driver-core: firmware_class: remove base.h header inclusion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67 #include <linux/user-return-notifier.h>
68
69 #include <asm/pgtable.h>
70 #include <asm/pgalloc.h>
71 #include <asm/uaccess.h>
72 #include <asm/mmu_context.h>
73 #include <asm/cacheflush.h>
74 #include <asm/tlbflush.h>
75
76 #include <trace/events/sched.h>
77
78 /*
79 * Protected counters by write_lock_irq(&tasklist_lock)
80 */
81 unsigned long total_forks; /* Handle normal Linux uptimes. */
82 int nr_threads; /* The idle threads do not count.. */
83
84 int max_threads; /* tunable limit on nr_threads */
85
86 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
87
88 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
89 EXPORT_SYMBOL_GPL(tasklist_lock);
90
91 int nr_processes(void)
92 {
93 int cpu;
94 int total = 0;
95
96 for_each_possible_cpu(cpu)
97 total += per_cpu(process_counts, cpu);
98
99 return total;
100 }
101
102 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
103 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
104 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
105 static struct kmem_cache *task_struct_cachep;
106 #endif
107
108 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
109 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
110 {
111 #ifdef CONFIG_DEBUG_STACK_USAGE
112 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
113 #else
114 gfp_t mask = GFP_KERNEL;
115 #endif
116 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
117 }
118
119 static inline void free_thread_info(struct thread_info *ti)
120 {
121 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
122 }
123 #endif
124
125 /* SLAB cache for signal_struct structures (tsk->signal) */
126 static struct kmem_cache *signal_cachep;
127
128 /* SLAB cache for sighand_struct structures (tsk->sighand) */
129 struct kmem_cache *sighand_cachep;
130
131 /* SLAB cache for files_struct structures (tsk->files) */
132 struct kmem_cache *files_cachep;
133
134 /* SLAB cache for fs_struct structures (tsk->fs) */
135 struct kmem_cache *fs_cachep;
136
137 /* SLAB cache for vm_area_struct structures */
138 struct kmem_cache *vm_area_cachep;
139
140 /* SLAB cache for mm_struct structures (tsk->mm) */
141 static struct kmem_cache *mm_cachep;
142
143 static void account_kernel_stack(struct thread_info *ti, int account)
144 {
145 struct zone *zone = page_zone(virt_to_page(ti));
146
147 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
148 }
149
150 void free_task(struct task_struct *tsk)
151 {
152 prop_local_destroy_single(&tsk->dirties);
153 account_kernel_stack(tsk->stack, -1);
154 free_thread_info(tsk->stack);
155 rt_mutex_debug_task_free(tsk);
156 ftrace_graph_exit_task(tsk);
157 free_task_struct(tsk);
158 }
159 EXPORT_SYMBOL(free_task);
160
161 void __put_task_struct(struct task_struct *tsk)
162 {
163 WARN_ON(!tsk->exit_state);
164 WARN_ON(atomic_read(&tsk->usage));
165 WARN_ON(tsk == current);
166
167 exit_creds(tsk);
168 delayacct_tsk_free(tsk);
169
170 if (!profile_handoff_task(tsk))
171 free_task(tsk);
172 }
173
174 /*
175 * macro override instead of weak attribute alias, to workaround
176 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
177 */
178 #ifndef arch_task_cache_init
179 #define arch_task_cache_init()
180 #endif
181
182 void __init fork_init(unsigned long mempages)
183 {
184 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
185 #ifndef ARCH_MIN_TASKALIGN
186 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
187 #endif
188 /* create a slab on which task_structs can be allocated */
189 task_struct_cachep =
190 kmem_cache_create("task_struct", sizeof(struct task_struct),
191 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
192 #endif
193
194 /* do the arch specific task caches init */
195 arch_task_cache_init();
196
197 /*
198 * The default maximum number of threads is set to a safe
199 * value: the thread structures can take up at most half
200 * of memory.
201 */
202 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
203
204 /*
205 * we need to allow at least 20 threads to boot a system
206 */
207 if(max_threads < 20)
208 max_threads = 20;
209
210 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
211 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
212 init_task.signal->rlim[RLIMIT_SIGPENDING] =
213 init_task.signal->rlim[RLIMIT_NPROC];
214 }
215
216 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
217 struct task_struct *src)
218 {
219 *dst = *src;
220 return 0;
221 }
222
223 static struct task_struct *dup_task_struct(struct task_struct *orig)
224 {
225 struct task_struct *tsk;
226 struct thread_info *ti;
227 unsigned long *stackend;
228
229 int err;
230
231 prepare_to_copy(orig);
232
233 tsk = alloc_task_struct();
234 if (!tsk)
235 return NULL;
236
237 ti = alloc_thread_info(tsk);
238 if (!ti) {
239 free_task_struct(tsk);
240 return NULL;
241 }
242
243 err = arch_dup_task_struct(tsk, orig);
244 if (err)
245 goto out;
246
247 tsk->stack = ti;
248
249 err = prop_local_init_single(&tsk->dirties);
250 if (err)
251 goto out;
252
253 setup_thread_stack(tsk, orig);
254 clear_user_return_notifier(tsk);
255 stackend = end_of_stack(tsk);
256 *stackend = STACK_END_MAGIC; /* for overflow detection */
257
258 #ifdef CONFIG_CC_STACKPROTECTOR
259 tsk->stack_canary = get_random_int();
260 #endif
261
262 /* One for us, one for whoever does the "release_task()" (usually parent) */
263 atomic_set(&tsk->usage,2);
264 atomic_set(&tsk->fs_excl, 0);
265 #ifdef CONFIG_BLK_DEV_IO_TRACE
266 tsk->btrace_seq = 0;
267 #endif
268 tsk->splice_pipe = NULL;
269
270 account_kernel_stack(ti, 1);
271
272 return tsk;
273
274 out:
275 free_thread_info(ti);
276 free_task_struct(tsk);
277 return NULL;
278 }
279
280 #ifdef CONFIG_MMU
281 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
282 {
283 struct vm_area_struct *mpnt, *tmp, **pprev;
