sched: add sched-domain roots
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 #include <linux/proc_fs.h>
54
55 #include <asm/pgtable.h>
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/mmu_context.h>
59 #include <asm/cacheflush.h>
60 #include <asm/tlbflush.h>
61
62 /*
63 * Protected counters by write_lock_irq(&tasklist_lock)
64 */
65 unsigned long total_forks; /* Handle normal Linux uptimes. */
66 int nr_threads; /* The idle threads do not count.. */
67
68 int max_threads; /* tunable limit on nr_threads */
69
70 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
71
72 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
73
74 int nr_processes(void)
75 {
76 int cpu;
77 int total = 0;
78
79 for_each_online_cpu(cpu)
80 total += per_cpu(process_counts, cpu);
81
82 return total;
83 }
84
85 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
86 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
87 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
88 static struct kmem_cache *task_struct_cachep;
89 #endif
90
91 /* SLAB cache for signal_struct structures (tsk->signal) */
92 static struct kmem_cache *signal_cachep;
93
94 /* SLAB cache for sighand_struct structures (tsk->sighand) */
95 struct kmem_cache *sighand_cachep;
96
97 /* SLAB cache for files_struct structures (tsk->files) */
98 struct kmem_cache *files_cachep;
99
100 /* SLAB cache for fs_struct structures (tsk->fs) */
101 struct kmem_cache *fs_cachep;
102
103 /* SLAB cache for vm_area_struct structures */
104 struct kmem_cache *vm_area_cachep;
105
106 /* SLAB cache for mm_struct structures (tsk->mm) */
107 static struct kmem_cache *mm_cachep;
108
109 void free_task(struct task_struct *tsk)
110 {
111 prop_local_destroy_single(&tsk->dirties);
112 free_thread_info(tsk->stack);
113 rt_mutex_debug_task_free(tsk);
114 free_task_struct(tsk);
115 }
116 EXPORT_SYMBOL(free_task);
117
118 void __put_task_struct(struct task_struct *tsk)
119 {
120 WARN_ON(!tsk->exit_state);
121 WARN_ON(atomic_read(&tsk->usage));
122 WARN_ON(tsk == current);
123
124 security_task_free(tsk);
125 free_uid(tsk->user);
126 put_group_info(tsk->group_info);
127 delayacct_tsk_free(tsk);
128
129 if (!profile_handoff_task(tsk))
130 free_task(tsk);
131 }
132
133 void __init fork_init(unsigned long mempages)
134 {
135 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
136 #ifndef ARCH_MIN_TASKALIGN
137 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
138 #endif
139 /* create a slab on which task_structs can be allocated */
140 task_struct_cachep =
141 kmem_cache_create("task_struct", sizeof(struct task_struct),
142 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
143 #endif
144
145 /*
146 * The default maximum number of threads is set to a safe
147 * value: the thread structures can take up at most half
148 * of memory.
149 */
150 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
151
152 /*
153 * we need to allow at least 20 threads to boot a system
154 */
155 if(max_threads < 20)
156 max_threads = 20;
157
158 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
159 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
160 init_task.signal->rlim[RLIMIT_SIGPENDING] =
161 init_task.signal->rlim[RLIMIT_NPROC];
162 }
163
164 static struct task_struct *dup_task_struct(struct task_struct *orig)
165 {
166 struct task_struct *tsk;
167 struct thread_info *ti;
168 int err;
169
170 prepare_to_copy(orig);
171
172 tsk = alloc_task_struct();
173 if (!tsk)
174 return NULL;
175
176 ti = alloc_thread_info(tsk);
177 if (!ti) {
178 free_task_struct(tsk);
179 return NULL;
180 }
181
182 *tsk = *orig;
183 tsk->stack = ti;
184
185 err = prop_local_init_single(&tsk->dirties);
186 if (err) {
187 free_thread_info(ti);
188 free_task_struct(tsk);
189 return NULL;
190 }
191
192 setup_thread_stack(tsk, orig);
193
194 #ifdef CONFIG_CC_STACKPROTECTOR
195 tsk->stack_canary = get_random_int();
196 #endif
197
198 /* One for us, one for whoever does the "release_task()" (usually parent) */
199 atomic_set(&tsk->usage,2);
200 atomic_set(&tsk->fs_excl, 0);
201 #ifdef CONFIG_BLK_DEV_IO_TRACE
202 tsk->btrace_seq = 0;
203 #endif
204 tsk->splice_pipe = NULL;
205 return tsk;
206 }
207
208 #ifdef CONFIG_MMU
209 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
210 {
211 struct vm_area_struct *mpnt, *tmp, **pprev;
212 struct rb_node **rb_link, *rb_parent;
213 int retval;
214 unsigned long charge;
215 struct mempolicy *pol;
216
217 down_write(&oldmm->mmap_sem);
218 flush_cache_dup_mm(oldmm);
219 /*
220 * Not linked in yet - no deadlock potential:
221 */
222 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
223
224 mm->locked_vm = 0;
225 mm->mmap = NULL;
226 mm->mmap_cache = NULL;
227 mm->free_area_cache = oldmm->mmap_base;
228 mm->cached_hole_size = ~0UL;
229 mm->map_count = 0;
230 cpus_clear(mm->cpu_vm_mask);
231 mm->mm_rb = RB_ROOT;
232 rb_link = &mm->mm_rb.rb_node;
233 rb_parent = NULL;
234 pprev = &mm->mmap;
235
236 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
237 struct file *file;
238
239 if (mpnt->vm_flags & VM_DONTCOPY) {
240 long pages = vma_pages(mpnt);
241 mm->total_vm -= pages;
242 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
243 -pages);
244 continue;
245 }
246 charge = 0;
247 if (mpnt->vm_flags & VM_ACCOUNT) {
248 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
249 if (security_vm_enough_memory(len))
250 goto fail_nomem;
251 charge = len;
252 }
253 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
254 if (!tmp)
255 goto fail_nomem;
256 *tmp = *mpnt;
257 pol = mpol_copy(vma_policy(mpnt));
258 retval = PTR_ERR(pol);
259 if (IS_ERR(pol))
260 goto fail_nomem_policy;
261 vma_set_policy(tmp, pol);
262 tmp->vm_flags &= ~VM_LOCKED;
263 tmp->vm_mm = mm;
264 tmp->vm_next = NULL;
265 anon_vma_link(tmp);
266 file = tmp->vm_file;
267 if (file) {
268 struct inode *inode = file->f_path.dentry->d_inode;
269 get_file(file);
270 if (tmp->vm_flags & VM_DENYWRITE)
271 atomic_dec(&inode->i_writecount);
272
273 /* insert tmp into the share list, just after mpnt */
274 spin_lock(&file->f_mapping->i_mmap_lock);
275 tmp->vm_truncate_count = mpnt->vm_truncate_count;
276 flush_dcache_mmap_lock(file->f_mapping);
277 vma_prio_tree_add(tmp, mpnt);
278 flush_dcache_mmap_unlock(file->f_mapping);
279 spin_unlock(&file->f_mapping->i_mmap_lock);
280 }
281
282 /*
283 * Link in the new vma and copy the page table entries.
