ptrace: cleanup arch_ptrace() on xtensa
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68 #include <linux/oom.h>
69
70 #include <asm/pgtable.h>
71 #include <asm/pgalloc.h>
72 #include <asm/uaccess.h>
73 #include <asm/mmu_context.h>
74 #include <asm/cacheflush.h>
75 #include <asm/tlbflush.h>
76
77 #include <trace/events/sched.h>
78
79 /*
80 * Protected counters by write_lock_irq(&tasklist_lock)
81 */
82 unsigned long total_forks; /* Handle normal Linux uptimes. */
83 int nr_threads; /* The idle threads do not count.. */
84
85 int max_threads; /* tunable limit on nr_threads */
86
87 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
88
89 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
90
91 #ifdef CONFIG_PROVE_RCU
92 int lockdep_tasklist_lock_is_held(void)
93 {
94 return lockdep_is_held(&tasklist_lock);
95 }
96 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
97 #endif /* #ifdef CONFIG_PROVE_RCU */
98
99 int nr_processes(void)
100 {
101 int cpu;
102 int total = 0;
103
104 for_each_possible_cpu(cpu)
105 total += per_cpu(process_counts, cpu);
106
107 return total;
108 }
109
110 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
111 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
112 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
113 static struct kmem_cache *task_struct_cachep;
114 #endif
115
116 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
117 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
118 {
119 #ifdef CONFIG_DEBUG_STACK_USAGE
120 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
121 #else
122 gfp_t mask = GFP_KERNEL;
123 #endif
124 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
125 }
126
127 static inline void free_thread_info(struct thread_info *ti)
128 {
129 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
130 }
131 #endif
132
133 /* SLAB cache for signal_struct structures (tsk->signal) */
134 static struct kmem_cache *signal_cachep;
135
136 /* SLAB cache for sighand_struct structures (tsk->sighand) */
137 struct kmem_cache *sighand_cachep;
138
139 /* SLAB cache for files_struct structures (tsk->files) */
140 struct kmem_cache *files_cachep;
141
142 /* SLAB cache for fs_struct structures (tsk->fs) */
143 struct kmem_cache *fs_cachep;
144
145 /* SLAB cache for vm_area_struct structures */
146 struct kmem_cache *vm_area_cachep;
147
148 /* SLAB cache for mm_struct structures (tsk->mm) */
149 static struct kmem_cache *mm_cachep;
150
151 static void account_kernel_stack(struct thread_info *ti, int account)
152 {
153 struct zone *zone = page_zone(virt_to_page(ti));
154
155 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
156 }
157
158 void free_task(struct task_struct *tsk)
159 {
160 prop_local_destroy_single(&tsk->dirties);
161 account_kernel_stack(tsk->stack, -1);
162 free_thread_info(tsk->stack);
163 rt_mutex_debug_task_free(tsk);
164 ftrace_graph_exit_task(tsk);
165 free_task_struct(tsk);
166 }
167 EXPORT_SYMBOL(free_task);
168
169 static inline void free_signal_struct(struct signal_struct *sig)
170 {
171 taskstats_tgid_free(sig);
172 kmem_cache_free(signal_cachep, sig);
173 }
174
175 static inline void put_signal_struct(struct signal_struct *sig)
176 {
177 if (atomic_dec_and_test(&sig->sigcnt))
178 free_signal_struct(sig);
179 }
180
181 void __put_task_struct(struct task_struct *tsk)
182 {
183 WARN_ON(!tsk->exit_state);
184 WARN_ON(atomic_read(&tsk->usage));
185 WARN_ON(tsk == current);
186
187 exit_creds(tsk);
188 delayacct_tsk_free(tsk);
189 put_signal_struct(tsk->signal);
190
191 if (!profile_handoff_task(tsk))
192 free_task(tsk);
193 }
194
195 /*
196 * macro override instead of weak attribute alias, to workaround
197 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
198 */
199 #ifndef arch_task_cache_init
200 #define arch_task_cache_init()
201 #endif
202
203 void __init fork_init(unsigned long mempages)
204 {
205 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
206 #ifndef ARCH_MIN_TASKALIGN
207 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
208 #endif
209 /* create a slab on which task_structs can be allocated */
210 task_struct_cachep =
211 kmem_cache_create("task_struct", sizeof(struct task_struct),
212 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
213 #endif
214
215 /* do the arch specific task caches init */
216 arch_task_cache_init();
217
218 /*
219 * The default maximum number of threads is set to a safe
220 * value: the thread structures can take up at most half
221 * of memory.
222 */
223 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
224
225 /*
226 * we need to allow at least 20 threads to boot a system
227 */
228 if(max_threads < 20)
229 max_threads = 20;
230
231 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
232 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
233 init_task.signal->rlim[RLIMIT_SIGPENDING] =
234 init_task.signal->rlim[RLIMIT_NPROC];
235 }
236
237 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
238 struct task_struct *src)
239 {
240 *dst = *src;
241 return 0;
242 }
243
244 static struct task_struct *dup_task_struct(struct task_struct *orig)
245 {
246 struct task_struct *tsk;
247 struct thread_info *ti;
248 unsigned long *stackend;
249
250 int err;
251
252 prepare_to_copy(orig);
253
254 tsk = alloc_task_struct();
255 if (!tsk)
256 return NULL;
257
258 ti = alloc_thread_info(tsk);
259 if (!ti) {
260 free_task_struct(tsk);
261 return NULL;
262 }
263
264 err = arch_dup_task_struct(tsk, orig);
265 if (err)
266 goto out;
267
268 tsk->stack = ti;
269
270 err = prop_local_init_single(&tsk->dirties);
271 if (err)
272 goto out;
273
274 setup_thread_stack(tsk, orig);
275 clear_user_return_notifier(tsk);
276 stackend = end_of_stack(tsk);
277 *stackend = STACK_END_MAGIC; /* for overflow detection */
278
279 #ifdef CONFIG_CC_STACKPROTECTOR
280 tsk->stack_canary = get_random_int();
281 #endif
282