284 struct rb_node **rb_link, *rb_parent;
285 int retval;
286 unsigned long charge;
287 struct mempolicy *pol;
288
289 down_write(&oldmm->mmap_sem);
290 flush_cache_dup_mm(oldmm);
291 /*
292 * Not linked in yet - no deadlock potential:
293 */
294 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
295
296 mm->locked_vm = 0;
297 mm->mmap = NULL;
298 mm->mmap_cache = NULL;
299 mm->free_area_cache = oldmm->mmap_base;
300 mm->cached_hole_size = ~0UL;
301 mm->map_count = 0;
302 cpumask_clear(mm_cpumask(mm));
303 mm->mm_rb = RB_ROOT;
304 rb_link = &mm->mm_rb.rb_node;
305 rb_parent = NULL;
306 pprev = &mm->mmap;
307 retval = ksm_fork(mm, oldmm);
308 if (retval)
309 goto out;
310
311 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
312 struct file *file;
313
314 if (mpnt->vm_flags & VM_DONTCOPY) {
315 long pages = vma_pages(mpnt);
316 mm->total_vm -= pages;
317 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
318 -pages);
319 continue;
320 }
321 charge = 0;
322 if (mpnt->vm_flags & VM_ACCOUNT) {
323 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
324 if (security_vm_enough_memory(len))
325 goto fail_nomem;
326 charge = len;
327 }
328 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
329 if (!tmp)
330 goto fail_nomem;
331 *tmp = *mpnt;
332 INIT_LIST_HEAD(&tmp->anon_vma_chain);
333 pol = mpol_dup(vma_policy(mpnt));
334 retval = PTR_ERR(pol);
335 if (IS_ERR(pol))
336 goto fail_nomem_policy;
337 vma_set_policy(tmp, pol);
338 if (anon_vma_fork(tmp, mpnt))
339 goto fail_nomem_anon_vma_fork;
340 tmp->vm_flags &= ~VM_LOCKED;
341 tmp->vm_mm = mm;
342 tmp->vm_next = NULL;
343 file = tmp->vm_file;
344 if (file) {
345 struct inode *inode = file->f_path.dentry->d_inode;
346 struct address_space *mapping = file->f_mapping;
347
348 get_file(file);
349 if (tmp->vm_flags & VM_DENYWRITE)
350 atomic_dec(&inode->i_writecount);
351 spin_lock(&mapping->i_mmap_lock);
352 if (tmp->vm_flags & VM_SHARED)
353 mapping->i_mmap_writable++;
354 tmp->vm_truncate_count = mpnt->vm_truncate_count;
355 flush_dcache_mmap_lock(mapping);
356 /* insert tmp into the share list, just after mpnt */
357 vma_prio_tree_add(tmp, mpnt);
358 flush_dcache_mmap_unlock(mapping);
359 spin_unlock(&mapping->i_mmap_lock);
360 }
361
362 /*
363 * Clear hugetlb-related page reserves for children. This only
364 * affects MAP_PRIVATE mappings. Faults generated by the child
365 * are not guaranteed to succeed, even if read-only
366 */
367 if (is_vm_hugetlb_page(tmp))
368 reset_vma_resv_huge_pages(tmp);
369
370 /*
371 * Link in the new vma and copy the page table entries.
372 */
373 *pprev = tmp;
374 pprev = &tmp->vm_next;
375
376 __vma_link_rb(mm, tmp, rb_link, rb_parent);
377 rb_link = &tmp->vm_rb.rb_right;
378 rb_parent = &tmp->vm_rb;
379
380 mm->map_count++;
381 retval = copy_page_range(mm, oldmm, mpnt);
382
383 if (tmp->vm_ops && tmp->vm_ops->open)
384 tmp->vm_ops->open(tmp);
385
386 if (retval)
387 goto out;
388 }
389 /* a new mm has just been created */
390 arch_dup_mmap(oldmm, mm);
391 retval = 0;
392 out:
393 up_write(&mm->mmap_sem);
394 flush_tlb_mm(oldmm);
395 up_write(&oldmm->mmap_sem);
396 return retval;
397 fail_nomem_anon_vma_fork:
398 mpol_put(pol);
399 fail_nomem_policy:
400 kmem_cache_free(vm_area_cachep, tmp);
401 fail_nomem:
402 retval = -ENOMEM;
403 vm_unacct_memory(charge);
404 goto out;
405 }
406
407 static inline int mm_alloc_pgd(struct mm_struct * mm)
408 {
409 mm->pgd = pgd_alloc(mm);
410 if (unlikely(!mm->pgd))
411 return -ENOMEM;
412 return 0;
413 }
414
415 static inline void mm_free_pgd(struct mm_struct * mm)
416 {
417 pgd_free(mm, mm->pgd);
418 }
419 #else
420 #define dup_mmap(mm, oldmm) (0)
421 #define mm_alloc_pgd(mm) (0)
422 #define mm_free_pgd(mm)
423 #endif /* CONFIG_MMU */
424
425 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
426
427 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
428 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
429
430 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
431
432 static int __init coredump_filter_setup(char *s)
433 {
434 default_dump_filter =
435 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
436 MMF_DUMP_FILTER_MASK;
437 return 1;
438 }
439
440 __setup("coredump_filter=", coredump_filter_setup);
441
442 #include <linux/init_task.h>
443
444 static void mm_init_aio(struct mm_struct *mm)
445 {
446 #ifdef CONFIG_AIO
447 spin_lock_init(&mm->ioctx_lock);
448 INIT_HLIST_HEAD(&mm->ioctx_list);
449 #endif
450 }
451
452 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
453 {
454 atomic_set(&mm->mm_users, 1);
455 atomic_set(&mm->mm_count, 1);
456 init_rwsem(&mm->mmap_sem);
457 INIT_LIST_HEAD(&mm->mmlist);
458 mm->flags = (current->mm) ?
459 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
460 mm->core_state = NULL;
461 mm->nr_ptes = 0;
462 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
463 spin_lock_init(&mm->page_table_lock);
464 mm->free_area_cache = TASK_UNMAPPED_BASE;
465 mm->cached_hole_size = ~0UL;
466 mm_init_aio(mm);
467 mm_init_owner(mm, p);
468
469 if (likely(!mm_alloc_pgd(mm))) {
470 mm->def_flags = 0;
471 mmu_notifier_mm_init(mm);
472 return mm;
473 }
474
475 free_mm(mm);
476 return NULL;
477 }
478
479 /*
480 * Allocate and initialize an mm_struct.
481 */
482 struct mm_struct * mm_alloc(void)
483 {
484 struct mm_struct * mm;
485
486 mm = allocate_mm();
487 if (mm) {
488 memset(mm, 0, sizeof(*mm));
489 mm = mm_init(mm, current);
490 }
491 return mm;
492 }
493
494 /*
495 * Called when the last reference to the mm
496 * is dropped: either by a lazy thread or by
497 * mmput. Free the page directory and the mm.
498 */
499 void __mmdrop(struct mm_struct *mm)
500 {
501 BUG_ON(mm == &init_mm);
502 mm_free_pgd(mm);
503 destroy_context(mm);
504 mmu_notifier_mm_destroy(mm);
505 free_mm(mm);
506 }
507 EXPORT_SYMBOL_GPL(__mmdrop);
508
509 /*
510 * Decrement the use count and release all resources for an mm.
