wait_chldexit);
1368 sig->curr_target = tsk;
1369 init_sigpending(&sig->shared_pending);
1370 seqlock_init(&sig->stats_lock);
1371 prev_cputime_init(&sig->prev_cputime);
1372
1373 #ifdef CONFIG_POSIX_TIMERS
1374 INIT_LIST_HEAD(&sig->posix_timers);
1375 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1376 sig->real_timer.function = it_real_fn;
1377 #endif
1378
1379 task_lock(current->group_leader);
1380 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1381 task_unlock(current->group_leader);
1382
1383 posix_cpu_timers_init_group(sig);
1384
1385 tty_audit_fork(sig);
1386 sched_autogroup_fork(sig);
1387
1388 sig->oom_score_adj = current->signal->oom_score_adj;
1389 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1390
1391 mutex_init(&sig->cred_guard_mutex);
1392
1393 return 0;
1394 }
1395
1396 static void copy_seccomp(struct task_struct *p)
1397 {
1398 #ifdef CONFIG_SECCOMP
1399 /*
1400 * Must be called with sighand->lock held, which is common to
1401 * all threads in the group. Holding cred_guard_mutex is not
1402 * needed because this new task is not yet running and cannot
1403 * be racing exec.
1404 */
1405 assert_spin_locked(&current->sighand->siglock);
1406
1407 /* Ref-count the new filter user, and assign it. */
1408 get_seccomp_filter(current);
1409 p->seccomp = current->seccomp;
1410
1411 /*
1412 * Explicitly enable no_new_privs here in case it got set
1413 * between the task_struct being duplicated and holding the
1414 * sighand lock. The seccomp state and nnp must be in sync.
1415 */
1416 if (task_no_new_privs(current))
1417 task_set_no_new_privs(p);
1418
1419 /*
1420 * If the parent gained a seccomp mode after copying thread
1421 * flags and between before we held the sighand lock, we have
1422 * to manually enable the seccomp thread flag here.
1423 */
1424 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1425 set_tsk_thread_flag(p, TIF_SECCOMP);
1426 #endif
1427 }
1428
1429 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1430 {
1431 current->clear_child_tid = tidptr;
1432
1433 return task_pid_vnr(current);
1434 }
1435
1436 static void rt_mutex_init_task(struct task_struct *p)
1437 {
1438 raw_spin_lock_init(&p->pi_lock);
1439 #ifdef CONFIG_RT_MUTEXES
1440 p->pi_waiters = RB_ROOT;
1441 p->pi_waiters_leftmost = NULL;
1442 p->pi_top_task = NULL;
1443 p->pi_blocked_on = NULL;
1444 #endif
1445 }
1446
1447 #ifdef CONFIG_POSIX_TIMERS
1448 /*
1449 * Initialize POSIX timer handling for a single task.
1450 */
1451 static void posix_cpu_timers_init(struct task_struct *tsk)
1452 {
1453 tsk->cputime_expires.prof_exp = 0;
1454 tsk->cputime_expires.virt_exp = 0;
1455 tsk->cputime_expires.sched_exp = 0;
1456 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1457 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1458 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1459 }
1460 #else
1461 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1462 #endif
1463
1464 static inline void
1465 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1466 {
1467 task->pids[type].pid = pid;
1468 }
1469
1470 static inline void rcu_copy_process(struct task_struct *p)
1471 {
1472 #ifdef CONFIG_PREEMPT_RCU
1473 p->rcu_read_lock_nesting = 0;
1474 p->rcu_read_unlock_special.s = 0;
1475 p->rcu_blocked_node = NULL;
1476 INIT_LIST_HEAD(&p->rcu_node_entry);
1477 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1478 #ifdef CONFIG_TASKS_RCU
1479 p->rcu_tasks_holdout = false;
1480 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1481 p->rcu_tasks_idle_cpu = -1;
1482 #endif /* #ifdef CONFIG_TASKS_RCU */
1483 }
1484
1485 /*
1486 * This creates a new process as a copy of the old one,
1487 * but does not actually start it yet.
1488 *
1489 * It copies the registers, and all the appropriate
1490 * parts of the process environment (as per the clone
1491 * flags). The actual kick-off is left to the caller.