284 */
285 *pprev = tmp;
286 pprev = &tmp->vm_next;
287
288 __vma_link_rb(mm, tmp, rb_link, rb_parent);
289 rb_link = &tmp->vm_rb.rb_right;
290 rb_parent = &tmp->vm_rb;
291
292 mm->map_count++;
293 retval = copy_page_range(mm, oldmm, mpnt);
294
295 if (tmp->vm_ops && tmp->vm_ops->open)
296 tmp->vm_ops->open(tmp);
297
298 if (retval)
299 goto out;
300 }
301 /* a new mm has just been created */
302 arch_dup_mmap(oldmm, mm);
303 retval = 0;
304 out:
305 up_write(&mm->mmap_sem);
306 flush_tlb_mm(oldmm);
307 up_write(&oldmm->mmap_sem);
308 return retval;
309 fail_nomem_policy:
310 kmem_cache_free(vm_area_cachep, tmp);
311 fail_nomem:
312 retval = -ENOMEM;
313 vm_unacct_memory(charge);
314 goto out;
315 }
316
317 static inline int mm_alloc_pgd(struct mm_struct * mm)
318 {
319 mm->pgd = pgd_alloc(mm);
320 if (unlikely(!mm->pgd))
321 return -ENOMEM;
322 return 0;
323 }
324
325 static inline void mm_free_pgd(struct mm_struct * mm)
326 {
327 pgd_free(mm->pgd);
328 }
329 #else
330 #define dup_mmap(mm, oldmm) (0)
331 #define mm_alloc_pgd(mm) (0)
332 #define mm_free_pgd(mm)
333 #endif /* CONFIG_MMU */
334
335 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
336
337 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
338 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
339
340 #include <linux/init_task.h>
341
342 static struct mm_struct * mm_init(struct mm_struct * mm)
343 {
344 atomic_set(&mm->mm_users, 1);
345 atomic_set(&mm->mm_count, 1);
346 init_rwsem(&mm->mmap_sem);
347 INIT_LIST_HEAD(&mm->mmlist);
348 mm->flags = (current->mm) ? current->mm->flags
349 : MMF_DUMP_FILTER_DEFAULT;
350 mm->core_waiters = 0;
351 mm->nr_ptes = 0;
352 set_mm_counter(mm, file_rss, 0);
353 set_mm_counter(mm, anon_rss, 0);
354 spin_lock_init(&mm->page_table_lock);
355 rwlock_init(&mm->ioctx_list_lock);
356 mm->ioctx_list = NULL;
357 mm->free_area_cache = TASK_UNMAPPED_BASE;
358 mm->cached_hole_size = ~0UL;
359
360 if (likely(!mm_alloc_pgd(mm))) {
361 mm->def_flags = 0;
362 return mm;
363 }
364 free_mm(mm);
365 return NULL;
366 }
367
368 /*
369 * Allocate and initialize an mm_struct.
370 */
371 struct mm_struct * mm_alloc(void)
372 {
373 struct mm_struct * mm;
374
375 mm = allocate_mm();
376 if (mm) {
377 memset(mm, 0, sizeof(*mm));
378 mm = mm_init(mm);
379 }
380 return mm;
381 }
382
383 /*
384 * Called when the last reference to the mm
385 * is dropped: either by a lazy thread or by
386 * mmput. Free the page directory and the mm.
387 */
388 void fastcall __mmdrop(struct mm_struct *mm)
389 {
390 BUG_ON(mm == &init_mm);
391 mm_free_pgd(mm);
392 destroy_context(mm);
393 free_mm(mm);
394 }
395
396 /*
397 * Decrement the use count and release all resources for an mm.
398 */
399 void mmput(struct mm_struct *mm)
400 {
401 might_sleep();
402
403 if (atomic_dec_and_test(&mm->mm_users)) {
404 exit_aio(mm);
405 exit_mmap(mm);
406 if (!list_empty(&mm->mmlist)) {
407 spin_lock(&mmlist_lock);
408 list_del(&mm->mmlist);
409 spin_unlock(&mmlist_lock);
410 }
411 put_swap_token(mm);
412 mmdrop(mm);
413 }
414 }
415 EXPORT_SYMBOL_GPL(mmput);
416
417 /**
418 * get_task_mm - acquire a reference to the task's mm
419 *
420 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
421 * this kernel workthread has transiently adopted a user mm with use_mm,
422 * to do its AIO) is not set and if so returns a reference to it, after
423 * bumping up the use count. User must release the mm via mmput()
424 * after use. Typically used by /proc and ptrace.
425 */
426 struct mm_struct *get_task_mm(struct task_struct *task)
427 {
428 struct mm_struct *mm;
429
430 task_lock(task);
431 mm = task->mm;
432 if (mm) {
433 if (task->flags & PF_BORROWED_MM)
434 mm = NULL;
435 else
436 atomic_inc(&mm->mm_users);
437 }
438 task_unlock(task);
439 return mm;
440 }
441 EXPORT_SYMBOL_GPL(get_task_mm);
442
443 /* Please note the differences between mmput and mm_release.
444 * mmput is called whenever we stop holding onto a mm_struct,
445 * error success whatever.
446 *
447 * mm_release is called after a mm_struct has been removed
448 * from the current process.
449 *
450 * This difference is important for error handling, when we
451 * only half set up a mm_struct for a new process and need to restore
452 * the old one. Because we mmput the new mm_struct before
453 * restoring the old one. . .
454 * Eric Biederman 10 January 1998
455 */
456 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
457 {
458 struct completion *vfork_done = tsk->vfork_done;
459
460 /* Get rid of any cached register state */
461 deactivate_mm(tsk, mm);
462
463 /* notify parent sleeping on vfork() */
464 if (vfork_done) {
465 tsk->vfork_done = NULL;
466 complete(vfork_done);
467 }
468
469 /*
470 * If we're exiting normally, clear a user-space tid field if
471 * requested. We leave this alone when dying by signal, to leave
472 * the value intact in a core dump, and to save the unnecessary
473 * trouble otherwise. Userland only wants this done for a sys_exit.
