UPSTREAM: capabilities: ambient capabilities
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 #ifdef CONFIG_MT_PRIO_TRACER
88 # include <linux/prio_tracer.h>
89 #endif
90
91 /*
92 * Protected counters by write_lock_irq(&tasklist_lock)
93 */
94 unsigned long total_forks; /* Handle normal Linux uptimes. */
95 int nr_threads; /* The idle threads do not count.. */
96
97 int max_threads; /* tunable limit on nr_threads */
98
99 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
100
101 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
102
103 #ifdef CONFIG_PROVE_RCU
104 int lockdep_tasklist_lock_is_held(void)
105 {
106 return lockdep_is_held(&tasklist_lock);
107 }
108 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
109 #endif /* #ifdef CONFIG_PROVE_RCU */
110
111 int nr_processes(void)
112 {
113 int cpu;
114 int total = 0;
115
116 for_each_possible_cpu(cpu)
117 total += per_cpu(process_counts, cpu);
118
119 return total;
120 }
121
122 void __weak arch_release_task_struct(struct task_struct *tsk)
123 {
124 }
125
126 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
127 static struct kmem_cache *task_struct_cachep;
128
129 static inline struct task_struct *alloc_task_struct_node(int node)
130 {
131 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
132 }
133
134 static inline void free_task_struct(struct task_struct *tsk)
135 {
136 kmem_cache_free(task_struct_cachep, tsk);
137 }
138 #endif
139
140 void __weak arch_release_thread_info(struct thread_info *ti)
141 {
142 }
143
144 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
145
146 /*
147 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
148 * kmemcache based allocator.
149 */
150 # if THREAD_SIZE >= PAGE_SIZE
151 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
152 int node)
153 {
154 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
155 THREAD_SIZE_ORDER);
156
157 return page ? page_address(page) : NULL;
158 }
159
160 static inline void free_thread_info(struct thread_info *ti)
161 {
162 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
163 }
164 # else
165 static struct kmem_cache *thread_info_cache;
166
167 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
168 int node)
169 {
170 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
171 }
172
173 static void free_thread_info(struct thread_info *ti)
174 {
175 kmem_cache_free(thread_info_cache, ti);
176 }
177
178 void thread_info_cache_init(void)
179 {
180 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
181 THREAD_SIZE, 0, NULL);
182 BUG_ON(thread_info_cache == NULL);
183 }
184 # endif
185 #endif
186
187 /* SLAB cache for signal_struct structures (tsk->signal) */
188 static struct kmem_cache *signal_cachep;
189
190 /* SLAB cache for sighand_struct structures (tsk->sighand) */
191 struct kmem_cache *sighand_cachep;
192
193 /* SLAB cache for files_struct structures (tsk->files) */
194 struct kmem_cache *files_cachep;
195
196 /* SLAB cache for fs_struct structures (tsk->fs) */
197 struct kmem_cache *fs_cachep;
198
199 /* SLAB cache for vm_area_struct structures */
200 struct kmem_cache *vm_area_cachep;
201
202 /* SLAB cache for mm_struct structures (tsk->mm) */
203 static struct kmem_cache *mm_cachep;
204
205 /* Notifier list called when a task struct is freed */
206 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
207
208 static void account_kernel_stack(struct thread_info *ti, int account)
209 {
210 struct zone *zone = page_zone(virt_to_page(ti));
211
212 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
213 }
214
215 void free_task(struct task_struct *tsk)
216 {
217 account_kernel_stack(tsk->stack, -1);
218 arch_release_thread_info(tsk->stack);
219 free_thread_info(tsk->stack);
220 rt_mutex_debug_task_free(tsk);
221 ftrace_graph_exit_task(tsk);
222 put_seccomp_filter(tsk);
223 arch_release_task_struct(tsk);
224 free_task_struct(tsk);
225 }
226 EXPORT_SYMBOL(free_task);
227
228 static inline void free_signal_struct(struct signal_struct *sig)
229 {
230 taskstats_tgid_free(sig);
231 sched_autogroup_exit(sig);
232 kmem_cache_free(signal_cachep, sig);
233 }
234
235 static inline void put_signal_struct(struct signal_struct *sig)
236 {
237 if (atomic_dec_and_test(&sig->sigcnt))
238 free_signal_struct(sig);
239 }
240
241 int task_free_register(struct notifier_block *n)
242 {
243 return atomic_notifier_chain_register(&task_free_notifier, n);
244 }
245 EXPORT_SYMBOL(task_free_register);
246
247 int task_free_unregister(struct notifier_block *n)
248 {
249 return atomic_notifier_chain_unregister(&task_free_notifier, n);
250 }
251 EXPORT_SYMBOL(task_free_unregister);
252
253 void __put_task_struct(struct task_struct *tsk)
254 {
255 WARN_ON(!tsk->exit_state);
256 WARN_ON(atomic_read(&tsk->usage));
257 WARN_ON(tsk == current);
258
259 security_task_free(tsk);
260 exit_creds(tsk);
261 delayacct_tsk_free(tsk);
262 put_signal_struct(tsk->signal);
263
264 atomic_notifier_call_chain(&task_free_notifier, 0, tsk);
265 if (!profile_handoff_task(tsk))
266 free_task(tsk);
267 }
268 EXPORT_SYMBOL_GPL(__put_task_struct);
269
270 void __init __weak arch_task_cache_init(void) { }
271
272 void __init fork_init(unsigned long mempages)
273 {
274 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
275 #ifndef ARCH_MIN_TASKALIGN
276 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
277 #endif
278 /* create a slab on which task_structs can be allocated */
279 task_struct_cachep =
280 kmem_cache_create("task_struct", sizeof(struct task_struct),
281 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
282 #endif
283
284 /* do the arch specific task caches init */
285 arch_task_cache_init();
286
287 /*
288 * The default maximum number of threads is set to a safe
289 * value: the thread structures can take up at most half
290 * of memory.
291 */
292 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
293
294 /*
295 * we need to allow at least 20 threads to boot a system
296 */
297 if (max_threads < 20)
298 max_threads = 20;
299
300 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
301 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
302 init_task.signal->rlim[RLIMIT_SIGPENDING] =
303 init_task.signal->rlim[RLIMIT_NPROC];
304 }
305
306 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
307 struct task_struct *src)
308 {
309 *dst = *src;
310 return 0;
311 }
312
313 static struct task_struct *dup_task_struct(struct task_struct *orig)
314 {
315 struct task_struct *tsk;
316 struct thread_info *ti;
317 unsigned long *stackend;
318 int node = tsk_fork_get_node(orig);
319 int err;
320
321 tsk = alloc_task_struct_node(node);
322 if (!tsk){
323 printk("[%d:%s] fork fail at alloc_tsk_node, please check kmem_cache_alloc_node()\n", current->pid, current->comm);
324 return NULL;
325 }
326 ti = alloc_thread_info_node(tsk, node);
327 if (!ti) {
328 printk("[%d:%s] fork fail at alloc_t_info_node, please check alloc_pages_node()\n", current->pid, current->comm);
329 goto free_tsk;
330 }
331
332 err = arch_dup_task_struct(tsk, orig);
333 if (err){
334 printk("[%d:%s] fork fail at arch_dup_task_struct, err:%d \n", current->pid, current->comm, err);
335 goto free_ti;
336 }
337
338 tsk->flags &= ~PF_SU;
339
340 tsk->stack = ti;
341 #ifdef CONFIG_SECCOMP
342 /*
343 * We must handle setting up seccomp filters once we're under
344 * the sighand lock in case orig has changed between now and
345 * then. Until then, filter must be NULL to avoid messing up
346 * the usage counts on the error path calling free_task.
