Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 nr_threads--;
74 detach_pid(p, PIDTYPE_PID);
75 if (group_dead) {
76 detach_pid(p, PIDTYPE_PGID);
77 detach_pid(p, PIDTYPE_SID);
78
79 list_del_rcu(&p->tasks);
80 list_del_init(&p->sibling);
81 __this_cpu_dec(process_counts);
82 }
83 list_del_rcu(&p->thread_group);
84 list_del_rcu(&p->thread_node);
85 }
86
87 /*
88 * This function expects the tasklist_lock write-locked.
89 */
90 static void __exit_signal(struct task_struct *tsk)
91 {
92 struct signal_struct *sig = tsk->signal;
93 bool group_dead = thread_group_leader(tsk);
94 struct sighand_struct *sighand;
95 struct tty_struct *uninitialized_var(tty);
96 u64 utime, stime;
97
98 sighand = rcu_dereference_check(tsk->sighand,
99 lockdep_tasklist_lock_is_held());
100 spin_lock(&sighand->siglock);
101
102 #ifdef CONFIG_POSIX_TIMERS
103 posix_cpu_timers_exit(tsk);
104 if (group_dead) {
105 posix_cpu_timers_exit_group(tsk);
106 } else {
107 /*
108 * This can only happen if the caller is de_thread().
109 * FIXME: this is the temporary hack, we should teach
110 * posix-cpu-timers to handle this case correctly.
111 */
112 if (unlikely(has_group_leader_pid(tsk)))
113 posix_cpu_timers_exit_group(tsk);
114 }
115 #endif
116
117 if (group_dead) {
118 tty = sig->tty;
119 sig->tty = NULL;
120 } else {
121 /*
122 * If there is any task waiting for the group exit
123 * then notify it:
124 */
125 if (sig->notify_count > 0 && !--sig->notify_count)
126 wake_up_process(sig->group_exit_task);
127
128 if (tsk == sig->curr_target)
129 sig->curr_target = next_thread(tsk);
130 }
131
132 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
133 sizeof(unsigned long long));
134
135 /*
136 * Accumulate here the counters for all threads as they die. We could
137 * skip the group leader because it is the last user of signal_struct,
138 * but we want to avoid the race with thread_group_cputime() which can
139 * see the empty ->thread_head list.
140 */
141 task_cputime(tsk, &utime, &stime);
142 write_seqlock(&sig->stats_lock);
143 sig->utime += utime;
144 sig->stime += stime;
145 sig->gtime += task_gtime(tsk);
146 sig->min_flt += tsk->min_flt;
147 sig->maj_flt += tsk->maj_flt;
148 sig->nvcsw += tsk->nvcsw;
149 sig->nivcsw += tsk->nivcsw;
150 sig->inblock += task_io_get_inblock(tsk);
151 sig->oublock += task_io_get_oublock(tsk);
152 task_io_accounting_add(&sig->ioac, &tsk->ioac);
153 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
154 sig->nr_threads--;
155 __unhash_process(tsk, group_dead);
156 write_sequnlock(&sig->stats_lock);
157
158 /*
159 * Do this under ->siglock, we can race with another thread
160 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
161 */
162 flush_sigqueue(&tsk->pending);
163 tsk->sighand = NULL;
164 spin_unlock(&sighand->siglock);
165
166 __cleanup_sighand(sighand);
167 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
168 if (group_dead) {
169 flush_sigqueue(&sig->shared_pending);
170 tty_kref_put(tty);
171 }
172 }
173
174 static void delayed_put_task_struct(struct rcu_head *rhp)
175 {
176 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
177
178 perf_event_delayed_put(tsk);
179 trace_sched_process_free(tsk);
180 put_task_struct(tsk);
181 }
182
183
184 void release_task(struct task_struct *p)
185 {
186 struct task_struct *leader;
187 int zap_leader;
188 repeat:
189 /* don't need to get the RCU readlock here - the process is dead and
190 * can't be modifying its own credentials. But shut RCU-lockdep up */
191 rcu_read_lock();
192 atomic_dec(&__task_cred(p)->user->processes);
193 rcu_read_unlock();
194
195 proc_flush_task(p);
196
197 write_lock_irq(&tasklist_lock);
198 ptrace_release_task(p);
199 __exit_signal(p);
200
201 /*
202 * If we are the last non-leader member of the thread
203 * group, and the leader is zombie, then notify the
204 * group leader's parent process. (if it wants notification.)
205 */
206 zap_leader = 0;
207 leader = p->group_leader;
208 if (leader != p && thread_group_empty(leader)
209 && leader->exit_state == EXIT_ZOMBIE) {
210 /*
211 * If we were the last child thread and the leader has
212 * exited already, and the leader's parent ignores SIGCHLD,
213 * then we are the one who should release the leader.
214 */
215 zap_leader = do_notify_parent(leader, leader->exit_signal);
216 if (zap_leader)
217 leader->exit_state = EXIT_DEAD;
218 }
219
220 write_unlock_irq(&tasklist_lock);
221 release_thread(p);
222 call_rcu(&p->rcu, delayed_put_task_struct);
223
224 p = leader;
225 if (unlikely(zap_leader))
226 goto repeat;
227 }
228
229 /*
230 * Note that if this function returns a valid task_struct pointer (!NULL)
231 * task->usage must remain >0 for the duration of the RCU critical section.
232 */
233 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
234 {
235 struct sighand_struct *sighand;
236 struct task_struct *task;
237
238 /*
239 * We need to verify that release_task() was not called and thus
240 * delayed_put_task_struct() can't run and drop the last reference
241 * before rcu_read_unlock(). We check task->sighand != NULL,
242 * but we can read the already freed and reused memory.
243 */
244 retry:
245 task = rcu_dereference(*ptask);
246 if (!task)
247 return NULL;
248
249 probe_kernel_address(&task->sighand, sighand);
250
251 /*
252 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
253 * was already freed we can not miss the preceding update of this
254 * pointer.
255 */
256 smp_rmb();
257 if (unlikely(task != READ_ONCE(*ptask)))
258 goto retry;
259
260 /*
261 * We've re-checked that "task == *ptask", now we have two different
262 * cases:
263 *
264 * 1. This is actually the same task/task_struct. In this case
265 * sighand != NULL tells us it is still alive.
266 *
267 * 2. This is another task which got the same memory for task_struct.
268 * We can't know this of course, and we can not trust
269 * sighand != NULL.
270 *
271 * In this case we actually return a random value, but this is
272 * correct.
