x86, bts: add fork and exit handling
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <trace/sched.h>
64
65 #include <asm/pgtable.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/cacheflush.h>
70 #include <asm/tlbflush.h>
71
72 /*
73 * Protected counters by write_lock_irq(&tasklist_lock)
74 */
75 unsigned long total_forks; /* Handle normal Linux uptimes. */
76 int nr_threads; /* The idle threads do not count.. */
77
78 int max_threads; /* tunable limit on nr_threads */
79
80 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
81
82 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
83
84 DEFINE_TRACE(sched_process_fork);
85
86 int nr_processes(void)
87 {
88 int cpu;
89 int total = 0;
90
91 for_each_online_cpu(cpu)
92 total += per_cpu(process_counts, cpu);
93
94 return total;
95 }
96
97 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
98 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
99 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
100 static struct kmem_cache *task_struct_cachep;
101 #endif
102
103 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
104 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
105 {
106 #ifdef CONFIG_DEBUG_STACK_USAGE
107 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
108 #else
109 gfp_t mask = GFP_KERNEL;
110 #endif
111 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
112 }
113
114 static inline void free_thread_info(struct thread_info *ti)
115 {
116 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
117 }
118 #endif
119
120 /* SLAB cache for signal_struct structures (tsk->signal) */
121 static struct kmem_cache *signal_cachep;
122
123 /* SLAB cache for sighand_struct structures (tsk->sighand) */
124 struct kmem_cache *sighand_cachep;
125
126 /* SLAB cache for files_struct structures (tsk->files) */
127 struct kmem_cache *files_cachep;
128
129 /* SLAB cache for fs_struct structures (tsk->fs) */
130 struct kmem_cache *fs_cachep;
131
132 /* SLAB cache for vm_area_struct structures */
133 struct kmem_cache *vm_area_cachep;
134
135 /* SLAB cache for mm_struct structures (tsk->mm) */
136 static struct kmem_cache *mm_cachep;
137
138 void free_task(struct task_struct *tsk)
139 {
140 prop_local_destroy_single(&tsk->dirties);
141 free_thread_info(tsk->stack);
142 rt_mutex_debug_task_free(tsk);
143 ftrace_graph_exit_task(tsk);
144 free_task_struct(tsk);
145 }
146 EXPORT_SYMBOL(free_task);
147
148 void __put_task_struct(struct task_struct *tsk)
149 {
150 WARN_ON(!tsk->exit_state);
151 WARN_ON(atomic_read(&tsk->usage));
152 WARN_ON(tsk == current);
153
154 security_task_free(tsk);
155 free_uid(tsk->user);
156 put_group_info(tsk->group_info);
157 delayacct_tsk_free(tsk);
158
159 if (!profile_handoff_task(tsk))
160 free_task(tsk);
161 }
162
163 /*
164 * macro override instead of weak attribute alias, to workaround
165 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
166 */
167 #ifndef arch_task_cache_init
168 #define arch_task_cache_init()
169 #endif
170
171 void __init fork_init(unsigned long mempages)
172 {
173 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
174 #ifndef ARCH_MIN_TASKALIGN
175 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
176 #endif
177 /* create a slab on which task_structs can be allocated */
178 task_struct_cachep =
179 kmem_cache_create("task_struct", sizeof(struct task_struct),
180 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
181 #endif
182
183 /* do the arch specific task caches init */
184 arch_task_cache_init();
185
186 /*
187 * The default maximum number of threads is set to a safe
188 * value: the thread structures can take up at most half
189 * of memory.
190 */
191 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
192
193 /*
194 * we need to allow at least 20 threads to boot a system
195 */
196 if(max_threads < 20)
197 max_threads = 20;
198
199 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
200 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
201 init_task.signal->rlim[RLIMIT_SIGPENDING] =
202 init_task.signal->rlim[RLIMIT_NPROC];
203 }
204
205 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
206 struct task_struct *src)
207 {
208 *dst = *src;
209 return 0;
210 }
211
212 static struct task_struct *dup_task_struct(struct task_struct *orig)
213 {
214 struct task_struct *tsk;
215 struct thread_info *ti;
216 int err;
217
218 prepare_to_copy(orig);
219
220 tsk = alloc_task_struct();
221 if (!tsk)
222 return NULL;
223
224 ti = alloc_thread_info(tsk);
225 if (!ti) {
226 free_task_struct(tsk);
227 return NULL;
228 }
229
230 err = arch_dup_task_struct(tsk, orig);
231 if (err)
232 goto out;
233
234 tsk->stack = ti;
235
236 err = prop_local_init_single(&tsk->dirties);
237 if (err)
238 goto out;
239
240 setup_thread_stack(tsk, orig);
241
242 #ifdef CONFIG_CC_STACKPROTECTOR
243 tsk->stack_canary = get_random_int();
244 #endif
245
246 /* One for us, one for whoever does the "release_task()" (usually parent) */
247 atomic_set(&tsk->usage,2);
248 atomic_set(&tsk->fs_excl, 0);
249 #ifdef CONFIG_BLK_DEV_IO_TRACE
250 tsk->btrace_seq = 0;
251 #endif
252 tsk->splice_pipe = NULL;
253 return tsk;
254
255 out:
256 free_thread_info(ti);
257 free_task_struct(tsk);
258 return NULL;
259 }
260
261 #ifdef CONFIG_MMU
262 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
263 {
264 struct vm_area_struct *mpnt, *tmp, **pprev;
265 struct rb_node **rb_link, *rb_parent;
266 int retval;
267 unsigned long charge;
268 struct mempolicy *pol;
269
270 down_write(&oldmm->mmap_sem);
271 flush_cache_dup_mm(oldmm);
272 /*
273 * Not linked in yet - no deadlock potential:
274 */
275 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
276
277 mm->locked_vm = 0;
278 mm->mmap = NULL;
279 mm->mmap_cache = NULL;
280 mm->free_area_cache = oldmm->mmap_base;
281 mm->cached_hole_size = ~0UL;
282 mm->map_count = 0;
283 cpus_clear(mm->cpu_vm_mask);
284 mm->mm_rb = RB_ROOT;
285 rb_link = &mm->mm_rb.rb_node;
286 rb_parent = NULL;
287 pprev = &mm->mmap;
288
289 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
290 struct file *file;
291
292 if (mpnt->vm_flags & VM_DONTCOPY) {
293 long pages = vma_pages(mpnt);
294 mm->total_vm -= pages;
295 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
296 -pages);
297 continue;
298 }
299 charge = 0;
300 if (mpnt->vm_flags & VM_ACCOUNT) {
301 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
302 if (security_vm_enough_memory(len))
303 goto fail_nomem;
304 charge = len;
305 }
306 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
307 if (!tmp)
308 goto fail_nomem;
309 *tmp = *mpnt;
310 pol = mpol_dup(vma_policy(mpnt));
311 retval = PTR_ERR(pol);
312 if (IS_ERR(pol))
313 goto fail_nomem_policy;
314 vma_set_policy(tmp, pol);
315 tmp->vm_flags &= ~VM_LOCKED;
316 tmp->vm_mm = mm;
317 tmp->vm_next = NULL;
318 anon_vma_link(tmp);
319 file = tmp->vm_file;
320 if (file) {
321 struct inode *inode = file->f_path.dentry->d_inode;
322 struct address_space *mapping = file->f_mapping;
323
324 get_file(file);
325 if (tmp->vm_flags & VM_DENYWRITE)
326 atomic_dec(&inode->i_writecount);
327 spin_lock(&mapping->i_mmap_lock);
328 if (tmp->vm_flags & VM_SHARED)
329 mapping->i_mmap_writable++;
330 tmp->vm_truncate_count = mpnt->vm_truncate_count;
331 flush_dcache_mmap_lock(mapping);
332 /* insert tmp into the share list, just after mpnt */
333 vma_prio_tree_add(tmp, mpnt);
334 flush_dcache_mmap_unlock(mapping);
335 spin_unlock(&mapping->i_mmap_lock);
336 }
337
338 /*
339 * Clear hugetlb-related page reserves for children. This only
340 * affects MAP_PRIVATE mappings. Faults generated by the child
341 * are not guaranteed to succeed, even if read-only
342 */
343 if (is_vm_hugetlb_page(tmp))
344 reset_vma_resv_huge_pages(tmp);
345
346 /*
347 * Link in the new vma and copy the page table entries.