347 */
348 tsk->seccomp.filter = NULL;
349 #endif
350
351 setup_thread_stack(tsk, orig);
352 clear_user_return_notifier(tsk);
353 clear_tsk_need_resched(tsk);
354 stackend = end_of_stack(tsk);
355 *stackend = STACK_END_MAGIC; /* for overflow detection */
356
357 #ifdef CONFIG_CC_STACKPROTECTOR
358 tsk->stack_canary = get_random_int();
359 #endif
360
361 /*
362 * One for us, one for whoever does the "release_task()" (usually
363 * parent)
364 */
365 atomic_set(&tsk->usage, 2);
366 #ifdef CONFIG_BLK_DEV_IO_TRACE
367 tsk->btrace_seq = 0;
368 #endif
369 tsk->splice_pipe = NULL;
370 tsk->task_frag.page = NULL;
371
372 account_kernel_stack(ti, 1);
373
374 return tsk;
375
376 free_ti:
377 free_thread_info(ti);
378 free_tsk:
379 free_task_struct(tsk);
380 return NULL;
381 }
382
383 #ifdef CONFIG_MMU
384 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
385 {
386 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
387 struct rb_node **rb_link, *rb_parent;
388 int retval;
389 unsigned long charge;
390 struct mempolicy *pol;
391
392 uprobe_start_dup_mmap();
393 down_write(&oldmm->mmap_sem);
394 flush_cache_dup_mm(oldmm);
395 uprobe_dup_mmap(oldmm, mm);
396 /*
397 * Not linked in yet - no deadlock potential:
398 */
399 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
400
401 mm->locked_vm = 0;
402 mm->mmap = NULL;
403 mm->mmap_cache = NULL;
404 mm->free_area_cache = oldmm->mmap_base;
405 mm->cached_hole_size = ~0UL;
406 mm->map_count = 0;
407 cpumask_clear(mm_cpumask(mm));
408 mm->mm_rb = RB_ROOT;
409 rb_link = &mm->mm_rb.rb_node;
410 rb_parent = NULL;
411 pprev = &mm->mmap;
412 retval = ksm_fork(mm, oldmm);
413 if (retval)
414 goto out;
415 retval = khugepaged_fork(mm, oldmm);
416 if (retval)
417 goto out;
418
419 prev = NULL;
420 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
421 struct file *file;
422
423 if (mpnt->vm_flags & VM_DONTCOPY) {
424 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
425 -vma_pages(mpnt));
426 continue;
427 }
428 charge = 0;
429 if (mpnt->vm_flags & VM_ACCOUNT) {
430 unsigned long len = vma_pages(mpnt);
431
432 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
433 goto fail_nomem;
434 charge = len;
435 }
436 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
437 if (!tmp)
438 goto fail_nomem;
439 *tmp = *mpnt;
440 INIT_LIST_HEAD(&tmp->anon_vma_chain);
441 pol = mpol_dup(vma_policy(mpnt));
442 retval = PTR_ERR(pol);
443 if (IS_ERR(pol))
444 goto fail_nomem_policy;
445 vma_set_policy(tmp, pol);
446 tmp->vm_mm = mm;
447 if (anon_vma_fork(tmp, mpnt))
448 goto fail_nomem_anon_vma_fork;
449 tmp->vm_flags &= ~VM_LOCKED;
450 tmp->vm_next = tmp->vm_prev = NULL;
451 file = tmp->vm_file;
452 if (file) {
453 struct inode *inode = file_inode(file);
454 struct address_space *mapping = file->f_mapping;
455
456 get_file(file);
457 if (tmp->vm_flags & VM_DENYWRITE)
458 atomic_dec(&inode->i_writecount);
459 mutex_lock(&mapping->i_mmap_mutex);
460 if (tmp->vm_flags & VM_SHARED)
461 mapping->i_mmap_writable++;
462 flush_dcache_mmap_lock(mapping);
463 /* insert tmp into the share list, just after mpnt */
464 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
465 vma_nonlinear_insert(tmp,
466 &mapping->i_mmap_nonlinear);
467 else
468 vma_interval_tree_insert_after(tmp, mpnt,
469 &mapping->i_mmap);
470 flush_dcache_mmap_unlock(mapping);
471 mutex_unlock(&mapping->i_mmap_mutex);
472 }
473
474 /*
475 * Clear hugetlb-related page reserves for children. This only
476 * affects MAP_PRIVATE mappings. Faults generated by the child
477 * are not guaranteed to succeed, even if read-only
478 */
479 if (is_vm_hugetlb_page(tmp))
480 reset_vma_resv_huge_pages(tmp);
481
482 /*
483 * Link in the new vma and copy the page table entries.
484 */
485 *pprev = tmp;
486 pprev = &tmp->vm_next;
487 tmp->vm_prev = prev;
488 prev = tmp;
489
490 __vma_link_rb(mm, tmp, rb_link, rb_parent);
491 rb_link = &tmp->vm_rb.rb_right;
492 rb_parent = &tmp->vm_rb;
493
494 mm->map_count++;
495 retval = copy_page_range(mm, oldmm, mpnt);
496
497 if (tmp->vm_ops && tmp->vm_ops->open)
498 tmp->vm_ops->open(tmp);
499
500 if (retval)
501 goto out;
502 }
503 /* a new mm has just been created */
504 arch_dup_mmap(oldmm, mm);
505 retval = 0;
506 out:
507 up_write(&mm->mmap_sem);
508 flush_tlb_mm(oldmm);
509 up_write(&oldmm->mmap_sem);
510 uprobe_end_dup_mmap();
511 return retval;
512 fail_nomem_anon_vma_fork:
513 mpol_put(pol);
514 fail_nomem_policy:
515 kmem_cache_free(vm_area_cachep, tmp);
516 fail_nomem:
517 retval = -ENOMEM;
518 vm_unacct_memory(charge);
519 goto out;
520 }
521
522 static inline int mm_alloc_pgd(struct mm_struct *mm)
523 {
524 mm->pgd = pgd_alloc(mm);
525 if (unlikely(!mm->pgd))
526 return -ENOMEM;
527 return 0;
528 }
529
530 static inline void mm_free_pgd(struct mm_struct *mm)
531 {
532 pgd_free(mm, mm->pgd);
533 }
534 #else
535 #define dup_mmap(mm, oldmm) (0)
536 #define mm_alloc_pgd(mm) (0)
537 #define mm_free_pgd(mm)
538 #endif /* CONFIG_MMU */
539
540 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
541
542 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
543 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
544
545 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
546
547 static int __init coredump_filter_setup(char *s)
548 {
549 default_dump_filter =
550 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
551 MMF_DUMP_FILTER_MASK;
552 return 1;
553 }
554
555 __setup("coredump_filter=", coredump_filter_setup);
556
557 #include <linux/init_task.h>
558
559 static void mm_init_aio(struct mm_struct *mm)
560 {
561 #ifdef CONFIG_AIO
562 spin_lock_init(&mm->ioctx_lock);
563 INIT_HLIST_HEAD(&mm->ioctx_list);
564 #endif
565 }
566
567 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
568 {
569 atomic_set(&mm->mm_users, 1);
570 atomic_set(&mm->mm_count, 1);
571 init_rwsem(&mm->mmap_sem);
572 INIT_LIST_HEAD(&mm->mmlist);
573 mm->flags = (current->mm) ?
574 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
575 mm->core_state = NULL;
576 mm->nr_ptes = 0;
577 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
578 spin_lock_init(&mm->page_table_lock);
579 mm->free_area_cache = TASK_UNMAPPED_BASE;
580 mm->cached_hole_size = ~0UL;
581 mm_init_aio(mm);
582 mm_init_owner(mm, p);
583 clear_tlb_flush_pending(mm);
584
585 if (likely(!mm_alloc_pgd(mm))) {
586 mm->def_flags = 0;
587 mmu_notifier_mm_init(mm);
588 return mm;
589 }
590
591 free_mm(mm);
592 return NULL;
593 }
594
595 static void check_mm(struct mm_struct *mm)
596 {
597 int i;
598
599 for (i = 0; i < NR_MM_COUNTERS; i++) {
600 long x = atomic_long_read(&mm->rss_stat.count[i]);
601
602 if (unlikely(x))
603 printk(KERN_ALERT "BUG: Bad rss-counter state "
604 "mm:%p idx:%d val:%ld\n", mm, i, x);
605 }
606
607 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
608 VM_BUG_ON(mm->pmd_huge_pte);
609 #endif
610 }
611
612 /*
613 * Allocate and initialize an mm_struct.