273 *
274 * If we return NULL - we can pretend that we actually noticed that
275 * *ptask was updated when the previous task has exited. Or pretend
276 * that probe_slab_address(&sighand) reads NULL.
277 *
278 * If we return the new task (because sighand is not NULL for any
279 * reason) - this is fine too. This (new) task can't go away before
280 * another gp pass.
281 *
282 * And note: We could even eliminate the false positive if re-read
283 * task->sighand once again to avoid the falsely NULL. But this case
284 * is very unlikely so we don't care.
285 */
286 if (!sighand)
287 return NULL;
288
289 return task;
290 }
291
292 void rcuwait_wake_up(struct rcuwait *w)
293 {
294 struct task_struct *task;
295
296 rcu_read_lock();
297
298 /*
299 * Order condition vs @task, such that everything prior to the load
300 * of @task is visible. This is the condition as to why the user called
301 * rcuwait_trywake() in the first place. Pairs with set_current_state()
302 * barrier (A) in rcuwait_wait_event().
303 *
304 * WAIT WAKE
305 * [S] tsk = current [S] cond = true
306 * MB (A) MB (B)
307 * [L] cond [L] tsk
308 */
309 smp_rmb(); /* (B) */
310
311 /*
312 * Avoid using task_rcu_dereference() magic as long as we are careful,
313 * see comment in rcuwait_wait_event() regarding ->exit_state.
314 */
315 task = rcu_dereference(w->task);
316 if (task)
317 wake_up_process(task);
318 rcu_read_unlock();
319 }
320
321 /*
322 * Determine if a process group is "orphaned", according to the POSIX
323 * definition in 2.2.2.52. Orphaned process groups are not to be affected
324 * by terminal-generated stop signals. Newly orphaned process groups are
325 * to receive a SIGHUP and a SIGCONT.
326 *
327 * "I ask you, have you ever known what it is to be an orphan?"
328 */
329 static int will_become_orphaned_pgrp(struct pid *pgrp,
330 struct task_struct *ignored_task)
331 {
332 struct task_struct *p;
333
334 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
335 if ((p == ignored_task) ||
336 (p->exit_state && thread_group_empty(p)) ||
337 is_global_init(p->real_parent))
338 continue;
339
340 if (task_pgrp(p->real_parent) != pgrp &&
341 task_session(p->real_parent) == task_session(p))
342 return 0;
343 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
344
345 return 1;
346 }
347
348 int is_current_pgrp_orphaned(void)
349 {
350 int retval;
351
352 read_lock(&tasklist_lock);
353 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
354 read_unlock(&tasklist_lock);
355
356 return retval;
357 }
358
359 static bool has_stopped_jobs(struct pid *pgrp)
360 {
361 struct task_struct *p;
362
363 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
364 if (p->signal->flags & SIGNAL_STOP_STOPPED)
365 return true;
366 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
367
368 return false;
369 }
370
371 /*
372 * Check to see if any process groups have become orphaned as
373 * a result of our exiting, and if they have any stopped jobs,
374 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
375 */
376 static void
377 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
378 {
379 struct pid *pgrp = task_pgrp(tsk);
380 struct task_struct *ignored_task = tsk;
381
382 if (!parent)
383 /* exit: our father is in a different pgrp than
384 * we are and we were the only connection outside.
385 */
386 parent = tsk->real_parent;
387 else
388 /* reparent: our child is in a different pgrp than
389 * we are, and it was the only connection outside.
390 */
391 ignored_task = NULL;
392
393 if (task_pgrp(parent) != pgrp &&
394 task_session(parent) == task_session(tsk) &&
395 will_become_orphaned_pgrp(pgrp, ignored_task) &&
396 has_stopped_jobs(pgrp)) {
397 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
398 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
399 }
400 }
401
402 #ifdef CONFIG_MEMCG
403 /*
404 * A task is exiting. If it owned this mm, find a new owner for the mm.
405 */
406 void mm_update_next_owner(struct mm_struct *mm)
407 {
408 struct task_struct *c, *g, *p = current;
409
410 retry:
411 /*
412 * If the exiting or execing task is not the owner, it's
413 * someone else's problem.
414 */
415 if (mm->owner != p)
416 return;
417 /*
418 * The current owner is exiting/execing and there are no other
419 * candidates. Do not leave the mm pointing to a possibly
420 * freed task structure.
421 */
422 if (atomic_read(&mm->mm_users) <= 1) {
423 mm->owner = NULL;
424 return;
425 }
426
427 read_lock(&tasklist_lock);
428 /*
429 * Search in the children
430 */
431 list_for_each_entry(c, &p->children, sibling) {
432 if (c->mm == mm)
433 goto assign_new_owner;
434 }
435
436 /*
437 * Search in the siblings
438 */
439 list_for_each_entry(c, &p->real_parent->children, sibling) {
440 if (c->mm == mm)
441 goto assign_new_owner;
442 }
443
444 /*
445 * Search through everything else, we should not get here often.
446 */
447 for_each_process(g) {
448 if (g->flags & PF_KTHREAD)
449 continue;
450 for_each_thread(g, c) {
451 if (c->mm == mm)
452 goto assign_new_owner;
453 if (c->mm)
454 break;
455 }
456 }
457 read_unlock(&tasklist_lock);
458 /*
459 * We found no owner yet mm_users > 1: this implies that we are
460 * most likely racing with swapoff (try_to_unuse()) or /proc or
461 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
462 */
463 mm->owner = NULL;
464 return;
465
466 assign_new_owner:
467 BUG_ON(c == p);
468 get_task_struct(c);
469 /*
470 * The task_lock protects c->mm from changing.
471 * We always want mm->owner->mm == mm
472 */
473 task_lock(c);
474 /*
475 * Delay read_unlock() till we have the task_lock()
476 * to ensure that c does not slip away underneath us
477 */
478 read_unlock(&tasklist_lock);
479 if (c->mm != mm) {
480 task_unlock(c);
481 put_task_struct(c);
482 goto retry;
483 }
484 mm->owner = c;
485 task_unlock(c);
486 put_task_struct(c);
487 }
488 #endif /* CONFIG_MEMCG */
489
490 /*
491 * Turn us into a lazy TLB process if we
492 * aren't already..
493 */
494 static void exit_mm(void)
495 {
496 struct mm_struct *mm = current->mm;
497 struct core_state *core_state;
498
499 mm_release(current, mm);
500 if (!mm)
501 return;
502 sync_mm_rss(mm);
503 /*
504 * Serialize with any possible pending coredump.