283 /* One for us, one for whoever does the "release_task()" (usually parent) */
284 atomic_set(&tsk->usage,2);
285 atomic_set(&tsk->fs_excl, 0);
286 #ifdef CONFIG_BLK_DEV_IO_TRACE
287 tsk->btrace_seq = 0;
288 #endif
289 tsk->splice_pipe = NULL;
290
291 account_kernel_stack(ti, 1);
292
293 return tsk;
294
295 out:
296 free_thread_info(ti);
297 free_task_struct(tsk);
298 return NULL;
299 }
300
301 #ifdef CONFIG_MMU
302 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
303 {
304 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
305 struct rb_node **rb_link, *rb_parent;
306 int retval;
307 unsigned long charge;
308 struct mempolicy *pol;
309
310 down_write(&oldmm->mmap_sem);
311 flush_cache_dup_mm(oldmm);
312 /*
313 * Not linked in yet - no deadlock potential:
314 */
315 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
316
317 mm->locked_vm = 0;
318 mm->mmap = NULL;
319 mm->mmap_cache = NULL;
320 mm->free_area_cache = oldmm->mmap_base;
321 mm->cached_hole_size = ~0UL;
322 mm->map_count = 0;
323 cpumask_clear(mm_cpumask(mm));
324 mm->mm_rb = RB_ROOT;
325 rb_link = &mm->mm_rb.rb_node;
326 rb_parent = NULL;
327 pprev = &mm->mmap;
328 retval = ksm_fork(mm, oldmm);
329 if (retval)
330 goto out;
331
332 prev = NULL;
333 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
334 struct file *file;
335
336 if (mpnt->vm_flags & VM_DONTCOPY) {
337 long pages = vma_pages(mpnt);
338 mm->total_vm -= pages;
339 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
340 -pages);
341 continue;
342 }
343 charge = 0;
344 if (mpnt->vm_flags & VM_ACCOUNT) {
345 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
346 if (security_vm_enough_memory(len))
347 goto fail_nomem;
348 charge = len;
349 }
350 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
351 if (!tmp)
352 goto fail_nomem;
353 *tmp = *mpnt;
354 INIT_LIST_HEAD(&tmp->anon_vma_chain);
355 pol = mpol_dup(vma_policy(mpnt));
356 retval = PTR_ERR(pol);
357 if (IS_ERR(pol))
358 goto fail_nomem_policy;
359 vma_set_policy(tmp, pol);
360 tmp->vm_mm = mm;
361 if (anon_vma_fork(tmp, mpnt))
362 goto fail_nomem_anon_vma_fork;
363 tmp->vm_flags &= ~VM_LOCKED;
364 tmp->vm_next = tmp->vm_prev = NULL;
365 file = tmp->vm_file;
366 if (file) {
367 struct inode *inode = file->f_path.dentry->d_inode;
368 struct address_space *mapping = file->f_mapping;
369
370 get_file(file);
371 if (tmp->vm_flags & VM_DENYWRITE)
372 atomic_dec(&inode->i_writecount);
373 spin_lock(&mapping->i_mmap_lock);
374 if (tmp->vm_flags & VM_SHARED)
375 mapping->i_mmap_writable++;
376 tmp->vm_truncate_count = mpnt->vm_truncate_count;
377 flush_dcache_mmap_lock(mapping);
378 /* insert tmp into the share list, just after mpnt */
379 vma_prio_tree_add(tmp, mpnt);
380 flush_dcache_mmap_unlock(mapping);
381 spin_unlock(&mapping->i_mmap_lock);
382 }
383
384 /*
385 * Clear hugetlb-related page reserves for children. This only
386 * affects MAP_PRIVATE mappings. Faults generated by the child
387 * are not guaranteed to succeed, even if read-only
388 */
389 if (is_vm_hugetlb_page(tmp))
390 reset_vma_resv_huge_pages(tmp);
391
392 /*
393 * Link in the new vma and copy the page table entries.
394 */
395 *pprev = tmp;
396 pprev = &tmp->vm_next;
397 tmp->vm_prev = prev;
398 prev = tmp;
399
400 __vma_link_rb(mm, tmp, rb_link, rb_parent);
401 rb_link = &tmp->vm_rb.rb_right;
402 rb_parent = &tmp->vm_rb;
403
404 mm->map_count++;
405 retval = copy_page_range(mm, oldmm, mpnt);
406
407 if (tmp->vm_ops && tmp->vm_ops->open)
408 tmp->vm_ops->open(tmp);
409
410 if (retval)
411 goto out;
412 }
413 /* a new mm has just been created */
414 arch_dup_mmap(oldmm, mm);
415 retval = 0;
416 out:
417 up_write(&mm->mmap_sem);
418 flush_tlb_mm(oldmm);
419 up_write(&oldmm->mmap_sem);
420 return retval;
421 fail_nomem_anon_vma_fork:
422 mpol_put(pol);
423 fail_nomem_policy:
424 kmem_cache_free(vm_area_cachep, tmp);
425 fail_nomem:
426 retval = -ENOMEM;
427 vm_unacct_memory(charge);
428 goto out;
429 }
430
431 static inline int mm_alloc_pgd(struct mm_struct * mm)
432 {
433 mm->pgd = pgd_alloc(mm);
434 if (unlikely(!mm->pgd))
435 return -ENOMEM;
436 return 0;
437 }
438
439 static inline void mm_free_pgd(struct mm_struct * mm)
440 {
441 pgd_free(mm, mm->pgd);
442 }
443 #else
444 #define dup_mmap(mm, oldmm) (0)
445 #define mm_alloc_pgd(mm) (0)
446 #define mm_free_pgd(mm)
447 #endif /* CONFIG_MMU */
448
449 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
450
451 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
452 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
453
454 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
455
456 static int __init coredump_filter_setup(char *s)
457 {
458 default_dump_filter =
459 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
460 MMF_DUMP_FILTER_MASK;
461 return 1;
462 }
463
464 __setup("coredump_filter=", coredump_filter_setup);
465
466 #include <linux/init_task.h>
467
468 static void mm_init_aio(struct mm_struct *mm)
469 {
470 #ifdef CONFIG_AIO
471 spin_lock_init(&mm->ioctx_lock);
472 INIT_HLIST_HEAD(&mm->ioctx_list);
473 #endif
474 }
475
476 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
477 {
478 atomic_set(&mm->mm_users, 1);
479 atomic_set(&mm->mm_count, 1);
480 init_rwsem(&mm->mmap_sem);
481 INIT_LIST_HEAD(&mm->mmlist);
482 mm->flags = (current->mm) ?
483 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
484 mm->core_state = NULL;
485 mm->nr_ptes = 0;
486 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
487 spin_lock_init(&mm->page_table_lock);
488 mm->free_area_cache = TASK_UNMAPPED_BASE;
489 mm->cached_hole_size = ~0UL;
490 mm_init_aio(mm);
491 mm_init_owner(mm, p);
492 atomic_set(&mm->oom_disable_count, 0);
493
494 if (likely(!mm_alloc_pgd(mm))) {
495 mm->def_flags = 0;
496 mmu_notifier_mm_init(mm);
497 return mm;
498 }
499
500 free_mm(mm);
501 return NULL;
502 }
503
504 /*
505 * Allocate and initialize an mm_struct.