511 */
512 void mmput(struct mm_struct *mm)
513 {
514 might_sleep();
515
516 if (atomic_dec_and_test(&mm->mm_users)) {
517 exit_aio(mm);
518 ksm_exit(mm);
519 exit_mmap(mm);
520 set_mm_exe_file(mm, NULL);
521 if (!list_empty(&mm->mmlist)) {
522 spin_lock(&mmlist_lock);
523 list_del(&mm->mmlist);
524 spin_unlock(&mmlist_lock);
525 }
526 put_swap_token(mm);
527 if (mm->binfmt)
528 module_put(mm->binfmt->module);
529 mmdrop(mm);
530 }
531 }
532 EXPORT_SYMBOL_GPL(mmput);
533
534 /**
535 * get_task_mm - acquire a reference to the task's mm
536 *
537 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
538 * this kernel workthread has transiently adopted a user mm with use_mm,
539 * to do its AIO) is not set and if so returns a reference to it, after
540 * bumping up the use count. User must release the mm via mmput()
541 * after use. Typically used by /proc and ptrace.
542 */
543 struct mm_struct *get_task_mm(struct task_struct *task)
544 {
545 struct mm_struct *mm;
546
547 task_lock(task);
548 mm = task->mm;
549 if (mm) {
550 if (task->flags & PF_KTHREAD)
551 mm = NULL;
552 else
553 atomic_inc(&mm->mm_users);
554 }
555 task_unlock(task);
556 return mm;
557 }
558 EXPORT_SYMBOL_GPL(get_task_mm);
559
560 /* Please note the differences between mmput and mm_release.
561 * mmput is called whenever we stop holding onto a mm_struct,
562 * error success whatever.
563 *
564 * mm_release is called after a mm_struct has been removed
565 * from the current process.
566 *
567 * This difference is important for error handling, when we
568 * only half set up a mm_struct for a new process and need to restore
569 * the old one. Because we mmput the new mm_struct before
570 * restoring the old one. . .
571 * Eric Biederman 10 January 1998
572 */
573 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
574 {
575 struct completion *vfork_done = tsk->vfork_done;
576
577 /* Get rid of any futexes when releasing the mm */
578 #ifdef CONFIG_FUTEX
579 if (unlikely(tsk->robust_list)) {
580 exit_robust_list(tsk);
581 tsk->robust_list = NULL;
582 }
583 #ifdef CONFIG_COMPAT
584 if (unlikely(tsk->compat_robust_list)) {
585 compat_exit_robust_list(tsk);
586 tsk->compat_robust_list = NULL;
587 }
588 #endif
589 if (unlikely(!list_empty(&tsk->pi_state_list)))
590 exit_pi_state_list(tsk);
591 #endif
592
593 /* Get rid of any cached register state */
594 deactivate_mm(tsk, mm);
595
596 /* notify parent sleeping on vfork() */
597 if (vfork_done) {
598 tsk->vfork_done = NULL;
599 complete(vfork_done);
600 }
601
602 /*
603 * If we're exiting normally, clear a user-space tid field if
604 * requested. We leave this alone when dying by signal, to leave
605 * the value intact in a core dump, and to save the unnecessary
606 * trouble otherwise. Userland only wants this done for a sys_exit.
607 */
608 if (tsk->clear_child_tid) {
609 if (!(tsk->flags & PF_SIGNALED) &&
610 atomic_read(&mm->mm_users) > 1) {
611 /*
612 * We don't check the error code - if userspace has
613 * not set up a proper pointer then tough luck.
614 */
615 put_user(0, tsk->clear_child_tid);
616 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
617 1, NULL, NULL, 0);
618 }
619 tsk->clear_child_tid = NULL;
620 }
621 }
622
623 /*
624 * Allocate a new mm structure and copy contents from the
625 * mm structure of the passed in task structure.
626 */
627 struct mm_struct *dup_mm(struct task_struct *tsk)
628 {
629 struct mm_struct *mm, *oldmm = current->mm;
630 int err;
631
632 if (!oldmm)
633 return NULL;
634
635 mm = allocate_mm();
636 if (!mm)
637 goto fail_nomem;
638
639 memcpy(mm, oldmm, sizeof(*mm));
640
641 /* Initializing for Swap token stuff */
642 mm->token_priority = 0;
643 mm->last_interval = 0;
644
645 if (!mm_init(mm, tsk))
646 goto fail_nomem;
647
648 if (init_new_context(tsk, mm))
649 goto fail_nocontext;
650
651 dup_mm_exe_file(oldmm, mm);
652
653 err = dup_mmap(mm, oldmm);
654 if (err)
655 goto free_pt;
656
657 mm->hiwater_rss = get_mm_rss(mm);
658 mm->hiwater_vm = mm->total_vm;
659
660 if (mm->binfmt && !try_module_get(mm->binfmt->module))
661 goto free_pt;
662
663 return mm;
664
665 free_pt:
666 /* don't put binfmt in mmput, we haven't got module yet */
667 mm->binfmt = NULL;
668 mmput(mm);
669
670 fail_nomem:
671 return NULL;
672
673 fail_nocontext:
674 /*
675 * If init_new_context() failed, we cannot use mmput() to free the mm
676 * because it calls destroy_context()
677 */
678 mm_free_pgd(mm);
679 free_mm(mm);
680 return NULL;
681 }
682
683 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
684 {
685 struct mm_struct * mm, *oldmm;
686 int retval;
687
688 tsk->min_flt = tsk->maj_flt = 0;
689 tsk->nvcsw = tsk->nivcsw = 0;
690 #ifdef CONFIG_DETECT_HUNG_TASK
691 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
692 #endif
693
694 tsk->mm = NULL;
695 tsk->active_mm = NULL;
696
697 /*
698 * Are we cloning a kernel thread?
699 *
700 * We need to steal a active VM for that..
701 */
702 oldmm = current->mm;
703 if (!oldmm)
704 return 0;
705
706 if (clone_flags & CLONE_VM) {
707 atomic_inc(&oldmm->mm_users);
708 mm = oldmm;
709 goto good_mm;
710 }
711
712 retval = -ENOMEM;
713 mm = dup_mm(tsk);
714 if (!mm)
715 goto fail_nomem;
716
717 good_mm:
718 /* Initializing for Swap token stuff */
719 mm->token_priority = 0;
720 mm->last_interval = 0;
721
722 tsk->mm = mm;
723 tsk->active_mm = mm;
724 return 0;
725
726 fail_nomem:
727 return retval;
728 }
729
730 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
731 {
732 struct fs_struct *fs = current->fs;
733 if (clone_flags & CLONE_FS) {
734 /* tsk->fs is already what we want */
735 write_lock(&fs->lock);
736 if (fs->in_exec) {
737 write_unlock(&fs->lock);
738 return -EAGAIN;
739 }
740 fs->users++;
741 write_unlock(&fs->lock);
742 return 0;
743 }
744 tsk->fs = copy_fs_struct(fs);
745 if (!tsk->fs)
746 return -ENOMEM;
747 return 0;
748 }
749
750 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
751 {
752 struct files_struct *oldf, *newf;
753 int error = 0;
754
755 /*
756 * A background process may not have any files ...
