linux/sysrq.h needs linux/errno.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_counter.h>
66
67 #include <asm/pgtable.h>
68 #include <asm/pgalloc.h>
69 #include <asm/uaccess.h>
70 #include <asm/mmu_context.h>
71 #include <asm/cacheflush.h>
72 #include <asm/tlbflush.h>
73
74 #include <trace/events/sched.h>
75
76 /*
77 * Protected counters by write_lock_irq(&tasklist_lock)
78 */
79 unsigned long total_forks; /* Handle normal Linux uptimes. */
80 int nr_threads; /* The idle threads do not count.. */
81
82 int max_threads; /* tunable limit on nr_threads */
83
84 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
85
86 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
87
88 int nr_processes(void)
89 {
90 int cpu;
91 int total = 0;
92
93 for_each_online_cpu(cpu)
94 total += per_cpu(process_counts, cpu);
95
96 return total;
97 }
98
99 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
100 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
101 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
102 static struct kmem_cache *task_struct_cachep;
103 #endif
104
105 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
106 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
107 {
108 #ifdef CONFIG_DEBUG_STACK_USAGE
109 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
110 #else
111 gfp_t mask = GFP_KERNEL;
112 #endif
113 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
114 }
115
116 static inline void free_thread_info(struct thread_info *ti)
117 {
118 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
119 }
120 #endif
121
122 /* SLAB cache for signal_struct structures (tsk->signal) */
123 static struct kmem_cache *signal_cachep;
124
125 /* SLAB cache for sighand_struct structures (tsk->sighand) */
126 struct kmem_cache *sighand_cachep;
127
128 /* SLAB cache for files_struct structures (tsk->files) */
129 struct kmem_cache *files_cachep;
130
131 /* SLAB cache for fs_struct structures (tsk->fs) */
132 struct kmem_cache *fs_cachep;
133
134 /* SLAB cache for vm_area_struct structures */
135 struct kmem_cache *vm_area_cachep;
136
137 /* SLAB cache for mm_struct structures (tsk->mm) */
138 static struct kmem_cache *mm_cachep;
139
140 void free_task(struct task_struct *tsk)
141 {
142 prop_local_destroy_single(&tsk->dirties);
143 free_thread_info(tsk->stack);
144 rt_mutex_debug_task_free(tsk);
145 ftrace_graph_exit_task(tsk);
146 free_task_struct(tsk);
147 }
148 EXPORT_SYMBOL(free_task);
149
150 void __put_task_struct(struct task_struct *tsk)
151 {
152 WARN_ON(!tsk->exit_state);
153 WARN_ON(atomic_read(&tsk->usage));
154 WARN_ON(tsk == current);
155
156 put_cred(tsk->real_cred);
157 put_cred(tsk->cred);
158 delayacct_tsk_free(tsk);
159
160 if (!profile_handoff_task(tsk))
161 free_task(tsk);
162 }
163
164 /*
165 * macro override instead of weak attribute alias, to workaround
166 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
167 */
168 #ifndef arch_task_cache_init
169 #define arch_task_cache_init()
170 #endif
171
172 void __init fork_init(unsigned long mempages)
173 {
174 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
175 #ifndef ARCH_MIN_TASKALIGN
176 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
177 #endif
178 /* create a slab on which task_structs can be allocated */
179 task_struct_cachep =
180 kmem_cache_create("task_struct", sizeof(struct task_struct),
181 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
182 #endif
183
184 /* do the arch specific task caches init */
185 arch_task_cache_init();
186
187 /*
188 * The default maximum number of threads is set to a safe
189 * value: the thread structures can take up at most half
190 * of memory.
191 */
192 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
193
194 /*
195 * we need to allow at least 20 threads to boot a system
196 */
197 if(max_threads < 20)
198 max_threads = 20;
199
200 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
201 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
202 init_task.signal->rlim[RLIMIT_SIGPENDING] =
203 init_task.signal->rlim[RLIMIT_NPROC];
204 }
205
206 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
207 struct task_struct *src)
208 {
209 *dst = *src;
210 return 0;
211 }
212
213 static struct task_struct *dup_task_struct(struct task_struct *orig)
214 {
215 struct task_struct *tsk;
216 struct thread_info *ti;
217 unsigned long *stackend;
218
219 int err;
220
221 prepare_to_copy(orig);
222
223 tsk = alloc_task_struct();
224 if (!tsk)
225 return NULL;
226
227 ti = alloc_thread_info(tsk);
228 if (!ti) {
229 free_task_struct(tsk);
230 return NULL;
231 }
232
233 err = arch_dup_task_struct(tsk, orig);
234 if (err)
235 goto out;
236
237 tsk->stack = ti;
238
239 err = prop_local_init_single(&tsk->dirties);
240 if (err)
241 goto out;
242
243 setup_thread_stack(tsk, orig);
244 stackend = end_of_stack(tsk);
245 *stackend = STACK_END_MAGIC; /* for overflow detection */
246
247 #ifdef CONFIG_CC_STACKPROTECTOR
248 tsk->stack_canary = get_random_int();
249 #endif
250
251 /* One for us, one for whoever does the "release_task()" (usually parent) */
252 atomic_set(&tsk->usage,2);
253 atomic_set(&tsk->fs_excl, 0);
254 #ifdef CONFIG_BLK_DEV_IO_TRACE
255 tsk->btrace_seq = 0;
256 #endif
257 tsk->splice_pipe = NULL;
258 return tsk;
259
260 out:
261 free_thread_info(ti);
262 free_task_struct(tsk);
263 return NULL;
264 }
265
266 #ifdef CONFIG_MMU
267 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
268 {
269 struct vm_area_struct *mpnt, *tmp, **pprev;
270 struct rb_node **rb_link, *rb_parent;
271 int retval;
272 unsigned long charge;
273 struct mempolicy *pol;
274
275 down_write(&oldmm->mmap_sem);
276 flush_cache_dup_mm(oldmm);
277 /*
278 * Not linked in yet - no deadlock potential:
279 */
280 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
281
282 mm->locked_vm = 0;
283 mm->mmap = NULL;
284 mm->mmap_cache = NULL;
285 mm->free_area_cache = oldmm->mmap_base;