614 */
615 struct mm_struct *mm_alloc(void)
616 {
617 struct mm_struct *mm;
618
619 mm = allocate_mm();
620 if (!mm)
621 return NULL;
622
623 memset(mm, 0, sizeof(*mm));
624 mm_init_cpumask(mm);
625 return mm_init(mm, current);
626 }
627
628 /*
629 * Called when the last reference to the mm
630 * is dropped: either by a lazy thread or by
631 * mmput. Free the page directory and the mm.
632 */
633 void __mmdrop(struct mm_struct *mm)
634 {
635 BUG_ON(mm == &init_mm);
636 mm_free_pgd(mm);
637 destroy_context(mm);
638 mmu_notifier_mm_destroy(mm);
639 check_mm(mm);
640 free_mm(mm);
641 }
642 EXPORT_SYMBOL_GPL(__mmdrop);
643
644 /*
645 * Decrement the use count and release all resources for an mm.
646 */
647 void mmput(struct mm_struct *mm)
648 {
649 might_sleep();
650
651 if (atomic_dec_and_test(&mm->mm_users)) {
652 uprobe_clear_state(mm);
653 exit_aio(mm);
654 ksm_exit(mm);
655 khugepaged_exit(mm); /* must run before exit_mmap */
656 exit_mmap(mm);
657 set_mm_exe_file(mm, NULL);
658 if (!list_empty(&mm->mmlist)) {
659 spin_lock(&mmlist_lock);
660 list_del(&mm->mmlist);
661 spin_unlock(&mmlist_lock);
662 }
663 if (mm->binfmt)
664 module_put(mm->binfmt->module);
665 mmdrop(mm);
666 }
667 }
668 EXPORT_SYMBOL_GPL(mmput);
669
670 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
671 {
672 if (new_exe_file)
673 get_file(new_exe_file);
674 if (mm->exe_file)
675 fput(mm->exe_file);
676 mm->exe_file = new_exe_file;
677 }
678
679 struct file *get_mm_exe_file(struct mm_struct *mm)
680 {
681 struct file *exe_file;
682
683 /* We need mmap_sem to protect against races with removal of exe_file */
684 down_read(&mm->mmap_sem);
685 exe_file = mm->exe_file;
686 if (exe_file)
687 get_file(exe_file);
688 up_read(&mm->mmap_sem);
689 return exe_file;
690 }
691
692 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
693 {
694 /* It's safe to write the exe_file pointer without exe_file_lock because
695 * this is called during fork when the task is not yet in /proc */
696 newmm->exe_file = get_mm_exe_file(oldmm);
697 }
698
699 /**
700 * get_task_mm - acquire a reference to the task's mm
701 *
702 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
703 * this kernel workthread has transiently adopted a user mm with use_mm,
704 * to do its AIO) is not set and if so returns a reference to it, after
705 * bumping up the use count. User must release the mm via mmput()
706 * after use. Typically used by /proc and ptrace.
707 */
708 struct mm_struct *get_task_mm(struct task_struct *task)
709 {
710 struct mm_struct *mm;
711
712 task_lock(task);
713 mm = task->mm;
714 if (mm) {
715 if (task->flags & PF_KTHREAD)
716 mm = NULL;
717 else
718 atomic_inc(&mm->mm_users);
719 }
720 task_unlock(task);
721 return mm;
722 }
723 EXPORT_SYMBOL_GPL(get_task_mm);
724
725 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
726 {
727 struct mm_struct *mm;
728 int err;
729
730 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
731 if (err)
732 return ERR_PTR(err);
733
734 mm = get_task_mm(task);
735 if (mm && mm != current->mm &&
736 !ptrace_may_access(task, mode) &&
737 !capable(CAP_SYS_RESOURCE)) {
738 mmput(mm);
739 mm = ERR_PTR(-EACCES);
740 }
741 mutex_unlock(&task->signal->cred_guard_mutex);
742
743 return mm;
744 }
745
746 static void complete_vfork_done(struct task_struct *tsk)
747 {
748 struct completion *vfork;
749
750 task_lock(tsk);
751 vfork = tsk->vfork_done;
752 if (likely(vfork)) {
753 tsk->vfork_done = NULL;
754 complete(vfork);
755 }
756 task_unlock(tsk);
757 }
758
759 static int wait_for_vfork_done(struct task_struct *child,
760 struct completion *vfork)
761 {
762 int killed;
763
764 freezer_do_not_count();
765 killed = wait_for_completion_killable(vfork);
766 freezer_count();
767
768 if (killed) {
769 task_lock(child);
770 child->vfork_done = NULL;
771 task_unlock(child);
772 }
773
774 put_task_struct(child);
775 return killed;
776 }
777
778 /* Please note the differences between mmput and mm_release.
779 * mmput is called whenever we stop holding onto a mm_struct,
780 * error success whatever.
781 *
782 * mm_release is called after a mm_struct has been removed
783 * from the current process.
784 *
785 * This difference is important for error handling, when we
786 * only half set up a mm_struct for a new process and need to restore
787 * the old one. Because we mmput the new mm_struct before
788 * restoring the old one. . .
789 * Eric Biederman 10 January 1998
790 */
791 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
792 {
793 /* Get rid of any futexes when releasing the mm */
794 #ifdef CONFIG_FUTEX
795 if (unlikely(tsk->robust_list)) {
796 exit_robust_list(tsk);
797 tsk->robust_list = NULL;
798 }
799 #ifdef CONFIG_COMPAT
800 if (unlikely(tsk->compat_robust_list)) {
801 compat_exit_robust_list(tsk);
802 tsk->compat_robust_list = NULL;
803 }
804 #endif
805 if (unlikely(!list_empty(&tsk->pi_state_list)))
806 exit_pi_state_list(tsk);
807 #endif
808
809 uprobe_free_utask(tsk);
810
811 /* Get rid of any cached register state */
812 deactivate_mm(tsk, mm);
813
814 /*
815 * Signal userspace if we're not exiting with a core dump
816 * because we want to leave the value intact for debugging
817 * purposes.
818 */
819 if (tsk->clear_child_tid) {
820 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
821 atomic_read(&mm->mm_users) > 1) {
822 /*
823 * We don't check the error code - if userspace has
824 * not set up a proper pointer then tough luck.
825 */
826 put_user(0, tsk->clear_child_tid);
827 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
828 1, NULL, NULL, 0);
829 }
830 tsk->clear_child_tid = NULL;
831 }
832
833 /*
834 * All done, finally we can wake up parent and return this mm to him.
835 * Also kthread_stop() uses this completion for synchronization.
836 */
837 if (tsk->vfork_done)
838 complete_vfork_done(tsk);
839 }
840
841 /*
842 * Allocate a new mm structure and copy contents from the
843 * mm structure of the passed in task structure.