505 * We must hold mmap_sem around checking core_state
506 * and clearing tsk->mm. The core-inducing thread
507 * will increment ->nr_threads for each thread in the
508 * group with ->mm != NULL.
509 */
510 down_read(&mm->mmap_sem);
511 core_state = mm->core_state;
512 if (core_state) {
513 struct core_thread self;
514
515 up_read(&mm->mmap_sem);
516
517 self.task = current;
518 self.next = xchg(&core_state->dumper.next, &self);
519 /*
520 * Implies mb(), the result of xchg() must be visible
521 * to core_state->dumper.
522 */
523 if (atomic_dec_and_test(&core_state->nr_threads))
524 complete(&core_state->startup);
525
526 for (;;) {
527 set_current_state(TASK_UNINTERRUPTIBLE);
528 if (!self.task) /* see coredump_finish() */
529 break;
530 freezable_schedule();
531 }
532 __set_current_state(TASK_RUNNING);
533 down_read(&mm->mmap_sem);
534 }
535 mmgrab(mm);
536 BUG_ON(mm != current->active_mm);
537 /* more a memory barrier than a real lock */
538 task_lock(current);
539 current->mm = NULL;
540 up_read(&mm->mmap_sem);
541 enter_lazy_tlb(mm, current);
542 task_unlock(current);
543 mm_update_next_owner(mm);
544 mmput(mm);
545 if (test_thread_flag(TIF_MEMDIE))
546 exit_oom_victim();
547 }
548
549 static struct task_struct *find_alive_thread(struct task_struct *p)
550 {
551 struct task_struct *t;
552
553 for_each_thread(p, t) {
554 if (!(t->flags & PF_EXITING))
555 return t;
556 }
557 return NULL;
558 }
559
560 static struct task_struct *find_child_reaper(struct task_struct *father)
561 __releases(&tasklist_lock)
562 __acquires(&tasklist_lock)
563 {
564 struct pid_namespace *pid_ns = task_active_pid_ns(father);
565 struct task_struct *reaper = pid_ns->child_reaper;
566
567 if (likely(reaper != father))
568 return reaper;
569
570 reaper = find_alive_thread(father);
571 if (reaper) {
572 pid_ns->child_reaper = reaper;
573 return reaper;
574 }
575
576 write_unlock_irq(&tasklist_lock);
577 if (unlikely(pid_ns == &init_pid_ns)) {
578 panic("Attempted to kill init! exitcode=0x%08x\n",
579 father->signal->group_exit_code ?: father->exit_code);
580 }
581 zap_pid_ns_processes(pid_ns);
582 write_lock_irq(&tasklist_lock);
583
584 return father;
585 }
586
587 /*
588 * When we die, we re-parent all our children, and try to:
589 * 1. give them to another thread in our thread group, if such a member exists
590 * 2. give it to the first ancestor process which prctl'd itself as a
591 * child_subreaper for its children (like a service manager)
592 * 3. give it to the init process (PID 1) in our pid namespace
593 */
594 static struct task_struct *find_new_reaper(struct task_struct *father,
595 struct task_struct *child_reaper)
596 {
597 struct task_struct *thread, *reaper;
598
599 thread = find_alive_thread(father);
600 if (thread)
601 return thread;
602
603 if (father->signal->has_child_subreaper) {
604 unsigned int ns_level = task_pid(father)->level;
605 /*
606 * Find the first ->is_child_subreaper ancestor in our pid_ns.
607 * We can't check reaper != child_reaper to ensure we do not
608 * cross the namespaces, the exiting parent could be injected
609 * by setns() + fork().
610 * We check pid->level, this is slightly more efficient than
611 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
612 */
613 for (reaper = father->real_parent;
614 task_pid(reaper)->level == ns_level;
615 reaper = reaper->real_parent) {
616 if (reaper == &init_task)
617 break;
618 if (!reaper->signal->is_child_subreaper)
619 continue;
620 thread = find_alive_thread(reaper);
621 if (thread)
622 return thread;
623 }
624 }
625
626 return child_reaper;
627 }
628
629 /*
630 * Any that need to be release_task'd are put on the @dead list.
631 */
632 static void reparent_leader(struct task_struct *father, struct task_struct *p,
633 struct list_head *dead)
634 {
635 if (unlikely(p->exit_state == EXIT_DEAD))
636 return;
637
638 /* We don't want people slaying init. */
639 p->exit_signal = SIGCHLD;
640
641 /* If it has exited notify the new parent about this child's death. */
642 if (!p->ptrace &&
643 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
644 if (do_notify_parent(p, p->exit_signal)) {
645 p->exit_state = EXIT_DEAD;
646 list_add(&p->ptrace_entry, dead);
647 }
648 }
649
650 kill_orphaned_pgrp(p, father);
651 }
652
653 /*
654 * This does two things:
655 *
656 * A. Make init inherit all the child processes
657 * B. Check to see if any process groups have become orphaned
658 * as a result of our exiting, and if they have any stopped
659 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
660 */
661 static void forget_original_parent(struct task_struct *father,
662 struct list_head *dead)
663 {
664 struct task_struct *p, *t, *reaper;
665
666 if (unlikely(!list_empty(&father->ptraced)))
667 exit_ptrace(father, dead);
668
669 /* Can drop and reacquire tasklist_lock */
670 reaper = find_child_reaper(father);
671 if (list_empty(&father->children))
672 return;
673
674 reaper = find_new_reaper(father, reaper);
675 list_for_each_entry(p, &father->children, sibling) {
676 for_each_thread(p, t) {
677 t->real_parent = reaper;
678 BUG_ON((!t->ptrace) != (t->parent == father));
679 if (likely(!t->ptrace))
680 t->parent = t->real_parent;
681 if (t->pdeath_signal)
682 group_send_sig_info(t->pdeath_signal,
683 SEND_SIG_NOINFO, t);
684 }
685 /*
686 * If this is a threaded reparent there is no need to
687 * notify anyone anything has happened.
688 */
689 if (!same_thread_group(reaper, father))
690 reparent_leader(father, p, dead);
691 }
692 list_splice_tail_init(&father->children, &reaper->children);
693 }
694
695 /*
696 * Send signals to all our closest relatives so that they know
697 * to properly mourn us..