1492 */
1493 static __latent_entropy struct task_struct *copy_process(
1494 unsigned long clone_flags,
1495 unsigned long stack_start,
1496 unsigned long stack_size,
1497 int __user *child_tidptr,
1498 struct pid *pid,
1499 int trace,
1500 unsigned long tls,
1501 int node)
1502 {
1503 int retval;
1504 struct task_struct *p;
1505
1506 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1507 return ERR_PTR(-EINVAL);
1508
1509 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1510 return ERR_PTR(-EINVAL);
1511
1512 /*
1513 * Thread groups must share signals as well, and detached threads
1514 * can only be started up within the thread group.
1515 */
1516 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1517 return ERR_PTR(-EINVAL);
1518
1519 /*
1520 * Shared signal handlers imply shared VM. By way of the above,
1521 * thread groups also imply shared VM. Blocking this case allows
1522 * for various simplifications in other code.
1523 */
1524 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1525 return ERR_PTR(-EINVAL);
1526
1527 /*
1528 * Siblings of global init remain as zombies on exit since they are
1529 * not reaped by their parent (swapper). To solve this and to avoid
1530 * multi-rooted process trees, prevent global and container-inits
1531 * from creating siblings.
1532 */
1533 if ((clone_flags & CLONE_PARENT) &&
1534 current->signal->flags & SIGNAL_UNKILLABLE)
1535 return ERR_PTR(-EINVAL);
1536
1537 /*
1538 * If the new process will be in a different pid or user namespace
1539 * do not allow it to share a thread group with the forking task.
1540 */
1541 if (clone_flags & CLONE_THREAD) {
1542 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1543 (task_active_pid_ns(current) !=
1544 current->nsproxy->pid_ns_for_children))
1545 return ERR_PTR(-EINVAL);
1546 }
1547
1548 retval = security_task_create(clone_flags);
1549 if (retval)
1550 goto fork_out;
1551
1552 retval = -ENOMEM;
1553 p = dup_task_struct(current, node);
1554 if (!p)
1555 goto fork_out;
1556
1557 ftrace_graph_init_task(p);
1558
1559 rt_mutex_init_task(p);
1560
1561 #ifdef CONFIG_PROVE_LOCKING
1562 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1563 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1564 #endif
1565 retval = -EAGAIN;
1566 if (atomic_read(&p->real_cred->user->processes) >=
1567 task_rlimit(p, RLIMIT_NPROC)) {
1568 if (p->real_cred->user != INIT_USER &&
1569 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1570 goto bad_fork_free;
1571 }
1572 current->flags &= ~PF_NPROC_EXCEEDED;
1573
1574 retval = copy_creds(p, clone_flags);
1575 if (retval < 0)
1576 goto bad_fork_free;
1577
1578 /*
1579 * If multiple threads are within copy_process(), then this check
1580 * triggers too late. This doesn't hurt, the check is only there
1581 * to stop root fork bombs.
1582 */
1583 retval = -EAGAIN;
1584 if (nr_threads >= max_threads)
1585 goto bad_fork_cleanup_count;
1586
1587 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1588 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1589 p->flags |= PF_FORKNOEXEC;
1590 INIT_LIST_HEAD(&p->children);
1591 INIT_LIST_HEAD(&p->sibling);
1592 rcu_copy_process(p);
1593 p->vfork_done = NULL;
1594 spin_lock_init(&p->alloc_lock);
1595
1596 init_sigpending(&p->pending);
1597
1598 p->utime = p->stime = p->gtime = 0;
1599 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1600 p->utimescaled = p->stimescaled = 0;
1601 #endif
1602 prev_cputime_init(&p->prev_cputime);
1603
1604 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1605 seqcount_init(&p->vtime_seqcount);
1606 p->vtime_snap = 0;
1607 p->vtime_snap_whence = VTIME_INACTIVE;
1608 #endif
1609
1610 #if defined(SPLIT_RSS_COUNTING)
1611 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1612 #endif
1613
1614 p->default_timer_slack_ns = current->timer_slack_ns;
1615