844 */
845 struct mm_struct *dup_mm(struct task_struct *tsk)
846 {
847 struct mm_struct *mm, *oldmm = current->mm;
848 int err;
849
850 if (!oldmm)
851 return NULL;
852
853 mm = allocate_mm();
854 if (!mm)
855 goto fail_nomem;
856
857 memcpy(mm, oldmm, sizeof(*mm));
858 mm_init_cpumask(mm);
859
860 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
861 mm->pmd_huge_pte = NULL;
862 #endif
863 #ifdef CONFIG_NUMA_BALANCING
864 mm->first_nid = NUMA_PTE_SCAN_INIT;
865 #endif
866 if (!mm_init(mm, tsk))
867 goto fail_nomem;
868
869 if (init_new_context(tsk, mm))
870 goto fail_nocontext;
871
872 dup_mm_exe_file(oldmm, mm);
873
874 err = dup_mmap(mm, oldmm);
875 if (err)
876 goto free_pt;
877
878 mm->hiwater_rss = get_mm_rss(mm);
879 mm->hiwater_vm = mm->total_vm;
880
881 if (mm->binfmt && !try_module_get(mm->binfmt->module))
882 goto free_pt;
883
884 return mm;
885
886 free_pt:
887 /* don't put binfmt in mmput, we haven't got module yet */
888 mm->binfmt = NULL;
889 mmput(mm);
890
891 fail_nomem:
892 return NULL;
893
894 fail_nocontext:
895 /*
896 * If init_new_context() failed, we cannot use mmput() to free the mm
897 * because it calls destroy_context()
898 */
899 mm_free_pgd(mm);
900 free_mm(mm);
901 return NULL;
902 }
903
904 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
905 {
906 struct mm_struct *mm, *oldmm;
907 int retval;
908
909 tsk->min_flt = tsk->maj_flt = 0;
910 #ifdef CONFIG_ZRAM
911 tsk->fm_flt = tsk->swap_in = tsk->swap_out = 0;
912 #endif
913 tsk->nvcsw = tsk->nivcsw = 0;
914 #ifdef CONFIG_DETECT_HUNG_TASK
915 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
916 #endif
917
918 tsk->mm = NULL;
919 tsk->active_mm = NULL;
920
921 /*
922 * Are we cloning a kernel thread?
923 *
924 * We need to steal a active VM for that..
925 */
926 oldmm = current->mm;
927 if (!oldmm)
928 return 0;
929
930 if (clone_flags & CLONE_VM) {
931 atomic_inc(&oldmm->mm_users);
932 mm = oldmm;
933 goto good_mm;
934 }
935
936 retval = -ENOMEM;
937 mm = dup_mm(tsk);
938 if (!mm)
939 goto fail_nomem;
940
941 good_mm:
942 tsk->mm = mm;
943 tsk->active_mm = mm;
944 return 0;
945
946 fail_nomem:
947 return retval;
948 }
949
950 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
951 {
952 struct fs_struct *fs = current->fs;
953 if (clone_flags & CLONE_FS) {
954 /* tsk->fs is already what we want */
955 spin_lock(&fs->lock);
956 if (fs->in_exec) {
957 spin_unlock(&fs->lock);
958 return -EAGAIN;
959 }
960 fs->users++;
961 spin_unlock(&fs->lock);
962 return 0;
963 }
964 tsk->fs = copy_fs_struct(fs);
965 if (!tsk->fs)
966 return -ENOMEM;
967 return 0;
968 }
969
970 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
971 {
972 struct files_struct *oldf, *newf;
973 int error = 0;
974
975 /*
976 * A background process may not have any files ...
977 */
978 oldf = current->files;
979 if (!oldf)
980 goto out;
981
982 if (clone_flags & CLONE_FILES) {
983 atomic_inc(&oldf->count);
984 goto out;
985 }
986
987 newf = dup_fd(oldf, &error);
988 if (!newf)
989 goto out;
990
991 tsk->files = newf;
992 error = 0;
993 out:
994 return error;
995 }
996
997 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
998 {
999 #ifdef CONFIG_BLOCK
1000 struct io_context *ioc = current->io_context;
1001 struct io_context *new_ioc;
1002
1003 if (!ioc)
1004 return 0;
1005 /*
1006 * Share io context with parent, if CLONE_IO is set
1007 */
1008 if (clone_flags & CLONE_IO) {
1009 ioc_task_link(ioc);
1010 tsk->io_context = ioc;
1011 } else if (ioprio_valid(ioc->ioprio)) {
1012 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1013 if (unlikely(!new_ioc))
1014 return -ENOMEM;
1015
1016 new_ioc->ioprio = ioc->ioprio;
1017 put_io_context(new_ioc);
1018 }
1019 #endif
1020 return 0;
1021 }
1022
1023 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1024 {
1025 struct sighand_struct *sig;
1026
1027 if (clone_flags & CLONE_SIGHAND) {
1028 atomic_inc(&current->sighand->count);
1029 return 0;
1030 }
1031 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1032 rcu_assign_pointer(tsk->sighand, sig);
1033 if (!sig)
1034 return -ENOMEM;
1035 atomic_set(&sig->count, 1);
1036 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1037 return 0;
1038 }
1039
1040 void __cleanup_sighand(struct sighand_struct *sighand)
1041 {
1042 if (atomic_dec_and_test(&sighand->count)) {
1043 signalfd_cleanup(sighand);
1044 kmem_cache_free(sighand_cachep, sighand);
1045 }
1046 }
1047
1048
1049 /*
1050 * Initialize POSIX timer handling for a thread group.
1051 */
1052 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1053 {
1054 unsigned long cpu_limit;
1055
1056 /* Thread group counters. */
1057 thread_group_cputime_init(sig);
1058
1059 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1060 if (cpu_limit != RLIM_INFINITY) {
1061 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1062 sig->cputimer.running = 1;
1063 }
1064
1065 /* The timer lists. */
1066 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1067 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1068 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1069 }
1070
1071 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1072 {
1073 struct signal_struct *sig;
1074
1075 if (clone_flags & CLONE_THREAD)
1076 return 0;
1077
1078 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1079 tsk->signal = sig;
1080 if (!sig)
1081 return -ENOMEM;
1082
1083 sig->nr_threads = 1;
1084 atomic_set(&sig->live, 1);
1085 atomic_set(&sig->sigcnt, 1);
1086
1087 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1088 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1089 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1090
1091 init_waitqueue_head(&sig->wait_chldexit);
1092 sig->curr_target = tsk;
1093 init_sigpending(&sig->shared_pending);
1094 INIT_LIST_HEAD(&sig->posix_timers);
1095
1096 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1097 sig->real_timer.function = it_real_fn;
1098
1099 task_lock(current->group_leader);
1100 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1101 task_unlock(current->group_leader);
1102
1103 posix_cpu_timers_init_group(sig);
1104
1105 tty_audit_fork(sig);
1106 sched_autogroup_fork(sig);
1107
1108 #ifdef CONFIG_CGROUPS
1109 init_rwsem(&sig->group_rwsem);
1110 #endif
1111
1112 sig->oom_score_adj = current->signal->oom_score_adj;
1113 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1114
1115 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1116 current->signal->is_child_subreaper;
1117
1118 mutex_init(&sig->cred_guard_mutex);
1119
1120 return 0;
1121 }
1122
1123 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1124 {
1125 unsigned long new_flags = p->flags;
1126
1127 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1128 new_flags |= PF_FORKNOEXEC;
1129 p->flags = new_flags;
1130 }
1131
1132 static void copy_seccomp(struct task_struct *p)
1133 {
1134 #ifdef CONFIG_SECCOMP
1135 /*
1136 * Must be called with sighand->lock held, which is common to
1137 * all threads in the group. Holding cred_guard_mutex is not
1138 * needed because this new task is not yet running and cannot
1139 * be racing exec.
1140 */
1141 assert_spin_locked(&current->sighand->siglock);
1142
1143 /* Ref-count the new filter user, and assign it. */
1144 get_seccomp_filter(current);
1145 p->seccomp = current->seccomp;
1146
1147 /*
1148 * Explicitly enable no_new_privs here in case it got set
1149 * between the task_struct being duplicated and holding the
1150 * sighand lock. The seccomp state and nnp must be in sync.
1151 */
1152 if (task_no_new_privs(current))
1153 task_set_no_new_privs(p);
1154
1155 /*
1156 * If the parent gained a seccomp mode after copying thread
1157 * flags and between before we held the sighand lock, we have
1158 * to manually enable the seccomp thread flag here.