698 */
699 static void exit_notify(struct task_struct *tsk, int group_dead)
700 {
701 bool autoreap;
702 struct task_struct *p, *n;
703 LIST_HEAD(dead);
704
705 write_lock_irq(&tasklist_lock);
706 forget_original_parent(tsk, &dead);
707
708 if (group_dead)
709 kill_orphaned_pgrp(tsk->group_leader, NULL);
710
711 if (unlikely(tsk->ptrace)) {
712 int sig = thread_group_leader(tsk) &&
713 thread_group_empty(tsk) &&
714 !ptrace_reparented(tsk) ?
715 tsk->exit_signal : SIGCHLD;
716 autoreap = do_notify_parent(tsk, sig);
717 } else if (thread_group_leader(tsk)) {
718 autoreap = thread_group_empty(tsk) &&
719 do_notify_parent(tsk, tsk->exit_signal);
720 } else {
721 autoreap = true;
722 }
723
724 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
725 if (tsk->exit_state == EXIT_DEAD)
726 list_add(&tsk->ptrace_entry, &dead);
727
728 /* mt-exec, de_thread() is waiting for group leader */
729 if (unlikely(tsk->signal->notify_count < 0))
730 wake_up_process(tsk->signal->group_exit_task);
731 write_unlock_irq(&tasklist_lock);
732
733 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
734 list_del_init(&p->ptrace_entry);
735 release_task(p);
736 }
737 }
738
739 #ifdef CONFIG_DEBUG_STACK_USAGE
740 static void check_stack_usage(void)
741 {
742 static DEFINE_SPINLOCK(low_water_lock);
743 static int lowest_to_date = THREAD_SIZE;
744 unsigned long free;
745
746 free = stack_not_used(current);
747
748 if (free >= lowest_to_date)
749 return;
750
751 spin_lock(&low_water_lock);
752 if (free < lowest_to_date) {
753 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
754 current->comm, task_pid_nr(current), free);
755 lowest_to_date = free;
756 }
757 spin_unlock(&low_water_lock);
758 }
759 #else
760 static inline void check_stack_usage(void) {}
761 #endif
762
763 void __noreturn do_exit(long code)
764 {
765 struct task_struct *tsk = current;
766 int group_dead;
767
768 profile_task_exit(tsk);
769 kcov_task_exit(tsk);
770
771 WARN_ON(blk_needs_flush_plug(tsk));
772
773 if (unlikely(in_interrupt()))
774 panic("Aiee, killing interrupt handler!");
775 if (unlikely(!tsk->pid))
776 panic("Attempted to kill the idle task!");
777
778 /*
779 * If do_exit is called because this processes oopsed, it's possible
780 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
781 * continuing. Amongst other possible reasons, this is to prevent
782 * mm_release()->clear_child_tid() from writing to a user-controlled
783 * kernel address.
784 */
785 set_fs(USER_DS);
786
787 ptrace_event(PTRACE_EVENT_EXIT, code);
788
789 validate_creds_for_do_exit(tsk);
790
791 /*
792 * We're taking recursive faults here in do_exit. Safest is to just
793 * leave this task alone and wait for reboot.
794 */
795 if (unlikely(tsk->flags & PF_EXITING)) {
796 pr_alert("Fixing recursive fault but reboot is needed!\n");
797 /*
798 * We can do this unlocked here. The futex code uses
799 * this flag just to verify whether the pi state
800 * cleanup has been done or not. In the worst case it
801 * loops once more. We pretend that the cleanup was
802 * done as there is no way to return. Either the
803 * OWNER_DIED bit is set by now or we push the blocked
804 * task into the wait for ever nirwana as well.
805 */
806 tsk->flags |= PF_EXITPIDONE;
807 set_current_state(TASK_UNINTERRUPTIBLE);
808 schedule();
809 }
810
811 exit_signals(tsk); /* sets PF_EXITING */
812 /*
813 * Ensure that all new tsk->pi_lock acquisitions must observe
814 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
815 */
816 smp_mb();
817 /*
818 * Ensure that we must observe the pi_state in exit_mm() ->
819 * mm_release() -> exit_pi_state_list().
820 */
821 raw_spin_lock_irq(&tsk->pi_lock);
822 raw_spin_unlock_irq(&tsk->pi_lock);
823
824 if (unlikely(in_atomic())) {
825 pr_info("note: %s[%d] exited with preempt_count %d\n",
826 current->comm, task_pid_nr(current),
827 preempt_count());
828 preempt_count_set(PREEMPT_ENABLED);
829 }
830
831 /* sync mm's RSS info before statistics gathering */
832 if (tsk->mm)
833 sync_mm_rss(tsk->mm);
834 acct_update_integrals(tsk);
835 group_dead = atomic_dec_and_test(&tsk->signal->live);
836 if (group_dead) {
837 #ifdef CONFIG_POSIX_TIMERS
838 hrtimer_cancel(&tsk->signal->real_timer);
839 exit_itimers(tsk->signal);
840 #endif
841 if (tsk->mm)
842 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
843 }
844 acct_collect(code, group_dead);
845 if (group_dead)
846 tty_audit_exit();
847 audit_free(tsk);
848
849 tsk->exit_code = code;
850 taskstats_exit(tsk, group_dead);
851
852 exit_mm();
853
854 if (group_dead)
855 acct_process();
856 trace_sched_process_exit(tsk);
857
858 exit_sem(tsk);
859 exit_shm(tsk);
860 exit_files(tsk);
861 exit_fs(tsk);
862 if (group_dead)
863 disassociate_ctty(1);
864 exit_task_namespaces(tsk);
865 exit_task_work(tsk);
866 exit_thread(tsk);
867
868 /*
869 * Flush inherited counters to the parent - before the parent
870 * gets woken up by child-exit notifications.
871 *
872 * because of cgroup mode, must be called before cgroup_exit()
873 */
874 perf_event_exit_task(tsk);
875
876 sched_autogroup_exit_task(tsk);
877 cgroup_exit(tsk);
878
879 /*
880 * FIXME: do that only when needed, using sched_exit tracepoint
881 */
882 flush_ptrace_hw_breakpoint(tsk);
883
884 exit_tasks_rcu_start();
885 exit_notify(tsk, group_dead);
886 proc_exit_connector(tsk);
887 mpol_put_task_policy(tsk);
888 #ifdef CONFIG_FUTEX
889 if (unlikely(current->pi_state_cache))
890 kfree(current->pi_state_cache);
891 #endif
892 /*
893 * Make sure we are holding no locks:
894 */
895 debug_check_no_locks_held();
896 /*
897 * We can do this unlocked here. The futex code uses this flag
898 * just to verify whether the pi state cleanup has been done
899 * or not. In the worst case it loops once more.