1616 task_io_accounting_init(&p->ioac);
1617 acct_clear_integrals(p);
1618
1619 posix_cpu_timers_init(p);
1620
1621 p->start_time = ktime_get_ns();
1622 p->real_start_time = ktime_get_boot_ns();
1623 p->io_context = NULL;
1624 p->audit_context = NULL;
1625 cgroup_fork(p);
1626 #ifdef CONFIG_NUMA
1627 p->mempolicy = mpol_dup(p->mempolicy);
1628 if (IS_ERR(p->mempolicy)) {
1629 retval = PTR_ERR(p->mempolicy);
1630 p->mempolicy = NULL;
1631 goto bad_fork_cleanup_threadgroup_lock;
1632 }
1633 #endif
1634 #ifdef CONFIG_CPUSETS
1635 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1636 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1637 seqcount_init(&p->mems_allowed_seq);
1638 #endif
1639 #ifdef CONFIG_TRACE_IRQFLAGS
1640 p->irq_events = 0;
1641 p->hardirqs_enabled = 0;
1642 p->hardirq_enable_ip = 0;
1643 p->hardirq_enable_event = 0;
1644 p->hardirq_disable_ip = _THIS_IP_;
1645 p->hardirq_disable_event = 0;
1646 p->softirqs_enabled = 1;
1647 p->softirq_enable_ip = _THIS_IP_;
1648 p->softirq_enable_event = 0;
1649 p->softirq_disable_ip = 0;
1650 p->softirq_disable_event = 0;
1651 p->hardirq_context = 0;
1652 p->softirq_context = 0;
1653 #endif
1654
1655 p->pagefault_disabled = 0;
1656
1657 #ifdef CONFIG_LOCKDEP
1658 p->lockdep_depth = 0; /* no locks held yet */
1659 p->curr_chain_key = 0;
1660 p->lockdep_recursion = 0;
1661 #endif
1662
1663 #ifdef CONFIG_DEBUG_MUTEXES
1664 p->blocked_on = NULL; /* not blocked yet */
1665 #endif
1666 #ifdef CONFIG_BCACHE
1667 p->sequential_io = 0;
1668 p->sequential_io_avg = 0;
1669 #endif
1670
1671 /* Perform scheduler related setup. Assign this task to a CPU. */
1672 retval = sched_fork(clone_flags, p);
1673 if (retval)
1674 goto bad_fork_cleanup_policy;
1675
1676 retval = perf_event_init_task(p);
1677 if (retval)
1678 goto bad_fork_cleanup_policy;
1679 retval = audit_alloc(p);
1680 if (retval)
1681 goto bad_fork_cleanup_perf;
1682 /* copy all the process information */
1683 shm_init_task(p);
1684 retval = security_task_alloc(p, clone_flags);
1685 if (retval)
1686 goto bad_fork_cleanup_audit;
1687 retval = copy_semundo(clone_flags, p);
1688 if (retval)
1689 goto bad_fork_cleanup_security;
1690 retval = copy_files(clone_flags, p);
1691 if (retval)
1692 goto bad_fork_cleanup_semundo;
1693 retval = copy_fs(clone_flags, p);
1694 if (retval)
1695 goto bad_fork_cleanup_files;
1696 retval = copy_sighand(clone_flags, p);
1697 if (retval)
1698 goto bad_fork_cleanup_fs;
1699 retval = copy_signal(clone_flags, p);
1700 if (retval)
1701 goto bad_fork_cleanup_sighand;
1702 retval = copy_mm(clone_flags, p);
1703 if (retval)
1704 goto bad_fork_cleanup_signal;
1705 retval = copy_namespaces(clone_flags, p);
1706 if (retval)
1707 goto bad_fork_cleanup_mm;
1708 retval = copy_io(clone_flags, p);
1709 if (retval)
1710 goto bad_fork_cleanup_namespaces;
1711 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1712 if (retval)
1713 goto bad_fork_cleanup_io;
1714
1715 if (pid != &init_struct_pid) {
1716 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1717 if (IS_ERR(pid)) {
1718 retval = PTR_ERR(pid);
1719 goto bad_fork_cleanup_thread;
1720 }
1721 }
1722
1723 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1724 /*
1725 * Clear TID on mm_release()?
1726 */
1727 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1728 #ifdef CONFIG_BLOCK
1729 p->plug = NULL;
1730 #endif
1731 #ifdef CONFIG_FUTEX
1732 p->robust_list = NULL;
1733 #ifdef CONFIG_COMPAT
1734 p->compat_robust_list = NULL;
1735 #endif
1736 INIT_LIST_HEAD(&p->pi_state_list);
1737 p->pi_state_cache = NULL;
1738 #endif
1739 /*
1740 * sigaltstack should be cleared when sharing the same VM
1741 */
1742 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1743 sas_ss_reset(p);
1744
1745 /*
1746 * Syscall tracing and stepping should be turned off in the
1747 * child regardless of CLONE_PTRACE.