506 */
507 struct mm_struct * mm_alloc(void)
508 {
509 struct mm_struct * mm;
510
511 mm = allocate_mm();
512 if (mm) {
513 memset(mm, 0, sizeof(*mm));
514 mm = mm_init(mm, current);
515 }
516 return mm;
517 }
518
519 /*
520 * Called when the last reference to the mm
521 * is dropped: either by a lazy thread or by
522 * mmput. Free the page directory and the mm.
523 */
524 void __mmdrop(struct mm_struct *mm)
525 {
526 BUG_ON(mm == &init_mm);
527 mm_free_pgd(mm);
528 destroy_context(mm);
529 mmu_notifier_mm_destroy(mm);
530 free_mm(mm);
531 }
532 EXPORT_SYMBOL_GPL(__mmdrop);
533
534 /*
535 * Decrement the use count and release all resources for an mm.
536 */
537 void mmput(struct mm_struct *mm)
538 {
539 might_sleep();
540
541 if (atomic_dec_and_test(&mm->mm_users)) {
542 exit_aio(mm);
543 ksm_exit(mm);
544 exit_mmap(mm);
545 set_mm_exe_file(mm, NULL);
546 if (!list_empty(&mm->mmlist)) {
547 spin_lock(&mmlist_lock);
548 list_del(&mm->mmlist);
549 spin_unlock(&mmlist_lock);
550 }
551 put_swap_token(mm);
552 if (mm->binfmt)
553 module_put(mm->binfmt->module);
554 mmdrop(mm);
555 }
556 }
557 EXPORT_SYMBOL_GPL(mmput);
558
559 /**
560 * get_task_mm - acquire a reference to the task's mm
561 *
562 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
563 * this kernel workthread has transiently adopted a user mm with use_mm,
564 * to do its AIO) is not set and if so returns a reference to it, after
565 * bumping up the use count. User must release the mm via mmput()
566 * after use. Typically used by /proc and ptrace.
567 */
568 struct mm_struct *get_task_mm(struct task_struct *task)
569 {
570 struct mm_struct *mm;
571
572 task_lock(task);
573 mm = task->mm;
574 if (mm) {
575 if (task->flags & PF_KTHREAD)
576 mm = NULL;
577 else
578 atomic_inc(&mm->mm_users);
579 }
580 task_unlock(task);
581 return mm;
582 }
583 EXPORT_SYMBOL_GPL(get_task_mm);
584
585 /* Please note the differences between mmput and mm_release.
586 * mmput is called whenever we stop holding onto a mm_struct,
587 * error success whatever.
588 *
589 * mm_release is called after a mm_struct has been removed
590 * from the current process.
591 *
592 * This difference is important for error handling, when we
593 * only half set up a mm_struct for a new process and need to restore
594 * the old one. Because we mmput the new mm_struct before
595 * restoring the old one. . .
596 * Eric Biederman 10 January 1998
597 */
598 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
599 {
600 struct completion *vfork_done = tsk->vfork_done;
601
602 /* Get rid of any futexes when releasing the mm */
603 #ifdef CONFIG_FUTEX
604 if (unlikely(tsk->robust_list)) {
605 exit_robust_list(tsk);
606 tsk->robust_list = NULL;
607 }
608 #ifdef CONFIG_COMPAT
609 if (unlikely(tsk->compat_robust_list)) {
610 compat_exit_robust_list(tsk);
611 tsk->compat_robust_list = NULL;
612 }
613 #endif
614 if (unlikely(!list_empty(&tsk->pi_state_list)))
615 exit_pi_state_list(tsk);
616 #endif
617
618 /* Get rid of any cached register state */
619 deactivate_mm(tsk, mm);
620
621 /* notify parent sleeping on vfork() */
622 if (vfork_done) {
623 tsk->vfork_done = NULL;
624 complete(vfork_done);
625 }
626
627 /*
628 * If we're exiting normally, clear a user-space tid field if
629 * requested. We leave this alone when dying by signal, to leave
630 * the value intact in a core dump, and to save the unnecessary
631 * trouble otherwise. Userland only wants this done for a sys_exit.
632 */
633 if (tsk->clear_child_tid) {
634 if (!(tsk->flags & PF_SIGNALED) &&
635 atomic_read(&mm->mm_users) > 1) {
636 /*
637 * We don't check the error code - if userspace has
638 * not set up a proper pointer then tough luck.
639 */
640 put_user(0, tsk->clear_child_tid);
641 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
642 1, NULL, NULL, 0);
643 }
644 tsk->clear_child_tid = NULL;
645 }
646 }
647
648 /*
649 * Allocate a new mm structure and copy contents from the
650 * mm structure of the passed in task structure.
651 */
652 struct mm_struct *dup_mm(struct task_struct *tsk)
653 {
654 struct mm_struct *mm, *oldmm = current->mm;
655 int err;
656
657 if (!oldmm)
658 return NULL;
659
660 mm = allocate_mm();
661 if (!mm)
662 goto fail_nomem;
663
664 memcpy(mm, oldmm, sizeof(*mm));
665
666 /* Initializing for Swap token stuff */
667 mm->token_priority = 0;
668 mm->last_interval = 0;
669
670 if (!mm_init(mm, tsk))
671 goto fail_nomem;
672
673 if (init_new_context(tsk, mm))
674 goto fail_nocontext;
675
676 dup_mm_exe_file(oldmm, mm);
677
678 err = dup_mmap(mm, oldmm);
679 if (err)
680 goto free_pt;
681
682 mm->hiwater_rss = get_mm_rss(mm);
683 mm->hiwater_vm = mm->total_vm;
684
685 if (mm->binfmt && !try_module_get(mm->binfmt->module))
686 goto free_pt;
687
688 return mm;
689
690 free_pt:
691 /* don't put binfmt in mmput, we haven't got module yet */
692 mm->binfmt = NULL;
693 mmput(mm);
694
695 fail_nomem:
696 return NULL;
697
698 fail_nocontext:
699 /*
700 * If init_new_context() failed, we cannot use mmput() to free the mm
701 * because it calls destroy_context()
702 */
703 mm_free_pgd(mm);
704 free_mm(mm);
705 return NULL;
706 }
707
708 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
709 {
710 struct mm_struct * mm, *oldmm;
711 int retval;
712
713 tsk->min_flt = tsk->maj_flt = 0;
714 tsk->nvcsw = tsk->nivcsw = 0;
715 #ifdef CONFIG_DETECT_HUNG_TASK
716 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
717 #endif
718
719 tsk->mm = NULL;
720 tsk->active_mm = NULL;
721
722 /*
723 * Are we cloning a kernel thread?