900 */
901 tsk->flags |= PF_EXITPIDONE;
902
903 if (tsk->io_context)
904 exit_io_context(tsk);
905
906 if (tsk->splice_pipe)
907 free_pipe_info(tsk->splice_pipe);
908
909 if (tsk->task_frag.page)
910 put_page(tsk->task_frag.page);
911
912 validate_creds_for_do_exit(tsk);
913
914 check_stack_usage();
915 preempt_disable();
916 if (tsk->nr_dirtied)
917 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
918 exit_rcu();
919 exit_tasks_rcu_finish();
920
921 lockdep_free_task(tsk);
922 do_task_dead();
923 }
924 EXPORT_SYMBOL_GPL(do_exit);
925
926 void complete_and_exit(struct completion *comp, long code)
927 {
928 if (comp)
929 complete(comp);
930
931 do_exit(code);
932 }
933 EXPORT_SYMBOL(complete_and_exit);
934
935 SYSCALL_DEFINE1(exit, int, error_code)
936 {
937 do_exit((error_code&0xff)<<8);
938 }
939
940 /*
941 * Take down every thread in the group. This is called by fatal signals
942 * as well as by sys_exit_group (below).
943 */
944 void
945 do_group_exit(int exit_code)
946 {
947 struct signal_struct *sig = current->signal;
948
949 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
950
951 if (signal_group_exit(sig))
952 exit_code = sig->group_exit_code;
953 else if (!thread_group_empty(current)) {
954 struct sighand_struct *const sighand = current->sighand;
955
956 spin_lock_irq(&sighand->siglock);
957 if (signal_group_exit(sig))
958 /* Another thread got here before we took the lock. */
959 exit_code = sig->group_exit_code;
960 else {
961 sig->group_exit_code = exit_code;
962 sig->flags = SIGNAL_GROUP_EXIT;
963 zap_other_threads(current);
964 }
965 spin_unlock_irq(&sighand->siglock);
966 }
967
968 do_exit(exit_code);
969 /* NOTREACHED */
970 }
971
972 /*
973 * this kills every thread in the thread group. Note that any externally
974 * wait4()-ing process will get the correct exit code - even if this
975 * thread is not the thread group leader.
976 */
977 SYSCALL_DEFINE1(exit_group, int, error_code)
978 {
979 do_group_exit((error_code & 0xff) << 8);
980 /* NOTREACHED */
981 return 0;
982 }
983
984 struct waitid_info {
985 pid_t pid;
986 uid_t uid;
987 int status;
988 int cause;
989 };
990
991 struct wait_opts {
992 enum pid_type wo_type;
993 int wo_flags;
994 struct pid *wo_pid;
995
996 struct waitid_info *wo_info;
997 int wo_stat;
998 struct rusage *wo_rusage;
999
1000 wait_queue_entry_t child_wait;
1001 int notask_error;
1002 };
1003
1004 static inline
1005 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1006 {
1007 if (type != PIDTYPE_PID)
1008 task = task->group_leader;
1009 return task->pids[type].pid;
1010 }
1011
1012 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1013 {
1014 return wo->wo_type == PIDTYPE_MAX ||
1015 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1016 }
1017
1018 static int
1019 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1020 {
1021 if (!eligible_pid(wo, p))
1022 return 0;
1023
1024 /*
1025 * Wait for all children (clone and not) if __WALL is set or
1026 * if it is traced by us.
1027 */
1028 if (ptrace || (wo->wo_flags & __WALL))
1029 return 1;
1030
1031 /*
1032 * Otherwise, wait for clone children *only* if __WCLONE is set;
1033 * otherwise, wait for non-clone children *only*.
1034 *
1035 * Note: a "clone" child here is one that reports to its parent
1036 * using a signal other than SIGCHLD, or a non-leader thread which
1037 * we can only see if it is traced by us.
1038 */
1039 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1040 return 0;
1041
1042 return 1;
1043 }
1044
1045 /*
1046 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1047 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1048 * the lock and this task is uninteresting. If we return nonzero, we have
1049 * released the lock and the system call should return.
1050 */
1051 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1052 {
1053 int state, status;
1054 pid_t pid = task_pid_vnr(p);
1055 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1056 struct waitid_info *infop;
1057
1058 if (!likely(wo->wo_flags & WEXITED))
1059 return 0;
1060
1061 if (unlikely(wo->wo_flags & WNOWAIT)) {
1062 status = p->exit_code;
1063 get_task_struct(p);
1064 read_unlock(&tasklist_lock);
1065 sched_annotate_sleep();
1066 if (wo->wo_rusage)
1067 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1068 put_task_struct(p);
1069 goto out_info;
1070 }
1071 /*
1072 * Move the task's state to DEAD/TRACE, only one thread can do this.
1073 */
1074 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1075 EXIT_TRACE : EXIT_DEAD;
1076 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1077 return 0;
1078 /*
1079 * We own this thread, nobody else can reap it.
1080 */
1081 read_unlock(&tasklist_lock);
1082 sched_annotate_sleep();
1083
1084 /*
1085 * Check thread_group_leader() to exclude the traced sub-threads.
1086 */
1087 if (state == EXIT_DEAD && thread_group_leader(p)) {
1088 struct signal_struct *sig = p->signal;
1089 struct signal_struct *psig = current->signal;
1090 unsigned long maxrss;
1091 u64 tgutime, tgstime;
1092
1093 /*
1094 * The resource counters for the group leader are in its
1095 * own task_struct. Those for dead threads in the group
1096 * are in its signal_struct, as are those for the child
1097 * processes it has previously reaped. All these
1098 * accumulate in the parent's signal_struct c* fields.
1099 *
1100 * We don't bother to take a lock here to protect these
1101 * p->signal fields because the whole thread group is dead
1102 * and nobody can change them.
1103 *
1104 * psig->stats_lock also protects us from our sub-theads
1105 * which can reap other children at the same time. Until
1106 * we change k_getrusage()-like users to rely on this lock
1107 * we have to take ->siglock as well.
1108 *
1109 * We use thread_group_cputime_adjusted() to get times for
1110 * the thread group, which consolidates times for all threads
1111 * in the group including the group leader.