474 */
475 if (tsk->clear_child_tid
476 && !(tsk->flags & PF_SIGNALED)
477 && atomic_read(&mm->mm_users) > 1) {
478 u32 __user * tidptr = tsk->clear_child_tid;
479 tsk->clear_child_tid = NULL;
480
481 /*
482 * We don't check the error code - if userspace has
483 * not set up a proper pointer then tough luck.
484 */
485 put_user(0, tidptr);
486 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
487 }
488 }
489
490 /*
491 * Allocate a new mm structure and copy contents from the
492 * mm structure of the passed in task structure.
493 */
494 static struct mm_struct *dup_mm(struct task_struct *tsk)
495 {
496 struct mm_struct *mm, *oldmm = current->mm;
497 int err;
498
499 if (!oldmm)
500 return NULL;
501
502 mm = allocate_mm();
503 if (!mm)
504 goto fail_nomem;
505
506 memcpy(mm, oldmm, sizeof(*mm));
507
508 /* Initializing for Swap token stuff */
509 mm->token_priority = 0;
510 mm->last_interval = 0;
511
512 if (!mm_init(mm))
513 goto fail_nomem;
514
515 if (init_new_context(tsk, mm))
516 goto fail_nocontext;
517
518 err = dup_mmap(mm, oldmm);
519 if (err)
520 goto free_pt;
521
522 mm->hiwater_rss = get_mm_rss(mm);
523 mm->hiwater_vm = mm->total_vm;
524
525 return mm;
526
527 free_pt:
528 mmput(mm);
529
530 fail_nomem:
531 return NULL;
532
533 fail_nocontext:
534 /*
535 * If init_new_context() failed, we cannot use mmput() to free the mm
536 * because it calls destroy_context()
537 */
538 mm_free_pgd(mm);
539 free_mm(mm);
540 return NULL;
541 }
542
543 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
544 {
545 struct mm_struct * mm, *oldmm;
546 int retval;
547
548 tsk->min_flt = tsk->maj_flt = 0;
549 tsk->nvcsw = tsk->nivcsw = 0;
550
551 tsk->mm = NULL;
552 tsk->active_mm = NULL;
553
554 /*
555 * Are we cloning a kernel thread?
556 *
557 * We need to steal a active VM for that..
558 */
559 oldmm = current->mm;
560 if (!oldmm)
561 return 0;
562
563 if (clone_flags & CLONE_VM) {
564 atomic_inc(&oldmm->mm_users);
565 mm = oldmm;
566 goto good_mm;
567 }
568
569 retval = -ENOMEM;
570 mm = dup_mm(tsk);
571 if (!mm)
572 goto fail_nomem;
573
574 good_mm:
575 /* Initializing for Swap token stuff */
576 mm->token_priority = 0;
577 mm->last_interval = 0;
578
579 tsk->mm = mm;
580 tsk->active_mm = mm;
581 return 0;
582
583 fail_nomem:
584 return retval;
585 }
586
587 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
588 {
589 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
590 /* We don't need to lock fs - think why ;-) */
591 if (fs) {
592 atomic_set(&fs->count, 1);
593 rwlock_init(&fs->lock);
594 fs->umask = old->umask;
595 read_lock(&old->lock);
596 fs->rootmnt = mntget(old->rootmnt);
597 fs->root = dget(old->root);
598 fs->pwdmnt = mntget(old->pwdmnt);
599 fs->pwd = dget(old->pwd);
600 if (old->altroot) {
601 fs->altrootmnt = mntget(old->altrootmnt);
602 fs->altroot = dget(old->altroot);
603 } else {
604 fs->altrootmnt = NULL;
605 fs->altroot = NULL;
606 }
607 read_unlock(&old->lock);
608 }
609 return fs;
610 }
611
612 struct fs_struct *copy_fs_struct(struct fs_struct *old)
613 {
614 return __copy_fs_struct(old);
615 }
616
617 EXPORT_SYMBOL_GPL(copy_fs_struct);
618
619 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
620 {
621 if (clone_flags & CLONE_FS) {
622 atomic_inc(&current->fs->count);
623 return 0;
624 }
625 tsk->fs = __copy_fs_struct(current->fs);
626 if (!tsk->fs)
627 return -ENOMEM;
628 return 0;
629 }
630
631 static int count_open_files(struct fdtable *fdt)
632 {
633 int size = fdt->max_fds;
634 int i;
635
636 /* Find the last open fd */
637 for (i = size/(8*sizeof(long)); i > 0; ) {
638 if (fdt->open_fds->fds_bits[--i])
639 break;
640 }
641 i = (i+1) * 8 * sizeof(long);
642 return i;
643 }
644
645 static struct files_struct *alloc_files(void)
646 {
647 struct files_struct *newf;
648 struct fdtable *fdt;
649
650 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
651 if (!newf)
652 goto out;
653
654 atomic_set(&newf->count, 1);
655
656 spin_lock_init(&newf->file_lock);
657 newf->next_fd = 0;
658 fdt = &newf->fdtab;
659 fdt->max_fds = NR_OPEN_DEFAULT;
660 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
661 fdt->open_fds = (fd_set *)&newf->open_fds_init;
662 fdt->fd = &newf->fd_array[0];
663 INIT_RCU_HEAD(&fdt->rcu);
664 fdt->next = NULL;
665 rcu_assign_pointer(newf->fdt, fdt);
666 out:
667 return newf;
668 }
669
670 /*
671 * Allocate a new files structure and copy contents from the
672 * passed in files structure.
673 * errorp will be valid only when the returned files_struct is NULL.
674 */
675 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
676 {
677 struct files_struct *newf;
678 struct file **old_fds, **new_fds;
679 int open_files, size, i;
680 struct fdtable *old_fdt, *new_fdt;
681
682 *errorp = -ENOMEM;
683 newf = alloc_files();
684 if (!newf)
685 goto out;
686
687 spin_lock(&oldf->file_lock);
688 old_fdt = files_fdtable(oldf);
689 new_fdt = files_fdtable(newf);
690 open_files = count_open_files(old_fdt);
691
692 /*
693 * Check whether we need to allocate a larger fd array and fd set.
694 * Note: we're not a clone task, so the open count won't change.
695 */
696 if (open_files > new_fdt->max_fds) {
697 new_fdt->max_fds = 0;
698 spin_unlock(&oldf->file_lock);
699 spin_lock(&newf->file_lock);
700 *errorp = expand_files(newf, open_files-1);
701 spin_unlock(&newf->file_lock);
702 if (*errorp < 0)
703 goto out_release;
704 new_fdt = files_fdtable(newf);
705 /*
706 * Reacquire the oldf lock and a pointer to its fd table
707 * who knows it may have a new bigger fd table. We need
708 * the latest pointer.