757 */
758 oldf = current->files;
759 if (!oldf)
760 goto out;
761
762 if (clone_flags & CLONE_FILES) {
763 atomic_inc(&oldf->count);
764 goto out;
765 }
766
767 newf = dup_fd(oldf, &error);
768 if (!newf)
769 goto out;
770
771 tsk->files = newf;
772 error = 0;
773 out:
774 return error;
775 }
776
777 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
778 {
779 #ifdef CONFIG_BLOCK
780 struct io_context *ioc = current->io_context;
781
782 if (!ioc)
783 return 0;
784 /*
785 * Share io context with parent, if CLONE_IO is set
786 */
787 if (clone_flags & CLONE_IO) {
788 tsk->io_context = ioc_task_link(ioc);
789 if (unlikely(!tsk->io_context))
790 return -ENOMEM;
791 } else if (ioprio_valid(ioc->ioprio)) {
792 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
793 if (unlikely(!tsk->io_context))
794 return -ENOMEM;
795
796 tsk->io_context->ioprio = ioc->ioprio;
797 }
798 #endif
799 return 0;
800 }
801
802 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
803 {
804 struct sighand_struct *sig;
805
806 if (clone_flags & CLONE_SIGHAND) {
807 atomic_inc(&current->sighand->count);
808 return 0;
809 }
810 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
811 rcu_assign_pointer(tsk->sighand, sig);
812 if (!sig)
813 return -ENOMEM;
814 atomic_set(&sig->count, 1);
815 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
816 return 0;
817 }
818
819 void __cleanup_sighand(struct sighand_struct *sighand)
820 {
821 if (atomic_dec_and_test(&sighand->count))
822 kmem_cache_free(sighand_cachep, sighand);
823 }
824
825
826 /*
827 * Initialize POSIX timer handling for a thread group.
828 */
829 static void posix_cpu_timers_init_group(struct signal_struct *sig)
830 {
831 unsigned long cpu_limit;
832
833 /* Thread group counters. */
834 thread_group_cputime_init(sig);
835
836 /* Expiration times and increments. */
837 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
838 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
839 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
840 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
841
842 /* Cached expiration times. */
843 sig->cputime_expires.prof_exp = cputime_zero;
844 sig->cputime_expires.virt_exp = cputime_zero;
845 sig->cputime_expires.sched_exp = 0;
846
847 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
848 if (cpu_limit != RLIM_INFINITY) {
849 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
850 sig->cputimer.running = 1;
851 }
852
853 /* The timer lists. */
854 INIT_LIST_HEAD(&sig->cpu_timers[0]);
855 INIT_LIST_HEAD(&sig->cpu_timers[1]);
856 INIT_LIST_HEAD(&sig->cpu_timers[2]);
857 }
858
859 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
860 {
861 struct signal_struct *sig;
862
863 if (clone_flags & CLONE_THREAD)
864 return 0;
865
866 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
867 tsk->signal = sig;
868 if (!sig)
869 return -ENOMEM;
870
871 atomic_set(&sig->count, 1);
872 atomic_set(&sig->live, 1);
873 init_waitqueue_head(&sig->wait_chldexit);
874 sig->flags = 0;
875 if (clone_flags & CLONE_NEWPID)
876 sig->flags |= SIGNAL_UNKILLABLE;
877 sig->group_exit_code = 0;
878 sig->group_exit_task = NULL;
879 sig->group_stop_count = 0;
880 sig->curr_target = tsk;
881 init_sigpending(&sig->shared_pending);
882 INIT_LIST_HEAD(&sig->posix_timers);
883
884 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
885 sig->it_real_incr.tv64 = 0;
886 sig->real_timer.function = it_real_fn;
887
888 sig->leader = 0; /* session leadership doesn't inherit */
889 sig->tty_old_pgrp = NULL;
890 sig->tty = NULL;
891
892 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
893 sig->gtime = cputime_zero;
894 sig->cgtime = cputime_zero;
895 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
896 sig->prev_utime = sig->prev_stime = cputime_zero;
897 #endif
898 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
899 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
900 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
901 sig->maxrss = sig->cmaxrss = 0;
902 task_io_accounting_init(&sig->ioac);
903 sig->sum_sched_runtime = 0;
904 taskstats_tgid_init(sig);
905
906 task_lock(current->group_leader);
907 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
908 task_unlock(current->group_leader);
909
910 posix_cpu_timers_init_group(sig);
911
912 acct_init_pacct(&sig->pacct);
913
914 tty_audit_fork(sig);
915
916 sig->oom_adj = current->signal->oom_adj;
917
918 return 0;
919 }
920
921 void __cleanup_signal(struct signal_struct *sig)
922 {
923 thread_group_cputime_free(sig);
924 tty_kref_put(sig->tty);
925 kmem_cache_free(signal_cachep, sig);
926 }
927
928 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
929 {
930 unsigned long new_flags = p->flags;
931
932 new_flags &= ~PF_SUPERPRIV;
933 new_flags |= PF_FORKNOEXEC;
934 new_flags |= PF_STARTING;
935 p->flags = new_flags;
936 clear_freeze_flag(p);
937 }
938
939 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
940 {
941 current->clear_child_tid = tidptr;
942
943 return task_pid_vnr(current);
944 }
945
946 static void rt_mutex_init_task(struct task_struct *p)
947 {
948 raw_spin_lock_init(&p->pi_lock);
949 #ifdef CONFIG_RT_MUTEXES
950 plist_head_init_raw(&p->pi_waiters, &p->pi_lock);
951 p->pi_blocked_on = NULL;
952 #endif
953 }
954
955 #ifdef CONFIG_MM_OWNER
956 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
957 {
958 mm->owner = p;
959 }
960 #endif /* CONFIG_MM_OWNER */
961
962 /*
963 * Initialize POSIX timer handling for a single task.