1748 */
1749 user_disable_single_step(p);
1750 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1751 #ifdef TIF_SYSCALL_EMU
1752 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1753 #endif
1754 clear_all_latency_tracing(p);
1755
1756 /* ok, now we should be set up.. */
1757 p->pid = pid_nr(pid);
1758 if (clone_flags & CLONE_THREAD) {
1759 p->exit_signal = -1;
1760 p->group_leader = current->group_leader;
1761 p->tgid = current->tgid;
1762 } else {
1763 if (clone_flags & CLONE_PARENT)
1764 p->exit_signal = current->group_leader->exit_signal;
1765 else
1766 p->exit_signal = (clone_flags & CSIGNAL);
1767 p->group_leader = p;
1768 p->tgid = p->pid;
1769 }
1770
1771 p->nr_dirtied = 0;
1772 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1773 p->dirty_paused_when = 0;
1774
1775 p->pdeath_signal = 0;
1776 INIT_LIST_HEAD(&p->thread_group);
1777 p->task_works = NULL;
1778
1779 cgroup_threadgroup_change_begin(current);
1780 /*
1781 * Ensure that the cgroup subsystem policies allow the new process to be
1782 * forked. It should be noted the the new process's css_set can be changed
1783 * between here and cgroup_post_fork() if an organisation operation is in
1784 * progress.
1785 */
1786 retval = cgroup_can_fork(p);
1787 if (retval)
1788 goto bad_fork_free_pid;
1789
1790 /*
1791 * Make it visible to the rest of the system, but dont wake it up yet.
1792 * Need tasklist lock for parent etc handling!
1793 */
1794 write_lock_irq(&tasklist_lock);
1795
1796 /* CLONE_PARENT re-uses the old parent */
1797 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1798 p->real_parent = current->real_parent;
1799 p->parent_exec_id = current->parent_exec_id;
1800 } else {
1801 p->real_parent = current;
1802 p->parent_exec_id = current->self_exec_id;
1803 }
1804
1805 klp_copy_process(p);
1806
1807 spin_lock(&current->sighand->siglock);
1808
1809 /*
1810 * Copy seccomp details explicitly here, in case they were changed
1811 * before holding sighand lock.
1812 */
1813 copy_seccomp(p);
1814
1815 /*
1816 * Process group and session signals need to be delivered to just the
1817 * parent before the fork or both the parent and the child after the
1818 * fork. Restart if a signal comes in before we add the new process to
1819 * it's process group.
1820 * A fatal signal pending means that current will exit, so the new
1821 * thread can't slip out of an OOM kill (or normal SIGKILL).
1822 */
1823 recalc_sigpending();
1824 if (signal_pending(current)) {
1825 spin_unlock(&current->sighand->siglock);
1826 write_unlock_irq(&tasklist_lock);
1827 retval = -ERESTARTNOINTR;
1828 goto bad_fork_cancel_cgroup;
1829 }
1830
1831 if (likely(p->pid)) {
1832 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1833
1834 init_task_pid(p, PIDTYPE_PID, pid);
1835 if (thread_group_leader(p)) {
1836 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1837 init_task_pid(p, PIDTYPE_SID, task_session(current));
1838
1839 if (is_child_reaper(pid)) {
1840 ns_of_pid(pid)->child_reaper = p;
1841 p->signal->flags |= SIGNAL_UNKILLABLE;
1842 }
1843
1844 p->signal->leader_pid = pid;
1845 p->signal->tty = tty_kref_get(current->signal->tty);
1846 /*
1847 * Inherit has_child_subreaper flag under the same
1848 * tasklist_lock with adding child to the process tree
1849 * for propagate_has_child_subreaper optimization.