286 mm->cached_hole_size = ~0UL;
287 mm->map_count = 0;
288 cpumask_clear(mm_cpumask(mm));
289 mm->mm_rb = RB_ROOT;
290 rb_link = &mm->mm_rb.rb_node;
291 rb_parent = NULL;
292 pprev = &mm->mmap;
293
294 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
295 struct file *file;
296
297 if (mpnt->vm_flags & VM_DONTCOPY) {
298 long pages = vma_pages(mpnt);
299 mm->total_vm -= pages;
300 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
301 -pages);
302 continue;
303 }
304 charge = 0;
305 if (mpnt->vm_flags & VM_ACCOUNT) {
306 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
307 if (security_vm_enough_memory(len))
308 goto fail_nomem;
309 charge = len;
310 }
311 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
312 if (!tmp)
313 goto fail_nomem;
314 *tmp = *mpnt;
315 pol = mpol_dup(vma_policy(mpnt));
316 retval = PTR_ERR(pol);
317 if (IS_ERR(pol))
318 goto fail_nomem_policy;
319 vma_set_policy(tmp, pol);
320 tmp->vm_flags &= ~VM_LOCKED;
321 tmp->vm_mm = mm;
322 tmp->vm_next = NULL;
323 anon_vma_link(tmp);
324 file = tmp->vm_file;
325 if (file) {
326 struct inode *inode = file->f_path.dentry->d_inode;
327 struct address_space *mapping = file->f_mapping;
328
329 get_file(file);
330 if (tmp->vm_flags & VM_DENYWRITE)
331 atomic_dec(&inode->i_writecount);
332 spin_lock(&mapping->i_mmap_lock);
333 if (tmp->vm_flags & VM_SHARED)
334 mapping->i_mmap_writable++;
335 tmp->vm_truncate_count = mpnt->vm_truncate_count;
336 flush_dcache_mmap_lock(mapping);
337 /* insert tmp into the share list, just after mpnt */
338 vma_prio_tree_add(tmp, mpnt);
339 flush_dcache_mmap_unlock(mapping);
340 spin_unlock(&mapping->i_mmap_lock);
341 }
342
343 /*
344 * Clear hugetlb-related page reserves for children. This only
345 * affects MAP_PRIVATE mappings. Faults generated by the child
346 * are not guaranteed to succeed, even if read-only
347 */
348 if (is_vm_hugetlb_page(tmp))
349 reset_vma_resv_huge_pages(tmp);
350
351 /*
352 * Link in the new vma and copy the page table entries.
353 */
354 *pprev = tmp;
355 pprev = &tmp->vm_next;
356
357 __vma_link_rb(mm, tmp, rb_link, rb_parent);
358 rb_link = &tmp->vm_rb.rb_right;
359 rb_parent = &tmp->vm_rb;
360
361 mm->map_count++;
362 retval = copy_page_range(mm, oldmm, mpnt);
363
364 if (tmp->vm_ops && tmp->vm_ops->open)
365 tmp->vm_ops->open(tmp);
366
367 if (retval)
368 goto out;
369 }
370 /* a new mm has just been created */
371 arch_dup_mmap(oldmm, mm);
372 retval = 0;
373 out:
374 up_write(&mm->mmap_sem);
375 flush_tlb_mm(oldmm);
376 up_write(&oldmm->mmap_sem);
377 return retval;
378 fail_nomem_policy:
379 kmem_cache_free(vm_area_cachep, tmp);
380 fail_nomem:
381 retval = -ENOMEM;
382 vm_unacct_memory(charge);
383 goto out;
384 }
385
386 static inline int mm_alloc_pgd(struct mm_struct * mm)
387 {
388 mm->pgd = pgd_alloc(mm);
389 if (unlikely(!mm->pgd))
390 return -ENOMEM;
391 return 0;
392 }
393
394 static inline void mm_free_pgd(struct mm_struct * mm)
395 {
396 pgd_free(mm, mm->pgd);
397 }
398 #else
399 #define dup_mmap(mm, oldmm) (0)
400 #define mm_alloc_pgd(mm) (0)
401 #define mm_free_pgd(mm)
402 #endif /* CONFIG_MMU */
403
404 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
405
406 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
407 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
408
409 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
410
411 static int __init coredump_filter_setup(char *s)
412 {
413 default_dump_filter =
414 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
415 MMF_DUMP_FILTER_MASK;
416 return 1;
417 }
418
419 __setup("coredump_filter=", coredump_filter_setup);
420
421 #include <linux/init_task.h>
422
423 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
424 {
425 atomic_set(&mm->mm_users, 1);
426 atomic_set(&mm->mm_count, 1);
427 init_rwsem(&mm->mmap_sem);
428 INIT_LIST_HEAD(&mm->mmlist);
429 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
430 mm->core_state = NULL;
431 mm->nr_ptes = 0;
432 set_mm_counter(mm, file_rss, 0);
433 set_mm_counter(mm, anon_rss, 0);
434 spin_lock_init(&mm->page_table_lock);
435 spin_lock_init(&mm->ioctx_lock);
436 INIT_HLIST_HEAD(&mm->ioctx_list);
437 mm->free_area_cache = TASK_UNMAPPED_BASE;
438 mm->cached_hole_size = ~0UL;
439 mm_init_owner(mm, p);
440
441 if (likely(!mm_alloc_pgd(mm))) {
442 mm->def_flags = 0;
443 mmu_notifier_mm_init(mm);
444 return mm;
445 }
446
447 free_mm(mm);
448 return NULL;
449 }
450
451 /*
452 * Allocate and initialize an mm_struct.
453 */
454 struct mm_struct * mm_alloc(void)
455 {
456 struct mm_struct * mm;
457
458 mm = allocate_mm();
459 if (mm) {
460 memset(mm, 0, sizeof(*mm));
461 mm = mm_init(mm, current);
462 }
463 return mm;
464 }
465
466 /*
467 * Called when the last reference to the mm
468 * is dropped: either by a lazy thread or by
469 * mmput. Free the page directory and the mm.
470 */
471 void __mmdrop(struct mm_struct *mm)
472 {
473 BUG_ON(mm == &init_mm);
474 mm_free_pgd(mm);
475 destroy_context(mm);
476 mmu_notifier_mm_destroy(mm);
477 free_mm(mm);
478 }
479 EXPORT_SYMBOL_GPL(__mmdrop);
480
481 /*
482 * Decrement the use count and release all resources for an mm.
483 */
484 void mmput(struct mm_struct *mm)
485 {
486 might_sleep();
487
488 if (atomic_dec_and_test(&mm->mm_users)) {
489 exit_aio(mm);
490 exit_mmap(mm);
491 set_mm_exe_file(mm, NULL);
492 if (!list_empty(&mm->mmlist)) {
493 spin_lock(&mmlist_lock);
494 list_del(&mm->mmlist);
495 spin_unlock(&mmlist_lock);
496 }
497 put_swap_token(mm);
498 mmdrop(mm);
499 }
500 }
501 EXPORT_SYMBOL_GPL(mmput);
502
503 /**
504 * get_task_mm - acquire a reference to the task's mm
505 *
506 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
507 * this kernel workthread has transiently adopted a user mm with use_mm,
508 * to do its AIO) is not set and if so returns a reference to it, after
509 * bumping up the use count. User must release the mm via mmput()
510 * after use. Typically used by /proc and ptrace.