709 */
710 spin_lock(&oldf->file_lock);
711 old_fdt = files_fdtable(oldf);
712 }
713
714 old_fds = old_fdt->fd;
715 new_fds = new_fdt->fd;
716
717 memcpy(new_fdt->open_fds->fds_bits,
718 old_fdt->open_fds->fds_bits, open_files/8);
719 memcpy(new_fdt->close_on_exec->fds_bits,
720 old_fdt->close_on_exec->fds_bits, open_files/8);
721
722 for (i = open_files; i != 0; i--) {
723 struct file *f = *old_fds++;
724 if (f) {
725 get_file(f);
726 } else {
727 /*
728 * The fd may be claimed in the fd bitmap but not yet
729 * instantiated in the files array if a sibling thread
730 * is partway through open(). So make sure that this
731 * fd is available to the new process.
732 */
733 FD_CLR(open_files - i, new_fdt->open_fds);
734 }
735 rcu_assign_pointer(*new_fds++, f);
736 }
737 spin_unlock(&oldf->file_lock);
738
739 /* compute the remainder to be cleared */
740 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
741
742 /* This is long word aligned thus could use a optimized version */
743 memset(new_fds, 0, size);
744
745 if (new_fdt->max_fds > open_files) {
746 int left = (new_fdt->max_fds-open_files)/8;
747 int start = open_files / (8 * sizeof(unsigned long));
748
749 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
750 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
751 }
752
753 return newf;
754
755 out_release:
756 kmem_cache_free(files_cachep, newf);
757 out:
758 return NULL;
759 }
760
761 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
762 {
763 struct files_struct *oldf, *newf;
764 int error = 0;
765
766 /*
767 * A background process may not have any files ...
768 */
769 oldf = current->files;
770 if (!oldf)
771 goto out;
772
773 if (clone_flags & CLONE_FILES) {
774 atomic_inc(&oldf->count);
775 goto out;
776 }
777
778 /*
779 * Note: we may be using current for both targets (See exec.c)
780 * This works because we cache current->files (old) as oldf. Don't
781 * break this.
782 */
783 tsk->files = NULL;
784 newf = dup_fd(oldf, &error);
785 if (!newf)
786 goto out;
787
788 tsk->files = newf;
789 error = 0;
790 out:
791 return error;
792 }
793
794 /*
795 * Helper to unshare the files of the current task.
796 * We don't want to expose copy_files internals to
797 * the exec layer of the kernel.
798 */
799
800 int unshare_files(void)
801 {
802 struct files_struct *files = current->files;
803 int rc;
804
805 BUG_ON(!files);
806
807 /* This can race but the race causes us to copy when we don't
808 need to and drop the copy */
809 if(atomic_read(&files->count) == 1)
810 {
811 atomic_inc(&files->count);
812 return 0;
813 }
814 rc = copy_files(0, current);
815 if(rc)
816 current->files = files;
817 return rc;
818 }
819
820 EXPORT_SYMBOL(unshare_files);
821
822 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
823 {
824 struct sighand_struct *sig;
825
826 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
827 atomic_inc(&current->sighand->count);
828 return 0;
829 }
830 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
831 rcu_assign_pointer(tsk->sighand, sig);
832 if (!sig)
833 return -ENOMEM;
834 atomic_set(&sig->count, 1);
835 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
836 return 0;
837 }
838
839 void __cleanup_sighand(struct sighand_struct *sighand)
840 {
841 if (atomic_dec_and_test(&sighand->count))
842 kmem_cache_free(sighand_cachep, sighand);
843 }
844
845 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
846 {
847 struct signal_struct *sig;
848 int ret;
849
850 if (clone_flags & CLONE_THREAD) {
851 atomic_inc(&current->signal->count);
852 atomic_inc(&current->signal->live);
853 return 0;
854 }
855 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
856 tsk->signal = sig;
857 if (!sig)
858 return -ENOMEM;
859
860 ret = copy_thread_group_keys(tsk);
861 if (ret < 0) {
862 kmem_cache_free(signal_cachep, sig);
863 return ret;
864 }
865
866 atomic_set(&sig->count, 1);
867 atomic_set(&sig->live, 1);
868 init_waitqueue_head(&sig->wait_chldexit);
869 sig->flags = 0;
870 sig->group_exit_code = 0;
871 sig->group_exit_task = NULL;
872 sig->group_stop_count = 0;
873 sig->curr_target = NULL;
874 init_sigpending(&sig->shared_pending);
875 INIT_LIST_HEAD(&sig->posix_timers);
876
877 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
878 sig->it_real_incr.tv64 = 0;
879 sig->real_timer.function = it_real_fn;
880 sig->tsk = tsk;
881
882 sig->it_virt_expires = cputime_zero;
883 sig->it_virt_incr = cputime_zero;
884 sig->it_prof_expires = cputime_zero;
885 sig->it_prof_incr = cputime_zero;
886
887 sig->leader = 0; /* session leadership doesn't inherit */
888 sig->tty_old_pgrp = NULL;
889
890 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
891 sig->gtime = cputime_zero;
892 sig->cgtime = cputime_zero;
893 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
894 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
895 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
896 sig->sum_sched_runtime = 0;
897 INIT_LIST_HEAD(&sig->cpu_timers[0]);
898 INIT_LIST_HEAD(&sig->cpu_timers[1]);
899 INIT_LIST_HEAD(&sig->cpu_timers[2]);
900 taskstats_tgid_init(sig);
901
902 task_lock(current->group_leader);
903 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
904 task_unlock(current->group_leader);
905
906 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
907 /*
908 * New sole thread in the process gets an expiry time
909 * of the whole CPU time limit.
910 */
911 tsk->it_prof_expires =
912 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
913 }
914 acct_init_pacct(&sig->pacct);
915
916 tty_audit_fork(sig);
917
918 return 0;
919 }
920
921 void __cleanup_signal(struct signal_struct *sig)
922 {
923 exit_thread_group_keys(sig);
924 kmem_cache_free(signal_cachep, sig);
925 }
926
927 static void cleanup_signal(struct task_struct *tsk)
928 {
929 struct signal_struct *sig = tsk->signal;
930
931 atomic_dec(&sig->live);
932
933 if (atomic_dec_and_test(&sig->count))
934 __cleanup_signal(sig);
935 }
936
937 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
938 {
939 unsigned long new_flags = p->flags;
940
941 new_flags &= ~PF_SUPERPRIV;
942 new_flags |= PF_FORKNOEXEC;
943 if (!(clone_flags & CLONE_PTRACE))
944 p->ptrace = 0;
945 p->flags = new_flags;
946 clear_freeze_flag(p);
947 }
948
949 asmlinkage long sys_set_tid_address(int __user *tidptr)
950 {
951 current->clear_child_tid = tidptr;
952
953 return task_pid_vnr(current);
954 }
955
956 static void rt_mutex_init_task(struct task_struct *p)
957 {
958 spin_lock_init(&p->pi_lock);
959 #ifdef CONFIG_RT_MUTEXES
960 plist_head_init(&p->pi_waiters, &p->pi_lock);
961 p->pi_blocked_on = NULL;
962 #endif
963 }
964
965 /*
966 * This creates a new process as a copy of the old one,
967 * but does not actually start it yet.