348 */
349 *pprev = tmp;
350 pprev = &tmp->vm_next;
351
352 __vma_link_rb(mm, tmp, rb_link, rb_parent);
353 rb_link = &tmp->vm_rb.rb_right;
354 rb_parent = &tmp->vm_rb;
355
356 mm->map_count++;
357 retval = copy_page_range(mm, oldmm, mpnt);
358
359 if (tmp->vm_ops && tmp->vm_ops->open)
360 tmp->vm_ops->open(tmp);
361
362 if (retval)
363 goto out;
364 }
365 /* a new mm has just been created */
366 arch_dup_mmap(oldmm, mm);
367 retval = 0;
368 out:
369 up_write(&mm->mmap_sem);
370 flush_tlb_mm(oldmm);
371 up_write(&oldmm->mmap_sem);
372 return retval;
373 fail_nomem_policy:
374 kmem_cache_free(vm_area_cachep, tmp);
375 fail_nomem:
376 retval = -ENOMEM;
377 vm_unacct_memory(charge);
378 goto out;
379 }
380
381 static inline int mm_alloc_pgd(struct mm_struct * mm)
382 {
383 mm->pgd = pgd_alloc(mm);
384 if (unlikely(!mm->pgd))
385 return -ENOMEM;
386 return 0;
387 }
388
389 static inline void mm_free_pgd(struct mm_struct * mm)
390 {
391 pgd_free(mm, mm->pgd);
392 }
393 #else
394 #define dup_mmap(mm, oldmm) (0)
395 #define mm_alloc_pgd(mm) (0)
396 #define mm_free_pgd(mm)
397 #endif /* CONFIG_MMU */
398
399 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
400
401 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
402 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
403
404 #include <linux/init_task.h>
405
406 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
407 {
408 atomic_set(&mm->mm_users, 1);
409 atomic_set(&mm->mm_count, 1);
410 init_rwsem(&mm->mmap_sem);
411 INIT_LIST_HEAD(&mm->mmlist);
412 mm->flags = (current->mm) ? current->mm->flags
413 : MMF_DUMP_FILTER_DEFAULT;
414 mm->core_state = NULL;
415 mm->nr_ptes = 0;
416 set_mm_counter(mm, file_rss, 0);
417 set_mm_counter(mm, anon_rss, 0);
418 spin_lock_init(&mm->page_table_lock);
419 rwlock_init(&mm->ioctx_list_lock);
420 mm->ioctx_list = NULL;
421 mm->free_area_cache = TASK_UNMAPPED_BASE;
422 mm->cached_hole_size = ~0UL;
423 mm_init_owner(mm, p);
424
425 if (likely(!mm_alloc_pgd(mm))) {
426 mm->def_flags = 0;
427 mmu_notifier_mm_init(mm);
428 return mm;
429 }
430
431 free_mm(mm);
432 return NULL;
433 }
434
435 /*
436 * Allocate and initialize an mm_struct.
437 */
438 struct mm_struct * mm_alloc(void)
439 {
440 struct mm_struct * mm;
441
442 mm = allocate_mm();
443 if (mm) {
444 memset(mm, 0, sizeof(*mm));
445 mm = mm_init(mm, current);
446 }
447 return mm;
448 }
449
450 /*
451 * Called when the last reference to the mm
452 * is dropped: either by a lazy thread or by
453 * mmput. Free the page directory and the mm.
454 */
455 void __mmdrop(struct mm_struct *mm)
456 {
457 BUG_ON(mm == &init_mm);
458 mm_free_pgd(mm);
459 destroy_context(mm);
460 mmu_notifier_mm_destroy(mm);
461 free_mm(mm);
462 }
463 EXPORT_SYMBOL_GPL(__mmdrop);
464
465 /*
466 * Decrement the use count and release all resources for an mm.
467 */
468 void mmput(struct mm_struct *mm)
469 {
470 might_sleep();
471
472 if (atomic_dec_and_test(&mm->mm_users)) {
473 exit_aio(mm);
474 exit_mmap(mm);
475 set_mm_exe_file(mm, NULL);
476 if (!list_empty(&mm->mmlist)) {
477 spin_lock(&mmlist_lock);
478 list_del(&mm->mmlist);
479 spin_unlock(&mmlist_lock);
480 }
481 put_swap_token(mm);
482 mmdrop(mm);
483 }
484 }
485 EXPORT_SYMBOL_GPL(mmput);
486
487 /**
488 * get_task_mm - acquire a reference to the task's mm
489 *
490 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
491 * this kernel workthread has transiently adopted a user mm with use_mm,
492 * to do its AIO) is not set and if so returns a reference to it, after
493 * bumping up the use count. User must release the mm via mmput()
494 * after use. Typically used by /proc and ptrace.