964 */
965 static void posix_cpu_timers_init(struct task_struct *tsk)
966 {
967 tsk->cputime_expires.prof_exp = cputime_zero;
968 tsk->cputime_expires.virt_exp = cputime_zero;
969 tsk->cputime_expires.sched_exp = 0;
970 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
971 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
972 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
973 }
974
975 /*
976 * This creates a new process as a copy of the old one,
977 * but does not actually start it yet.
978 *
979 * It copies the registers, and all the appropriate
980 * parts of the process environment (as per the clone
981 * flags). The actual kick-off is left to the caller.
982 */
983 static struct task_struct *copy_process(unsigned long clone_flags,
984 unsigned long stack_start,
985 struct pt_regs *regs,
986 unsigned long stack_size,
987 int __user *child_tidptr,
988 struct pid *pid,
989 int trace)
990 {
991 int retval;
992 struct task_struct *p;
993 int cgroup_callbacks_done = 0;
994
995 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
996 return ERR_PTR(-EINVAL);
997
998 /*
999 * Thread groups must share signals as well, and detached threads
1000 * can only be started up within the thread group.
1001 */
1002 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1003 return ERR_PTR(-EINVAL);
1004
1005 /*
1006 * Shared signal handlers imply shared VM. By way of the above,
1007 * thread groups also imply shared VM. Blocking this case allows
1008 * for various simplifications in other code.
1009 */
1010 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1011 return ERR_PTR(-EINVAL);
1012
1013 /*
1014 * Siblings of global init remain as zombies on exit since they are
1015 * not reaped by their parent (swapper). To solve this and to avoid
1016 * multi-rooted process trees, prevent global and container-inits
1017 * from creating siblings.
1018 */
1019 if ((clone_flags & CLONE_PARENT) &&
1020 current->signal->flags & SIGNAL_UNKILLABLE)
1021 return ERR_PTR(-EINVAL);
1022
1023 retval = security_task_create(clone_flags);
1024 if (retval)
1025 goto fork_out;
1026
1027 retval = -ENOMEM;
1028 p = dup_task_struct(current);
1029 if (!p)
1030 goto fork_out;
1031
1032 ftrace_graph_init_task(p);
1033
1034 rt_mutex_init_task(p);
1035
1036 #ifdef CONFIG_PROVE_LOCKING
1037 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1038 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1039 #endif
1040 retval = -EAGAIN;
1041 if (atomic_read(&p->real_cred->user->processes) >=
1042 task_rlimit(p, RLIMIT_NPROC)) {
1043 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1044 p->real_cred->user != INIT_USER)
1045 goto bad_fork_free;
1046 }
1047
1048 retval = copy_creds(p, clone_flags);
1049 if (retval < 0)
1050 goto bad_fork_free;
1051
1052 /*
1053 * If multiple threads are within copy_process(), then this check
1054 * triggers too late. This doesn't hurt, the check is only there
1055 * to stop root fork bombs.
1056 */
1057 retval = -EAGAIN;
1058 if (nr_threads >= max_threads)
1059 goto bad_fork_cleanup_count;
1060
1061 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1062 goto bad_fork_cleanup_count;
1063
1064 p->did_exec = 0;
1065 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1066 copy_flags(clone_flags, p);
1067 INIT_LIST_HEAD(&p->children);
1068 INIT_LIST_HEAD(&p->sibling);
1069 rcu_copy_process(p);
1070 p->vfork_done = NULL;
1071 spin_lock_init(&p->alloc_lock);
1072
1073 init_sigpending(&p->pending);
1074
1075 p->utime = cputime_zero;
1076 p->stime = cputime_zero;
1077 p->gtime = cputime_zero;
1078 p->utimescaled = cputime_zero;
1079 p->stimescaled = cputime_zero;
1080 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1081 p->prev_utime = cputime_zero;
1082 p->prev_stime = cputime_zero;
1083 #endif
1084
1085 p->default_timer_slack_ns = current->timer_slack_ns;
1086
1087 task_io_accounting_init(&p->ioac);
1088 acct_clear_integrals(p);
1089
1090 posix_cpu_timers_init(p);
1091
1092 p->lock_depth = -1; /* -1 = no lock */
1093 do_posix_clock_monotonic_gettime(&p->start_time);
1094 p->real_start_time = p->start_time;
1095 monotonic_to_bootbased(&p->real_start_time);
1096 p->io_context = NULL;
1097 p->audit_context = NULL;
1098 cgroup_fork(p);
1099 #ifdef CONFIG_NUMA
1100 p->mempolicy = mpol_dup(p->mempolicy);
1101 if (IS_ERR(p->mempolicy)) {
1102 retval = PTR_ERR(p->mempolicy);
1103 p->mempolicy = NULL;
1104 goto bad_fork_cleanup_cgroup;
1105 }
1106 mpol_fix_fork_child_flag(p);
1107 #endif
1108 #ifdef CONFIG_TRACE_IRQFLAGS
1109 p->irq_events = 0;
1110 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1111 p->hardirqs_enabled = 1;
1112 #else
1113 p->hardirqs_enabled = 0;
1114 #endif
1115 p->hardirq_enable_ip = 0;
1116 p->hardirq_enable_event = 0;
1117 p->hardirq_disable_ip = _THIS_IP_;
1118 p->hardirq_disable_event = 0;
1119 p->softirqs_enabled = 1;
1120 p->softirq_enable_ip = _THIS_IP_;
1121 p->softirq_enable_event = 0;
1122 p->softirq_disable_ip = 0;
1123 p->softirq_disable_event = 0;
1124 p->hardirq_context = 0;
1125 p->softirq_context = 0;
1126 #endif
1127 #ifdef CONFIG_LOCKDEP
1128 p->lockdep_depth = 0; /* no locks held yet */
1129 p->curr_chain_key = 0;
1130 p->lockdep_recursion = 0;
1131 #endif
1132
1133 #ifdef CONFIG_DEBUG_MUTEXES
1134 p->blocked_on = NULL; /* not blocked yet */
1135 #endif
1136 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1137 p->memcg_batch.do_batch = 0;
1138 p->memcg_batch.memcg = NULL;
1139 #endif
1140
1141 p->bts = NULL;
1142
1143 p->stack_start = stack_start;
1144
1145 /* Perform scheduler related setup. Assign this task to a CPU. */
1146 sched_fork(p, clone_flags);
1147
1148 retval = perf_event_init_task(p);
1149 if (retval)
1150 goto bad_fork_cleanup_policy;
1151
1152 if ((retval = audit_alloc(p)))
1153 goto bad_fork_cleanup_policy;
1154 /* copy all the process information */
1155 if ((retval = copy_semundo(clone_flags, p)))
1156 goto bad_fork_cleanup_audit;
1157 if ((retval = copy_files(clone_flags, p)))
1158 goto bad_fork_cleanup_semundo;
1159 if ((retval = copy_fs(clone_flags, p)))
1160 goto bad_fork_cleanup_files;
1161 if ((retval = copy_sighand(clone_flags, p)))
1162 goto bad_fork_cleanup_fs;
1163 if ((retval = copy_signal(clone_flags, p)))
1164 goto bad_fork_cleanup_sighand;
1165 if ((retval = copy_mm(clone_flags, p)))
1166 goto bad_fork_cleanup_signal;
1167 if ((retval = copy_namespaces(clone_flags, p)))
1168 goto bad_fork_cleanup_mm;
1169 if ((retval = copy_io(clone_flags, p)))
1170 goto bad_fork_cleanup_namespaces;
1171 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1172 if (retval)
1173 goto bad_fork_cleanup_io;
1174
1175 if (pid != &init_struct_pid) {
1176 retval = -ENOMEM;
1177 pid = alloc_pid(p->nsproxy->pid_ns);
1178 if (!pid)
1179 goto bad_fork_cleanup_io;
1180
1181 if (clone_flags & CLONE_NEWPID) {
1182 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1183 if (retval < 0)
1184 goto bad_fork_free_pid;
1185 }
1186 }
1187
1188 p->pid = pid_nr(pid);
1189 p->tgid = p->pid;
1190 if (clone_flags & CLONE_THREAD)
1191 p->tgid = current->tgid;
1192
1193 if (current->nsproxy != p->nsproxy) {
1194 retval = ns_cgroup_clone(p, pid);
1195 if (retval)
1196 goto bad_fork_free_pid;
1197 }
1198
1199 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1200 /*
1201 * Clear TID on mm_release()?