724 *
725 * We need to steal a active VM for that..
726 */
727 oldmm = current->mm;
728 if (!oldmm)
729 return 0;
730
731 if (clone_flags & CLONE_VM) {
732 atomic_inc(&oldmm->mm_users);
733 mm = oldmm;
734 goto good_mm;
735 }
736
737 retval = -ENOMEM;
738 mm = dup_mm(tsk);
739 if (!mm)
740 goto fail_nomem;
741
742 good_mm:
743 /* Initializing for Swap token stuff */
744 mm->token_priority = 0;
745 mm->last_interval = 0;
746 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
747 atomic_inc(&mm->oom_disable_count);
748
749 tsk->mm = mm;
750 tsk->active_mm = mm;
751 return 0;
752
753 fail_nomem:
754 return retval;
755 }
756
757 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
758 {
759 struct fs_struct *fs = current->fs;
760 if (clone_flags & CLONE_FS) {
761 /* tsk->fs is already what we want */
762 spin_lock(&fs->lock);
763 if (fs->in_exec) {
764 spin_unlock(&fs->lock);
765 return -EAGAIN;
766 }
767 fs->users++;
768 spin_unlock(&fs->lock);
769 return 0;
770 }
771 tsk->fs = copy_fs_struct(fs);
772 if (!tsk->fs)
773 return -ENOMEM;
774 return 0;
775 }
776
777 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
778 {
779 struct files_struct *oldf, *newf;
780 int error = 0;
781
782 /*
783 * A background process may not have any files ...
784 */
785 oldf = current->files;
786 if (!oldf)
787 goto out;
788
789 if (clone_flags & CLONE_FILES) {
790 atomic_inc(&oldf->count);
791 goto out;
792 }
793
794 newf = dup_fd(oldf, &error);
795 if (!newf)
796 goto out;
797
798 tsk->files = newf;
799 error = 0;
800 out:
801 return error;
802 }
803
804 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
805 {
806 #ifdef CONFIG_BLOCK
807 struct io_context *ioc = current->io_context;
808
809 if (!ioc)
810 return 0;
811 /*
812 * Share io context with parent, if CLONE_IO is set
813 */
814 if (clone_flags & CLONE_IO) {
815 tsk->io_context = ioc_task_link(ioc);
816 if (unlikely(!tsk->io_context))
817 return -ENOMEM;
818 } else if (ioprio_valid(ioc->ioprio)) {
819 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
820 if (unlikely(!tsk->io_context))
821 return -ENOMEM;
822
823 tsk->io_context->ioprio = ioc->ioprio;
824 }
825 #endif
826 return 0;
827 }
828
829 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
830 {
831 struct sighand_struct *sig;
832
833 if (clone_flags & CLONE_SIGHAND) {
834 atomic_inc(&current->sighand->count);
835 return 0;
836 }
837 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
838 rcu_assign_pointer(tsk->sighand, sig);
839 if (!sig)
840 return -ENOMEM;
841 atomic_set(&sig->count, 1);
842 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
843 return 0;
844 }
845
846 void __cleanup_sighand(struct sighand_struct *sighand)
847 {
848 if (atomic_dec_and_test(&sighand->count))
849 kmem_cache_free(sighand_cachep, sighand);
850 }
851
852
853 /*
854 * Initialize POSIX timer handling for a thread group.
855 */
856 static void posix_cpu_timers_init_group(struct signal_struct *sig)
857 {
858 unsigned long cpu_limit;
859
860 /* Thread group counters. */
861 thread_group_cputime_init(sig);
862
863 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
864 if (cpu_limit != RLIM_INFINITY) {
865 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
866 sig->cputimer.running = 1;
867 }
868
869 /* The timer lists. */
870 INIT_LIST_HEAD(&sig->cpu_timers[0]);
871 INIT_LIST_HEAD(&sig->cpu_timers[1]);
872 INIT_LIST_HEAD(&sig->cpu_timers[2]);
873 }
874
875 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
876 {
877 struct signal_struct *sig;
878
879 if (clone_flags & CLONE_THREAD)
880 return 0;
881
882 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
883 tsk->signal = sig;
884 if (!sig)
885 return -ENOMEM;
886
887 sig->nr_threads = 1;
888 atomic_set(&sig->live, 1);
889 atomic_set(&sig->sigcnt, 1);
890 init_waitqueue_head(&sig->wait_chldexit);
891 if (clone_flags & CLONE_NEWPID)
892 sig->flags |= SIGNAL_UNKILLABLE;
893 sig->curr_target = tsk;
894 init_sigpending(&sig->shared_pending);
895 INIT_LIST_HEAD(&sig->posix_timers);
896
897 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
898 sig->real_timer.function = it_real_fn;
899
900 task_lock(current->group_leader);
901 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
902 task_unlock(current->group_leader);
903
904 posix_cpu_timers_init_group(sig);
905
906 tty_audit_fork(sig);
907
908 sig->oom_adj = current->signal->oom_adj;
909 sig->oom_score_adj = current->signal->oom_score_adj;
910
911 return 0;
912 }
913
914 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
915 {
916 unsigned long new_flags = p->flags;
917
918 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
919 new_flags |= PF_FORKNOEXEC;
920 new_flags |= PF_STARTING;
921 p->flags = new_flags;
922 clear_freeze_flag(p);
923 }
924
925 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
926 {
927 current->clear_child_tid = tidptr;
928
929 return task_pid_vnr(current);
930 }
931
932 static void rt_mutex_init_task(struct task_struct *p)
933 {
934 raw_spin_lock_init(&p->pi_lock);
935 #ifdef CONFIG_RT_MUTEXES
936 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
937 p->pi_blocked_on = NULL;
938 #endif
939 }
940
941 #ifdef CONFIG_MM_OWNER
942 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
943 {
944 mm->owner = p;
945 }
946 #endif /* CONFIG_MM_OWNER */
947
948 /*
949 * Initialize POSIX timer handling for a single task.
950 */
951 static void posix_cpu_timers_init(struct task_struct *tsk)
952 {
953 tsk->cputime_expires.prof_exp = cputime_zero;
954 tsk->cputime_expires.virt_exp = cputime_zero;
955 tsk->cputime_expires.sched_exp = 0;
956 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
957 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
958 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
959 }
960
961 /*
962 * This creates a new process as a copy of the old one,
963 * but does not actually start it yet.
964 *
965 * It copies the registers, and all the appropriate
966 * parts of the process environment (as per the clone
967 * flags). The actual kick-off is left to the caller.