495 */
496 struct mm_struct *get_task_mm(struct task_struct *task)
497 {
498 struct mm_struct *mm;
499
500 task_lock(task);
501 mm = task->mm;
502 if (mm) {
503 if (task->flags & PF_KTHREAD)
504 mm = NULL;
505 else
506 atomic_inc(&mm->mm_users);
507 }
508 task_unlock(task);
509 return mm;
510 }
511 EXPORT_SYMBOL_GPL(get_task_mm);
512
513 /* Please note the differences between mmput and mm_release.
514 * mmput is called whenever we stop holding onto a mm_struct,
515 * error success whatever.
516 *
517 * mm_release is called after a mm_struct has been removed
518 * from the current process.
519 *
520 * This difference is important for error handling, when we
521 * only half set up a mm_struct for a new process and need to restore
522 * the old one. Because we mmput the new mm_struct before
523 * restoring the old one. . .
524 * Eric Biederman 10 January 1998
525 */
526 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
527 {
528 struct completion *vfork_done = tsk->vfork_done;
529
530 /* Get rid of any futexes when releasing the mm */
531 #ifdef CONFIG_FUTEX
532 if (unlikely(tsk->robust_list))
533 exit_robust_list(tsk);
534 #ifdef CONFIG_COMPAT
535 if (unlikely(tsk->compat_robust_list))
536 compat_exit_robust_list(tsk);
537 #endif
538 #endif
539
540 /* Get rid of any cached register state */
541 deactivate_mm(tsk, mm);
542
543 /* notify parent sleeping on vfork() */
544 if (vfork_done) {
545 tsk->vfork_done = NULL;
546 complete(vfork_done);
547 }
548
549 /*
550 * If we're exiting normally, clear a user-space tid field if
551 * requested. We leave this alone when dying by signal, to leave
552 * the value intact in a core dump, and to save the unnecessary
553 * trouble otherwise. Userland only wants this done for a sys_exit.
554 */
555 if (tsk->clear_child_tid
556 && !(tsk->flags & PF_SIGNALED)
557 && atomic_read(&mm->mm_users) > 1) {
558 u32 __user * tidptr = tsk->clear_child_tid;
559 tsk->clear_child_tid = NULL;
560
561 /*
562 * We don't check the error code - if userspace has
563 * not set up a proper pointer then tough luck.
564 */
565 put_user(0, tidptr);
566 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
567 }
568 }
569
570 /*
571 * Allocate a new mm structure and copy contents from the
572 * mm structure of the passed in task structure.
573 */
574 struct mm_struct *dup_mm(struct task_struct *tsk)
575 {
576 struct mm_struct *mm, *oldmm = current->mm;
577 int err;
578
579 if (!oldmm)
580 return NULL;
581
582 mm = allocate_mm();
583 if (!mm)
584 goto fail_nomem;
585
586 memcpy(mm, oldmm, sizeof(*mm));
587
588 /* Initializing for Swap token stuff */
589 mm->token_priority = 0;
590 mm->last_interval = 0;
591
592 if (!mm_init(mm, tsk))
593 goto fail_nomem;
594
595 if (init_new_context(tsk, mm))
596 goto fail_nocontext;
597
598 dup_mm_exe_file(oldmm, mm);
599
600 err = dup_mmap(mm, oldmm);
601 if (err)
602 goto free_pt;
603
604 mm->hiwater_rss = get_mm_rss(mm);
605 mm->hiwater_vm = mm->total_vm;
606
607 return mm;
608
609 free_pt:
610 mmput(mm);
611
612 fail_nomem:
613 return NULL;
614
615 fail_nocontext:
616 /*
617 * If init_new_context() failed, we cannot use mmput() to free the mm
618 * because it calls destroy_context()
619 */
620 mm_free_pgd(mm);
621 free_mm(mm);
622 return NULL;
623 }
624
625 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
626 {
627 struct mm_struct * mm, *oldmm;
628 int retval;
629
630 tsk->min_flt = tsk->maj_flt = 0;
631 tsk->nvcsw = tsk->nivcsw = 0;
632
633 tsk->mm = NULL;
634 tsk->active_mm = NULL;
635
636 /*
637 * Are we cloning a kernel thread?
638 *
639 * We need to steal a active VM for that..
640 */
641 oldmm = current->mm;
642 if (!oldmm)
643 return 0;
644
645 if (clone_flags & CLONE_VM) {
646 atomic_inc(&oldmm->mm_users);
647 mm = oldmm;
648 goto good_mm;
649 }
650
651 retval = -ENOMEM;
652 mm = dup_mm(tsk);
653 if (!mm)
654 goto fail_nomem;
655
656 good_mm:
657 /* Initializing for Swap token stuff */
658 mm->token_priority = 0;
659 mm->last_interval = 0;
660
661 tsk->mm = mm;
662 tsk->active_mm = mm;
663 return 0;
664
665 fail_nomem:
666 return retval;
667 }
668
669 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
670 {
671 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
672 /* We don't need to lock fs - think why ;-) */
673 if (fs) {
674 atomic_set(&fs->count, 1);
675 rwlock_init(&fs->lock);
676 fs->umask = old->umask;
677 read_lock(&old->lock);
678 fs->root = old->root;
679 path_get(&old->root);
680 fs->pwd = old->pwd;
681 path_get(&old->pwd);
682 read_unlock(&old->lock);
683 }
684 return fs;
685 }
686
687 struct fs_struct *copy_fs_struct(struct fs_struct *old)
688 {
689 return __copy_fs_struct(old);
690 }
691
692 EXPORT_SYMBOL_GPL(copy_fs_struct);
693
694 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
695 {
696 if (clone_flags & CLONE_FS) {
697 atomic_inc(&current->fs->count);
698 return 0;
699 }
700 tsk->fs = __copy_fs_struct(current->fs);
701 if (!tsk->fs)
702 return -ENOMEM;
703 return 0;
704 }
705
706 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
707 {
708 struct files_struct *oldf, *newf;
709 int error = 0;
710
711 /*
712 * A background process may not have any files ...