1159 */
1160 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1161 set_tsk_thread_flag(p, TIF_SECCOMP);
1162 #endif
1163 }
1164
1165 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1166 {
1167 current->clear_child_tid = tidptr;
1168
1169 return task_pid_vnr(current);
1170 }
1171
1172 static void rt_mutex_init_task(struct task_struct *p)
1173 {
1174 raw_spin_lock_init(&p->pi_lock);
1175 #ifdef CONFIG_RT_MUTEXES
1176 plist_head_init(&p->pi_waiters);
1177 p->pi_blocked_on = NULL;
1178 #endif
1179 }
1180
1181 #ifdef CONFIG_MM_OWNER
1182 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1183 {
1184 mm->owner = p;
1185 }
1186 #endif /* CONFIG_MM_OWNER */
1187
1188 /*
1189 * Initialize POSIX timer handling for a single task.
1190 */
1191 static void posix_cpu_timers_init(struct task_struct *tsk)
1192 {
1193 tsk->cputime_expires.prof_exp = 0;
1194 tsk->cputime_expires.virt_exp = 0;
1195 tsk->cputime_expires.sched_exp = 0;
1196 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1197 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1198 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1199 }
1200
1201 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1202 static void mt_init_thread_group(struct task_struct *p){
1203 #ifdef CONFIG_MT_SCHED_INFO
1204 struct task_struct *tg = p->group_leader;
1205 #endif
1206
1207 p->thread_group_info[0].cfs_nr_running = 0;
1208 p->thread_group_info[0].nr_running = 0 ;
1209 p->thread_group_info[0].load_avg_ratio = 0;
1210 p->thread_group_info[1].cfs_nr_running = 0;
1211 p->thread_group_info[1].nr_running = 0;
1212 p->thread_group_info[1].load_avg_ratio = 0;
1213
1214 #ifdef CONFIG_MT_SCHED_INFO
1215 mt_sched_printf("fork %d:%s %d:%s %lu %lu %lu, %lu %lu %lu",
1216 tg->pid, tg->comm, p->pid, p->comm,
1217 tg->thread_group_info[0].nr_running,
1218 tg->thread_group_info[0].cfs_nr_running,
1219 tg->thread_group_info[0].load_avg_ratio,
1220 tg->thread_group_info[1].cfs_nr_running,
1221 tg->thread_group_info[1].nr_running,
1222 tg->thread_group_info[1].load_avg_ratio);
1223 #endif
1224 }
1225 #endif
1226
1227 /*
1228 * This creates a new process as a copy of the old one,
1229 * but does not actually start it yet.
1230 *
1231 * It copies the registers, and all the appropriate
1232 * parts of the process environment (as per the clone
1233 * flags). The actual kick-off is left to the caller.
1234 */
1235 static struct task_struct *copy_process(unsigned long clone_flags,
1236 unsigned long stack_start,
1237 unsigned long stack_size,
1238 int __user *child_tidptr,
1239 struct pid *pid,
1240 int trace)
1241 {
1242 int retval;
1243 struct task_struct *p;
1244
1245 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS)){
1246 printk("[%d:%s] fork fail at cpp 1, clone_flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1247 return ERR_PTR(-EINVAL);
1248 }
1249 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1250 return ERR_PTR(-EINVAL);
1251
1252 /*
1253 * Thread groups must share signals as well, and detached threads
1254 * can only be started up within the thread group.
1255 */
1256 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND)){
1257 printk("[%d:%s] fork fail at cpp 2, clone_flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1258 return ERR_PTR(-EINVAL);
1259 }
1260 /*
1261 * Shared signal handlers imply shared VM. By way of the above,
1262 * thread groups also imply shared VM. Blocking this case allows
1263 * for various simplifications in other code.
1264 */
1265 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM)){
1266 printk("[%d:%s] fork fail at cpp 3, clone_flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1267 return ERR_PTR(-EINVAL);
1268 }
1269 /*
1270 * Siblings of global init remain as zombies on exit since they are
1271 * not reaped by their parent (swapper). To solve this and to avoid
1272 * multi-rooted process trees, prevent global and container-inits
1273 * from creating siblings.
1274 */
1275 if ((clone_flags & CLONE_PARENT) &&
1276 current->signal->flags & SIGNAL_UNKILLABLE){
1277 printk("[%d:%s] fork fail at cpp 4, clone_flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1278 return ERR_PTR(-EINVAL);
1279 }
1280 /*
1281 * If the new process will be in a different pid namespace don't
1282 * allow it to share a thread group or signal handlers with the
1283 * forking task.
1284 */
1285 if ((clone_flags & (CLONE_SIGHAND | CLONE_NEWPID)) &&
1286 (task_active_pid_ns(current) != current->nsproxy->pid_ns))
1287 return ERR_PTR(-EINVAL);
1288
1289 retval = security_task_create(clone_flags);
1290 if (retval)
1291 goto fork_out;
1292
1293 retval = -ENOMEM;
1294 p = dup_task_struct(current);
1295 if (!p){
1296 printk("[%d:%s] fork fail at dup_task_struc, p=%p\n", current->pid, current->comm, p);
1297 goto fork_out;
1298 }
1299
1300 ftrace_graph_init_task(p);
1301
1302 rt_mutex_init_task(p);
1303 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1304 raw_spin_lock_init(&p->thread_group_info_lock);
1305 #endif
1306
1307 #ifdef CONFIG_PROVE_LOCKING
1308 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1309 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1310 #endif
1311 retval = -EAGAIN;
1312 if (atomic_read(&p->real_cred->user->processes) >=
1313 task_rlimit(p, RLIMIT_NPROC)) {
1314 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1315 p->real_cred->user != INIT_USER)
1316 goto bad_fork_free;
1317 }
1318 current->flags &= ~PF_NPROC_EXCEEDED;
1319
1320 retval = copy_creds(p, clone_flags);
1321 if (retval < 0)
1322 goto bad_fork_free;
1323
1324 /*
1325 * If multiple threads are within copy_process(), then this check
1326 * triggers too late. This doesn't hurt, the check is only there
1327 * to stop root fork bombs.