968 */
969 static struct task_struct *copy_process(unsigned long clone_flags,
970 unsigned long stack_start,
971 struct pt_regs *regs,
972 unsigned long stack_size,
973 int __user *child_tidptr,
974 struct pid *pid,
975 int trace)
976 {
977 int retval;
978 struct task_struct *p;
979 int cgroup_callbacks_done = 0;
980
981 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
982 return ERR_PTR(-EINVAL);
983
984 /*
985 * Thread groups must share signals as well, and detached threads
986 * can only be started up within the thread group.
987 */
988 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
989 return ERR_PTR(-EINVAL);
990
991 /*
992 * Shared signal handlers imply shared VM. By way of the above,
993 * thread groups also imply shared VM. Blocking this case allows
994 * for various simplifications in other code.
995 */
996 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
997 return ERR_PTR(-EINVAL);
998
999 /*
1000 * Siblings of global init remain as zombies on exit since they are
1001 * not reaped by their parent (swapper). To solve this and to avoid
1002 * multi-rooted process trees, prevent global and container-inits
1003 * from creating siblings.
1004 */
1005 if ((clone_flags & CLONE_PARENT) &&
1006 current->signal->flags & SIGNAL_UNKILLABLE)
1007 return ERR_PTR(-EINVAL);
1008
1009 retval = security_task_create(clone_flags);
1010 if (retval)
1011 goto fork_out;
1012
1013 retval = -ENOMEM;
1014 p = dup_task_struct(current);
1015 if (!p)
1016 goto fork_out;
1017
1018 ftrace_graph_init_task(p);
1019
1020 rt_mutex_init_task(p);
1021
1022 #ifdef CONFIG_PROVE_LOCKING
1023 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1024 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1025 #endif
1026 retval = -EAGAIN;
1027 if (atomic_read(&p->real_cred->user->processes) >=
1028 task_rlimit(p, RLIMIT_NPROC)) {
1029 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1030 p->real_cred->user != INIT_USER)
1031 goto bad_fork_free;
1032 }
1033
1034 retval = copy_creds(p, clone_flags);
1035 if (retval < 0)
1036 goto bad_fork_free;
1037
1038 /*
1039 * If multiple threads are within copy_process(), then this check
1040 * triggers too late. This doesn't hurt, the check is only there
1041 * to stop root fork bombs.
1042 */
1043 retval = -EAGAIN;
1044 if (nr_threads >= max_threads)
1045 goto bad_fork_cleanup_count;
1046
1047 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1048 goto bad_fork_cleanup_count;
1049
1050 p->did_exec = 0;
1051 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1052 copy_flags(clone_flags, p);
1053 INIT_LIST_HEAD(&p->children);
1054 INIT_LIST_HEAD(&p->sibling);
1055 rcu_copy_process(p);
1056 p->vfork_done = NULL;
1057 spin_lock_init(&p->alloc_lock);
1058
1059 init_sigpending(&p->pending);
1060
1061 p->utime = cputime_zero;
1062 p->stime = cputime_zero;
1063 p->gtime = cputime_zero;
1064 p->utimescaled = cputime_zero;
1065 p->stimescaled = cputime_zero;
1066 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1067 p->prev_utime = cputime_zero;
1068 p->prev_stime = cputime_zero;
1069 #endif
1070 #if defined(SPLIT_RSS_COUNTING)
1071 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1072 #endif
1073
1074 p->default_timer_slack_ns = current->timer_slack_ns;
1075
1076 task_io_accounting_init(&p->ioac);
1077 acct_clear_integrals(p);
1078
1079 posix_cpu_timers_init(p);
1080
1081 p->lock_depth = -1; /* -1 = no lock */
1082 do_posix_clock_monotonic_gettime(&p->start_time);
1083 p->real_start_time = p->start_time;
1084 monotonic_to_bootbased(&p->real_start_time);
1085 p->io_context = NULL;
1086 p->audit_context = NULL;
1087 cgroup_fork(p);
1088 #ifdef CONFIG_NUMA
1089 p->mempolicy = mpol_dup(p->mempolicy);
1090 if (IS_ERR(p->mempolicy)) {
1091 retval = PTR_ERR(p->mempolicy);
1092 p->mempolicy = NULL;
1093 goto bad_fork_cleanup_cgroup;
1094 }
1095 mpol_fix_fork_child_flag(p);
1096 #endif
1097 #ifdef CONFIG_TRACE_IRQFLAGS
1098 p->irq_events = 0;
1099 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1100 p->hardirqs_enabled = 1;
1101 #else
1102 p->hardirqs_enabled = 0;
1103 #endif
1104 p->hardirq_enable_ip = 0;
1105 p->hardirq_enable_event = 0;
1106 p->hardirq_disable_ip = _THIS_IP_;
1107 p->hardirq_disable_event = 0;
1108 p->softirqs_enabled = 1;
1109 p->softirq_enable_ip = _THIS_IP_;
1110 p->softirq_enable_event = 0;
1111 p->softirq_disable_ip = 0;
1112 p->softirq_disable_event = 0;
1113 p->hardirq_context = 0;
1114 p->softirq_context = 0;
1115 #endif
1116 #ifdef CONFIG_LOCKDEP
1117 p->lockdep_depth = 0; /* no locks held yet */
1118 p->curr_chain_key = 0;
1119 p->lockdep_recursion = 0;
1120 #endif
1121
1122 #ifdef CONFIG_DEBUG_MUTEXES
1123 p->blocked_on = NULL; /* not blocked yet */
1124 #endif
1125 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1126 p->memcg_batch.do_batch = 0;
1127 p->memcg_batch.memcg = NULL;
1128 #endif
1129
1130 /* Perform scheduler related setup. Assign this task to a CPU. */
1131 sched_fork(p, clone_flags);
1132
1133 retval = perf_event_init_task(p);
1134 if (retval)
1135 goto bad_fork_cleanup_policy;
1136
1137 if ((retval = audit_alloc(p)))
1138 goto bad_fork_cleanup_policy;
1139 /* copy all the process information */
1140 if ((retval = copy_semundo(clone_flags, p)))
1141 goto bad_fork_cleanup_audit;
1142 if ((retval = copy_files(clone_flags, p)))
1143 goto bad_fork_cleanup_semundo;
1144 if ((retval = copy_fs(clone_flags, p)))
1145 goto bad_fork_cleanup_files;
1146 if ((retval = copy_sighand(clone_flags, p)))
1147 goto bad_fork_cleanup_fs;
1148 if ((retval = copy_signal(clone_flags, p)))
1149 goto bad_fork_cleanup_sighand;
1150 if ((retval = copy_mm(clone_flags, p)))
1151 goto bad_fork_cleanup_signal;
1152 if ((retval = copy_namespaces(clone_flags, p)))
1153 goto bad_fork_cleanup_mm;
1154 if ((retval = copy_io(clone_flags, p)))
1155 goto bad_fork_cleanup_namespaces;
1156 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1157 if (retval)
1158 goto bad_fork_cleanup_io;
1159
1160 if (pid != &init_struct_pid) {
1161 retval = -ENOMEM;
1162 pid = alloc_pid(p->nsproxy->pid_ns);
1163 if (!pid)
1164 goto bad_fork_cleanup_io;
1165
1166 if (clone_flags & CLONE_NEWPID) {
1167 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1168 if (retval < 0)
1169 goto bad_fork_free_pid;
1170 }
1171 }
1172
1173 p->pid = pid_nr(pid);
1174 p->tgid = p->pid;
1175 if (clone_flags & CLONE_THREAD)
1176 p->tgid = current->tgid;
1177
1178 if (current->nsproxy != p->nsproxy) {
1179 retval = ns_cgroup_clone(p, pid);
1180 if (retval)
1181 goto bad_fork_free_pid;
1182 }
1183
1184 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1185 /*
1186 * Clear TID on mm_release()?