713 */
714 oldf = current->files;
715 if (!oldf)
716 goto out;
717
718 if (clone_flags & CLONE_FILES) {
719 atomic_inc(&oldf->count);
720 goto out;
721 }
722
723 newf = dup_fd(oldf, &error);
724 if (!newf)
725 goto out;
726
727 tsk->files = newf;
728 error = 0;
729 out:
730 return error;
731 }
732
733 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
734 {
735 #ifdef CONFIG_BLOCK
736 struct io_context *ioc = current->io_context;
737
738 if (!ioc)
739 return 0;
740 /*
741 * Share io context with parent, if CLONE_IO is set
742 */
743 if (clone_flags & CLONE_IO) {
744 tsk->io_context = ioc_task_link(ioc);
745 if (unlikely(!tsk->io_context))
746 return -ENOMEM;
747 } else if (ioprio_valid(ioc->ioprio)) {
748 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
749 if (unlikely(!tsk->io_context))
750 return -ENOMEM;
751
752 tsk->io_context->ioprio = ioc->ioprio;
753 }
754 #endif
755 return 0;
756 }
757
758 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
759 {
760 struct sighand_struct *sig;
761
762 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
763 atomic_inc(&current->sighand->count);
764 return 0;
765 }
766 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
767 rcu_assign_pointer(tsk->sighand, sig);
768 if (!sig)
769 return -ENOMEM;
770 atomic_set(&sig->count, 1);
771 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
772 return 0;
773 }
774
775 void __cleanup_sighand(struct sighand_struct *sighand)
776 {
777 if (atomic_dec_and_test(&sighand->count))
778 kmem_cache_free(sighand_cachep, sighand);
779 }
780
781
782 /*
783 * Initialize POSIX timer handling for a thread group.
784 */
785 static void posix_cpu_timers_init_group(struct signal_struct *sig)
786 {
787 /* Thread group counters. */
788 thread_group_cputime_init(sig);
789
790 /* Expiration times and increments. */
791 sig->it_virt_expires = cputime_zero;
792 sig->it_virt_incr = cputime_zero;
793 sig->it_prof_expires = cputime_zero;
794 sig->it_prof_incr = cputime_zero;
795
796 /* Cached expiration times. */
797 sig->cputime_expires.prof_exp = cputime_zero;
798 sig->cputime_expires.virt_exp = cputime_zero;
799 sig->cputime_expires.sched_exp = 0;
800
801 /* The timer lists. */
802 INIT_LIST_HEAD(&sig->cpu_timers[0]);
803 INIT_LIST_HEAD(&sig->cpu_timers[1]);
804 INIT_LIST_HEAD(&sig->cpu_timers[2]);
805 }
806
807 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
808 {
809 struct signal_struct *sig;
810 int ret;
811
812 if (clone_flags & CLONE_THREAD) {
813 ret = thread_group_cputime_clone_thread(current);
814 if (likely(!ret)) {
815 atomic_inc(&current->signal->count);
816 atomic_inc(&current->signal->live);
817 }
818 return ret;
819 }
820 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
821 tsk->signal = sig;
822 if (!sig)
823 return -ENOMEM;
824
825 ret = copy_thread_group_keys(tsk);
826 if (ret < 0) {
827 kmem_cache_free(signal_cachep, sig);
828 return ret;
829 }
830
831 atomic_set(&sig->count, 1);
832 atomic_set(&sig->live, 1);
833 init_waitqueue_head(&sig->wait_chldexit);
834 sig->flags = 0;
835 sig->group_exit_code = 0;
836 sig->group_exit_task = NULL;
837 sig->group_stop_count = 0;
838 sig->curr_target = tsk;
839 init_sigpending(&sig->shared_pending);
840 INIT_LIST_HEAD(&sig->posix_timers);
841
842 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
843 sig->it_real_incr.tv64 = 0;
844 sig->real_timer.function = it_real_fn;
845
846 sig->leader = 0; /* session leadership doesn't inherit */
847 sig->tty_old_pgrp = NULL;
848 sig->tty = NULL;
849
850 sig->cutime = sig->cstime = cputime_zero;
851 sig->gtime = cputime_zero;
852 sig->cgtime = cputime_zero;
853 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
854 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
855 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
856 task_io_accounting_init(&sig->ioac);
857 taskstats_tgid_init(sig);
858
859 task_lock(current->group_leader);
860 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
861 task_unlock(current->group_leader);
862
863 posix_cpu_timers_init_group(sig);
864
865 acct_init_pacct(&sig->pacct);
866
867 tty_audit_fork(sig);
868
869 return 0;
870 }
871
872 void __cleanup_signal(struct signal_struct *sig)
873 {
874 thread_group_cputime_free(sig);
875 exit_thread_group_keys(sig);
876 tty_kref_put(sig->tty);
877 kmem_cache_free(signal_cachep, sig);
878 }
879
880 static void cleanup_signal(struct task_struct *tsk)
881 {
882 struct signal_struct *sig = tsk->signal;
883
884 atomic_dec(&sig->live);
885
886 if (atomic_dec_and_test(&sig->count))
887 __cleanup_signal(sig);
888 }
889
890 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
891 {
892 unsigned long new_flags = p->flags;
893
894 new_flags &= ~PF_SUPERPRIV;
895 new_flags |= PF_FORKNOEXEC;
896 new_flags |= PF_STARTING;
897 p->flags = new_flags;
898 clear_freeze_flag(p);
899 }
900
901 asmlinkage long sys_set_tid_address(int __user *tidptr)
902 {
903 current->clear_child_tid = tidptr;
904
905 return task_pid_vnr(current);
906 }
907
908 static void rt_mutex_init_task(struct task_struct *p)
909 {
910 spin_lock_init(&p->pi_lock);
911 #ifdef CONFIG_RT_MUTEXES
912 plist_head_init(&p->pi_waiters, &p->pi_lock);
913 p->pi_blocked_on = NULL;
914 #endif
915 }
916
917 #ifdef CONFIG_MM_OWNER
918 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
919 {
920 mm->owner = p;
921 }
922 #endif /* CONFIG_MM_OWNER */
923
924 /*
925 * Initialize POSIX timer handling for a single task.
926 */
927 static void posix_cpu_timers_init(struct task_struct *tsk)
928 {
929 tsk->cputime_expires.prof_exp = cputime_zero;
930 tsk->cputime_expires.virt_exp = cputime_zero;
931 tsk->cputime_expires.sched_exp = 0;
932 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
933 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
934 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
935 }
936
937 /*
938 * This creates a new process as a copy of the old one,
939 * but does not actually start it yet.
940 *
941 * It copies the registers, and all the appropriate
942 * parts of the process environment (as per the clone
943 * flags). The actual kick-off is left to the caller.
944 */
945 static struct task_struct *copy_process(unsigned long clone_flags,
946 unsigned long stack_start,
947 struct pt_regs *regs,
948 unsigned long stack_size,
949 int __user *child_tidptr,
950 struct pid *pid,
951 int trace)
952 {
953 int retval;
954 struct task_struct *p;
955 int cgroup_callbacks_done = 0;
956
957 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
958 return ERR_PTR(-EINVAL);
959
960 /*
961 * Thread groups must share signals as well, and detached threads
962 * can only be started up within the thread group.