968 *
969 * It copies the registers, and all the appropriate
970 * parts of the process environment (as per the clone
971 * flags). The actual kick-off is left to the caller.
972 */
973 static struct task_struct *copy_process(unsigned long clone_flags,
974 unsigned long stack_start,
975 struct pt_regs *regs,
976 unsigned long stack_size,
977 int __user *child_tidptr,
978 struct pid *pid)
979 {
980 int retval;
981 struct task_struct *p;
982 int cgroup_callbacks_done = 0;
983
984 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
985 return ERR_PTR(-EINVAL);
986
987 /*
988 * Thread groups must share signals as well, and detached threads
989 * can only be started up within the thread group.
990 */
991 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
992 return ERR_PTR(-EINVAL);
993
994 /*
995 * Shared signal handlers imply shared VM. By way of the above,
996 * thread groups also imply shared VM. Blocking this case allows
997 * for various simplifications in other code.
998 */
999 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1000 return ERR_PTR(-EINVAL);
1001
1002 retval = security_task_create(clone_flags);
1003 if (retval)
1004 goto fork_out;
1005
1006 retval = -ENOMEM;
1007 p = dup_task_struct(current);
1008 if (!p)
1009 goto fork_out;
1010
1011 rt_mutex_init_task(p);
1012
1013 #ifdef CONFIG_TRACE_IRQFLAGS
1014 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1015 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1016 #endif
1017 retval = -EAGAIN;
1018 if (atomic_read(&p->user->processes) >=
1019 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1020 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1021 p->user != current->nsproxy->user_ns->root_user)
1022 goto bad_fork_free;
1023 }
1024
1025 atomic_inc(&p->user->__count);
1026 atomic_inc(&p->user->processes);
1027 get_group_info(p->group_info);
1028
1029 /*
1030 * If multiple threads are within copy_process(), then this check
1031 * triggers too late. This doesn't hurt, the check is only there
1032 * to stop root fork bombs.
1033 */
1034 if (nr_threads >= max_threads)
1035 goto bad_fork_cleanup_count;
1036
1037 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1038 goto bad_fork_cleanup_count;
1039
1040 if (p->binfmt && !try_module_get(p->binfmt->module))
1041 goto bad_fork_cleanup_put_domain;
1042
1043 p->did_exec = 0;
1044 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1045 copy_flags(clone_flags, p);
1046 INIT_LIST_HEAD(&p->children);
1047 INIT_LIST_HEAD(&p->sibling);
1048 p->vfork_done = NULL;
1049 spin_lock_init(&p->alloc_lock);
1050
1051 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1052 init_sigpending(&p->pending);
1053
1054 p->utime = cputime_zero;
1055 p->stime = cputime_zero;
1056 p->gtime = cputime_zero;
1057 p->utimescaled = cputime_zero;
1058 p->stimescaled = cputime_zero;
1059 p->prev_utime = cputime_zero;
1060 p->prev_stime = cputime_zero;
1061
1062 #ifdef CONFIG_DETECT_SOFTLOCKUP
1063 p->last_switch_count = 0;
1064 p->last_switch_timestamp = 0;
1065 #endif
1066
1067 #ifdef CONFIG_TASK_XACCT
1068 p->rchar = 0; /* I/O counter: bytes read */
1069 p->wchar = 0; /* I/O counter: bytes written */
1070 p->syscr = 0; /* I/O counter: read syscalls */
1071 p->syscw = 0; /* I/O counter: write syscalls */
1072 #endif
1073 task_io_accounting_init(p);
1074 acct_clear_integrals(p);
1075
1076 p->it_virt_expires = cputime_zero;
1077 p->it_prof_expires = cputime_zero;
1078 p->it_sched_expires = 0;
1079 INIT_LIST_HEAD(&p->cpu_timers[0]);
1080 INIT_LIST_HEAD(&p->cpu_timers[1]);
1081 INIT_LIST_HEAD(&p->cpu_timers[2]);
1082
1083 p->lock_depth = -1; /* -1 = no lock */
1084 do_posix_clock_monotonic_gettime(&p->start_time);
1085 p->real_start_time = p->start_time;
1086 monotonic_to_bootbased(&p->real_start_time);
1087 #ifdef CONFIG_SECURITY
1088 p->security = NULL;
1089 #endif
1090 p->io_context = NULL;
1091 p->audit_context = NULL;
1092 cgroup_fork(p);
1093 #ifdef CONFIG_NUMA
1094 p->mempolicy = mpol_copy(p->mempolicy);
1095 if (IS_ERR(p->mempolicy)) {
1096 retval = PTR_ERR(p->mempolicy);
1097 p->mempolicy = NULL;
1098 goto bad_fork_cleanup_cgroup;
1099 }
1100 mpol_fix_fork_child_flag(p);
1101 #endif
1102 #ifdef CONFIG_TRACE_IRQFLAGS
1103 p->irq_events = 0;
1104 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1105 p->hardirqs_enabled = 1;
1106 #else
1107 p->hardirqs_enabled = 0;
1108 #endif
1109 p->hardirq_enable_ip = 0;
1110 p->hardirq_enable_event = 0;
1111 p->hardirq_disable_ip = _THIS_IP_;
1112 p->hardirq_disable_event = 0;
1113 p->softirqs_enabled = 1;
1114 p->softirq_enable_ip = _THIS_IP_;
1115 p->softirq_enable_event = 0;
1116 p->softirq_disable_ip = 0;
1117 p->softirq_disable_event = 0;
1118 p->hardirq_context = 0;
1119 p->softirq_context = 0;
1120 #endif
1121 #ifdef CONFIG_LOCKDEP
1122 p->lockdep_depth = 0; /* no locks held yet */
1123 p->curr_chain_key = 0;
1124 p->lockdep_recursion = 0;
1125 #endif
1126
1127 #ifdef CONFIG_DEBUG_MUTEXES
1128 p->blocked_on = NULL; /* not blocked yet */
1129 #endif
1130
1131 /* Perform scheduler related setup. Assign this task to a CPU. */
1132 sched_fork(p, clone_flags);
1133
1134 if ((retval = security_task_alloc(p)))
1135 goto bad_fork_cleanup_policy;
1136 if ((retval = audit_alloc(p)))
1137 goto bad_fork_cleanup_security;
1138 /* copy all the process information */
1139 if ((retval = copy_semundo(clone_flags, p)))
1140 goto bad_fork_cleanup_audit;
1141 if ((retval = copy_files(clone_flags, p)))
1142 goto bad_fork_cleanup_semundo;
1143 if ((retval = copy_fs(clone_flags, p)))
1144 goto bad_fork_cleanup_files;
1145 if ((retval = copy_sighand(clone_flags, p)))
1146 goto bad_fork_cleanup_fs;
1147 if ((retval = copy_signal(clone_flags, p)))
1148 goto bad_fork_cleanup_sighand;
1149 if ((retval = copy_mm(clone_flags, p)))
1150 goto bad_fork_cleanup_signal;
1151 if ((retval = copy_keys(clone_flags, p)))
1152 goto bad_fork_cleanup_mm;
1153 if ((retval = copy_namespaces(clone_flags, p)))
1154 goto bad_fork_cleanup_keys;
1155 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1156 if (retval)
1157 goto bad_fork_cleanup_namespaces;
1158
1159 if (pid != &init_struct_pid) {
1160 retval = -ENOMEM;
1161 pid = alloc_pid(task_active_pid_ns(p));
1162 if (!pid)
1163 goto bad_fork_cleanup_namespaces;
1164
1165 if (clone_flags & CLONE_NEWPID) {
1166 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1167 if (retval < 0)
1168 goto bad_fork_free_pid;
1169 }
1170 }
1171
1172 p->pid = pid_nr(pid);
1173 p->tgid = p->pid;
1174 if (clone_flags & CLONE_THREAD)
1175 p->tgid = current->tgid;
1176
1177 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1178 /*
1179 * Clear TID on mm_release()?