1187 */
1188 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1189 #ifdef CONFIG_FUTEX
1190 p->robust_list = NULL;
1191 #ifdef CONFIG_COMPAT
1192 p->compat_robust_list = NULL;
1193 #endif
1194 INIT_LIST_HEAD(&p->pi_state_list);
1195 p->pi_state_cache = NULL;
1196 #endif
1197 /*
1198 * sigaltstack should be cleared when sharing the same VM
1199 */
1200 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1201 p->sas_ss_sp = p->sas_ss_size = 0;
1202
1203 /*
1204 * Syscall tracing and stepping should be turned off in the
1205 * child regardless of CLONE_PTRACE.
1206 */
1207 user_disable_single_step(p);
1208 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1209 #ifdef TIF_SYSCALL_EMU
1210 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1211 #endif
1212 clear_all_latency_tracing(p);
1213
1214 /* ok, now we should be set up.. */
1215 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1216 p->pdeath_signal = 0;
1217 p->exit_state = 0;
1218
1219 /*
1220 * Ok, make it visible to the rest of the system.
1221 * We dont wake it up yet.
1222 */
1223 p->group_leader = p;
1224 INIT_LIST_HEAD(&p->thread_group);
1225
1226 /* Now that the task is set up, run cgroup callbacks if
1227 * necessary. We need to run them before the task is visible
1228 * on the tasklist. */
1229 cgroup_fork_callbacks(p);
1230 cgroup_callbacks_done = 1;
1231
1232 /* Need tasklist lock for parent etc handling! */
1233 write_lock_irq(&tasklist_lock);
1234
1235 /* CLONE_PARENT re-uses the old parent */
1236 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1237 p->real_parent = current->real_parent;
1238 p->parent_exec_id = current->parent_exec_id;
1239 } else {
1240 p->real_parent = current;
1241 p->parent_exec_id = current->self_exec_id;
1242 }
1243
1244 spin_lock(&current->sighand->siglock);
1245
1246 /*
1247 * Process group and session signals need to be delivered to just the
1248 * parent before the fork or both the parent and the child after the
1249 * fork. Restart if a signal comes in before we add the new process to
1250 * it's process group.
1251 * A fatal signal pending means that current will exit, so the new
1252 * thread can't slip out of an OOM kill (or normal SIGKILL).
1253 */
1254 recalc_sigpending();
1255 if (signal_pending(current)) {
1256 spin_unlock(&current->sighand->siglock);
1257 write_unlock_irq(&tasklist_lock);
1258 retval = -ERESTARTNOINTR;
1259 goto bad_fork_free_pid;
1260 }
1261
1262 if (clone_flags & CLONE_THREAD) {
1263 current->signal->nr_threads++;
1264 atomic_inc(&current->signal->live);
1265 atomic_inc(&current->signal->sigcnt);
1266 p->group_leader = current->group_leader;
1267 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1268 }
1269
1270 if (likely(p->pid)) {
1271 tracehook_finish_clone(p, clone_flags, trace);
1272
1273 if (thread_group_leader(p)) {
1274 if (clone_flags & CLONE_NEWPID)
1275 p->nsproxy->pid_ns->child_reaper = p;
1276
1277 p->signal->leader_pid = pid;
1278 p->signal->tty = tty_kref_get(current->signal->tty);
1279 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1280 attach_pid(p, PIDTYPE_SID, task_session(current));
1281 list_add_tail(&p->sibling, &p->real_parent->children);
1282 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1283 __get_cpu_var(process_counts)++;
1284 }
1285 attach_pid(p, PIDTYPE_PID, pid);
1286 nr_threads++;
1287 }
1288
1289 total_forks++;
1290 spin_unlock(&current->sighand->siglock);
1291 write_unlock_irq(&tasklist_lock);
1292 proc_fork_connector(p);
1293 cgroup_post_fork(p);
1294 perf_event_fork(p);
1295 return p;
1296
1297 bad_fork_free_pid:
1298 if (pid != &init_struct_pid)
1299 free_pid(pid);
1300 bad_fork_cleanup_io:
1301 if (p->io_context)
1302 exit_io_context(p);
1303 bad_fork_cleanup_namespaces:
1304 exit_task_namespaces(p);
1305 bad_fork_cleanup_mm:
1306 if (p->mm) {
1307 task_lock(p);
1308 if (p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1309 atomic_dec(&p->mm->oom_disable_count);
1310 task_unlock(p);
1311 mmput(p->mm);
1312 }
1313 bad_fork_cleanup_signal:
1314 if (!(clone_flags & CLONE_THREAD))
1315 free_signal_struct(p->signal);
1316 bad_fork_cleanup_sighand:
1317 __cleanup_sighand(p->sighand);
1318 bad_fork_cleanup_fs:
1319 exit_fs(p); /* blocking */
1320 bad_fork_cleanup_files:
1321 exit_files(p); /* blocking */
1322 bad_fork_cleanup_semundo:
1323 exit_sem(p);
1324 bad_fork_cleanup_audit:
1325 audit_free(p);
1326 bad_fork_cleanup_policy:
1327 perf_event_free_task(p);
1328 #ifdef CONFIG_NUMA
1329 mpol_put(p->mempolicy);
1330 bad_fork_cleanup_cgroup:
1331 #endif
1332 cgroup_exit(p, cgroup_callbacks_done);
1333 delayacct_tsk_free(p);
1334 module_put(task_thread_info(p)->exec_domain->module);
1335 bad_fork_cleanup_count:
1336 atomic_dec(&p->cred->user->processes);
1337 exit_creds(p);
1338 bad_fork_free:
1339 free_task(p);
1340 fork_out:
1341 return ERR_PTR(retval);
1342 }
1343
1344 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1345 {
1346 memset(regs, 0, sizeof(struct pt_regs));
1347 return regs;
1348 }
1349
1350 static inline void init_idle_pids(struct pid_link *links)
1351 {
1352 enum pid_type type;
1353
1354 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1355 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1356 links[type].pid = &init_struct_pid;
1357 }
1358 }
1359
1360 struct task_struct * __cpuinit fork_idle(int cpu)
1361 {
1362 struct task_struct *task;
1363 struct pt_regs regs;
1364
1365 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1366 &init_struct_pid, 0);
1367 if (!IS_ERR(task)) {
1368 init_idle_pids(task->pids);
1369 init_idle(task, cpu);
1370 }
1371
1372 return task;
1373 }
1374
1375 /*
1376 * Ok, this is the main fork-routine.