963 */
964 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
965 return ERR_PTR(-EINVAL);
966
967 /*
968 * Shared signal handlers imply shared VM. By way of the above,
969 * thread groups also imply shared VM. Blocking this case allows
970 * for various simplifications in other code.
971 */
972 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
973 return ERR_PTR(-EINVAL);
974
975 retval = security_task_create(clone_flags);
976 if (retval)
977 goto fork_out;
978
979 retval = -ENOMEM;
980 p = dup_task_struct(current);
981 if (!p)
982 goto fork_out;
983
984 rt_mutex_init_task(p);
985
986 #ifdef CONFIG_PROVE_LOCKING
987 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
988 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
989 #endif
990 retval = -EAGAIN;
991 if (atomic_read(&p->user->processes) >=
992 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
993 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
994 p->user != current->nsproxy->user_ns->root_user)
995 goto bad_fork_free;
996 }
997
998 atomic_inc(&p->user->__count);
999 atomic_inc(&p->user->processes);
1000 get_group_info(p->group_info);
1001
1002 /*
1003 * If multiple threads are within copy_process(), then this check
1004 * triggers too late. This doesn't hurt, the check is only there
1005 * to stop root fork bombs.
1006 */
1007 if (nr_threads >= max_threads)
1008 goto bad_fork_cleanup_count;
1009
1010 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1011 goto bad_fork_cleanup_count;
1012
1013 if (p->binfmt && !try_module_get(p->binfmt->module))
1014 goto bad_fork_cleanup_put_domain;
1015
1016 p->did_exec = 0;
1017 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1018 copy_flags(clone_flags, p);
1019 INIT_LIST_HEAD(&p->children);
1020 INIT_LIST_HEAD(&p->sibling);
1021 #ifdef CONFIG_PREEMPT_RCU
1022 p->rcu_read_lock_nesting = 0;
1023 p->rcu_flipctr_idx = 0;
1024 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1025 p->vfork_done = NULL;
1026 spin_lock_init(&p->alloc_lock);
1027
1028 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1029 init_sigpending(&p->pending);
1030
1031 p->utime = cputime_zero;
1032 p->stime = cputime_zero;
1033 p->gtime = cputime_zero;
1034 p->utimescaled = cputime_zero;
1035 p->stimescaled = cputime_zero;
1036 p->prev_utime = cputime_zero;
1037 p->prev_stime = cputime_zero;
1038
1039 p->default_timer_slack_ns = current->timer_slack_ns;
1040
1041 #ifdef CONFIG_DETECT_SOFTLOCKUP
1042 p->last_switch_count = 0;
1043 p->last_switch_timestamp = 0;
1044 #endif
1045
1046 task_io_accounting_init(&p->ioac);
1047 acct_clear_integrals(p);
1048
1049 posix_cpu_timers_init(p);
1050
1051 p->lock_depth = -1; /* -1 = no lock */
1052 do_posix_clock_monotonic_gettime(&p->start_time);
1053 p->real_start_time = p->start_time;
1054 monotonic_to_bootbased(&p->real_start_time);
1055 #ifdef CONFIG_SECURITY
1056 p->security = NULL;
1057 #endif
1058 p->cap_bset = current->cap_bset;
1059 p->io_context = NULL;
1060 p->audit_context = NULL;
1061 cgroup_fork(p);
1062 #ifdef CONFIG_NUMA
1063 p->mempolicy = mpol_dup(p->mempolicy);
1064 if (IS_ERR(p->mempolicy)) {
1065 retval = PTR_ERR(p->mempolicy);
1066 p->mempolicy = NULL;
1067 goto bad_fork_cleanup_cgroup;
1068 }
1069 mpol_fix_fork_child_flag(p);
1070 #endif
1071 #ifdef CONFIG_TRACE_IRQFLAGS
1072 p->irq_events = 0;
1073 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1074 p->hardirqs_enabled = 1;
1075 #else
1076 p->hardirqs_enabled = 0;
1077 #endif
1078 p->hardirq_enable_ip = 0;
1079 p->hardirq_enable_event = 0;
1080 p->hardirq_disable_ip = _THIS_IP_;
1081 p->hardirq_disable_event = 0;
1082 p->softirqs_enabled = 1;
1083 p->softirq_enable_ip = _THIS_IP_;
1084 p->softirq_enable_event = 0;
1085 p->softirq_disable_ip = 0;
1086 p->softirq_disable_event = 0;
1087 p->hardirq_context = 0;
1088 p->softirq_context = 0;
1089 #endif
1090 #ifdef CONFIG_LOCKDEP
1091 p->lockdep_depth = 0; /* no locks held yet */
1092 p->curr_chain_key = 0;
1093 p->lockdep_recursion = 0;
1094 #endif
1095
1096 #ifdef CONFIG_DEBUG_MUTEXES
1097 p->blocked_on = NULL; /* not blocked yet */
1098 #endif
1099 if (unlikely(ptrace_reparented(current)))
1100 ptrace_fork(p, clone_flags);
1101
1102 /* Perform scheduler related setup. Assign this task to a CPU. */
1103 sched_fork(p, clone_flags);
1104
1105 if ((retval = security_task_alloc(p)))
1106 goto bad_fork_cleanup_policy;
1107 if ((retval = audit_alloc(p)))
1108 goto bad_fork_cleanup_security;
1109 /* copy all the process information */
1110 if ((retval = copy_semundo(clone_flags, p)))
1111 goto bad_fork_cleanup_audit;
1112 if ((retval = copy_files(clone_flags, p)))
1113 goto bad_fork_cleanup_semundo;
1114 if ((retval = copy_fs(clone_flags, p)))
1115 goto bad_fork_cleanup_files;
1116 if ((retval = copy_sighand(clone_flags, p)))
1117 goto bad_fork_cleanup_fs;
1118 if ((retval = copy_signal(clone_flags, p)))
1119 goto bad_fork_cleanup_sighand;
1120 if ((retval = copy_mm(clone_flags, p)))
1121 goto bad_fork_cleanup_signal;
1122 if ((retval = copy_keys(clone_flags, p)))
1123 goto bad_fork_cleanup_mm;
1124 if ((retval = copy_namespaces(clone_flags, p)))
1125 goto bad_fork_cleanup_keys;
1126 if ((retval = copy_io(clone_flags, p)))
1127 goto bad_fork_cleanup_namespaces;
1128 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1129 if (retval)
1130 goto bad_fork_cleanup_io;
1131
1132 if (pid != &init_struct_pid) {
1133 retval = -ENOMEM;
1134 pid = alloc_pid(task_active_pid_ns(p));
1135 if (!pid)
1136 goto bad_fork_cleanup_io;
1137
1138 if (clone_flags & CLONE_NEWPID) {
1139 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1140 if (retval < 0)
1141 goto bad_fork_free_pid;
1142 }
1143 }
1144
1145 ftrace_graph_init_task(p);
1146
1147 p->pid = pid_nr(pid);
1148 p->tgid = p->pid;
1149 if (clone_flags & CLONE_THREAD)
1150 p->tgid = current->tgid;
1151
1152 if (current->nsproxy != p->nsproxy) {
1153 retval = ns_cgroup_clone(p, pid);
1154 if (retval)
1155 goto bad_fork_free_graph;
1156 }
1157
1158 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1159 /*
1160 * Clear TID on mm_release()?