1850 */
1851 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1852 p->real_parent->signal->is_child_subreaper;
1853 list_add_tail(&p->sibling, &p->real_parent->children);
1854 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1855 attach_pid(p, PIDTYPE_PGID);
1856 attach_pid(p, PIDTYPE_SID);
1857 __this_cpu_inc(process_counts);
1858 } else {
1859 current->signal->nr_threads++;
1860 atomic_inc(&current->signal->live);
1861 atomic_inc(&current->signal->sigcnt);
1862 list_add_tail_rcu(&p->thread_group,
1863 &p->group_leader->thread_group);
1864 list_add_tail_rcu(&p->thread_node,
1865 &p->signal->thread_head);
1866 }
1867 attach_pid(p, PIDTYPE_PID);
1868 nr_threads++;
1869 }
1870
1871 total_forks++;
1872 spin_unlock(&current->sighand->siglock);
1873 syscall_tracepoint_update(p);
1874 write_unlock_irq(&tasklist_lock);
1875
1876 proc_fork_connector(p);
1877 cgroup_post_fork(p);
1878 cgroup_threadgroup_change_end(current);
1879 perf_event_fork(p);
1880
1881 trace_task_newtask(p, clone_flags);
1882 uprobe_copy_process(p, clone_flags);
1883
1884 return p;
1885
1886 bad_fork_cancel_cgroup:
1887 cgroup_cancel_fork(p);
1888 bad_fork_free_pid:
1889 cgroup_threadgroup_change_end(current);
1890 if (pid != &init_struct_pid)
1891 free_pid(pid);
1892 bad_fork_cleanup_thread:
1893 exit_thread(p);
1894 bad_fork_cleanup_io:
1895 if (p->io_context)
1896 exit_io_context(p);
1897 bad_fork_cleanup_namespaces:
1898 exit_task_namespaces(p);
1899 bad_fork_cleanup_mm:
1900 if (p->mm)
1901 mmput(p->mm);
1902 bad_fork_cleanup_signal:
1903 if (!(clone_flags & CLONE_THREAD))
1904 free_signal_struct(p->signal);
1905 bad_fork_cleanup_sighand:
1906 __cleanup_sighand(p->sighand);
1907 bad_fork_cleanup_fs:
1908 exit_fs(p); /* blocking */
1909 bad_fork_cleanup_files:
1910 exit_files(p); /* blocking */
1911 bad_fork_cleanup_semundo:
1912 exit_sem(p);
1913 bad_fork_cleanup_security:
1914 security_task_free(p);
1915 bad_fork_cleanup_audit:
1916 audit_free(p);
1917 bad_fork_cleanup_perf:
1918 perf_event_free_task(p);
1919 bad_fork_cleanup_policy:
1920 #ifdef CONFIG_NUMA
1921 mpol_put(p->mempolicy);
1922 bad_fork_cleanup_threadgroup_lock:
1923 #endif
1924 delayacct_tsk_free(p);
1925 bad_fork_cleanup_count:
1926 atomic_dec(&p->cred->user->processes);
1927 exit_creds(p);
1928 bad_fork_free:
1929 p->state = TASK_DEAD;
1930 put_task_stack(p);
1931 free_task(p);
1932 fork_out:
1933 return ERR_PTR(retval);
1934 }
1935
1936 static inline void init_idle_pids(struct pid_link *links)
1937 {
1938 enum pid_type type;
1939
1940 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1941 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1942 links[type].pid = &init_struct_pid;
1943 }
1944 }
1945
1946 struct task_struct *fork_idle(int cpu)
1947 {
1948 struct task_struct *task;
1949 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1950 cpu_to_node(cpu));
1951 if (!IS_ERR(task)) {
1952 init_idle_pids(task->pids);
1953 init_idle(task, cpu);
1954 }
1955
1956 return task;
1957 }
1958
1959 /*
1960 * Ok, this is the main fork-routine.
1961 *
1962 * It copies the process, and if successful kick-starts
1963 * it and waits for it to finish using the VM if required.
1964 */
1965 long _do_fork(unsigned long clone_flags,
1966 unsigned long stack_start,
1967 unsigned long stack_size,
1968 int __user *parent_tidptr,
1969 int __user *child_tidptr,
1970 unsigned long tls)
1971 {
1972 struct task_struct *p;
1973 int trace = 0;
1974 long nr;
1975
1976 /*
1977 * Determine whether and which event to report to ptracer. When
1978 * called from kernel_thread or CLONE_UNTRACED is explicitly
1979 * requested, no event is reported; otherwise, report if the event
1980 * for the type of forking is enabled.