511 */
512 struct mm_struct *get_task_mm(struct task_struct *task)
513 {
514 struct mm_struct *mm;
515
516 task_lock(task);
517 mm = task->mm;
518 if (mm) {
519 if (task->flags & PF_KTHREAD)
520 mm = NULL;
521 else
522 atomic_inc(&mm->mm_users);
523 }
524 task_unlock(task);
525 return mm;
526 }
527 EXPORT_SYMBOL_GPL(get_task_mm);
528
529 /* Please note the differences between mmput and mm_release.
530 * mmput is called whenever we stop holding onto a mm_struct,
531 * error success whatever.
532 *
533 * mm_release is called after a mm_struct has been removed
534 * from the current process.
535 *
536 * This difference is important for error handling, when we
537 * only half set up a mm_struct for a new process and need to restore
538 * the old one. Because we mmput the new mm_struct before
539 * restoring the old one. . .
540 * Eric Biederman 10 January 1998
541 */
542 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
543 {
544 struct completion *vfork_done = tsk->vfork_done;
545
546 /* Get rid of any futexes when releasing the mm */
547 #ifdef CONFIG_FUTEX
548 if (unlikely(tsk->robust_list))
549 exit_robust_list(tsk);
550 #ifdef CONFIG_COMPAT
551 if (unlikely(tsk->compat_robust_list))
552 compat_exit_robust_list(tsk);
553 #endif
554 #endif
555
556 /* Get rid of any cached register state */
557 deactivate_mm(tsk, mm);
558
559 /* notify parent sleeping on vfork() */
560 if (vfork_done) {
561 tsk->vfork_done = NULL;
562 complete(vfork_done);
563 }
564
565 /*
566 * If we're exiting normally, clear a user-space tid field if
567 * requested. We leave this alone when dying by signal, to leave
568 * the value intact in a core dump, and to save the unnecessary
569 * trouble otherwise. Userland only wants this done for a sys_exit.
570 */
571 if (tsk->clear_child_tid
572 && !(tsk->flags & PF_SIGNALED)
573 && atomic_read(&mm->mm_users) > 1) {
574 u32 __user * tidptr = tsk->clear_child_tid;
575 tsk->clear_child_tid = NULL;
576
577 /*
578 * We don't check the error code - if userspace has
579 * not set up a proper pointer then tough luck.
580 */
581 put_user(0, tidptr);
582 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
583 }
584 }
585
586 /*
587 * Allocate a new mm structure and copy contents from the
588 * mm structure of the passed in task structure.
589 */
590 struct mm_struct *dup_mm(struct task_struct *tsk)
591 {
592 struct mm_struct *mm, *oldmm = current->mm;
593 int err;
594
595 if (!oldmm)
596 return NULL;
597
598 mm = allocate_mm();
599 if (!mm)
600 goto fail_nomem;
601
602 memcpy(mm, oldmm, sizeof(*mm));
603
604 /* Initializing for Swap token stuff */
605 mm->token_priority = 0;
606 mm->last_interval = 0;
607
608 if (!mm_init(mm, tsk))
609 goto fail_nomem;
610
611 if (init_new_context(tsk, mm))
612 goto fail_nocontext;
613
614 dup_mm_exe_file(oldmm, mm);
615
616 err = dup_mmap(mm, oldmm);
617 if (err)
618 goto free_pt;
619
620 mm->hiwater_rss = get_mm_rss(mm);
621 mm->hiwater_vm = mm->total_vm;
622
623 return mm;
624
625 free_pt:
626 mmput(mm);
627
628 fail_nomem:
629 return NULL;
630
631 fail_nocontext:
632 /*
633 * If init_new_context() failed, we cannot use mmput() to free the mm
634 * because it calls destroy_context()
635 */
636 mm_free_pgd(mm);
637 free_mm(mm);
638 return NULL;
639 }
640
641 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
642 {
643 struct mm_struct * mm, *oldmm;
644 int retval;
645
646 tsk->min_flt = tsk->maj_flt = 0;
647 tsk->nvcsw = tsk->nivcsw = 0;
648 #ifdef CONFIG_DETECT_HUNG_TASK
649 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
650 #endif
651
652 tsk->mm = NULL;
653 tsk->active_mm = NULL;
654
655 /*
656 * Are we cloning a kernel thread?
657 *
658 * We need to steal a active VM for that..
659 */
660 oldmm = current->mm;
661 if (!oldmm)
662 return 0;
663
664 if (clone_flags & CLONE_VM) {
665 atomic_inc(&oldmm->mm_users);
666 mm = oldmm;
667 goto good_mm;
668 }
669
670 retval = -ENOMEM;
671 mm = dup_mm(tsk);
672 if (!mm)
673 goto fail_nomem;
674
675 good_mm:
676 /* Initializing for Swap token stuff */
677 mm->token_priority = 0;
678 mm->last_interval = 0;
679
680 tsk->mm = mm;
681 tsk->active_mm = mm;
682 return 0;
683
684 fail_nomem:
685 return retval;
686 }
687
688 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
689 {
690 struct fs_struct *fs = current->fs;
691 if (clone_flags & CLONE_FS) {
692 /* tsk->fs is already what we want */
693 write_lock(&fs->lock);
694 if (fs->in_exec) {
695 write_unlock(&fs->lock);
696 return -EAGAIN;
697 }
698 fs->users++;
699 write_unlock(&fs->lock);
700 return 0;
701 }
702 tsk->fs = copy_fs_struct(fs);
703 if (!tsk->fs)
704 return -ENOMEM;
705 return 0;
706 }
707
708 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
709 {
710 struct files_struct *oldf, *newf;
711 int error = 0;
712
713 /*
714 * A background process may not have any files ...