1377 *
1378 * It copies the process, and if successful kick-starts
1379 * it and waits for it to finish using the VM if required.
1380 */
1381 long do_fork(unsigned long clone_flags,
1382 unsigned long stack_start,
1383 struct pt_regs *regs,
1384 unsigned long stack_size,
1385 int __user *parent_tidptr,
1386 int __user *child_tidptr)
1387 {
1388 struct task_struct *p;
1389 int trace = 0;
1390 long nr;
1391
1392 /*
1393 * Do some preliminary argument and permissions checking before we
1394 * actually start allocating stuff
1395 */
1396 if (clone_flags & CLONE_NEWUSER) {
1397 if (clone_flags & CLONE_THREAD)
1398 return -EINVAL;
1399 /* hopefully this check will go away when userns support is
1400 * complete
1401 */
1402 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1403 !capable(CAP_SETGID))
1404 return -EPERM;
1405 }
1406
1407 /*
1408 * We hope to recycle these flags after 2.6.26
1409 */
1410 if (unlikely(clone_flags & CLONE_STOPPED)) {
1411 static int __read_mostly count = 100;
1412
1413 if (count > 0 && printk_ratelimit()) {
1414 char comm[TASK_COMM_LEN];
1415
1416 count--;
1417 printk(KERN_INFO "fork(): process `%s' used deprecated "
1418 "clone flags 0x%lx\n",
1419 get_task_comm(comm, current),
1420 clone_flags & CLONE_STOPPED);
1421 }
1422 }
1423
1424 /*
1425 * When called from kernel_thread, don't do user tracing stuff.
1426 */
1427 if (likely(user_mode(regs)))
1428 trace = tracehook_prepare_clone(clone_flags);
1429
1430 p = copy_process(clone_flags, stack_start, regs, stack_size,
1431 child_tidptr, NULL, trace);
1432 /*
1433 * Do this prior waking up the new thread - the thread pointer
1434 * might get invalid after that point, if the thread exits quickly.
1435 */
1436 if (!IS_ERR(p)) {
1437 struct completion vfork;
1438
1439 trace_sched_process_fork(current, p);
1440
1441 nr = task_pid_vnr(p);
1442
1443 if (clone_flags & CLONE_PARENT_SETTID)
1444 put_user(nr, parent_tidptr);
1445
1446 if (clone_flags & CLONE_VFORK) {
1447 p->vfork_done = &vfork;
1448 init_completion(&vfork);
1449 }
1450
1451 audit_finish_fork(p);
1452 tracehook_report_clone(regs, clone_flags, nr, p);
1453
1454 /*
1455 * We set PF_STARTING at creation in case tracing wants to
1456 * use this to distinguish a fully live task from one that
1457 * hasn't gotten to tracehook_report_clone() yet. Now we
1458 * clear it and set the child going.
1459 */
1460 p->flags &= ~PF_STARTING;
1461
1462 if (unlikely(clone_flags & CLONE_STOPPED)) {
1463 /*
1464 * We'll start up with an immediate SIGSTOP.
1465 */
1466 sigaddset(&p->pending.signal, SIGSTOP);
1467 set_tsk_thread_flag(p, TIF_SIGPENDING);
1468 __set_task_state(p, TASK_STOPPED);
1469 } else {
1470 wake_up_new_task(p, clone_flags);
1471 }
1472
1473 tracehook_report_clone_complete(trace, regs,
1474 clone_flags, nr, p);
1475
1476 if (clone_flags & CLONE_VFORK) {
1477 freezer_do_not_count();
1478 wait_for_completion(&vfork);
1479 freezer_count();
1480 tracehook_report_vfork_done(p, nr);
1481 }
1482 } else {
1483 nr = PTR_ERR(p);
1484 }
1485 return nr;
1486 }
1487
1488 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1489 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1490 #endif
1491
1492 static void sighand_ctor(void *data)
1493 {
1494 struct sighand_struct *sighand = data;
1495
1496 spin_lock_init(&sighand->siglock);
1497 init_waitqueue_head(&sighand->signalfd_wqh);
1498 }
1499
1500 void __init proc_caches_init(void)
1501 {
1502 sighand_cachep = kmem_cache_create("sighand_cache",
1503 sizeof(struct sighand_struct), 0,
1504 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1505 SLAB_NOTRACK, sighand_ctor);
1506 signal_cachep = kmem_cache_create("signal_cache",
1507 sizeof(struct signal_struct), 0,
1508 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1509 files_cachep = kmem_cache_create("files_cache",
1510 sizeof(struct files_struct), 0,
1511 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1512 fs_cachep = kmem_cache_create("fs_cache",
1513 sizeof(struct fs_struct), 0,
1514 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1515 mm_cachep = kmem_cache_create("mm_struct",
1516 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1517 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1518 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1519 mmap_init();
1520 }
1521
1522 /*
1523 * Check constraints on flags passed to the unshare system call and
1524 * force unsharing of additional process context as appropriate.
1525 */
1526 static void check_unshare_flags(unsigned long *flags_ptr)
1527 {
1528 /*
1529 * If unsharing a thread from a thread group, must also
1530 * unshare vm.
1531 */
1532 if (*flags_ptr & CLONE_THREAD)
1533 *flags_ptr |= CLONE_VM;
1534
1535 /*
1536 * If unsharing vm, must also unshare signal handlers.
1537 */
1538 if (*flags_ptr & CLONE_VM)
1539 *flags_ptr |= CLONE_SIGHAND;
1540
1541 /*
1542 * If unsharing namespace, must also unshare filesystem information.