1981 */
1982 if (!(clone_flags & CLONE_UNTRACED)) {
1983 if (clone_flags & CLONE_VFORK)
1984 trace = PTRACE_EVENT_VFORK;
1985 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1986 trace = PTRACE_EVENT_CLONE;
1987 else
1988 trace = PTRACE_EVENT_FORK;
1989
1990 if (likely(!ptrace_event_enabled(current, trace)))
1991 trace = 0;
1992 }
1993
1994 p = copy_process(clone_flags, stack_start, stack_size,
1995 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1996 add_latent_entropy();
1997 /*
1998 * Do this prior waking up the new thread - the thread pointer
1999 * might get invalid after that point, if the thread exits quickly.
2000 */
2001 if (!IS_ERR(p)) {
2002 struct completion vfork;
2003 struct pid *pid;
2004
2005 trace_sched_process_fork(current, p);
2006
2007 pid = get_task_pid(p, PIDTYPE_PID);
2008 nr = pid_vnr(pid);
2009
2010 if (clone_flags & CLONE_PARENT_SETTID)
2011 put_user(nr, parent_tidptr);
2012
2013 if (clone_flags & CLONE_VFORK) {
2014 p->vfork_done = &vfork;
2015 init_completion(&vfork);
2016 get_task_struct(p);
2017 }
2018
2019 wake_up_new_task(p);
2020
2021 /* forking complete and child started to run, tell ptracer */
2022 if (unlikely(trace))
2023 ptrace_event_pid(trace, pid);
2024
2025 if (clone_flags & CLONE_VFORK) {
2026 if (!wait_for_vfork_done(p, &vfork))
2027 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2028 }
2029
2030 put_pid(pid);
2031 } else {
2032 nr = PTR_ERR(p);
2033 }
2034 return nr;
2035 }
2036
2037 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2038 /* For compatibility with architectures that call do_fork directly rather than
2039 * using the syscall entry points below. */
2040 long do_fork(unsigned long clone_flags,
2041 unsigned long stack_start,
2042 unsigned long stack_size,
2043 int __user *parent_tidptr,
2044 int __user *child_tidptr)
2045 {
2046 return _do_fork(clone_flags, stack_start, stack_size,
2047 parent_tidptr, child_tidptr, 0);
2048 }
2049 #endif
2050
2051 /*
2052 * Create a kernel thread.
2053 */
2054 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2055 {
2056 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2057 (unsigned long)arg, NULL, NULL, 0);
2058 }
2059
2060 #ifdef __ARCH_WANT_SYS_FORK
2061 SYSCALL_DEFINE0(fork)
2062 {
2063 #ifdef CONFIG_MMU
2064 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2065 #else
2066 /* can not support in nommu mode */
2067 return -EINVAL;
2068 #endif
2069 }
2070 #endif
2071
2072 #ifdef __ARCH_WANT_SYS_VFORK
2073 SYSCALL_DEFINE0(vfork)
2074 {
2075 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2076 0, NULL, NULL, 0);
2077 }
2078 #endif
2079
2080 #ifdef __ARCH_WANT_SYS_CLONE
2081 #ifdef CONFIG_CLONE_BACKWARDS
2082 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2083 int __user *, parent_tidptr,
2084 unsigned long, tls,
2085 int __user *, child_tidptr)
2086 #elif defined(CONFIG_CLONE_BACKWARDS2)
2087 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2088 int __user *, parent_tidptr,
2089 int __user *, child_tidptr,
2090 unsigned long, tls)
2091 #elif defined(CONFIG_CLONE_BACKWARDS3)
2092 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2093 int, stack_size,
2094 int __user *, parent_tidptr,
2095 int __user *, child_tidptr,
2096 unsigned long, tls)
2097 #else
2098 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2099 int __user *, parent_tidptr,
2100 int __user *, child_tidptr,
2101 unsigned long, tls)
2102 #endif
2103 {
2104 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2105 }
2106 #endif
2107
2108 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2109 {
2110 struct task_struct *leader, *parent, *child;
2111 int res;
2112
2113 read_lock(&tasklist_lock);
2114 leader = top = top->group_leader;
2115 down:
2116 for_each_thread(leader, parent) {
2117 list_for_each_entry(child, &parent->children, sibling) {
2118 res = visitor(child, data);
2119 if (res) {
2120 if (res < 0)
2121 goto out;
2122 leader = child;
2123 goto down;
2124 }
2125 up:
2126 ;
2127 }
2128 }
2129
2130 if (leader != top) {
2131 child = leader;
2132 parent = child->real_parent;
2133 leader = parent->group_leader;
2134 goto up;
2135 }
2136 out:
2137 read_unlock(&tasklist_lock);
2138 }
2139
2140 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2141 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2142 #endif
2143
2144 static void sighand_ctor(void *data)
2145 {
2146 struct sighand_struct *sighand = data;
2147
2148 spin_lock_init(&sighand->siglock);
2149 init_waitqueue_head(&sighand->signalfd_wqh);
2150 }
2151
2152 void __init proc_caches_init(void)
2153 {
2154 sighand_cachep = kmem_cache_create("sighand_cache",
2155 sizeof(struct sighand_struct), 0,
2156 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
2157 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2158 signal_cachep = kmem_cache_create("signal_cache",
2159 sizeof(struct signal_struct), 0,
2160 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2161 NULL);
2162 files_cachep = kmem_cache_create("files_cache",
2163 sizeof(struct files_struct), 0,
2164 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2165 NULL);
2166 fs_cachep = kmem_cache_create("fs_cache",
2167 sizeof(struct fs_struct), 0,
2168 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2169 NULL);
2170 /*
2171 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2172 * whole struct cpumask for the OFFSTACK case. We could change
2173 * this to *only* allocate as much of it as required by the
2174 * maximum number of CPU's we can ever have. The cpumask_allocation
2175 * is at the end of the structure, exactly for that reason.