1161 */
1162 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1163 #ifdef CONFIG_FUTEX
1164 p->robust_list = NULL;
1165 #ifdef CONFIG_COMPAT
1166 p->compat_robust_list = NULL;
1167 #endif
1168 INIT_LIST_HEAD(&p->pi_state_list);
1169 p->pi_state_cache = NULL;
1170 #endif
1171 /*
1172 * sigaltstack should be cleared when sharing the same VM
1173 */
1174 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1175 p->sas_ss_sp = p->sas_ss_size = 0;
1176
1177 /*
1178 * Syscall tracing should be turned off in the child regardless
1179 * of CLONE_PTRACE.
1180 */
1181 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1182 #ifdef TIF_SYSCALL_EMU
1183 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1184 #endif
1185 clear_all_latency_tracing(p);
1186
1187 /* Our parent execution domain becomes current domain
1188 These must match for thread signalling to apply */
1189 p->parent_exec_id = p->self_exec_id;
1190
1191 /* ok, now we should be set up.. */
1192 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1193 p->pdeath_signal = 0;
1194 p->exit_state = 0;
1195
1196 /*
1197 * Ok, make it visible to the rest of the system.
1198 * We dont wake it up yet.
1199 */
1200 p->group_leader = p;
1201 INIT_LIST_HEAD(&p->thread_group);
1202
1203 /* Now that the task is set up, run cgroup callbacks if
1204 * necessary. We need to run them before the task is visible
1205 * on the tasklist. */
1206 cgroup_fork_callbacks(p);
1207 cgroup_callbacks_done = 1;
1208
1209 /* Need tasklist lock for parent etc handling! */
1210 write_lock_irq(&tasklist_lock);
1211
1212 /*
1213 * The task hasn't been attached yet, so its cpus_allowed mask will
1214 * not be changed, nor will its assigned CPU.
1215 *
1216 * The cpus_allowed mask of the parent may have changed after it was
1217 * copied first time - so re-copy it here, then check the child's CPU
1218 * to ensure it is on a valid CPU (and if not, just force it back to
1219 * parent's CPU). This avoids alot of nasty races.
1220 */
1221 p->cpus_allowed = current->cpus_allowed;
1222 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1223 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1224 !cpu_online(task_cpu(p))))
1225 set_task_cpu(p, smp_processor_id());
1226
1227 /* CLONE_PARENT re-uses the old parent */
1228 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1229 p->real_parent = current->real_parent;
1230 else
1231 p->real_parent = current;
1232
1233 spin_lock(&current->sighand->siglock);
1234
1235 /*
1236 * Process group and session signals need to be delivered to just the
1237 * parent before the fork or both the parent and the child after the
1238 * fork. Restart if a signal comes in before we add the new process to
1239 * it's process group.
1240 * A fatal signal pending means that current will exit, so the new
1241 * thread can't slip out of an OOM kill (or normal SIGKILL).
1242 */
1243 recalc_sigpending();
1244 if (signal_pending(current)) {
1245 spin_unlock(&current->sighand->siglock);
1246 write_unlock_irq(&tasklist_lock);
1247 retval = -ERESTARTNOINTR;
1248 goto bad_fork_free_graph;
1249 }
1250
1251 if (clone_flags & CLONE_THREAD) {
1252 p->group_leader = current->group_leader;
1253 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1254 }
1255
1256 if (likely(p->pid)) {
1257 list_add_tail(&p->sibling, &p->real_parent->children);
1258 tracehook_finish_clone(p, clone_flags, trace);
1259
1260 if (thread_group_leader(p)) {
1261 if (clone_flags & CLONE_NEWPID)
1262 p->nsproxy->pid_ns->child_reaper = p;
1263
1264 p->signal->leader_pid = pid;
1265 tty_kref_put(p->signal->tty);
1266 p->signal->tty = tty_kref_get(current->signal->tty);
1267 set_task_pgrp(p, task_pgrp_nr(current));
1268 set_task_session(p, task_session_nr(current));
1269 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1270 attach_pid(p, PIDTYPE_SID, task_session(current));
1271 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1272 __get_cpu_var(process_counts)++;
1273 }
1274 attach_pid(p, PIDTYPE_PID, pid);
1275 nr_threads++;
1276 }
1277
1278 total_forks++;
1279 spin_unlock(&current->sighand->siglock);
1280 write_unlock_irq(&tasklist_lock);
1281 proc_fork_connector(p);
1282 cgroup_post_fork(p);
1283 return p;
1284
1285 bad_fork_free_graph:
1286 ftrace_graph_exit_task(p);
1287 bad_fork_free_pid:
1288 if (pid != &init_struct_pid)
1289 free_pid(pid);
1290 bad_fork_cleanup_io:
1291 put_io_context(p->io_context);
1292 bad_fork_cleanup_namespaces:
1293 exit_task_namespaces(p);
1294 bad_fork_cleanup_keys:
1295 exit_keys(p);
1296 bad_fork_cleanup_mm:
1297 if (p->mm)
1298 mmput(p->mm);
1299 bad_fork_cleanup_signal:
1300 cleanup_signal(p);
1301 bad_fork_cleanup_sighand:
1302 __cleanup_sighand(p->sighand);
1303 bad_fork_cleanup_fs:
1304 exit_fs(p); /* blocking */
1305 bad_fork_cleanup_files:
1306 exit_files(p); /* blocking */
1307 bad_fork_cleanup_semundo:
1308 exit_sem(p);
1309 bad_fork_cleanup_audit:
1310 audit_free(p);
1311 bad_fork_cleanup_security:
1312 security_task_free(p);
1313 bad_fork_cleanup_policy:
1314 #ifdef CONFIG_NUMA
1315 mpol_put(p->mempolicy);
1316 bad_fork_cleanup_cgroup:
1317 #endif
1318 cgroup_exit(p, cgroup_callbacks_done);
1319 delayacct_tsk_free(p);
1320 if (p->binfmt)
1321 module_put(p->binfmt->module);
1322 bad_fork_cleanup_put_domain:
1323 module_put(task_thread_info(p)->exec_domain->module);
1324 bad_fork_cleanup_count:
1325 put_group_info(p->group_info);
1326 atomic_dec(&p->user->processes);
1327 free_uid(p->user);
1328 bad_fork_free:
1329 free_task(p);
1330 fork_out:
1331 return ERR_PTR(retval);
1332 }
1333
1334 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1335 {
1336 memset(regs, 0, sizeof(struct pt_regs));
1337 return regs;
1338 }
1339
1340 struct task_struct * __cpuinit fork_idle(int cpu)
1341 {
1342 struct task_struct *task;
1343 struct pt_regs regs;
1344
1345 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1346 &init_struct_pid, 0);
1347 if (!IS_ERR(task))
1348 init_idle(task, cpu);
1349
1350 return task;
1351 }
1352
1353 /*
1354 * Ok, this is the main fork-routine.