1180 */
1181 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1182 #ifdef CONFIG_FUTEX
1183 p->robust_list = NULL;
1184 #ifdef CONFIG_COMPAT
1185 p->compat_robust_list = NULL;
1186 #endif
1187 INIT_LIST_HEAD(&p->pi_state_list);
1188 p->pi_state_cache = NULL;
1189 #endif
1190 /*
1191 * sigaltstack should be cleared when sharing the same VM
1192 */
1193 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1194 p->sas_ss_sp = p->sas_ss_size = 0;
1195
1196 /*
1197 * Syscall tracing should be turned off in the child regardless
1198 * of CLONE_PTRACE.
1199 */
1200 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1201 #ifdef TIF_SYSCALL_EMU
1202 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1203 #endif
1204
1205 /* Our parent execution domain becomes current domain
1206 These must match for thread signalling to apply */
1207 p->parent_exec_id = p->self_exec_id;
1208
1209 /* ok, now we should be set up.. */
1210 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1211 p->pdeath_signal = 0;
1212 p->exit_state = 0;
1213
1214 /*
1215 * Ok, make it visible to the rest of the system.
1216 * We dont wake it up yet.
1217 */
1218 p->group_leader = p;
1219 INIT_LIST_HEAD(&p->thread_group);
1220 INIT_LIST_HEAD(&p->ptrace_children);
1221 INIT_LIST_HEAD(&p->ptrace_list);
1222
1223 /* Now that the task is set up, run cgroup callbacks if
1224 * necessary. We need to run them before the task is visible
1225 * on the tasklist. */
1226 cgroup_fork_callbacks(p);
1227 cgroup_callbacks_done = 1;
1228
1229 /* Need tasklist lock for parent etc handling! */
1230 write_lock_irq(&tasklist_lock);
1231
1232 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1233 p->ioprio = current->ioprio;
1234
1235 /*
1236 * The task hasn't been attached yet, so its cpus_allowed mask will
1237 * not be changed, nor will its assigned CPU.
1238 *
1239 * The cpus_allowed mask of the parent may have changed after it was
1240 * copied first time - so re-copy it here, then check the child's CPU
1241 * to ensure it is on a valid CPU (and if not, just force it back to
1242 * parent's CPU). This avoids alot of nasty races.
1243 */
1244 p->cpus_allowed = current->cpus_allowed;
1245 p->nr_cpus_allowed = current->nr_cpus_allowed;
1246 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1247 !cpu_online(task_cpu(p))))
1248 set_task_cpu(p, smp_processor_id());
1249
1250 /* CLONE_PARENT re-uses the old parent */
1251 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1252 p->real_parent = current->real_parent;
1253 else
1254 p->real_parent = current;
1255 p->parent = p->real_parent;
1256
1257 spin_lock(&current->sighand->siglock);
1258
1259 /*
1260 * Process group and session signals need to be delivered to just the
1261 * parent before the fork or both the parent and the child after the
1262 * fork. Restart if a signal comes in before we add the new process to
1263 * it's process group.
1264 * A fatal signal pending means that current will exit, so the new
1265 * thread can't slip out of an OOM kill (or normal SIGKILL).
1266 */
1267 recalc_sigpending();
1268 if (signal_pending(current)) {
1269 spin_unlock(&current->sighand->siglock);
1270 write_unlock_irq(&tasklist_lock);
1271 retval = -ERESTARTNOINTR;
1272 goto bad_fork_free_pid;
1273 }
1274
1275 if (clone_flags & CLONE_THREAD) {
1276 p->group_leader = current->group_leader;
1277 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1278
1279 if (!cputime_eq(current->signal->it_virt_expires,
1280 cputime_zero) ||
1281 !cputime_eq(current->signal->it_prof_expires,
1282 cputime_zero) ||
1283 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1284 !list_empty(&current->signal->cpu_timers[0]) ||
1285 !list_empty(&current->signal->cpu_timers[1]) ||
1286 !list_empty(&current->signal->cpu_timers[2])) {
1287 /*
1288 * Have child wake up on its first tick to check
1289 * for process CPU timers.