2176 */
2177 mm_cachep = kmem_cache_create("mm_struct",
2178 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2179 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2180 NULL);
2181 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2182 mmap_init();
2183 nsproxy_cache_init();
2184 }
2185
2186 /*
2187 * Check constraints on flags passed to the unshare system call.
2188 */
2189 static int check_unshare_flags(unsigned long unshare_flags)
2190 {
2191 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2192 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2193 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2194 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2195 return -EINVAL;
2196 /*
2197 * Not implemented, but pretend it works if there is nothing
2198 * to unshare. Note that unsharing the address space or the
2199 * signal handlers also need to unshare the signal queues (aka
2200 * CLONE_THREAD).
2201 */
2202 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2203 if (!thread_group_empty(current))
2204 return -EINVAL;
2205 }
2206 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2207 if (atomic_read(&current->sighand->count) > 1)
2208 return -EINVAL;
2209 }
2210 if (unshare_flags & CLONE_VM) {
2211 if (!current_is_single_threaded())
2212 return -EINVAL;
2213 }
2214
2215 return 0;
2216 }
2217
2218 /*
2219 * Unshare the filesystem structure if it is being shared
2220 */
2221 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2222 {
2223 struct fs_struct *fs = current->fs;
2224
2225 if (!(unshare_flags & CLONE_FS) || !fs)
2226 return 0;
2227
2228 /* don't need lock here; in the worst case we'll do useless copy */
2229 if (fs->users == 1)
2230 return 0;
2231
2232 *new_fsp = copy_fs_struct(fs);
2233 if (!*new_fsp)
2234 return -ENOMEM;
2235
2236 return 0;
2237 }
2238
2239 /*
2240 * Unshare file descriptor table if it is being shared
2241 */
2242 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2243 {
2244 struct files_struct *fd = current->files;
2245 int error = 0;
2246
2247 if ((unshare_flags & CLONE_FILES) &&
2248 (fd && atomic_read(&fd->count) > 1)) {
2249 *new_fdp = dup_fd(fd, &error);
2250 if (!*new_fdp)
2251 return error;
2252 }
2253
2254 return 0;
2255 }
2256
2257 /*
2258 * unshare allows a process to 'unshare' part of the process
2259 * context which was originally shared using clone. copy_*
2260 * functions used by do_fork() cannot be used here directly
2261 * because they modify an inactive task_struct that is being
2262 * constructed. Here we are modifying the current, active,
2263 * task_struct.
2264 */
2265 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2266 {
2267 struct fs_struct *fs, *new_fs = NULL;
2268 struct files_struct *fd, *new_fd = NULL;
2269 struct cred *new_cred = NULL;
2270 struct nsproxy *new_nsproxy = NULL;
2271 int do_sysvsem = 0;
2272 int err;
2273
2274 /*
2275 * If unsharing a user namespace must also unshare the thread group
2276 * and unshare the filesystem root and working directories.
2277 */
2278 if (unshare_flags & CLONE_NEWUSER)
2279 unshare_flags |= CLONE_THREAD | CLONE_FS;
2280 /*
2281 * If unsharing vm, must also unshare signal handlers.