1355 *
1356 * It copies the process, and if successful kick-starts
1357 * it and waits for it to finish using the VM if required.
1358 */
1359 long do_fork(unsigned long clone_flags,
1360 unsigned long stack_start,
1361 struct pt_regs *regs,
1362 unsigned long stack_size,
1363 int __user *parent_tidptr,
1364 int __user *child_tidptr)
1365 {
1366 struct task_struct *p;
1367 int trace = 0;
1368 long nr;
1369
1370 /*
1371 * We hope to recycle these flags after 2.6.26
1372 */
1373 if (unlikely(clone_flags & CLONE_STOPPED)) {
1374 static int __read_mostly count = 100;
1375
1376 if (count > 0 && printk_ratelimit()) {
1377 char comm[TASK_COMM_LEN];
1378
1379 count--;
1380 printk(KERN_INFO "fork(): process `%s' used deprecated "
1381 "clone flags 0x%lx\n",
1382 get_task_comm(comm, current),
1383 clone_flags & CLONE_STOPPED);
1384 }
1385 }
1386
1387 /*
1388 * When called from kernel_thread, don't do user tracing stuff.
1389 */
1390 if (likely(user_mode(regs)))
1391 trace = tracehook_prepare_clone(clone_flags);
1392
1393 p = copy_process(clone_flags, stack_start, regs, stack_size,
1394 child_tidptr, NULL, trace);
1395 /*
1396 * Do this prior waking up the new thread - the thread pointer
1397 * might get invalid after that point, if the thread exits quickly.
1398 */
1399 if (!IS_ERR(p)) {
1400 struct completion vfork;
1401
1402 trace_sched_process_fork(current, p);
1403
1404 nr = task_pid_vnr(p);
1405
1406 if (clone_flags & CLONE_PARENT_SETTID)
1407 put_user(nr, parent_tidptr);
1408
1409 if (clone_flags & CLONE_VFORK) {
1410 p->vfork_done = &vfork;
1411 init_completion(&vfork);
1412 }
1413
1414 audit_finish_fork(p);
1415 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1416
1417 /*
1418 * We set PF_STARTING at creation in case tracing wants to
1419 * use this to distinguish a fully live task from one that
1420 * hasn't gotten to tracehook_report_clone() yet. Now we
1421 * clear it and set the child going.
1422 */
1423 p->flags &= ~PF_STARTING;
1424
1425 if (unlikely(clone_flags & CLONE_STOPPED)) {
1426 /*
1427 * We'll start up with an immediate SIGSTOP.
1428 */
1429 sigaddset(&p->pending.signal, SIGSTOP);
1430 set_tsk_thread_flag(p, TIF_SIGPENDING);
1431 __set_task_state(p, TASK_STOPPED);
1432 } else {
1433 wake_up_new_task(p, clone_flags);
1434 }
1435
1436 tracehook_report_clone_complete(trace, regs,
1437 clone_flags, nr, p);
1438
1439 if (clone_flags & CLONE_VFORK) {
1440 freezer_do_not_count();
1441 wait_for_completion(&vfork);
1442 freezer_count();
1443 tracehook_report_vfork_done(p, nr);
1444 }
1445 } else {
1446 nr = PTR_ERR(p);
1447 }
1448 return nr;
1449 }
1450
1451 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1452 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1453 #endif
1454
1455 static void sighand_ctor(void *data)
1456 {
1457 struct sighand_struct *sighand = data;
1458
1459 spin_lock_init(&sighand->siglock);
1460 init_waitqueue_head(&sighand->signalfd_wqh);
1461 }
1462
1463 void __init proc_caches_init(void)
1464 {
1465 sighand_cachep = kmem_cache_create("sighand_cache",
1466 sizeof(struct sighand_struct), 0,
1467 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1468 sighand_ctor);
1469 signal_cachep = kmem_cache_create("signal_cache",
1470 sizeof(struct signal_struct), 0,
1471 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1472 files_cachep = kmem_cache_create("files_cache",
1473 sizeof(struct files_struct), 0,
1474 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1475 fs_cachep = kmem_cache_create("fs_cache",
1476 sizeof(struct fs_struct), 0,
1477 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1478 vm_area_cachep = kmem_cache_create("vm_area_struct",
1479 sizeof(struct vm_area_struct), 0,
1480 SLAB_PANIC, NULL);
1481 mm_cachep = kmem_cache_create("mm_struct",
1482 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1483 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1484 }
1485
1486 /*
1487 * Check constraints on flags passed to the unshare system call and
1488 * force unsharing of additional process context as appropriate.
1489 */
1490 static void check_unshare_flags(unsigned long *flags_ptr)
1491 {
1492 /*
1493 * If unsharing a thread from a thread group, must also
1494 * unshare vm.
1495 */
1496 if (*flags_ptr & CLONE_THREAD)
1497 *flags_ptr |= CLONE_VM;
1498
1499 /*
1500 * If unsharing vm, must also unshare signal handlers.
1501 */
1502 if (*flags_ptr & CLONE_VM)
1503 *flags_ptr |= CLONE_SIGHAND;
1504
1505 /*
1506 * If unsharing signal handlers and the task was created
1507 * using CLONE_THREAD, then must unshare the thread
1508 */
1509 if ((*flags_ptr & CLONE_SIGHAND) &&
1510 (atomic_read(&current->signal->count) > 1))
1511 *flags_ptr |= CLONE_THREAD;
1512
1513 /*
1514 * If unsharing namespace, must also unshare filesystem information.