1543 */
1544 if (*flags_ptr & CLONE_NEWNS)
1545 *flags_ptr |= CLONE_FS;
1546 }
1547
1548 /*
1549 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1550 */
1551 static int unshare_thread(unsigned long unshare_flags)
1552 {
1553 if (unshare_flags & CLONE_THREAD)
1554 return -EINVAL;
1555
1556 return 0;
1557 }
1558
1559 /*
1560 * Unshare the filesystem structure if it is being shared
1561 */
1562 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1563 {
1564 struct fs_struct *fs = current->fs;
1565
1566 if (!(unshare_flags & CLONE_FS) || !fs)
1567 return 0;
1568
1569 /* don't need lock here; in the worst case we'll do useless copy */
1570 if (fs->users == 1)
1571 return 0;
1572
1573 *new_fsp = copy_fs_struct(fs);
1574 if (!*new_fsp)
1575 return -ENOMEM;
1576
1577 return 0;
1578 }
1579
1580 /*
1581 * Unsharing of sighand is not supported yet
1582 */
1583 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1584 {
1585 struct sighand_struct *sigh = current->sighand;
1586
1587 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1588 return -EINVAL;
1589 else
1590 return 0;
1591 }
1592
1593 /*
1594 * Unshare vm if it is being shared
1595 */
1596 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1597 {
1598 struct mm_struct *mm = current->mm;
1599
1600 if ((unshare_flags & CLONE_VM) &&
1601 (mm && atomic_read(&mm->mm_users) > 1)) {
1602 return -EINVAL;
1603 }
1604
1605 return 0;
1606 }
1607
1608 /*
1609 * Unshare file descriptor table if it is being shared
1610 */
1611 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1612 {
1613 struct files_struct *fd = current->files;
1614 int error = 0;
1615
1616 if ((unshare_flags & CLONE_FILES) &&
1617 (fd && atomic_read(&fd->count) > 1)) {
1618 *new_fdp = dup_fd(fd, &error);
1619 if (!*new_fdp)
1620 return error;
1621 }
1622
1623 return 0;
1624 }
1625
1626 /*
1627 * unshare allows a process to 'unshare' part of the process
1628 * context which was originally shared using clone. copy_*
1629 * functions used by do_fork() cannot be used here directly
1630 * because they modify an inactive task_struct that is being
1631 * constructed. Here we are modifying the current, active,
1632 * task_struct.
1633 */
1634 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1635 {
1636 int err = 0;
1637 struct fs_struct *fs, *new_fs = NULL;
1638 struct sighand_struct *new_sigh = NULL;
1639 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1640 struct files_struct *fd, *new_fd = NULL;
1641 struct nsproxy *new_nsproxy = NULL;
1642 int do_sysvsem = 0;
1643
1644 check_unshare_flags(&unshare_flags);
1645
1646 /* Return -EINVAL for all unsupported flags */
1647 err = -EINVAL;
1648 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1649 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1650 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1651 goto bad_unshare_out;
1652
1653 /*
1654 * CLONE_NEWIPC must also detach from the undolist: after switching
1655 * to a new ipc namespace, the semaphore arrays from the old
1656 * namespace are unreachable.
1657 */
1658 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1659 do_sysvsem = 1;
1660 if ((err = unshare_thread(unshare_flags)))
1661 goto bad_unshare_out;
1662 if ((err = unshare_fs(unshare_flags, &new_fs)))
1663 goto bad_unshare_cleanup_thread;
1664 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1665 goto bad_unshare_cleanup_fs;
1666 if ((err = unshare_vm(unshare_flags, &new_mm)))
1667 goto bad_unshare_cleanup_sigh;
1668 if ((err = unshare_fd(unshare_flags, &new_fd)))
1669 goto bad_unshare_cleanup_vm;
1670 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1671 new_fs)))
1672 goto bad_unshare_cleanup_fd;
1673
1674 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1675 if (do_sysvsem) {
1676 /*
1677 * CLONE_SYSVSEM is equivalent to sys_exit().
1678 */
1679 exit_sem(current);
1680 }
1681
1682 if (new_nsproxy) {
1683 switch_task_namespaces(current, new_nsproxy);
1684 new_nsproxy = NULL;
1685 }
1686
1687 task_lock(current);
1688
1689 if (new_fs) {
1690 fs = current->fs;
1691 spin_lock(&fs->lock);
1692 current->fs = new_fs;
1693 if (--fs->users)
1694 new_fs = NULL;
1695 else
1696 new_fs = fs;
1697 spin_unlock(&fs->lock);
1698 }
1699
1700 if (new_mm) {
1701 mm = current->mm;
1702 active_mm = current->active_mm;
1703 current->mm = new_mm;
1704 current->active_mm = new_mm;
1705 if (current->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
1706 atomic_dec(&mm->oom_disable_count);
1707 atomic_inc(&new_mm->oom_disable_count);
1708 }
1709 activate_mm(active_mm, new_mm);
1710 new_mm = mm;
1711 }
1712
1713 if (new_fd) {
1714 fd = current->files;
1715 current->files = new_fd;
1716 new_fd = fd;
1717 }
1718
1719 task_unlock(current);
1720 }
1721
1722 if (new_nsproxy)
1723 put_nsproxy(new_nsproxy);
1724
1725 bad_unshare_cleanup_fd:
1726 if (new_fd)
1727 put_files_struct(new_fd);
1728
1729 bad_unshare_cleanup_vm:
1730 if (new_mm)
1731 mmput(new_mm);
1732
1733 bad_unshare_cleanup_sigh:
1734 if (new_sigh)
1735 if (atomic_dec_and_test(&new_sigh->count))
1736 kmem_cache_free(sighand_cachep, new_sigh);
1737
1738 bad_unshare_cleanup_fs:
1739 if (new_fs)
1740 free_fs_struct(new_fs);
1741
1742 bad_unshare_cleanup_thread:
1743 bad_unshare_out:
1744 return err;
1745 }
1746
1747 /*
1748 * Helper to unshare the files of the current task.
1749 * We don't want to expose copy_files internals to
1750 * the exec layer of the kernel.
1751 */
1752
1753 int unshare_files(struct files_struct **displaced)
1754 {
1755 struct task_struct *task = current;
1756 struct files_struct *copy = NULL;
1757 int error;
1758
1759 error = unshare_fd(CLONE_FILES, &copy);
1760 if (error || !copy) {
1761 *displaced = NULL;
1762 return error;
1763 }
1764 *displaced = task->files;
1765 task_lock(task);
1766 task->files = copy;
1767 task_unlock(task);
1768 return 0;
1769 }