715 */
716 oldf = current->files;
717 if (!oldf)
718 goto out;
719
720 if (clone_flags & CLONE_FILES) {
721 atomic_inc(&oldf->count);
722 goto out;
723 }
724
725 newf = dup_fd(oldf, &error);
726 if (!newf)
727 goto out;
728
729 tsk->files = newf;
730 error = 0;
731 out:
732 return error;
733 }
734
735 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
736 {
737 #ifdef CONFIG_BLOCK
738 struct io_context *ioc = current->io_context;
739
740 if (!ioc)
741 return 0;
742 /*
743 * Share io context with parent, if CLONE_IO is set
744 */
745 if (clone_flags & CLONE_IO) {
746 tsk->io_context = ioc_task_link(ioc);
747 if (unlikely(!tsk->io_context))
748 return -ENOMEM;
749 } else if (ioprio_valid(ioc->ioprio)) {
750 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
751 if (unlikely(!tsk->io_context))
752 return -ENOMEM;
753
754 tsk->io_context->ioprio = ioc->ioprio;
755 }
756 #endif
757 return 0;
758 }
759
760 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
761 {
762 struct sighand_struct *sig;
763
764 if (clone_flags & CLONE_SIGHAND) {
765 atomic_inc(&current->sighand->count);
766 return 0;
767 }
768 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
769 rcu_assign_pointer(tsk->sighand, sig);
770 if (!sig)
771 return -ENOMEM;
772 atomic_set(&sig->count, 1);
773 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
774 return 0;
775 }
776
777 void __cleanup_sighand(struct sighand_struct *sighand)
778 {
779 if (atomic_dec_and_test(&sighand->count))
780 kmem_cache_free(sighand_cachep, sighand);
781 }
782
783
784 /*
785 * Initialize POSIX timer handling for a thread group.
786 */
787 static void posix_cpu_timers_init_group(struct signal_struct *sig)
788 {
789 /* Thread group counters. */
790 thread_group_cputime_init(sig);
791
792 /* Expiration times and increments. */
793 sig->it_virt_expires = cputime_zero;
794 sig->it_virt_incr = cputime_zero;
795 sig->it_prof_expires = cputime_zero;
796 sig->it_prof_incr = cputime_zero;
797
798 /* Cached expiration times. */
799 sig->cputime_expires.prof_exp = cputime_zero;
800 sig->cputime_expires.virt_exp = cputime_zero;
801 sig->cputime_expires.sched_exp = 0;
802
803 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
804 sig->cputime_expires.prof_exp =
805 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
806 sig->cputimer.running = 1;
807 }
808
809 /* The timer lists. */
810 INIT_LIST_HEAD(&sig->cpu_timers[0]);
811 INIT_LIST_HEAD(&sig->cpu_timers[1]);
812 INIT_LIST_HEAD(&sig->cpu_timers[2]);
813 }
814
815 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
816 {
817 struct signal_struct *sig;
818
819 if (clone_flags & CLONE_THREAD) {
820 atomic_inc(&current->signal->count);
821 atomic_inc(&current->signal->live);
822 return 0;
823 }
824
825 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
826 tsk->signal = sig;
827 if (!sig)
828 return -ENOMEM;
829
830 atomic_set(&sig->count, 1);
831 atomic_set(&sig->live, 1);
832 init_waitqueue_head(&sig->wait_chldexit);
833 sig->flags = 0;
834 if (clone_flags & CLONE_NEWPID)
835 sig->flags |= SIGNAL_UNKILLABLE;
836 sig->group_exit_code = 0;
837 sig->group_exit_task = NULL;
838 sig->group_stop_count = 0;
839 sig->curr_target = tsk;
840 init_sigpending(&sig->shared_pending);
841 INIT_LIST_HEAD(&sig->posix_timers);
842
843 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
844 sig->it_real_incr.tv64 = 0;
845 sig->real_timer.function = it_real_fn;
846
847 sig->leader = 0; /* session leadership doesn't inherit */
848 sig->tty_old_pgrp = NULL;
849 sig->tty = NULL;
850
851 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
852 sig->gtime = cputime_zero;
853 sig->cgtime = cputime_zero;
854 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
855 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
856 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
857 task_io_accounting_init(&sig->ioac);
858 sig->sum_sched_runtime = 0;
859 taskstats_tgid_init(sig);
860
861 task_lock(current->group_leader);
862 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
863 task_unlock(current->group_leader);
864
865 posix_cpu_timers_init_group(sig);
866
867 acct_init_pacct(&sig->pacct);
868
869 tty_audit_fork(sig);
870
871 return 0;
872 }
873
874 void __cleanup_signal(struct signal_struct *sig)
875 {
876 thread_group_cputime_free(sig);
877 tty_kref_put(sig->tty);
878 kmem_cache_free(signal_cachep, sig);
879 }
880
881 static void cleanup_signal(struct task_struct *tsk)
882 {
883 struct signal_struct *sig = tsk->signal;
884
885 atomic_dec(&sig->live);
886
887 if (atomic_dec_and_test(&sig->count))
888 __cleanup_signal(sig);
889 }
890
891 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
892 {
893 unsigned long new_flags = p->flags;
894
895 new_flags &= ~PF_SUPERPRIV;
896 new_flags |= PF_FORKNOEXEC;
897 new_flags |= PF_STARTING;
898 p->flags = new_flags;
899 clear_freeze_flag(p);
900 }
901
902 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
903 {
904 current->clear_child_tid = tidptr;
905
906 return task_pid_vnr(current);
907 }
908
909 static void rt_mutex_init_task(struct task_struct *p)
910 {
911 spin_lock_init(&p->pi_lock);
912 #ifdef CONFIG_RT_MUTEXES
913 plist_head_init(&p->pi_waiters, &p->pi_lock);
914 p->pi_blocked_on = NULL;
915 #endif
916 }
917
918 #ifdef CONFIG_MM_OWNER
919 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
920 {
921 mm->owner = p;
922 }
923 #endif /* CONFIG_MM_OWNER */
924
925 /*
926 * Initialize POSIX timer handling for a single task.
927 */
928 static void posix_cpu_timers_init(struct task_struct *tsk)
929 {
930 tsk->cputime_expires.prof_exp = cputime_zero;
931 tsk->cputime_expires.virt_exp = cputime_zero;
932 tsk->cputime_expires.sched_exp = 0;
933 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
934 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
935 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
936 }
937
938 /*
939 * This creates a new process as a copy of the old one,
940 * but does not actually start it yet.
941 *
942 * It copies the registers, and all the appropriate
943 * parts of the process environment (as per the clone
944 * flags). The actual kick-off is left to the caller.
945 */
946 static struct task_struct *copy_process(unsigned long clone_flags,
947 unsigned long stack_start,
948 struct pt_regs *regs,
949 unsigned long stack_size,
950 int __user *child_tidptr,
951 struct pid *pid,
952 int trace)
953 {
954 int retval;
955 struct task_struct *p;
956 int cgroup_callbacks_done = 0;
957
958 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
959 return ERR_PTR(-EINVAL);
960
961 /*
962 * Thread groups must share signals as well, and detached threads
963 * can only be started up within the thread group.