1202 */
1203 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1204 #ifdef CONFIG_FUTEX
1205 p->robust_list = NULL;
1206 #ifdef CONFIG_COMPAT
1207 p->compat_robust_list = NULL;
1208 #endif
1209 INIT_LIST_HEAD(&p->pi_state_list);
1210 p->pi_state_cache = NULL;
1211 #endif
1212 /*
1213 * sigaltstack should be cleared when sharing the same VM
1214 */
1215 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1216 p->sas_ss_sp = p->sas_ss_size = 0;
1217
1218 /*
1219 * Syscall tracing and stepping should be turned off in the
1220 * child regardless of CLONE_PTRACE.
1221 */
1222 user_disable_single_step(p);
1223 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1224 #ifdef TIF_SYSCALL_EMU
1225 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1226 #endif
1227 clear_all_latency_tracing(p);
1228
1229 /* ok, now we should be set up.. */
1230 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1231 p->pdeath_signal = 0;
1232 p->exit_state = 0;
1233
1234 /*
1235 * Ok, make it visible to the rest of the system.
1236 * We dont wake it up yet.
1237 */
1238 p->group_leader = p;
1239 INIT_LIST_HEAD(&p->thread_group);
1240
1241 /* Now that the task is set up, run cgroup callbacks if
1242 * necessary. We need to run them before the task is visible
1243 * on the tasklist. */
1244 cgroup_fork_callbacks(p);
1245 cgroup_callbacks_done = 1;
1246
1247 /* Need tasklist lock for parent etc handling! */
1248 write_lock_irq(&tasklist_lock);
1249
1250 /* CLONE_PARENT re-uses the old parent */
1251 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1252 p->real_parent = current->real_parent;
1253 p->parent_exec_id = current->parent_exec_id;
1254 } else {
1255 p->real_parent = current;
1256 p->parent_exec_id = current->self_exec_id;
1257 }
1258
1259 spin_lock(&current->sighand->siglock);
1260
1261 /*
1262 * Process group and session signals need to be delivered to just the
1263 * parent before the fork or both the parent and the child after the
1264 * fork. Restart if a signal comes in before we add the new process to
1265 * it's process group.
1266 * A fatal signal pending means that current will exit, so the new
1267 * thread can't slip out of an OOM kill (or normal SIGKILL).
1268 */
1269 recalc_sigpending();
1270 if (signal_pending(current)) {
1271 spin_unlock(&current->sighand->siglock);
1272 write_unlock_irq(&tasklist_lock);
1273 retval = -ERESTARTNOINTR;
1274 goto bad_fork_free_pid;
1275 }
1276
1277 if (clone_flags & CLONE_THREAD) {
1278 atomic_inc(&current->signal->count);
1279 atomic_inc(&current->signal->live);
1280 p->group_leader = current->group_leader;
1281 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1282 }
1283
1284 if (likely(p->pid)) {
1285 tracehook_finish_clone(p, clone_flags, trace);
1286
1287 if (thread_group_leader(p)) {
1288 if (clone_flags & CLONE_NEWPID)
1289 p->nsproxy->pid_ns->child_reaper = p;
1290
1291 p->signal->leader_pid = pid;
1292 tty_kref_put(p->signal->tty);
1293 p->signal->tty = tty_kref_get(current->signal->tty);
1294 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1295 attach_pid(p, PIDTYPE_SID, task_session(current));
1296 list_add_tail(&p->sibling, &p->real_parent->children);
1297 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1298 __get_cpu_var(process_counts)++;
1299 }
1300 attach_pid(p, PIDTYPE_PID, pid);
1301 nr_threads++;
1302 }
1303
1304 total_forks++;
1305 spin_unlock(&current->sighand->siglock);
1306 write_unlock_irq(&tasklist_lock);
1307 proc_fork_connector(p);
1308 cgroup_post_fork(p);
1309 perf_event_fork(p);
1310 return p;
1311
1312 bad_fork_free_pid:
1313 if (pid != &init_struct_pid)
1314 free_pid(pid);
1315 bad_fork_cleanup_io:
1316 if (p->io_context)
1317 exit_io_context(p);
1318 bad_fork_cleanup_namespaces:
1319 exit_task_namespaces(p);
1320 bad_fork_cleanup_mm:
1321 if (p->mm)
1322 mmput(p->mm);
1323 bad_fork_cleanup_signal:
1324 if (!(clone_flags & CLONE_THREAD))
1325 __cleanup_signal(p->signal);
1326 bad_fork_cleanup_sighand:
1327 __cleanup_sighand(p->sighand);
1328 bad_fork_cleanup_fs:
1329 exit_fs(p); /* blocking */
1330 bad_fork_cleanup_files:
1331 exit_files(p); /* blocking */
1332 bad_fork_cleanup_semundo:
1333 exit_sem(p);
1334 bad_fork_cleanup_audit:
1335 audit_free(p);
1336 bad_fork_cleanup_policy:
1337 perf_event_free_task(p);
1338 #ifdef CONFIG_NUMA
1339 mpol_put(p->mempolicy);
1340 bad_fork_cleanup_cgroup:
1341 #endif
1342 cgroup_exit(p, cgroup_callbacks_done);
1343 delayacct_tsk_free(p);
1344 module_put(task_thread_info(p)->exec_domain->module);
1345 bad_fork_cleanup_count:
1346 atomic_dec(&p->cred->user->processes);
1347 exit_creds(p);
1348 bad_fork_free:
1349 free_task(p);
1350 fork_out:
1351 return ERR_PTR(retval);
1352 }
1353
1354 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1355 {
1356 memset(regs, 0, sizeof(struct pt_regs));
1357 return regs;
1358 }
1359
1360 struct task_struct * __cpuinit fork_idle(int cpu)
1361 {
1362 struct task_struct *task;
1363 struct pt_regs regs;
1364
1365 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1366 &init_struct_pid, 0);
1367 if (!IS_ERR(task))
1368 init_idle(task, cpu);
1369
1370 return task;
1371 }
1372
1373 /*
1374 * Ok, this is the main fork-routine.