1290 */
1291 p->it_prof_expires = jiffies_to_cputime(1);
1292 }
1293 }
1294
1295 if (likely(p->pid)) {
1296 add_parent(p);
1297 if (unlikely(p->ptrace & PT_PTRACED))
1298 __ptrace_link(p, current->parent);
1299
1300 if (thread_group_leader(p)) {
1301 if (clone_flags & CLONE_NEWPID)
1302 p->nsproxy->pid_ns->child_reaper = p;
1303
1304 p->signal->tty = current->signal->tty;
1305 set_task_pgrp(p, task_pgrp_nr(current));
1306 set_task_session(p, task_session_nr(current));
1307 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1308 attach_pid(p, PIDTYPE_SID, task_session(current));
1309 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1310 __get_cpu_var(process_counts)++;
1311 }
1312 attach_pid(p, PIDTYPE_PID, pid);
1313 nr_threads++;
1314 }
1315
1316 total_forks++;
1317 spin_unlock(&current->sighand->siglock);
1318 write_unlock_irq(&tasklist_lock);
1319 proc_fork_connector(p);
1320 cgroup_post_fork(p);
1321 return p;
1322
1323 bad_fork_free_pid:
1324 if (pid != &init_struct_pid)
1325 free_pid(pid);
1326 bad_fork_cleanup_namespaces:
1327 exit_task_namespaces(p);
1328 bad_fork_cleanup_keys:
1329 exit_keys(p);
1330 bad_fork_cleanup_mm:
1331 if (p->mm)
1332 mmput(p->mm);
1333 bad_fork_cleanup_signal:
1334 cleanup_signal(p);
1335 bad_fork_cleanup_sighand:
1336 __cleanup_sighand(p->sighand);
1337 bad_fork_cleanup_fs:
1338 exit_fs(p); /* blocking */
1339 bad_fork_cleanup_files:
1340 exit_files(p); /* blocking */
1341 bad_fork_cleanup_semundo:
1342 exit_sem(p);
1343 bad_fork_cleanup_audit:
1344 audit_free(p);
1345 bad_fork_cleanup_security:
1346 security_task_free(p);
1347 bad_fork_cleanup_policy:
1348 #ifdef CONFIG_NUMA
1349 mpol_free(p->mempolicy);
1350 bad_fork_cleanup_cgroup:
1351 #endif
1352 cgroup_exit(p, cgroup_callbacks_done);
1353 delayacct_tsk_free(p);
1354 if (p->binfmt)
1355 module_put(p->binfmt->module);
1356 bad_fork_cleanup_put_domain:
1357 module_put(task_thread_info(p)->exec_domain->module);
1358 bad_fork_cleanup_count:
1359 put_group_info(p->group_info);
1360 atomic_dec(&p->user->processes);
1361 free_uid(p->user);
1362 bad_fork_free:
1363 free_task(p);
1364 fork_out:
1365 return ERR_PTR(retval);
1366 }
1367
1368 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1369 {
1370 memset(regs, 0, sizeof(struct pt_regs));
1371 return regs;
1372 }
1373
1374 struct task_struct * __cpuinit fork_idle(int cpu)
1375 {
1376 struct task_struct *task;
1377 struct pt_regs regs;
1378
1379 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1380 &init_struct_pid);
1381 if (!IS_ERR(task))
1382 init_idle(task, cpu);
1383
1384 return task;
1385 }
1386
1387 static int fork_traceflag(unsigned clone_flags)
1388 {
1389 if (clone_flags & CLONE_UNTRACED)
1390 return 0;
1391 else if (clone_flags & CLONE_VFORK) {
1392 if (current->ptrace & PT_TRACE_VFORK)
1393 return PTRACE_EVENT_VFORK;
1394 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1395 if (current->ptrace & PT_TRACE_CLONE)
1396 return PTRACE_EVENT_CLONE;
1397 } else if (current->ptrace & PT_TRACE_FORK)
1398 return PTRACE_EVENT_FORK;
1399
1400 return 0;
1401 }
1402
1403 /*
1404 * Ok, this is the main fork-routine.
1405 *
1406 * It copies the process, and if successful kick-starts
1407 * it and waits for it to finish using the VM if required.
1408 */
1409 long do_fork(unsigned long clone_flags,
1410 unsigned long stack_start,
1411 struct pt_regs *regs,
1412 unsigned long stack_size,
1413 int __user *parent_tidptr,
1414 int __user *child_tidptr)
1415 {
1416 struct task_struct *p;
1417 int trace = 0;
1418 long nr;
1419
1420 if (unlikely(current->ptrace)) {
1421 trace = fork_traceflag (clone_flags);
1422 if (trace)
1423 clone_flags |= CLONE_PTRACE;
1424 }
1425
1426 p = copy_process(clone_flags, stack_start, regs, stack_size,
1427 child_tidptr, NULL);
1428 /*
1429 * Do this prior waking up the new thread - the thread pointer
1430 * might get invalid after that point, if the thread exits quickly.
1431 */
1432 if (!IS_ERR(p)) {
1433 struct completion vfork;
1434
1435 /*
1436 * this is enough to call pid_nr_ns here, but this if
1437 * improves optimisation of regular fork()
1438 */
1439 nr = (clone_flags & CLONE_NEWPID) ?
1440 task_pid_nr_ns(p, current->nsproxy->pid_ns) :
1441 task_pid_vnr(p);
1442
1443 if (clone_flags & CLONE_PARENT_SETTID)
1444 put_user(nr, parent_tidptr);
1445
1446 if (clone_flags & CLONE_VFORK) {
1447 p->vfork_done = &vfork;
1448 init_completion(&vfork);
1449 }
1450
1451 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1452 /*
1453 * We'll start up with an immediate SIGSTOP.
1454 */
1455 sigaddset(&p->pending.signal, SIGSTOP);
1456 set_tsk_thread_flag(p, TIF_SIGPENDING);
1457 }
1458
1459 if (!(clone_flags & CLONE_STOPPED))
1460 wake_up_new_task(p, clone_flags);
1461 else
1462 p->state = TASK_STOPPED;
1463
1464 if (unlikely (trace)) {
1465 current->ptrace_message = nr;
1466 ptrace_notify ((trace << 8) | SIGTRAP);
1467 }
1468
1469 if (clone_flags & CLONE_VFORK) {
1470 freezer_do_not_count();
1471 wait_for_completion(&vfork);
1472 freezer_count();
1473 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1474 current->ptrace_message = nr;
1475 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1476 }
1477 }
1478 } else {
1479 nr = PTR_ERR(p);
1480 }
1481 return nr;
1482 }
1483
1484 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1485 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1486 #endif
1487
1488 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1489 {
1490 struct sighand_struct *sighand = data;
1491
1492 spin_lock_init(&sighand->siglock);
1493 init_waitqueue_head(&sighand->signalfd_wqh);
1494 }
1495
1496 void __init proc_caches_init(void)
1497 {
1498 sighand_cachep = kmem_cache_create("sighand_cache",
1499 sizeof(struct sighand_struct), 0,
1500 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1501 sighand_ctor);
1502 signal_cachep = kmem_cache_create("signal_cache",
1503 sizeof(struct signal_struct), 0,
1504 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1505 files_cachep = kmem_cache_create("files_cache",
1506 sizeof(struct files_struct), 0,
1507 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1508 fs_cachep = kmem_cache_create("fs_cache",
1509 sizeof(struct fs_struct), 0,
1510 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1511 vm_area_cachep = kmem_cache_create("vm_area_struct",
1512 sizeof(struct vm_area_struct), 0,
1513 SLAB_PANIC, NULL);
1514 mm_cachep = kmem_cache_create("mm_struct",
1515 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1516 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1517 }
1518
1519 /*
1520 * Check constraints on flags passed to the unshare system call and
1521 * force unsharing of additional process context as appropriate.