1112 */
1113 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1114 spin_lock_irq(&current->sighand->siglock);
1115 write_seqlock(&psig->stats_lock);
1116 psig->cutime += tgutime + sig->cutime;
1117 psig->cstime += tgstime + sig->cstime;
1118 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1119 psig->cmin_flt +=
1120 p->min_flt + sig->min_flt + sig->cmin_flt;
1121 psig->cmaj_flt +=
1122 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1123 psig->cnvcsw +=
1124 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1125 psig->cnivcsw +=
1126 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1127 psig->cinblock +=
1128 task_io_get_inblock(p) +
1129 sig->inblock + sig->cinblock;
1130 psig->coublock +=
1131 task_io_get_oublock(p) +
1132 sig->oublock + sig->coublock;
1133 maxrss = max(sig->maxrss, sig->cmaxrss);
1134 if (psig->cmaxrss < maxrss)
1135 psig->cmaxrss = maxrss;
1136 task_io_accounting_add(&psig->ioac, &p->ioac);
1137 task_io_accounting_add(&psig->ioac, &sig->ioac);
1138 write_sequnlock(&psig->stats_lock);
1139 spin_unlock_irq(&current->sighand->siglock);
1140 }
1141
1142 if (wo->wo_rusage)
1143 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1144 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1145 ? p->signal->group_exit_code : p->exit_code;
1146 wo->wo_stat = status;
1147
1148 if (state == EXIT_TRACE) {
1149 write_lock_irq(&tasklist_lock);
1150 /* We dropped tasklist, ptracer could die and untrace */
1151 ptrace_unlink(p);
1152
1153 /* If parent wants a zombie, don't release it now */
1154 state = EXIT_ZOMBIE;
1155 if (do_notify_parent(p, p->exit_signal))
1156 state = EXIT_DEAD;
1157 p->exit_state = state;
1158 write_unlock_irq(&tasklist_lock);
1159 }
1160 if (state == EXIT_DEAD)
1161 release_task(p);
1162
1163 out_info:
1164 infop = wo->wo_info;
1165 if (infop) {
1166 if ((status & 0x7f) == 0) {
1167 infop->cause = CLD_EXITED;
1168 infop->status = status >> 8;
1169 } else {
1170 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1171 infop->status = status & 0x7f;
1172 }
1173 infop->pid = pid;
1174 infop->uid = uid;
1175 }
1176
1177 return pid;
1178 }
1179
1180 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1181 {
1182 if (ptrace) {
1183 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1184 return &p->exit_code;
1185 } else {
1186 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1187 return &p->signal->group_exit_code;
1188 }
1189 return NULL;
1190 }
1191
1192 /**
1193 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1194 * @wo: wait options
1195 * @ptrace: is the wait for ptrace
1196 * @p: task to wait for
1197 *
1198 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1199 *
1200 * CONTEXT:
1201 * read_lock(&tasklist_lock), which is released if return value is
1202 * non-zero. Also, grabs and releases @p->sighand->siglock.
1203 *
1204 * RETURNS:
1205 * 0 if wait condition didn't exist and search for other wait conditions
1206 * should continue. Non-zero return, -errno on failure and @p's pid on
1207 * success, implies that tasklist_lock is released and wait condition
1208 * search should terminate.
1209 */
1210 static int wait_task_stopped(struct wait_opts *wo,
1211 int ptrace, struct task_struct *p)
1212 {
1213 struct waitid_info *infop;
1214 int exit_code, *p_code, why;
1215 uid_t uid = 0; /* unneeded, required by compiler */
1216 pid_t pid;
1217
1218 /*
1219 * Traditionally we see ptrace'd stopped tasks regardless of options.
1220 */
1221 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1222 return 0;
1223
1224 if (!task_stopped_code(p, ptrace))
1225 return 0;
1226
1227 exit_code = 0;
1228 spin_lock_irq(&p->sighand->siglock);
1229
1230 p_code = task_stopped_code(p, ptrace);
1231 if (unlikely(!p_code))
1232 goto unlock_sig;
1233
1234 exit_code = *p_code;
1235 if (!exit_code)
1236 goto unlock_sig;
1237
1238 if (!unlikely(wo->wo_flags & WNOWAIT))
1239 *p_code = 0;
1240
1241 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1242 unlock_sig:
1243 spin_unlock_irq(&p->sighand->siglock);
1244 if (!exit_code)
1245 return 0;
1246
1247 /*
1248 * Now we are pretty sure this task is interesting.
1249 * Make sure it doesn't get reaped out from under us while we
1250 * give up the lock and then examine it below. We don't want to
1251 * keep holding onto the tasklist_lock while we call getrusage and
1252 * possibly take page faults for user memory.
1253 */
1254 get_task_struct(p);
1255 pid = task_pid_vnr(p);
1256 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1257 read_unlock(&tasklist_lock);
1258 sched_annotate_sleep();
1259 if (wo->wo_rusage)
1260 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1261 put_task_struct(p);
1262
1263 if (likely(!(wo->wo_flags & WNOWAIT)))
1264 wo->wo_stat = (exit_code << 8) | 0x7f;
1265
1266 infop = wo->wo_info;
1267 if (infop) {
1268 infop->cause = why;
1269 infop->status = exit_code;
1270 infop->pid = pid;
1271 infop->uid = uid;
1272 }
1273 return pid;
1274 }
1275
1276 /*
1277 * Handle do_wait work for one task in a live, non-stopped state.
1278 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1279 * the lock and this task is uninteresting. If we return nonzero, we have
1280 * released the lock and the system call should return.
1281 */
1282 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1283 {
1284 struct waitid_info *infop;
1285 pid_t pid;
1286 uid_t uid;
1287
1288 if (!unlikely(wo->wo_flags & WCONTINUED))
1289 return 0;
1290
1291 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1292 return 0;
1293
1294 spin_lock_irq(&p->sighand->siglock);
1295 /* Re-check with the lock held. */
1296 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1297 spin_unlock_irq(&p->sighand->siglock);
1298 return 0;
1299 }
1300 if (!unlikely(wo->wo_flags & WNOWAIT))
1301 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1302 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1303 spin_unlock_irq(&p->sighand->siglock);
1304
1305 pid = task_pid_vnr(p);
1306 get_task_struct(p);
1307 read_unlock(&tasklist_lock);
1308 sched_annotate_sleep();
1309 if (wo->wo_rusage)
1310 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1311 put_task_struct(p);
1312
1313 infop = wo->wo_info;
1314 if (!infop) {
1315 wo->wo_stat = 0xffff;
1316 } else {
1317 infop->cause = CLD_CONTINUED;
1318 infop->pid = pid;
1319 infop->uid = uid;
1320 infop->status = SIGCONT;
1321 }
1322 return pid;
1323 }
1324
1325 /*
1326 * Consider @p for a wait by @parent.