964 */
965 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
966 return ERR_PTR(-EINVAL);
967
968 /*
969 * Shared signal handlers imply shared VM. By way of the above,
970 * thread groups also imply shared VM. Blocking this case allows
971 * for various simplifications in other code.
972 */
973 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
974 return ERR_PTR(-EINVAL);
975
976 retval = security_task_create(clone_flags);
977 if (retval)
978 goto fork_out;
979
980 retval = -ENOMEM;
981 p = dup_task_struct(current);
982 if (!p)
983 goto fork_out;
984
985 ftrace_graph_init_task(p);
986
987 rt_mutex_init_task(p);
988
989 #ifdef CONFIG_PROVE_LOCKING
990 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
991 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
992 #endif
993 retval = -EAGAIN;
994 if (atomic_read(&p->real_cred->user->processes) >=
995 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
996 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
997 p->real_cred->user != INIT_USER)
998 goto bad_fork_free;
999 }
1000
1001 retval = copy_creds(p, clone_flags);
1002 if (retval < 0)
1003 goto bad_fork_free;
1004
1005 /*
1006 * If multiple threads are within copy_process(), then this check
1007 * triggers too late. This doesn't hurt, the check is only there
1008 * to stop root fork bombs.
1009 */
1010 retval = -EAGAIN;
1011 if (nr_threads >= max_threads)
1012 goto bad_fork_cleanup_count;
1013
1014 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1015 goto bad_fork_cleanup_count;
1016
1017 if (p->binfmt && !try_module_get(p->binfmt->module))
1018 goto bad_fork_cleanup_put_domain;
1019
1020 p->did_exec = 0;
1021 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1022 copy_flags(clone_flags, p);
1023 INIT_LIST_HEAD(&p->children);
1024 INIT_LIST_HEAD(&p->sibling);
1025 #ifdef CONFIG_PREEMPT_RCU
1026 p->rcu_read_lock_nesting = 0;
1027 p->rcu_flipctr_idx = 0;
1028 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1029 p->vfork_done = NULL;
1030 spin_lock_init(&p->alloc_lock);
1031
1032 init_sigpending(&p->pending);
1033
1034 p->utime = cputime_zero;
1035 p->stime = cputime_zero;
1036 p->gtime = cputime_zero;
1037 p->utimescaled = cputime_zero;
1038 p->stimescaled = cputime_zero;
1039 p->prev_utime = cputime_zero;
1040 p->prev_stime = cputime_zero;
1041
1042 p->default_timer_slack_ns = current->timer_slack_ns;
1043
1044 task_io_accounting_init(&p->ioac);
1045 acct_clear_integrals(p);
1046
1047 posix_cpu_timers_init(p);
1048
1049 p->lock_depth = -1; /* -1 = no lock */
1050 do_posix_clock_monotonic_gettime(&p->start_time);
1051 p->real_start_time = p->start_time;
1052 monotonic_to_bootbased(&p->real_start_time);
1053 p->io_context = NULL;
1054 p->audit_context = NULL;
1055 cgroup_fork(p);
1056 #ifdef CONFIG_NUMA
1057 p->mempolicy = mpol_dup(p->mempolicy);
1058 if (IS_ERR(p->mempolicy)) {
1059 retval = PTR_ERR(p->mempolicy);
1060 p->mempolicy = NULL;
1061 goto bad_fork_cleanup_cgroup;
1062 }
1063 mpol_fix_fork_child_flag(p);
1064 #endif
1065 #ifdef CONFIG_TRACE_IRQFLAGS
1066 p->irq_events = 0;
1067 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1068 p->hardirqs_enabled = 1;
1069 #else
1070 p->hardirqs_enabled = 0;
1071 #endif
1072 p->hardirq_enable_ip = 0;
1073 p->hardirq_enable_event = 0;
1074 p->hardirq_disable_ip = _THIS_IP_;
1075 p->hardirq_disable_event = 0;
1076 p->softirqs_enabled = 1;
1077 p->softirq_enable_ip = _THIS_IP_;
1078 p->softirq_enable_event = 0;
1079 p->softirq_disable_ip = 0;
1080 p->softirq_disable_event = 0;
1081 p->hardirq_context = 0;
1082 p->softirq_context = 0;
1083 #endif
1084 #ifdef CONFIG_LOCKDEP
1085 p->lockdep_depth = 0; /* no locks held yet */
1086 p->curr_chain_key = 0;
1087 p->lockdep_recursion = 0;
1088 #endif
1089
1090 #ifdef CONFIG_DEBUG_MUTEXES
1091 p->blocked_on = NULL; /* not blocked yet */
1092 #endif
1093
1094 p->bts = NULL;
1095
1096 /* Perform scheduler related setup. Assign this task to a CPU. */
1097 sched_fork(p, clone_flags);
1098
1099 retval = perf_counter_init_task(p);
1100 if (retval)
1101 goto bad_fork_cleanup_policy;
1102
1103 if ((retval = audit_alloc(p)))
1104 goto bad_fork_cleanup_policy;
1105 /* copy all the process information */
1106 if ((retval = copy_semundo(clone_flags, p)))
1107 goto bad_fork_cleanup_audit;
1108 if ((retval = copy_files(clone_flags, p)))
1109 goto bad_fork_cleanup_semundo;
1110 if ((retval = copy_fs(clone_flags, p)))
1111 goto bad_fork_cleanup_files;
1112 if ((retval = copy_sighand(clone_flags, p)))
1113 goto bad_fork_cleanup_fs;
1114 if ((retval = copy_signal(clone_flags, p)))
1115 goto bad_fork_cleanup_sighand;
1116 if ((retval = copy_mm(clone_flags, p)))
1117 goto bad_fork_cleanup_signal;
1118 if ((retval = copy_namespaces(clone_flags, p)))
1119 goto bad_fork_cleanup_mm;
1120 if ((retval = copy_io(clone_flags, p)))
1121 goto bad_fork_cleanup_namespaces;
1122 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1123 if (retval)
1124 goto bad_fork_cleanup_io;
1125
1126 if (pid != &init_struct_pid) {
1127 retval = -ENOMEM;
1128 pid = alloc_pid(p->nsproxy->pid_ns);
1129 if (!pid)
1130 goto bad_fork_cleanup_io;
1131
1132 if (clone_flags & CLONE_NEWPID) {
1133 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1134 if (retval < 0)
1135 goto bad_fork_free_pid;
1136 }
1137 }
1138
1139 p->pid = pid_nr(pid);
1140 p->tgid = p->pid;
1141 if (clone_flags & CLONE_THREAD)
1142 p->tgid = current->tgid;
1143
1144 if (current->nsproxy != p->nsproxy) {
1145 retval = ns_cgroup_clone(p, pid);
1146 if (retval)
1147 goto bad_fork_free_pid;
1148 }
1149
1150 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1151 /*
1152 * Clear TID on mm_release()?