2282 */
2283 if (unshare_flags & CLONE_VM)
2284 unshare_flags |= CLONE_SIGHAND;
2285 /*
2286 * If unsharing a signal handlers, must also unshare the signal queues.
2287 */
2288 if (unshare_flags & CLONE_SIGHAND)
2289 unshare_flags |= CLONE_THREAD;
2290 /*
2291 * If unsharing namespace, must also unshare filesystem information.
2292 */
2293 if (unshare_flags & CLONE_NEWNS)
2294 unshare_flags |= CLONE_FS;
2295
2296 err = check_unshare_flags(unshare_flags);
2297 if (err)
2298 goto bad_unshare_out;
2299 /*
2300 * CLONE_NEWIPC must also detach from the undolist: after switching
2301 * to a new ipc namespace, the semaphore arrays from the old
2302 * namespace are unreachable.
2303 */
2304 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2305 do_sysvsem = 1;
2306 err = unshare_fs(unshare_flags, &new_fs);
2307 if (err)
2308 goto bad_unshare_out;
2309 err = unshare_fd(unshare_flags, &new_fd);
2310 if (err)
2311 goto bad_unshare_cleanup_fs;
2312 err = unshare_userns(unshare_flags, &new_cred);
2313 if (err)
2314 goto bad_unshare_cleanup_fd;
2315 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2316 new_cred, new_fs);
2317 if (err)
2318 goto bad_unshare_cleanup_cred;
2319
2320 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2321 if (do_sysvsem) {
2322 /*
2323 * CLONE_SYSVSEM is equivalent to sys_exit().
2324 */
2325 exit_sem(current);
2326 }
2327 if (unshare_flags & CLONE_NEWIPC) {
2328 /* Orphan segments in old ns (see sem above). */
2329 exit_shm(current);
2330 shm_init_task(current);
2331 }
2332
2333 if (new_nsproxy)
2334 switch_task_namespaces(current, new_nsproxy);
2335
2336 task_lock(current);
2337
2338 if (new_fs) {
2339 fs = current->fs;
2340 spin_lock(&fs->lock);
2341 current->fs = new_fs;
2342 if (--fs->users)
2343 new_fs = NULL;
2344 else
2345 new_fs = fs;
2346 spin_unlock(&fs->lock);
2347 }
2348
2349 if (new_fd) {
2350 fd = current->files;
2351 current->files = new_fd;
2352 new_fd = fd;
2353 }
2354
2355 task_unlock(current);
2356
2357 if (new_cred) {
2358 /* Install the new user namespace */
2359 commit_creds(new_cred);
2360 new_cred = NULL;
2361 }
2362 }
2363
2364 perf_event_namespaces(current);
2365
2366 bad_unshare_cleanup_cred:
2367 if (new_cred)
2368 put_cred(new_cred);
2369 bad_unshare_cleanup_fd:
2370 if (new_fd)
2371 put_files_struct(new_fd);
2372
2373 bad_unshare_cleanup_fs:
2374 if (new_fs)
2375 free_fs_struct(new_fs);
2376
2377 bad_unshare_out:
2378 return err;
2379 }
2380
2381 /*
2382 * Helper to unshare the files of the current task.
2383 * We don't want to expose copy_files internals to
2384 * the exec layer of the kernel.
2385 */
2386
2387 int unshare_files(struct files_struct **displaced)
2388 {
2389 struct task_struct *task = current;
2390 struct files_struct *copy = NULL;
2391 int error;
2392
2393 error = unshare_fd(CLONE_FILES, &copy);
2394 if (error || !copy) {
2395 *displaced = NULL;
2396 return error;
2397 }
2398 *displaced = task->files;
2399 task_lock(task);
2400 task->files = copy;
2401 task_unlock(task);
2402 return 0;
2403 }
2404
2405 int sysctl_max_threads(struct ctl_table *table, int write,
2406 void __user *buffer, size_t *lenp, loff_t *ppos)
2407 {
2408 struct ctl_table t;
2409 int ret;
2410 int threads = max_threads;
2411 int min = MIN_THREADS;
2412 int max = MAX_THREADS;
2413
2414 t = *table;
2415 t.data = &threads;
2416 t.extra1 = &min;
2417 t.extra2 = &max;
2418
2419 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2420 if (ret || !write)
2421 return ret;
2422
2423 set_max_threads(threads);
2424
2425 return 0;
2426 }