1327 *
1328 * -ECHILD should be in ->notask_error before the first call.
1329 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1330 * Returns zero if the search for a child should continue;
1331 * then ->notask_error is 0 if @p is an eligible child,
1332 * or still -ECHILD.
1333 */
1334 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1335 struct task_struct *p)
1336 {
1337 /*
1338 * We can race with wait_task_zombie() from another thread.
1339 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1340 * can't confuse the checks below.
1341 */
1342 int exit_state = ACCESS_ONCE(p->exit_state);
1343 int ret;
1344
1345 if (unlikely(exit_state == EXIT_DEAD))
1346 return 0;
1347
1348 ret = eligible_child(wo, ptrace, p);
1349 if (!ret)
1350 return ret;
1351
1352 if (unlikely(exit_state == EXIT_TRACE)) {
1353 /*
1354 * ptrace == 0 means we are the natural parent. In this case
1355 * we should clear notask_error, debugger will notify us.
1356 */
1357 if (likely(!ptrace))
1358 wo->notask_error = 0;
1359 return 0;
1360 }
1361
1362 if (likely(!ptrace) && unlikely(p->ptrace)) {
1363 /*
1364 * If it is traced by its real parent's group, just pretend
1365 * the caller is ptrace_do_wait() and reap this child if it
1366 * is zombie.
1367 *
1368 * This also hides group stop state from real parent; otherwise
1369 * a single stop can be reported twice as group and ptrace stop.
1370 * If a ptracer wants to distinguish these two events for its
1371 * own children it should create a separate process which takes
1372 * the role of real parent.
1373 */
1374 if (!ptrace_reparented(p))
1375 ptrace = 1;
1376 }
1377
1378 /* slay zombie? */
1379 if (exit_state == EXIT_ZOMBIE) {
1380 /* we don't reap group leaders with subthreads */
1381 if (!delay_group_leader(p)) {
1382 /*
1383 * A zombie ptracee is only visible to its ptracer.
1384 * Notification and reaping will be cascaded to the
1385 * real parent when the ptracer detaches.
1386 */
1387 if (unlikely(ptrace) || likely(!p->ptrace))
1388 return wait_task_zombie(wo, p);
1389 }
1390
1391 /*
1392 * Allow access to stopped/continued state via zombie by
1393 * falling through. Clearing of notask_error is complex.
1394 *
1395 * When !@ptrace:
1396 *
1397 * If WEXITED is set, notask_error should naturally be
1398 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1399 * so, if there are live subthreads, there are events to
1400 * wait for. If all subthreads are dead, it's still safe
1401 * to clear - this function will be called again in finite
1402 * amount time once all the subthreads are released and
1403 * will then return without clearing.
1404 *
1405 * When @ptrace:
1406 *
1407 * Stopped state is per-task and thus can't change once the
1408 * target task dies. Only continued and exited can happen.
1409 * Clear notask_error if WCONTINUED | WEXITED.
1410 */
1411 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1412 wo->notask_error = 0;
1413 } else {
1414 /*
1415 * @p is alive and it's gonna stop, continue or exit, so
1416 * there always is something to wait for.
1417 */
1418 wo->notask_error = 0;
1419 }
1420
1421 /*
1422 * Wait for stopped. Depending on @ptrace, different stopped state
1423 * is used and the two don't interact with each other.
1424 */
1425 ret = wait_task_stopped(wo, ptrace, p);
1426 if (ret)
1427 return ret;
1428
1429 /*
1430 * Wait for continued. There's only one continued state and the
1431 * ptracer can consume it which can confuse the real parent. Don't
1432 * use WCONTINUED from ptracer. You don't need or want it.
1433 */
1434 return wait_task_continued(wo, p);
1435 }
1436
1437 /*
1438 * Do the work of do_wait() for one thread in the group, @tsk.
1439 *
1440 * -ECHILD should be in ->notask_error before the first call.
1441 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1442 * Returns zero if the search for a child should continue; then
1443 * ->notask_error is 0 if there were any eligible children,
1444 * or still -ECHILD.
1445 */
1446 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1447 {
1448 struct task_struct *p;
1449
1450 list_for_each_entry(p, &tsk->children, sibling) {
1451 int ret = wait_consider_task(wo, 0, p);
1452
1453 if (ret)
1454 return ret;
1455 }
1456
1457 return 0;
1458 }
1459
1460 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1461 {
1462 struct task_struct *p;
1463
1464 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1465 int ret = wait_consider_task(wo, 1, p);
1466
1467 if (ret)
1468 return ret;
1469 }
1470
1471 return 0;
1472 }
1473
1474 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1475 int sync, void *key)
1476 {
1477 struct wait_opts *wo = container_of(wait, struct wait_opts,
1478 child_wait);
1479 struct task_struct *p = key;
1480
1481 if (!eligible_pid(wo, p))
1482 return 0;
1483
1484 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1485 return 0;
1486
1487 return default_wake_function(wait, mode, sync, key);
1488 }
1489
1490 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1491 {
1492 __wake_up_sync_key(&parent->signal->wait_chldexit,
1493 TASK_INTERRUPTIBLE, 1, p);
1494 }
1495
1496 static long do_wait(struct wait_opts *wo)
1497 {
1498 struct task_struct *tsk;
1499 int retval;
1500
1501 trace_sched_process_wait(wo->wo_pid);
1502
1503 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1504 wo->child_wait.private = current;
1505 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1506 repeat:
1507 /*
1508 * If there is nothing that can match our criteria, just get out.
1509 * We will clear ->notask_error to zero if we see any child that
1510 * might later match our criteria, even if we are not able to reap
1511 * it yet.