1153 */
1154 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1155 #ifdef CONFIG_FUTEX
1156 p->robust_list = NULL;
1157 #ifdef CONFIG_COMPAT
1158 p->compat_robust_list = NULL;
1159 #endif
1160 INIT_LIST_HEAD(&p->pi_state_list);
1161 p->pi_state_cache = NULL;
1162 #endif
1163 /*
1164 * sigaltstack should be cleared when sharing the same VM
1165 */
1166 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1167 p->sas_ss_sp = p->sas_ss_size = 0;
1168
1169 /*
1170 * Syscall tracing should be turned off in the child regardless
1171 * of CLONE_PTRACE.
1172 */
1173 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1174 #ifdef TIF_SYSCALL_EMU
1175 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1176 #endif
1177 clear_all_latency_tracing(p);
1178
1179 /* ok, now we should be set up.. */
1180 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1181 p->pdeath_signal = 0;
1182 p->exit_state = 0;
1183
1184 /*
1185 * Ok, make it visible to the rest of the system.
1186 * We dont wake it up yet.
1187 */
1188 p->group_leader = p;
1189 INIT_LIST_HEAD(&p->thread_group);
1190
1191 /* Now that the task is set up, run cgroup callbacks if
1192 * necessary. We need to run them before the task is visible
1193 * on the tasklist. */
1194 cgroup_fork_callbacks(p);
1195 cgroup_callbacks_done = 1;
1196
1197 /* Need tasklist lock for parent etc handling! */
1198 write_lock_irq(&tasklist_lock);
1199
1200 /*
1201 * The task hasn't been attached yet, so its cpus_allowed mask will
1202 * not be changed, nor will its assigned CPU.
1203 *
1204 * The cpus_allowed mask of the parent may have changed after it was
1205 * copied first time - so re-copy it here, then check the child's CPU
1206 * to ensure it is on a valid CPU (and if not, just force it back to
1207 * parent's CPU). This avoids alot of nasty races.
1208 */
1209 p->cpus_allowed = current->cpus_allowed;
1210 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1211 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1212 !cpu_online(task_cpu(p))))
1213 set_task_cpu(p, smp_processor_id());
1214
1215 /* CLONE_PARENT re-uses the old parent */
1216 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1217 p->real_parent = current->real_parent;
1218 p->parent_exec_id = current->parent_exec_id;
1219 } else {
1220 p->real_parent = current;
1221 p->parent_exec_id = current->self_exec_id;
1222 }
1223
1224 spin_lock(&current->sighand->siglock);
1225
1226 /*
1227 * Process group and session signals need to be delivered to just the
1228 * parent before the fork or both the parent and the child after the
1229 * fork. Restart if a signal comes in before we add the new process to
1230 * it's process group.
1231 * A fatal signal pending means that current will exit, so the new
1232 * thread can't slip out of an OOM kill (or normal SIGKILL).
1233 */
1234 recalc_sigpending();
1235 if (signal_pending(current)) {
1236 spin_unlock(&current->sighand->siglock);
1237 write_unlock_irq(&tasklist_lock);
1238 retval = -ERESTARTNOINTR;
1239 goto bad_fork_free_pid;
1240 }
1241
1242 if (clone_flags & CLONE_THREAD) {
1243 p->group_leader = current->group_leader;
1244 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1245 }
1246
1247 if (likely(p->pid)) {
1248 list_add_tail(&p->sibling, &p->real_parent->children);
1249 tracehook_finish_clone(p, clone_flags, trace);
1250
1251 if (thread_group_leader(p)) {
1252 if (clone_flags & CLONE_NEWPID)
1253 p->nsproxy->pid_ns->child_reaper = p;
1254
1255 p->signal->leader_pid = pid;
1256 tty_kref_put(p->signal->tty);
1257 p->signal->tty = tty_kref_get(current->signal->tty);
1258 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1259 attach_pid(p, PIDTYPE_SID, task_session(current));
1260 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1261 __get_cpu_var(process_counts)++;
1262 }
1263 attach_pid(p, PIDTYPE_PID, pid);
1264 nr_threads++;
1265 }
1266
1267 total_forks++;
1268 spin_unlock(&current->sighand->siglock);
1269 write_unlock_irq(&tasklist_lock);
1270 proc_fork_connector(p);
1271 cgroup_post_fork(p);
1272 return p;
1273
1274 bad_fork_free_pid:
1275 if (pid != &init_struct_pid)
1276 free_pid(pid);
1277 bad_fork_cleanup_io:
1278 put_io_context(p->io_context);
1279 bad_fork_cleanup_namespaces:
1280 exit_task_namespaces(p);
1281 bad_fork_cleanup_mm:
1282 if (p->mm)
1283 mmput(p->mm);
1284 bad_fork_cleanup_signal:
1285 cleanup_signal(p);
1286 bad_fork_cleanup_sighand:
1287 __cleanup_sighand(p->sighand);
1288 bad_fork_cleanup_fs:
1289 exit_fs(p); /* blocking */
1290 bad_fork_cleanup_files:
1291 exit_files(p); /* blocking */
1292 bad_fork_cleanup_semundo:
1293 exit_sem(p);
1294 bad_fork_cleanup_audit:
1295 audit_free(p);
1296 bad_fork_cleanup_policy:
1297 perf_counter_free_task(p);
1298 #ifdef CONFIG_NUMA
1299 mpol_put(p->mempolicy);
1300 bad_fork_cleanup_cgroup:
1301 #endif
1302 cgroup_exit(p, cgroup_callbacks_done);
1303 delayacct_tsk_free(p);
1304 if (p->binfmt)
1305 module_put(p->binfmt->module);
1306 bad_fork_cleanup_put_domain:
1307 module_put(task_thread_info(p)->exec_domain->module);
1308 bad_fork_cleanup_count:
1309 atomic_dec(&p->cred->user->processes);
1310 put_cred(p->real_cred);
1311 put_cred(p->cred);
1312 bad_fork_free:
1313 free_task(p);
1314 fork_out:
1315 return ERR_PTR(retval);
1316 }
1317
1318 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1319 {
1320 memset(regs, 0, sizeof(struct pt_regs));
1321 return regs;
1322 }
1323
1324 struct task_struct * __cpuinit fork_idle(int cpu)
1325 {
1326 struct task_struct *task;
1327 struct pt_regs regs;
1328
1329 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1330 &init_struct_pid, 0);
1331 if (!IS_ERR(task))
1332 init_idle(task, cpu);
1333
1334 return task;
1335 }
1336
1337 /*
1338 * Ok, this is the main fork-routine.