1328 */
1329 retval = -EAGAIN;
1330 if (nr_threads >= max_threads)
1331 goto bad_fork_cleanup_count;
1332
1333 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1334 goto bad_fork_cleanup_count;
1335
1336 p->did_exec = 0;
1337 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1338 copy_flags(clone_flags, p);
1339 INIT_LIST_HEAD(&p->children);
1340 INIT_LIST_HEAD(&p->sibling);
1341 rcu_copy_process(p);
1342 p->vfork_done = NULL;
1343 spin_lock_init(&p->alloc_lock);
1344
1345 init_sigpending(&p->pending);
1346
1347 p->utime = p->stime = p->gtime = 0;
1348 p->utimescaled = p->stimescaled = 0;
1349 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1350 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1351 #endif
1352 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1353 seqlock_init(&p->vtime_seqlock);
1354 p->vtime_snap = 0;
1355 p->vtime_snap_whence = VTIME_SLEEPING;
1356 #endif
1357
1358 #if defined(SPLIT_RSS_COUNTING)
1359 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1360 #endif
1361
1362 p->default_timer_slack_ns = current->timer_slack_ns;
1363
1364 task_io_accounting_init(&p->ioac);
1365 acct_clear_integrals(p);
1366
1367 posix_cpu_timers_init(p);
1368
1369 do_posix_clock_monotonic_gettime(&p->start_time);
1370 p->real_start_time = p->start_time;
1371 monotonic_to_bootbased(&p->real_start_time);
1372 p->io_context = NULL;
1373 p->audit_context = NULL;
1374 if (clone_flags & CLONE_THREAD)
1375 threadgroup_change_begin(current);
1376 cgroup_fork(p);
1377 #ifdef CONFIG_NUMA
1378 p->mempolicy = mpol_dup(p->mempolicy);
1379 if (IS_ERR(p->mempolicy)) {
1380 retval = PTR_ERR(p->mempolicy);
1381 p->mempolicy = NULL;
1382 goto bad_fork_cleanup_cgroup;
1383 }
1384 mpol_fix_fork_child_flag(p);
1385 #endif
1386 #ifdef CONFIG_CPUSETS
1387 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1388 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1389 seqcount_init(&p->mems_allowed_seq);
1390 #endif
1391 #ifdef CONFIG_TRACE_IRQFLAGS
1392 p->irq_events = 0;
1393 p->hardirqs_enabled = 0;
1394 p->hardirq_enable_ip = 0;
1395 p->hardirq_enable_event = 0;
1396 p->hardirq_disable_ip = _THIS_IP_;
1397 p->hardirq_disable_event = 0;
1398 p->softirqs_enabled = 1;
1399 p->softirq_enable_ip = _THIS_IP_;
1400 p->softirq_enable_event = 0;
1401 p->softirq_disable_ip = 0;
1402 p->softirq_disable_event = 0;
1403 p->hardirq_context = 0;
1404 p->softirq_context = 0;
1405 #endif
1406 #ifdef CONFIG_LOCKDEP
1407 p->lockdep_depth = 0; /* no locks held yet */
1408 p->curr_chain_key = 0;
1409 p->lockdep_recursion = 0;
1410 #endif
1411
1412 #ifdef CONFIG_DEBUG_MUTEXES
1413 p->blocked_on = NULL; /* not blocked yet */
1414 #endif
1415 #ifdef CONFIG_MEMCG
1416 p->memcg_batch.do_batch = 0;
1417 p->memcg_batch.memcg = NULL;
1418 #endif
1419 #ifdef CONFIG_BCACHE
1420 p->sequential_io = 0;
1421 p->sequential_io_avg = 0;
1422 #endif
1423
1424 /* Perform scheduler related setup. Assign this task to a CPU. */
1425 sched_fork(p);
1426
1427 retval = perf_event_init_task(p);
1428 if (retval)
1429 goto bad_fork_cleanup_policy;
1430 retval = audit_alloc(p);
1431 if (retval)
1432 goto bad_fork_cleanup_perf;
1433 /* copy all the process information */
1434 retval = copy_semundo(clone_flags, p);
1435 if (retval)
1436 goto bad_fork_cleanup_audit;
1437 retval = copy_files(clone_flags, p);
1438 if (retval)
1439 goto bad_fork_cleanup_semundo;
1440 retval = copy_fs(clone_flags, p);
1441 if (retval)
1442 goto bad_fork_cleanup_files;
1443 retval = copy_sighand(clone_flags, p);
1444 if (retval)
1445 goto bad_fork_cleanup_fs;
1446 retval = copy_signal(clone_flags, p);
1447 if (retval)
1448 goto bad_fork_cleanup_sighand;
1449 retval = copy_mm(clone_flags, p);
1450 if (retval)
1451 goto bad_fork_cleanup_signal;
1452 retval = copy_namespaces(clone_flags, p);
1453 if (retval)
1454 goto bad_fork_cleanup_mm;
1455 retval = copy_io(clone_flags, p);
1456 if (retval)
1457 goto bad_fork_cleanup_namespaces;
1458 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1459 if (retval)
1460 goto bad_fork_cleanup_io;
1461
1462 if (pid != &init_struct_pid) {
1463 retval = -ENOMEM;
1464 pid = alloc_pid(p->nsproxy->pid_ns);
1465 if (!pid)
1466 goto bad_fork_cleanup_io;
1467 }
1468
1469 p->pid = pid_nr(pid);
1470 p->tgid = p->pid;
1471 if (clone_flags & CLONE_THREAD)
1472 p->tgid = current->tgid;
1473
1474 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1475 /*
1476 * Clear TID on mm_release()?
1477 */
1478 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1479 #ifdef CONFIG_BLOCK
1480 p->plug = NULL;
1481 #endif
1482 #ifdef CONFIG_FUTEX
1483 p->robust_list = NULL;
1484 #ifdef CONFIG_COMPAT
1485 p->compat_robust_list = NULL;
1486 #endif
1487 INIT_LIST_HEAD(&p->pi_state_list);
1488 p->pi_state_cache = NULL;
1489 #endif
1490 uprobe_copy_process(p);
1491 /*
1492 * sigaltstack should be cleared when sharing the same VM
1493 */
1494 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1495 p->sas_ss_sp = p->sas_ss_size = 0;
1496
1497 /*
1498 * Syscall tracing and stepping should be turned off in the
1499 * child regardless of CLONE_PTRACE.
1500 */
1501 user_disable_single_step(p);
1502 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1503 #ifdef TIF_SYSCALL_EMU
1504 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1505 #endif
1506 clear_all_latency_tracing(p);
1507
1508 /* ok, now we should be set up.. */
1509 if (clone_flags & CLONE_THREAD)
1510 p->exit_signal = -1;
1511 else if (clone_flags & CLONE_PARENT)
1512 p->exit_signal = current->group_leader->exit_signal;
1513 else
1514 p->exit_signal = (clone_flags & CSIGNAL);
1515
1516 p->pdeath_signal = 0;
1517 p->exit_state = 0;
1518
1519 p->nr_dirtied = 0;
1520 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1521 p->dirty_paused_when = 0;
1522
1523 /*
1524 * Ok, make it visible to the rest of the system.
1525 * We dont wake it up yet.
1526 */
1527 p->group_leader = p;
1528 INIT_LIST_HEAD(&p->thread_group);
1529 #ifdef CONFIG_MTK_SCHED_CMP_TGS
1530 mt_init_thread_group(p);
1531 #endif
1532 p->task_works = NULL;
1533
1534 /* Need tasklist lock for parent etc handling! */
1535 write_lock_irq(&tasklist_lock);
1536
1537 /* CLONE_PARENT re-uses the old parent */
1538 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1539 p->real_parent = current->real_parent;
1540 p->parent_exec_id = current->parent_exec_id;
1541 } else {
1542 p->real_parent = current;
1543 p->parent_exec_id = current->self_exec_id;
1544 }
1545
1546 spin_lock(&current->sighand->siglock);
1547
1548 /*
1549 * Copy seccomp details explicitly here, in case they were changed
1550 * before holding sighand lock.
1551 */
1552 copy_seccomp(p);
1553
1554 /*
1555 * Process group and session signals need to be delivered to just the
1556 * parent before the fork or both the parent and the child after the
1557 * fork. Restart if a signal comes in before we add the new process to
1558 * it's process group.
1559 * A fatal signal pending means that current will exit, so the new
1560 * thread can't slip out of an OOM kill (or normal SIGKILL).