1515 */
1516 if (*flags_ptr & CLONE_NEWNS)
1517 *flags_ptr |= CLONE_FS;
1518 }
1519
1520 /*
1521 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1522 */
1523 static int unshare_thread(unsigned long unshare_flags)
1524 {
1525 if (unshare_flags & CLONE_THREAD)
1526 return -EINVAL;
1527
1528 return 0;
1529 }
1530
1531 /*
1532 * Unshare the filesystem structure if it is being shared
1533 */
1534 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1535 {
1536 struct fs_struct *fs = current->fs;
1537
1538 if ((unshare_flags & CLONE_FS) &&
1539 (fs && atomic_read(&fs->count) > 1)) {
1540 *new_fsp = __copy_fs_struct(current->fs);
1541 if (!*new_fsp)
1542 return -ENOMEM;
1543 }
1544
1545 return 0;
1546 }
1547
1548 /*
1549 * Unsharing of sighand is not supported yet
1550 */
1551 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1552 {
1553 struct sighand_struct *sigh = current->sighand;
1554
1555 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1556 return -EINVAL;
1557 else
1558 return 0;
1559 }
1560
1561 /*
1562 * Unshare vm if it is being shared
1563 */
1564 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1565 {
1566 struct mm_struct *mm = current->mm;
1567
1568 if ((unshare_flags & CLONE_VM) &&
1569 (mm && atomic_read(&mm->mm_users) > 1)) {
1570 return -EINVAL;
1571 }
1572
1573 return 0;
1574 }
1575
1576 /*
1577 * Unshare file descriptor table if it is being shared
1578 */
1579 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1580 {
1581 struct files_struct *fd = current->files;
1582 int error = 0;
1583
1584 if ((unshare_flags & CLONE_FILES) &&
1585 (fd && atomic_read(&fd->count) > 1)) {
1586 *new_fdp = dup_fd(fd, &error);
1587 if (!*new_fdp)
1588 return error;
1589 }
1590
1591 return 0;
1592 }
1593
1594 /*
1595 * unshare allows a process to 'unshare' part of the process
1596 * context which was originally shared using clone. copy_*
1597 * functions used by do_fork() cannot be used here directly
1598 * because they modify an inactive task_struct that is being
1599 * constructed. Here we are modifying the current, active,
1600 * task_struct.
1601 */
1602 asmlinkage long sys_unshare(unsigned long unshare_flags)
1603 {
1604 int err = 0;
1605 struct fs_struct *fs, *new_fs = NULL;
1606 struct sighand_struct *new_sigh = NULL;
1607 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1608 struct files_struct *fd, *new_fd = NULL;
1609 struct nsproxy *new_nsproxy = NULL;
1610 int do_sysvsem = 0;
1611
1612 check_unshare_flags(&unshare_flags);
1613
1614 /* Return -EINVAL for all unsupported flags */
1615 err = -EINVAL;
1616 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1617 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1618 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1619 CLONE_NEWNET))
1620 goto bad_unshare_out;
1621
1622 /*
1623 * CLONE_NEWIPC must also detach from the undolist: after switching
1624 * to a new ipc namespace, the semaphore arrays from the old
1625 * namespace are unreachable.
1626 */
1627 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1628 do_sysvsem = 1;
1629 if ((err = unshare_thread(unshare_flags)))
1630 goto bad_unshare_out;
1631 if ((err = unshare_fs(unshare_flags, &new_fs)))
1632 goto bad_unshare_cleanup_thread;
1633 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1634 goto bad_unshare_cleanup_fs;
1635 if ((err = unshare_vm(unshare_flags, &new_mm)))
1636 goto bad_unshare_cleanup_sigh;
1637 if ((err = unshare_fd(unshare_flags, &new_fd)))
1638 goto bad_unshare_cleanup_vm;
1639 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1640 new_fs)))
1641 goto bad_unshare_cleanup_fd;
1642
1643 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1644 if (do_sysvsem) {
1645 /*
1646 * CLONE_SYSVSEM is equivalent to sys_exit().
1647 */
1648 exit_sem(current);
1649 }
1650
1651 if (new_nsproxy) {
1652 switch_task_namespaces(current, new_nsproxy);
1653 new_nsproxy = NULL;
1654 }
1655
1656 task_lock(current);
1657
1658 if (new_fs) {
1659 fs = current->fs;
1660 current->fs = new_fs;
1661 new_fs = fs;
1662 }
1663
1664 if (new_mm) {
1665 mm = current->mm;
1666 active_mm = current->active_mm;
1667 current->mm = new_mm;
1668 current->active_mm = new_mm;
1669 activate_mm(active_mm, new_mm);
1670 new_mm = mm;
1671 }
1672
1673 if (new_fd) {
1674 fd = current->files;
1675 current->files = new_fd;
1676 new_fd = fd;
1677 }
1678
1679 task_unlock(current);
1680 }
1681
1682 if (new_nsproxy)
1683 put_nsproxy(new_nsproxy);
1684
1685 bad_unshare_cleanup_fd:
1686 if (new_fd)
1687 put_files_struct(new_fd);
1688
1689 bad_unshare_cleanup_vm:
1690 if (new_mm)
1691 mmput(new_mm);
1692
1693 bad_unshare_cleanup_sigh:
1694 if (new_sigh)
1695 if (atomic_dec_and_test(&new_sigh->count))
1696 kmem_cache_free(sighand_cachep, new_sigh);
1697
1698 bad_unshare_cleanup_fs:
1699 if (new_fs)
1700 put_fs_struct(new_fs);
1701
1702 bad_unshare_cleanup_thread:
1703 bad_unshare_out:
1704 return err;
1705 }
1706
1707 /*
1708 * Helper to unshare the files of the current task.
1709 * We don't want to expose copy_files internals to
1710 * the exec layer of the kernel.
1711 */
1712
1713 int unshare_files(struct files_struct **displaced)
1714 {
1715 struct task_struct *task = current;
1716 struct files_struct *copy = NULL;
1717 int error;
1718
1719 error = unshare_fd(CLONE_FILES, &copy);
1720 if (error || !copy) {
1721 *displaced = NULL;
1722 return error;
1723 }
1724 *displaced = task->files;
1725 task_lock(task);
1726 task->files = copy;
1727 task_unlock(task);
1728 return 0;
1729 }