1339 *
1340 * It copies the process, and if successful kick-starts
1341 * it and waits for it to finish using the VM if required.
1342 */
1343 long do_fork(unsigned long clone_flags,
1344 unsigned long stack_start,
1345 struct pt_regs *regs,
1346 unsigned long stack_size,
1347 int __user *parent_tidptr,
1348 int __user *child_tidptr)
1349 {
1350 struct task_struct *p;
1351 int trace = 0;
1352 long nr;
1353
1354 /*
1355 * Do some preliminary argument and permissions checking before we
1356 * actually start allocating stuff
1357 */
1358 if (clone_flags & CLONE_NEWUSER) {
1359 if (clone_flags & CLONE_THREAD)
1360 return -EINVAL;
1361 /* hopefully this check will go away when userns support is
1362 * complete
1363 */
1364 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1365 !capable(CAP_SETGID))
1366 return -EPERM;
1367 }
1368
1369 /*
1370 * We hope to recycle these flags after 2.6.26
1371 */
1372 if (unlikely(clone_flags & CLONE_STOPPED)) {
1373 static int __read_mostly count = 100;
1374
1375 if (count > 0 && printk_ratelimit()) {
1376 char comm[TASK_COMM_LEN];
1377
1378 count--;
1379 printk(KERN_INFO "fork(): process `%s' used deprecated "
1380 "clone flags 0x%lx\n",
1381 get_task_comm(comm, current),
1382 clone_flags & CLONE_STOPPED);
1383 }
1384 }
1385
1386 /*
1387 * When called from kernel_thread, don't do user tracing stuff.
1388 */
1389 if (likely(user_mode(regs)))
1390 trace = tracehook_prepare_clone(clone_flags);
1391
1392 p = copy_process(clone_flags, stack_start, regs, stack_size,
1393 child_tidptr, NULL, trace);
1394 /*
1395 * Do this prior waking up the new thread - the thread pointer
1396 * might get invalid after that point, if the thread exits quickly.
1397 */
1398 if (!IS_ERR(p)) {
1399 struct completion vfork;
1400
1401 trace_sched_process_fork(current, p);
1402
1403 nr = task_pid_vnr(p);
1404
1405 if (clone_flags & CLONE_PARENT_SETTID)
1406 put_user(nr, parent_tidptr);
1407
1408 if (clone_flags & CLONE_VFORK) {
1409 p->vfork_done = &vfork;
1410 init_completion(&vfork);
1411 } else if (!(clone_flags & CLONE_VM)) {
1412 /*
1413 * vfork will do an exec which will call
1414 * set_task_comm()
1415 */
1416 perf_counter_fork(p);
1417 }
1418
1419 audit_finish_fork(p);
1420 tracehook_report_clone(regs, clone_flags, nr, p);
1421
1422 /*
1423 * We set PF_STARTING at creation in case tracing wants to
1424 * use this to distinguish a fully live task from one that
1425 * hasn't gotten to tracehook_report_clone() yet. Now we
1426 * clear it and set the child going.
1427 */
1428 p->flags &= ~PF_STARTING;
1429
1430 if (unlikely(clone_flags & CLONE_STOPPED)) {
1431 /*
1432 * We'll start up with an immediate SIGSTOP.
1433 */
1434 sigaddset(&p->pending.signal, SIGSTOP);
1435 set_tsk_thread_flag(p, TIF_SIGPENDING);
1436 __set_task_state(p, TASK_STOPPED);
1437 } else {
1438 wake_up_new_task(p, clone_flags);
1439 }
1440
1441 tracehook_report_clone_complete(trace, regs,
1442 clone_flags, nr, p);
1443
1444 if (clone_flags & CLONE_VFORK) {
1445 freezer_do_not_count();
1446 wait_for_completion(&vfork);
1447 freezer_count();
1448 tracehook_report_vfork_done(p, nr);
1449 }
1450 } else {
1451 nr = PTR_ERR(p);
1452 }
1453 return nr;
1454 }
1455
1456 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1457 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1458 #endif
1459
1460 static void sighand_ctor(void *data)
1461 {
1462 struct sighand_struct *sighand = data;
1463
1464 spin_lock_init(&sighand->siglock);
1465 init_waitqueue_head(&sighand->signalfd_wqh);
1466 }
1467
1468 void __init proc_caches_init(void)
1469 {
1470 sighand_cachep = kmem_cache_create("sighand_cache",
1471 sizeof(struct sighand_struct), 0,
1472 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1473 SLAB_NOTRACK, sighand_ctor);
1474 signal_cachep = kmem_cache_create("signal_cache",
1475 sizeof(struct signal_struct), 0,
1476 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1477 files_cachep = kmem_cache_create("files_cache",
1478 sizeof(struct files_struct), 0,
1479 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1480 fs_cachep = kmem_cache_create("fs_cache",
1481 sizeof(struct fs_struct), 0,
1482 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1483 mm_cachep = kmem_cache_create("mm_struct",
1484 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1485 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1486 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1487 mmap_init();
1488 }
1489
1490 /*
1491 * Check constraints on flags passed to the unshare system call and
1492 * force unsharing of additional process context as appropriate.
1493 */
1494 static void check_unshare_flags(unsigned long *flags_ptr)
1495 {
1496 /*
1497 * If unsharing a thread from a thread group, must also
1498 * unshare vm.
1499 */
1500 if (*flags_ptr & CLONE_THREAD)
1501 *flags_ptr |= CLONE_VM;
1502
1503 /*
1504 * If unsharing vm, must also unshare signal handlers.
1505 */
1506 if (*flags_ptr & CLONE_VM)
1507 *flags_ptr |= CLONE_SIGHAND;
1508
1509 /*
1510 * If unsharing signal handlers and the task was created
1511 * using CLONE_THREAD, then must unshare the thread
1512 */
1513 if ((*flags_ptr & CLONE_SIGHAND) &&
1514 (atomic_read(&current->signal->count) > 1))
1515 *flags_ptr |= CLONE_THREAD;
1516
1517 /*
1518 * If unsharing namespace, must also unshare filesystem information.