1561 */
1562 recalc_sigpending();
1563 if (signal_pending(current)) {
1564 spin_unlock(&current->sighand->siglock);
1565 write_unlock_irq(&tasklist_lock);
1566 retval = -ERESTARTNOINTR;
1567 goto bad_fork_free_pid;
1568 }
1569
1570 if (likely(p->pid)) {
1571 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1572
1573 if (thread_group_leader(p)) {
1574 if (is_child_reaper(pid)) {
1575 ns_of_pid(pid)->child_reaper = p;
1576 p->signal->flags |= SIGNAL_UNKILLABLE;
1577 }
1578
1579 p->signal->leader_pid = pid;
1580 p->signal->tty = tty_kref_get(current->signal->tty);
1581 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1582 attach_pid(p, PIDTYPE_SID, task_session(current));
1583 list_add_tail(&p->sibling, &p->real_parent->children);
1584 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1585 __this_cpu_inc(process_counts);
1586 } else {
1587 current->signal->nr_threads++;
1588 atomic_inc(&current->signal->live);
1589 atomic_inc(&current->signal->sigcnt);
1590 p->group_leader = current->group_leader;
1591 list_add_tail_rcu(&p->thread_group,
1592 &p->group_leader->thread_group);
1593 list_add_tail_rcu(&p->thread_node,
1594 &p->signal->thread_head);
1595 }
1596 attach_pid(p, PIDTYPE_PID, pid);
1597 nr_threads++;
1598 }
1599
1600 total_forks++;
1601 spin_unlock(&current->sighand->siglock);
1602 syscall_tracepoint_update(p);
1603 write_unlock_irq(&tasklist_lock);
1604
1605 proc_fork_connector(p);
1606 cgroup_post_fork(p);
1607 if (clone_flags & CLONE_THREAD)
1608 threadgroup_change_end(current);
1609 perf_event_fork(p);
1610
1611 trace_task_newtask(p, clone_flags);
1612
1613 return p;
1614
1615 bad_fork_free_pid:
1616 if (pid != &init_struct_pid)
1617 free_pid(pid);
1618 bad_fork_cleanup_io:
1619 if (p->io_context)
1620 exit_io_context(p);
1621 bad_fork_cleanup_namespaces:
1622 exit_task_namespaces(p);
1623 bad_fork_cleanup_mm:
1624 if (p->mm)
1625 mmput(p->mm);
1626 bad_fork_cleanup_signal:
1627 if (!(clone_flags & CLONE_THREAD))
1628 free_signal_struct(p->signal);
1629 bad_fork_cleanup_sighand:
1630 __cleanup_sighand(p->sighand);
1631 bad_fork_cleanup_fs:
1632 exit_fs(p); /* blocking */
1633 bad_fork_cleanup_files:
1634 exit_files(p); /* blocking */
1635 bad_fork_cleanup_semundo:
1636 exit_sem(p);
1637 bad_fork_cleanup_audit:
1638 audit_free(p);
1639 bad_fork_cleanup_perf:
1640 perf_event_free_task(p);
1641 bad_fork_cleanup_policy:
1642 #ifdef CONFIG_NUMA
1643 mpol_put(p->mempolicy);
1644 bad_fork_cleanup_cgroup:
1645 #endif
1646 if (clone_flags & CLONE_THREAD)
1647 threadgroup_change_end(current);
1648 cgroup_exit(p, 0);
1649 delayacct_tsk_free(p);
1650 module_put(task_thread_info(p)->exec_domain->module);
1651 bad_fork_cleanup_count:
1652 atomic_dec(&p->cred->user->processes);
1653 exit_creds(p);
1654 bad_fork_free:
1655 free_task(p);
1656 fork_out:
1657 printk("[%d:%s] fork fail retval:0x%x\n", current->pid, current->comm, retval);
1658 return ERR_PTR(retval);
1659 }
1660
1661 static inline void init_idle_pids(struct pid_link *links)
1662 {
1663 enum pid_type type;
1664
1665 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1666 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1667 links[type].pid = &init_struct_pid;
1668 }
1669 }
1670
1671 struct task_struct * __cpuinit fork_idle(int cpu)
1672 {
1673 struct task_struct *task;
1674 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1675 if (!IS_ERR(task)) {
1676 init_idle_pids(task->pids);
1677 init_idle(task, cpu);
1678 }
1679
1680 return task;
1681 }
1682
1683 /*
1684 * Ok, this is the main fork-routine.
1685 *
1686 * It copies the process, and if successful kick-starts
1687 * it and waits for it to finish using the VM if required.
1688 */
1689 #ifdef CONFIG_SCHEDSTATS
1690 /* mt shceduler profiling*/
1691 extern void save_mtproc_info(struct task_struct *p, unsigned long long ts);
1692 #endif
1693 long do_fork(unsigned long clone_flags,
1694 unsigned long stack_start,
1695 unsigned long stack_size,
1696 int __user *parent_tidptr,
1697 int __user *child_tidptr)
1698 {
1699 struct task_struct *p;
1700 int trace = 0;
1701 long nr;
1702
1703 /*
1704 * Do some preliminary argument and permissions checking before we
1705 * actually start allocating stuff
1706 */
1707 if (clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) {
1708 if (clone_flags & (CLONE_THREAD|CLONE_PARENT)) {
1709 printk("[%d:%s] fork fail at clone_thread, flags:0x%x\n", current->pid, current->comm, (unsigned int)clone_flags);
1710 return -EINVAL;
1711 }
1712 }
1713
1714 /*
1715 * Determine whether and which event to report to ptracer. When
1716 * called from kernel_thread or CLONE_UNTRACED is explicitly
1717 * requested, no event is reported; otherwise, report if the event
1718 * for the type of forking is enabled.
1719 */
1720 if (!(clone_flags & CLONE_UNTRACED)) {
1721 if (clone_flags & CLONE_VFORK)
1722 trace = PTRACE_EVENT_VFORK;
1723 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1724 trace = PTRACE_EVENT_CLONE;
1725 else
1726 trace = PTRACE_EVENT_FORK;
1727
1728 if (likely(!ptrace_event_enabled(current, trace)))
1729 trace = 0;
1730 }
1731
1732 p = copy_process(clone_flags, stack_start, stack_size,
1733 child_tidptr, NULL, trace);
1734 /*
1735 * Do this prior waking up the new thread - the thread pointer
1736 * might get invalid after that point, if the thread exits quickly.
1737 */
1738 if (!IS_ERR(p)) {
1739 struct completion vfork;
1740 struct pid *pid;
1741
1742 trace_sched_process_fork(current, p);
1743
1744 pid = get_task_pid(p, PIDTYPE_PID);
1745 nr = pid_vnr(pid);
1746
1747 if (clone_flags & CLONE_PARENT_SETTID)
1748 put_user(nr, parent_tidptr);
1749
1750 if (clone_flags & CLONE_VFORK) {
1751 p->vfork_done = &vfork;
1752 init_completion(&vfork);
1753 get_task_struct(p);
1754 }
1755
1756 #ifdef CONFIG_SCHEDSTATS
1757 /* mt shceduler profiling*/
1758 save_mtproc_info(p, sched_clock());
1759 printk(KERN_DEBUG "[%d:%s] fork [%d:%s]\n", current->pid, current->comm, p->pid, p->comm);
1760 #endif
1761 wake_up_new_task(p);
1762
1763 /* forking complete and child started to run, tell ptracer */
1764 if (unlikely(trace))
1765 ptrace_event_pid(trace, pid);
1766
1767 if (clone_flags & CLONE_VFORK) {
1768 if (!wait_for_vfork_done(p, &vfork))
1769 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1770 }
1771
1772 put_pid(pid);
1773 #ifdef CONFIG_MT_PRIO_TRACER
1774 create_prio_tracer(task_pid_nr(p));
1775 update_prio_tracer(task_pid_nr(p), p->prio, p->policy, PTS_KRNL);
1776 #endif
1777 } else {
1778 nr = PTR_ERR(p);
1779 printk("[%d:%s] fork fail:[%p, %d]\n", current->pid, current->comm, p,(int) nr);
1780 }
1781 return nr;
1782 }
1783
1784 /*
1785 * Create a kernel thread.
1786 */
1787 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1788 {
1789 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1790 (unsigned long)arg, NULL, NULL);
1791 }
1792
1793 #ifdef __ARCH_WANT_SYS_FORK
1794 SYSCALL_DEFINE0(fork)
1795 {
1796 #ifdef CONFIG_MMU
1797 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1798 #else
1799 /* can not support in nommu mode */
1800 return(-EINVAL);
1801 #endif
1802 }
1803 #endif
1804
1805 #ifdef __ARCH_WANT_SYS_VFORK
1806 SYSCALL_DEFINE0(vfork)
1807 {
1808 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1809 0, NULL, NULL);
1810 }
1811 #endif
1812
1813 #ifdef __ARCH_WANT_SYS_CLONE
1814 #ifdef CONFIG_CLONE_BACKWARDS
1815 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1816 int __user *, parent_tidptr,
1817 int, tls_val,
1818 int __user *, child_tidptr)
1819 #elif defined(CONFIG_CLONE_BACKWARDS2)
1820 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1821 int __user *, parent_tidptr,
1822 int __user *, child_tidptr,
1823 int, tls_val)
1824 #elif defined(CONFIG_CLONE_BACKWARDS3)
1825 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1826 int, stack_size,
1827 int __user *, parent_tidptr,
1828 int __user *, child_tidptr,
1829 int, tls_val)
1830 #else
1831 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1832 int __user *, parent_tidptr,
1833 int __user *, child_tidptr,
1834 int, tls_val)
1835 #endif
1836 {
1837 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1838 }
1839 #endif
1840
1841 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1842 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1843 #endif
1844
1845 static void sighand_ctor(void *data)
1846 {
1847 struct sighand_struct *sighand = data;
1848
1849 spin_lock_init(&sighand->siglock);
1850 init_waitqueue_head(&sighand->signalfd_wqh);
1851 }
1852
1853 void __init proc_caches_init(void)
1854 {
1855 sighand_cachep = kmem_cache_create("sighand_cache",
1856 sizeof(struct sighand_struct), 0,
1857 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1858 SLAB_NOTRACK, sighand_ctor);
1859 signal_cachep = kmem_cache_create("signal_cache",
1860 sizeof(struct signal_struct), 0,
1861 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1862 files_cachep = kmem_cache_create("files_cache",
1863 sizeof(struct files_struct), 0,
1864 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1865 fs_cachep = kmem_cache_create("fs_cache",
1866 sizeof(struct fs_struct), 0,
1867 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1868 /*
1869 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1870 * whole struct cpumask for the OFFSTACK case. We could change
1871 * this to *only* allocate as much of it as required by the
1872 * maximum number of CPU's we can ever have. The cpumask_allocation
1873 * is at the end of the structure, exactly for that reason.