1375 *
1376 * It copies the process, and if successful kick-starts
1377 * it and waits for it to finish using the VM if required.
1378 */
1379 long do_fork(unsigned long clone_flags,
1380 unsigned long stack_start,
1381 struct pt_regs *regs,
1382 unsigned long stack_size,
1383 int __user *parent_tidptr,
1384 int __user *child_tidptr)
1385 {
1386 struct task_struct *p;
1387 int trace = 0;
1388 long nr;
1389
1390 /*
1391 * Do some preliminary argument and permissions checking before we
1392 * actually start allocating stuff
1393 */
1394 if (clone_flags & CLONE_NEWUSER) {
1395 if (clone_flags & CLONE_THREAD)
1396 return -EINVAL;
1397 /* hopefully this check will go away when userns support is
1398 * complete
1399 */
1400 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1401 !capable(CAP_SETGID))
1402 return -EPERM;
1403 }
1404
1405 /*
1406 * We hope to recycle these flags after 2.6.26
1407 */
1408 if (unlikely(clone_flags & CLONE_STOPPED)) {
1409 static int __read_mostly count = 100;
1410
1411 if (count > 0 && printk_ratelimit()) {
1412 char comm[TASK_COMM_LEN];
1413
1414 count--;
1415 printk(KERN_INFO "fork(): process `%s' used deprecated "
1416 "clone flags 0x%lx\n",
1417 get_task_comm(comm, current),
1418 clone_flags & CLONE_STOPPED);
1419 }
1420 }
1421
1422 /*
1423 * When called from kernel_thread, don't do user tracing stuff.
1424 */
1425 if (likely(user_mode(regs)))
1426 trace = tracehook_prepare_clone(clone_flags);
1427
1428 p = copy_process(clone_flags, stack_start, regs, stack_size,
1429 child_tidptr, NULL, trace);
1430 /*
1431 * Do this prior waking up the new thread - the thread pointer
1432 * might get invalid after that point, if the thread exits quickly.
1433 */
1434 if (!IS_ERR(p)) {
1435 struct completion vfork;
1436
1437 trace_sched_process_fork(current, p);
1438
1439 nr = task_pid_vnr(p);
1440
1441 if (clone_flags & CLONE_PARENT_SETTID)
1442 put_user(nr, parent_tidptr);
1443
1444 if (clone_flags & CLONE_VFORK) {
1445 p->vfork_done = &vfork;
1446 init_completion(&vfork);
1447 }
1448
1449 audit_finish_fork(p);
1450 tracehook_report_clone(regs, clone_flags, nr, p);
1451
1452 /*
1453 * We set PF_STARTING at creation in case tracing wants to
1454 * use this to distinguish a fully live task from one that
1455 * hasn't gotten to tracehook_report_clone() yet. Now we
1456 * clear it and set the child going.
1457 */
1458 p->flags &= ~PF_STARTING;
1459
1460 if (unlikely(clone_flags & CLONE_STOPPED)) {
1461 /*
1462 * We'll start up with an immediate SIGSTOP.
1463 */
1464 sigaddset(&p->pending.signal, SIGSTOP);
1465 set_tsk_thread_flag(p, TIF_SIGPENDING);
1466 __set_task_state(p, TASK_STOPPED);
1467 } else {
1468 wake_up_new_task(p, clone_flags);
1469 }
1470
1471 tracehook_report_clone_complete(trace, regs,
1472 clone_flags, nr, p);
1473
1474 if (clone_flags & CLONE_VFORK) {
1475 freezer_do_not_count();
1476 wait_for_completion(&vfork);
1477 freezer_count();
1478 tracehook_report_vfork_done(p, nr);
1479 }
1480 } else {
1481 nr = PTR_ERR(p);
1482 }
1483 return nr;
1484 }
1485
1486 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1487 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1488 #endif
1489
1490 static void sighand_ctor(void *data)
1491 {
1492 struct sighand_struct *sighand = data;
1493
1494 spin_lock_init(&sighand->siglock);
1495 init_waitqueue_head(&sighand->signalfd_wqh);
1496 }
1497
1498 void __init proc_caches_init(void)
1499 {
1500 sighand_cachep = kmem_cache_create("sighand_cache",
1501 sizeof(struct sighand_struct), 0,
1502 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1503 SLAB_NOTRACK, sighand_ctor);
1504 signal_cachep = kmem_cache_create("signal_cache",
1505 sizeof(struct signal_struct), 0,
1506 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1507 files_cachep = kmem_cache_create("files_cache",
1508 sizeof(struct files_struct), 0,
1509 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1510 fs_cachep = kmem_cache_create("fs_cache",
1511 sizeof(struct fs_struct), 0,
1512 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1513 mm_cachep = kmem_cache_create("mm_struct",
1514 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1515 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1516 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1517 mmap_init();
1518 }
1519
1520 /*
1521 * Check constraints on flags passed to the unshare system call and
1522 * force unsharing of additional process context as appropriate.
1523 */
1524 static void check_unshare_flags(unsigned long *flags_ptr)
1525 {
1526 /*
1527 * If unsharing a thread from a thread group, must also
1528 * unshare vm.
1529 */
1530 if (*flags_ptr & CLONE_THREAD)
1531 *flags_ptr |= CLONE_VM;
1532
1533 /*
1534 * If unsharing vm, must also unshare signal handlers.
1535 */
1536 if (*flags_ptr & CLONE_VM)
1537 *flags_ptr |= CLONE_SIGHAND;
1538
1539 /*
1540 * If unsharing signal handlers and the task was created
1541 * using CLONE_THREAD, then must unshare the thread
1542 */
1543 if ((*flags_ptr & CLONE_SIGHAND) &&
1544 (atomic_read(&current->signal->count) > 1))
1545 *flags_ptr |= CLONE_THREAD;
1546
1547 /*
1548 * If unsharing namespace, must also unshare filesystem information.