1519 */
1520 if (*flags_ptr & CLONE_NEWNS)
1521 *flags_ptr |= CLONE_FS;
1522 }
1523
1524 /*
1525 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1526 */
1527 static int unshare_thread(unsigned long unshare_flags)
1528 {
1529 if (unshare_flags & CLONE_THREAD)
1530 return -EINVAL;
1531
1532 return 0;
1533 }
1534
1535 /*
1536 * Unshare the filesystem structure if it is being shared
1537 */
1538 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1539 {
1540 struct fs_struct *fs = current->fs;
1541
1542 if (!(unshare_flags & CLONE_FS) || !fs)
1543 return 0;
1544
1545 /* don't need lock here; in the worst case we'll do useless copy */
1546 if (fs->users == 1)
1547 return 0;
1548
1549 *new_fsp = copy_fs_struct(fs);
1550 if (!*new_fsp)
1551 return -ENOMEM;
1552
1553 return 0;
1554 }
1555
1556 /*
1557 * Unsharing of sighand is not supported yet
1558 */
1559 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1560 {
1561 struct sighand_struct *sigh = current->sighand;
1562
1563 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1564 return -EINVAL;
1565 else
1566 return 0;
1567 }
1568
1569 /*
1570 * Unshare vm if it is being shared
1571 */
1572 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1573 {
1574 struct mm_struct *mm = current->mm;
1575
1576 if ((unshare_flags & CLONE_VM) &&
1577 (mm && atomic_read(&mm->mm_users) > 1)) {
1578 return -EINVAL;
1579 }
1580
1581 return 0;
1582 }
1583
1584 /*
1585 * Unshare file descriptor table if it is being shared
1586 */
1587 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1588 {
1589 struct files_struct *fd = current->files;
1590 int error = 0;
1591
1592 if ((unshare_flags & CLONE_FILES) &&
1593 (fd && atomic_read(&fd->count) > 1)) {
1594 *new_fdp = dup_fd(fd, &error);
1595 if (!*new_fdp)
1596 return error;
1597 }
1598
1599 return 0;
1600 }
1601
1602 /*
1603 * unshare allows a process to 'unshare' part of the process
1604 * context which was originally shared using clone. copy_*
1605 * functions used by do_fork() cannot be used here directly
1606 * because they modify an inactive task_struct that is being
1607 * constructed. Here we are modifying the current, active,
1608 * task_struct.
1609 */
1610 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1611 {
1612 int err = 0;
1613 struct fs_struct *fs, *new_fs = NULL;
1614 struct sighand_struct *new_sigh = NULL;
1615 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1616 struct files_struct *fd, *new_fd = NULL;
1617 struct nsproxy *new_nsproxy = NULL;
1618 int do_sysvsem = 0;
1619
1620 check_unshare_flags(&unshare_flags);
1621
1622 /* Return -EINVAL for all unsupported flags */
1623 err = -EINVAL;
1624 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1625 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1626 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1627 goto bad_unshare_out;
1628
1629 /*
1630 * CLONE_NEWIPC must also detach from the undolist: after switching
1631 * to a new ipc namespace, the semaphore arrays from the old
1632 * namespace are unreachable.
1633 */
1634 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1635 do_sysvsem = 1;
1636 if ((err = unshare_thread(unshare_flags)))
1637 goto bad_unshare_out;
1638 if ((err = unshare_fs(unshare_flags, &new_fs)))
1639 goto bad_unshare_cleanup_thread;
1640 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1641 goto bad_unshare_cleanup_fs;
1642 if ((err = unshare_vm(unshare_flags, &new_mm)))
1643 goto bad_unshare_cleanup_sigh;
1644 if ((err = unshare_fd(unshare_flags, &new_fd)))
1645 goto bad_unshare_cleanup_vm;
1646 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1647 new_fs)))
1648 goto bad_unshare_cleanup_fd;
1649
1650 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1651 if (do_sysvsem) {
1652 /*
1653 * CLONE_SYSVSEM is equivalent to sys_exit().
1654 */
1655 exit_sem(current);
1656 }
1657
1658 if (new_nsproxy) {
1659 switch_task_namespaces(current, new_nsproxy);
1660 new_nsproxy = NULL;
1661 }
1662
1663 task_lock(current);
1664
1665 if (new_fs) {
1666 fs = current->fs;
1667 write_lock(&fs->lock);
1668 current->fs = new_fs;
1669 if (--fs->users)
1670 new_fs = NULL;
1671 else
1672 new_fs = fs;
1673 write_unlock(&fs->lock);
1674 }
1675
1676 if (new_mm) {
1677 mm = current->mm;
1678 active_mm = current->active_mm;
1679 current->mm = new_mm;
1680 current->active_mm = new_mm;
1681 activate_mm(active_mm, new_mm);
1682 new_mm = mm;
1683 }
1684
1685 if (new_fd) {
1686 fd = current->files;
1687 current->files = new_fd;
1688 new_fd = fd;
1689 }
1690
1691 task_unlock(current);
1692 }
1693
1694 if (new_nsproxy)
1695 put_nsproxy(new_nsproxy);
1696
1697 bad_unshare_cleanup_fd:
1698 if (new_fd)
1699 put_files_struct(new_fd);
1700
1701 bad_unshare_cleanup_vm:
1702 if (new_mm)
1703 mmput(new_mm);
1704
1705 bad_unshare_cleanup_sigh:
1706 if (new_sigh)
1707 if (atomic_dec_and_test(&new_sigh->count))
1708 kmem_cache_free(sighand_cachep, new_sigh);
1709
1710 bad_unshare_cleanup_fs:
1711 if (new_fs)
1712 free_fs_struct(new_fs);
1713
1714 bad_unshare_cleanup_thread:
1715 bad_unshare_out:
1716 return err;
1717 }
1718
1719 /*
1720 * Helper to unshare the files of the current task.
1721 * We don't want to expose copy_files internals to
1722 * the exec layer of the kernel.
1723 */
1724
1725 int unshare_files(struct files_struct **displaced)
1726 {
1727 struct task_struct *task = current;
1728 struct files_struct *copy = NULL;
1729 int error;
1730
1731 error = unshare_fd(CLONE_FILES, &copy);
1732 if (error || !copy) {
1733 *displaced = NULL;
1734 return error;
1735 }
1736 *displaced = task->files;
1737 task_lock(task);
1738 task->files = copy;
1739 task_unlock(task);
1740 return 0;
1741 }