1522 */
1523 static void check_unshare_flags(unsigned long *flags_ptr)
1524 {
1525 /*
1526 * If unsharing a thread from a thread group, must also
1527 * unshare vm.
1528 */
1529 if (*flags_ptr & CLONE_THREAD)
1530 *flags_ptr |= CLONE_VM;
1531
1532 /*
1533 * If unsharing vm, must also unshare signal handlers.
1534 */
1535 if (*flags_ptr & CLONE_VM)
1536 *flags_ptr |= CLONE_SIGHAND;
1537
1538 /*
1539 * If unsharing signal handlers and the task was created
1540 * using CLONE_THREAD, then must unshare the thread
1541 */
1542 if ((*flags_ptr & CLONE_SIGHAND) &&
1543 (atomic_read(&current->signal->count) > 1))
1544 *flags_ptr |= CLONE_THREAD;
1545
1546 /*
1547 * If unsharing namespace, must also unshare filesystem information.
1548 */
1549 if (*flags_ptr & CLONE_NEWNS)
1550 *flags_ptr |= CLONE_FS;
1551 }
1552
1553 /*
1554 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1555 */
1556 static int unshare_thread(unsigned long unshare_flags)
1557 {
1558 if (unshare_flags & CLONE_THREAD)
1559 return -EINVAL;
1560
1561 return 0;
1562 }
1563
1564 /*
1565 * Unshare the filesystem structure if it is being shared
1566 */
1567 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1568 {
1569 struct fs_struct *fs = current->fs;
1570
1571 if ((unshare_flags & CLONE_FS) &&
1572 (fs && atomic_read(&fs->count) > 1)) {
1573 *new_fsp = __copy_fs_struct(current->fs);
1574 if (!*new_fsp)
1575 return -ENOMEM;
1576 }
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * Unsharing of sighand is not supported yet
1583 */
1584 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1585 {
1586 struct sighand_struct *sigh = current->sighand;
1587
1588 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1589 return -EINVAL;
1590 else
1591 return 0;
1592 }
1593
1594 /*
1595 * Unshare vm if it is being shared
1596 */
1597 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1598 {
1599 struct mm_struct *mm = current->mm;
1600
1601 if ((unshare_flags & CLONE_VM) &&
1602 (mm && atomic_read(&mm->mm_users) > 1)) {
1603 return -EINVAL;
1604 }
1605
1606 return 0;
1607 }
1608
1609 /*
1610 * Unshare file descriptor table if it is being shared
1611 */
1612 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1613 {
1614 struct files_struct *fd = current->files;
1615 int error = 0;
1616
1617 if ((unshare_flags & CLONE_FILES) &&
1618 (fd && atomic_read(&fd->count) > 1)) {
1619 *new_fdp = dup_fd(fd, &error);
1620 if (!*new_fdp)
1621 return error;
1622 }
1623
1624 return 0;
1625 }
1626
1627 /*
1628 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1629 * supported yet
1630 */
1631 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1632 {
1633 if (unshare_flags & CLONE_SYSVSEM)
1634 return -EINVAL;
1635
1636 return 0;
1637 }
1638
1639 /*
1640 * unshare allows a process to 'unshare' part of the process
1641 * context which was originally shared using clone. copy_*
1642 * functions used by do_fork() cannot be used here directly
1643 * because they modify an inactive task_struct that is being
1644 * constructed. Here we are modifying the current, active,
1645 * task_struct.
1646 */
1647 asmlinkage long sys_unshare(unsigned long unshare_flags)
1648 {
1649 int err = 0;
1650 struct fs_struct *fs, *new_fs = NULL;
1651 struct sighand_struct *new_sigh = NULL;
1652 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1653 struct files_struct *fd, *new_fd = NULL;
1654 struct sem_undo_list *new_ulist = NULL;
1655 struct nsproxy *new_nsproxy = NULL;
1656
1657 check_unshare_flags(&unshare_flags);
1658
1659 /* Return -EINVAL for all unsupported flags */
1660 err = -EINVAL;
1661 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1662 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1663 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1664 CLONE_NEWNET))
1665 goto bad_unshare_out;
1666
1667 if ((err = unshare_thread(unshare_flags)))
1668 goto bad_unshare_out;
1669 if ((err = unshare_fs(unshare_flags, &new_fs)))
1670 goto bad_unshare_cleanup_thread;
1671 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1672 goto bad_unshare_cleanup_fs;
1673 if ((err = unshare_vm(unshare_flags, &new_mm)))
1674 goto bad_unshare_cleanup_sigh;
1675 if ((err = unshare_fd(unshare_flags, &new_fd)))
1676 goto bad_unshare_cleanup_vm;
1677 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1678 goto bad_unshare_cleanup_fd;
1679 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1680 new_fs)))
1681 goto bad_unshare_cleanup_semundo;
1682
1683 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1684
1685 if (new_nsproxy) {
1686 switch_task_namespaces(current, new_nsproxy);
1687 new_nsproxy = NULL;
1688 }
1689
1690 task_lock(current);
1691
1692 if (new_fs) {
1693 fs = current->fs;
1694 current->fs = new_fs;
1695 new_fs = fs;
1696 }
1697
1698 if (new_mm) {
1699 mm = current->mm;
1700 active_mm = current->active_mm;
1701 current->mm = new_mm;
1702 current->active_mm = new_mm;
1703 activate_mm(active_mm, new_mm);
1704 new_mm = mm;
1705 }
1706
1707 if (new_fd) {
1708 fd = current->files;
1709 current->files = new_fd;
1710 new_fd = fd;
1711 }
1712
1713 task_unlock(current);
1714 }
1715
1716 if (new_nsproxy)
1717 put_nsproxy(new_nsproxy);
1718
1719 bad_unshare_cleanup_semundo:
1720 bad_unshare_cleanup_fd:
1721 if (new_fd)
1722 put_files_struct(new_fd);
1723
1724 bad_unshare_cleanup_vm:
1725 if (new_mm)
1726 mmput(new_mm);
1727
1728 bad_unshare_cleanup_sigh:
1729 if (new_sigh)
1730 if (atomic_dec_and_test(&new_sigh->count))
1731 kmem_cache_free(sighand_cachep, new_sigh);
1732
1733 bad_unshare_cleanup_fs:
1734 if (new_fs)
1735 put_fs_struct(new_fs);
1736
1737 bad_unshare_cleanup_thread:
1738 bad_unshare_out:
1739 return err;
1740 }