1549 */
1550 if (*flags_ptr & CLONE_NEWNS)
1551 *flags_ptr |= CLONE_FS;
1552 }
1553
1554 /*
1555 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1556 */
1557 static int unshare_thread(unsigned long unshare_flags)
1558 {
1559 if (unshare_flags & CLONE_THREAD)
1560 return -EINVAL;
1561
1562 return 0;
1563 }
1564
1565 /*
1566 * Unshare the filesystem structure if it is being shared
1567 */
1568 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1569 {
1570 struct fs_struct *fs = current->fs;
1571
1572 if (!(unshare_flags & CLONE_FS) || !fs)
1573 return 0;
1574
1575 /* don't need lock here; in the worst case we'll do useless copy */
1576 if (fs->users == 1)
1577 return 0;
1578
1579 *new_fsp = copy_fs_struct(fs);
1580 if (!*new_fsp)
1581 return -ENOMEM;
1582
1583 return 0;
1584 }
1585
1586 /*
1587 * Unsharing of sighand is not supported yet
1588 */
1589 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1590 {
1591 struct sighand_struct *sigh = current->sighand;
1592
1593 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1594 return -EINVAL;
1595 else
1596 return 0;
1597 }
1598
1599 /*
1600 * Unshare vm if it is being shared
1601 */
1602 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1603 {
1604 struct mm_struct *mm = current->mm;
1605
1606 if ((unshare_flags & CLONE_VM) &&
1607 (mm && atomic_read(&mm->mm_users) > 1)) {
1608 return -EINVAL;
1609 }
1610
1611 return 0;
1612 }
1613
1614 /*
1615 * Unshare file descriptor table if it is being shared
1616 */
1617 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1618 {
1619 struct files_struct *fd = current->files;
1620 int error = 0;
1621
1622 if ((unshare_flags & CLONE_FILES) &&
1623 (fd && atomic_read(&fd->count) > 1)) {
1624 *new_fdp = dup_fd(fd, &error);
1625 if (!*new_fdp)
1626 return error;
1627 }
1628
1629 return 0;
1630 }
1631
1632 /*
1633 * unshare allows a process to 'unshare' part of the process
1634 * context which was originally shared using clone. copy_*
1635 * functions used by do_fork() cannot be used here directly
1636 * because they modify an inactive task_struct that is being
1637 * constructed. Here we are modifying the current, active,
1638 * task_struct.
1639 */
1640 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1641 {
1642 int err = 0;
1643 struct fs_struct *fs, *new_fs = NULL;
1644 struct sighand_struct *new_sigh = NULL;
1645 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1646 struct files_struct *fd, *new_fd = NULL;
1647 struct nsproxy *new_nsproxy = NULL;
1648 int do_sysvsem = 0;
1649
1650 check_unshare_flags(&unshare_flags);
1651
1652 /* Return -EINVAL for all unsupported flags */
1653 err = -EINVAL;
1654 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1655 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1656 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1657 goto bad_unshare_out;
1658
1659 /*
1660 * CLONE_NEWIPC must also detach from the undolist: after switching
1661 * to a new ipc namespace, the semaphore arrays from the old
1662 * namespace are unreachable.
1663 */
1664 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1665 do_sysvsem = 1;
1666 if ((err = unshare_thread(unshare_flags)))
1667 goto bad_unshare_out;
1668 if ((err = unshare_fs(unshare_flags, &new_fs)))
1669 goto bad_unshare_cleanup_thread;
1670 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1671 goto bad_unshare_cleanup_fs;
1672 if ((err = unshare_vm(unshare_flags, &new_mm)))
1673 goto bad_unshare_cleanup_sigh;
1674 if ((err = unshare_fd(unshare_flags, &new_fd)))
1675 goto bad_unshare_cleanup_vm;
1676 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1677 new_fs)))
1678 goto bad_unshare_cleanup_fd;
1679
1680 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1681 if (do_sysvsem) {
1682 /*
1683 * CLONE_SYSVSEM is equivalent to sys_exit().
1684 */
1685 exit_sem(current);
1686 }
1687
1688 if (new_nsproxy) {
1689 switch_task_namespaces(current, new_nsproxy);
1690 new_nsproxy = NULL;
1691 }
1692
1693 task_lock(current);
1694
1695 if (new_fs) {
1696 fs = current->fs;
1697 write_lock(&fs->lock);
1698 current->fs = new_fs;
1699 if (--fs->users)
1700 new_fs = NULL;
1701 else
1702 new_fs = fs;
1703 write_unlock(&fs->lock);
1704 }
1705
1706 if (new_mm) {
1707 mm = current->mm;
1708 active_mm = current->active_mm;
1709 current->mm = new_mm;
1710 current->active_mm = new_mm;
1711 activate_mm(active_mm, new_mm);
1712 new_mm = mm;
1713 }
1714
1715 if (new_fd) {
1716 fd = current->files;
1717 current->files = new_fd;
1718 new_fd = fd;
1719 }
1720
1721 task_unlock(current);
1722 }
1723
1724 if (new_nsproxy)
1725 put_nsproxy(new_nsproxy);
1726
1727 bad_unshare_cleanup_fd:
1728 if (new_fd)
1729 put_files_struct(new_fd);
1730
1731 bad_unshare_cleanup_vm:
1732 if (new_mm)
1733 mmput(new_mm);
1734
1735 bad_unshare_cleanup_sigh:
1736 if (new_sigh)
1737 if (atomic_dec_and_test(&new_sigh->count))
1738 kmem_cache_free(sighand_cachep, new_sigh);
1739
1740 bad_unshare_cleanup_fs:
1741 if (new_fs)
1742 free_fs_struct(new_fs);
1743
1744 bad_unshare_cleanup_thread:
1745 bad_unshare_out:
1746 return err;
1747 }
1748
1749 /*
1750 * Helper to unshare the files of the current task.
1751 * We don't want to expose copy_files internals to
1752 * the exec layer of the kernel.
1753 */
1754
1755 int unshare_files(struct files_struct **displaced)
1756 {
1757 struct task_struct *task = current;
1758 struct files_struct *copy = NULL;
1759 int error;
1760
1761 error = unshare_fd(CLONE_FILES, &copy);
1762 if (error || !copy) {
1763 *displaced = NULL;
1764 return error;
1765 }
1766 *displaced = task->files;
1767 task_lock(task);
1768 task->files = copy;
1769 task_unlock(task);
1770 return 0;
1771 }