1512 */
1513 wo->notask_error = -ECHILD;
1514 if ((wo->wo_type < PIDTYPE_MAX) &&
1515 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1516 goto notask;
1517
1518 set_current_state(TASK_INTERRUPTIBLE);
1519 read_lock(&tasklist_lock);
1520 tsk = current;
1521 do {
1522 retval = do_wait_thread(wo, tsk);
1523 if (retval)
1524 goto end;
1525
1526 retval = ptrace_do_wait(wo, tsk);
1527 if (retval)
1528 goto end;
1529
1530 if (wo->wo_flags & __WNOTHREAD)
1531 break;
1532 } while_each_thread(current, tsk);
1533 read_unlock(&tasklist_lock);
1534
1535 notask:
1536 retval = wo->notask_error;
1537 if (!retval && !(wo->wo_flags & WNOHANG)) {
1538 retval = -ERESTARTSYS;
1539 if (!signal_pending(current)) {
1540 schedule();
1541 goto repeat;
1542 }
1543 }
1544 end:
1545 __set_current_state(TASK_RUNNING);
1546 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1547 return retval;
1548 }
1549
1550 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1551 int options, struct rusage *ru)
1552 {
1553 struct wait_opts wo;
1554 struct pid *pid = NULL;
1555 enum pid_type type;
1556 long ret;
1557
1558 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1559 __WNOTHREAD|__WCLONE|__WALL))
1560 return -EINVAL;
1561 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1562 return -EINVAL;
1563
1564 switch (which) {
1565 case P_ALL:
1566 type = PIDTYPE_MAX;
1567 break;
1568 case P_PID:
1569 type = PIDTYPE_PID;
1570 if (upid <= 0)
1571 return -EINVAL;
1572 break;
1573 case P_PGID:
1574 type = PIDTYPE_PGID;
1575 if (upid <= 0)
1576 return -EINVAL;
1577 break;
1578 default:
1579 return -EINVAL;
1580 }
1581
1582 if (type < PIDTYPE_MAX)
1583 pid = find_get_pid(upid);
1584
1585 wo.wo_type = type;
1586 wo.wo_pid = pid;
1587 wo.wo_flags = options;
1588 wo.wo_info = infop;
1589 wo.wo_rusage = ru;
1590 ret = do_wait(&wo);
1591
1592 put_pid(pid);
1593 return ret;
1594 }
1595
1596 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1597 infop, int, options, struct rusage __user *, ru)
1598 {
1599 struct rusage r;
1600 struct waitid_info info = {.status = 0};
1601 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1602 int signo = 0;
1603
1604 if (err > 0) {
1605 signo = SIGCHLD;
1606 err = 0;
1607 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1608 return -EFAULT;
1609 }
1610 if (!infop)
1611 return err;
1612
1613 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1614 return -EFAULT;
1615
1616 user_access_begin();
1617 unsafe_put_user(signo, &infop->si_signo, Efault);
1618 unsafe_put_user(0, &infop->si_errno, Efault);
1619 unsafe_put_user(info.cause, &infop->si_code, Efault);
1620 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1621 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1622 unsafe_put_user(info.status, &infop->si_status, Efault);
1623 user_access_end();
1624 return err;
1625 Efault:
1626 user_access_end();
1627 return -EFAULT;
1628 }
1629
1630 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1631 struct rusage *ru)
1632 {
1633 struct wait_opts wo;
1634 struct pid *pid = NULL;
1635 enum pid_type type;
1636 long ret;
1637
1638 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1639 __WNOTHREAD|__WCLONE|__WALL))
1640 return -EINVAL;
1641
1642 /* -INT_MIN is not defined */
1643 if (upid == INT_MIN)
1644 return -ESRCH;
1645
1646 if (upid == -1)
1647 type = PIDTYPE_MAX;
1648 else if (upid < 0) {
1649 type = PIDTYPE_PGID;
1650 pid = find_get_pid(-upid);
1651 } else if (upid == 0) {
1652 type = PIDTYPE_PGID;
1653 pid = get_task_pid(current, PIDTYPE_PGID);
1654 } else /* upid > 0 */ {
1655 type = PIDTYPE_PID;
1656 pid = find_get_pid(upid);
1657 }
1658
1659 wo.wo_type = type;
1660 wo.wo_pid = pid;
1661 wo.wo_flags = options | WEXITED;
1662 wo.wo_info = NULL;
1663 wo.wo_stat = 0;
1664 wo.wo_rusage = ru;
1665 ret = do_wait(&wo);
1666 put_pid(pid);
1667 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1668 ret = -EFAULT;
1669
1670 return ret;
1671 }
1672
1673 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1674 int, options, struct rusage __user *, ru)
1675 {
1676 struct rusage r;
1677 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1678
1679 if (err > 0) {
1680 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1681 return -EFAULT;
1682 }
1683 return err;
1684 }
1685
1686 #ifdef __ARCH_WANT_SYS_WAITPID
1687
1688 /*
1689 * sys_waitpid() remains for compatibility. waitpid() should be
1690 * implemented by calling sys_wait4() from libc.a.
1691 */
1692 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1693 {
1694 return sys_wait4(pid, stat_addr, options, NULL);
1695 }
1696
1697 #endif
1698
1699 #ifdef CONFIG_COMPAT
1700 COMPAT_SYSCALL_DEFINE4(wait4,
1701 compat_pid_t, pid,
1702 compat_uint_t __user *, stat_addr,
1703 int, options,
1704 struct compat_rusage __user *, ru)
1705 {
1706 struct rusage r;
1707 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1708 if (err > 0) {
1709 if (ru && put_compat_rusage(&r, ru))
1710 return -EFAULT;
1711 }
1712 return err;
1713 }
1714
1715 COMPAT_SYSCALL_DEFINE5(waitid,
1716 int, which, compat_pid_t, pid,
1717 struct compat_siginfo __user *, infop, int, options,
1718 struct compat_rusage __user *, uru)
1719 {
1720 struct rusage ru;
1721 struct waitid_info info = {.status = 0};
1722 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1723 int signo = 0;
1724 if (err > 0) {
1725 signo = SIGCHLD;
1726 err = 0;
1727 if (uru) {
1728 /* kernel_waitid() overwrites everything in ru */
1729 if (COMPAT_USE_64BIT_TIME)
1730 err = copy_to_user(uru, &ru, sizeof(ru));
1731 else
1732 err = put_compat_rusage(&ru, uru);
1733 if (err)
1734 return -EFAULT;
1735 }
1736 }
1737
1738 if (!infop)
1739 return err;
1740
1741 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1742 return -EFAULT;
1743
1744 user_access_begin();
1745 unsafe_put_user(signo, &infop->si_signo, Efault);
1746 unsafe_put_user(0, &infop->si_errno, Efault);
1747 unsafe_put_user(info.cause, &infop->si_code, Efault);
1748 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1749 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1750 unsafe_put_user(info.status, &infop->si_status, Efault);
1751 user_access_end();
1752 return err;
1753 Efault:
1754 user_access_end();
1755 return -EFAULT;
1756 }
1757 #endif