1874 */
1875 mm_cachep = kmem_cache_create("mm_struct",
1876 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1877 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1878 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1879 mmap_init();
1880 nsproxy_cache_init();
1881 }
1882
1883 /*
1884 * Check constraints on flags passed to the unshare system call.
1885 */
1886 static int check_unshare_flags(unsigned long unshare_flags)
1887 {
1888 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1889 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1890 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1891 CLONE_NEWUSER|CLONE_NEWPID))
1892 return -EINVAL;
1893 /*
1894 * Not implemented, but pretend it works if there is nothing
1895 * to unshare. Note that unsharing the address space or the
1896 * signal handlers also need to unshare the signal queues (aka
1897 * CLONE_THREAD).
1898 */
1899 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1900 if (!thread_group_empty(current))
1901 return -EINVAL;
1902 }
1903 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1904 if (atomic_read(&current->sighand->count) > 1)
1905 return -EINVAL;
1906 }
1907 if (unshare_flags & CLONE_VM) {
1908 if (!current_is_single_threaded())
1909 return -EINVAL;
1910 }
1911
1912 return 0;
1913 }
1914
1915 /*
1916 * Unshare the filesystem structure if it is being shared
1917 */
1918 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1919 {
1920 struct fs_struct *fs = current->fs;
1921
1922 if (!(unshare_flags & CLONE_FS) || !fs)
1923 return 0;
1924
1925 /* don't need lock here; in the worst case we'll do useless copy */
1926 if (fs->users == 1)
1927 return 0;
1928
1929 *new_fsp = copy_fs_struct(fs);
1930 if (!*new_fsp)
1931 return -ENOMEM;
1932
1933 return 0;
1934 }
1935
1936 /*
1937 * Unshare file descriptor table if it is being shared
1938 */
1939 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1940 {
1941 struct files_struct *fd = current->files;
1942 int error = 0;
1943
1944 if ((unshare_flags & CLONE_FILES) &&
1945 (fd && atomic_read(&fd->count) > 1)) {
1946 *new_fdp = dup_fd(fd, &error);
1947 if (!*new_fdp)
1948 return error;
1949 }
1950
1951 return 0;
1952 }
1953
1954 /*
1955 * unshare allows a process to 'unshare' part of the process
1956 * context which was originally shared using clone. copy_*
1957 * functions used by do_fork() cannot be used here directly
1958 * because they modify an inactive task_struct that is being
1959 * constructed. Here we are modifying the current, active,
1960 * task_struct.
1961 */
1962 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1963 {
1964 struct fs_struct *fs, *new_fs = NULL;
1965 struct files_struct *fd, *new_fd = NULL;
1966 struct cred *new_cred = NULL;
1967 struct nsproxy *new_nsproxy = NULL;
1968 int do_sysvsem = 0;
1969 int err;
1970
1971 /*
1972 * If unsharing a user namespace must also unshare the thread.
1973 */
1974 if (unshare_flags & CLONE_NEWUSER)
1975 unshare_flags |= CLONE_THREAD | CLONE_FS;
1976 /*
1977 * If unsharing a pid namespace must also unshare the thread.
1978 */
1979 if (unshare_flags & CLONE_NEWPID)
1980 unshare_flags |= CLONE_THREAD;
1981 /*
1982 * If unsharing vm, must also unshare signal handlers.
1983 */
1984 if (unshare_flags & CLONE_VM)
1985 unshare_flags |= CLONE_SIGHAND;
1986 /*
1987 * If unsharing a signal handlers, must also unshare the signal queues.
1988 */
1989 if (unshare_flags & CLONE_SIGHAND)
1990 unshare_flags |= CLONE_THREAD;
1991 /*
1992 * If unsharing namespace, must also unshare filesystem information.
1993 */
1994 if (unshare_flags & CLONE_NEWNS)
1995 unshare_flags |= CLONE_FS;
1996
1997 err = check_unshare_flags(unshare_flags);
1998 if (err)
1999 goto bad_unshare_out;
2000 /*
2001 * CLONE_NEWIPC must also detach from the undolist: after switching
2002 * to a new ipc namespace, the semaphore arrays from the old
2003 * namespace are unreachable.
2004 */
2005 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2006 do_sysvsem = 1;
2007 err = unshare_fs(unshare_flags, &new_fs);
2008 if (err)
2009 goto bad_unshare_out;
2010 err = unshare_fd(unshare_flags, &new_fd);
2011 if (err)
2012 goto bad_unshare_cleanup_fs;
2013 err = unshare_userns(unshare_flags, &new_cred);
2014 if (err)
2015 goto bad_unshare_cleanup_fd;
2016 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2017 new_cred, new_fs);
2018 if (err)
2019 goto bad_unshare_cleanup_cred;
2020
2021 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2022 if (do_sysvsem) {
2023 /*
2024 * CLONE_SYSVSEM is equivalent to sys_exit().
2025 */
2026 exit_sem(current);
2027 }
2028
2029 if (new_nsproxy)
2030 switch_task_namespaces(current, new_nsproxy);
2031
2032 task_lock(current);
2033
2034 if (new_fs) {
2035 fs = current->fs;
2036 spin_lock(&fs->lock);
2037 current->fs = new_fs;
2038 if (--fs->users)
2039 new_fs = NULL;
2040 else
2041 new_fs = fs;
2042 spin_unlock(&fs->lock);
2043 }
2044
2045 if (new_fd) {
2046 fd = current->files;
2047 current->files = new_fd;
2048 new_fd = fd;
2049 }
2050
2051 task_unlock(current);
2052
2053 if (new_cred) {
2054 /* Install the new user namespace */
2055 commit_creds(new_cred);
2056 new_cred = NULL;
2057 }
2058 }
2059
2060 bad_unshare_cleanup_cred:
2061 if (new_cred)
2062 put_cred(new_cred);
2063 bad_unshare_cleanup_fd:
2064 if (new_fd)
2065 put_files_struct(new_fd);
2066
2067 bad_unshare_cleanup_fs:
2068 if (new_fs)
2069 free_fs_struct(new_fs);
2070
2071 bad_unshare_out:
2072 return err;
2073 }
2074
2075 /*
2076 * Helper to unshare the files of the current task.
2077 * We don't want to expose copy_files internals to
2078 * the exec layer of the kernel.
2079 */
2080
2081 int unshare_files(struct files_struct **displaced)
2082 {
2083 struct task_struct *task = current;
2084 struct files_struct *copy = NULL;
2085 int error;
2086
2087 error = unshare_fd(CLONE_FILES, &copy);
2088 if (error || !copy) {
2089 *displaced = NULL;
2090 return error;
2091 }
2092 *displaced = task->files;
2093 task_lock(task);
2094 task->files = copy;
2095 task_unlock(task);
2096 return 0;
2097 }