Merge commit '818299f6bdae' into android-exynos-4.14-ww-9610-minor_up-dev
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/cpufreq_times.h>
66 #include <linux/ems.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/pgtable.h>
71 #include <asm/mmu_context.h>
72
73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75 nr_threads--;
76 detach_pid(p, PIDTYPE_PID);
77 if (group_dead) {
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 } else {
109 /*
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
113 */
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
116 }
117 #endif
118
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
123 /*
124 * If there is any task waiting for the group exit
125 * then notify it:
126 */
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
129
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
132 }
133
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
137 /*
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
142 */
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 sig->nr_threads--;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
159
160 /*
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 */
164 flush_sigqueue(&tsk->pending);
165 tsk->sighand = NULL;
166 spin_unlock(&sighand->siglock);
167
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 if (group_dead) {
171 flush_sigqueue(&sig->shared_pending);
172 tty_kref_put(tty);
173 }
174 }
175
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
183 }
184
185
186 void release_task(struct task_struct *p)
187 {
188 struct task_struct *leader;
189 int zap_leader;
190 #ifdef CONFIG_CPU_FREQ_TIMES
191 cpufreq_task_times_exit(p);
192 #endif
193 repeat:
194 /* don't need to get the RCU readlock here - the process is dead and
195 * can't be modifying its own credentials. But shut RCU-lockdep up */
196 rcu_read_lock();
197 atomic_dec(&__task_cred(p)->user->processes);
198 rcu_read_unlock();
199
200 proc_flush_task(p);
201
202 write_lock_irq(&tasklist_lock);
203 ptrace_release_task(p);
204 __exit_signal(p);
205
206 /*
207 * If we are the last non-leader member of the thread
208 * group, and the leader is zombie, then notify the
209 * group leader's parent process. (if it wants notification.)
210 */
211 zap_leader = 0;
212 leader = p->group_leader;
213 if (leader != p && thread_group_empty(leader)
214 && leader->exit_state == EXIT_ZOMBIE) {
215 /*
216 * If we were the last child thread and the leader has
217 * exited already, and the leader's parent ignores SIGCHLD,
218 * then we are the one who should release the leader.
219 */
220 zap_leader = do_notify_parent(leader, leader->exit_signal);
221 if (zap_leader)
222 leader->exit_state = EXIT_DEAD;
223 }
224
225 write_unlock_irq(&tasklist_lock);
226 release_thread(p);
227 call_rcu(&p->rcu, delayed_put_task_struct);
228
229 p = leader;
230 if (unlikely(zap_leader))
231 goto repeat;
232 }
233
234 /*
235 * Note that if this function returns a valid task_struct pointer (!NULL)
236 * task->usage must remain >0 for the duration of the RCU critical section.
237 */
238 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
239 {
240 struct sighand_struct *sighand;
241 struct task_struct *task;
242
243 /*
244 * We need to verify that release_task() was not called and thus
245 * delayed_put_task_struct() can't run and drop the last reference
246 * before rcu_read_unlock(). We check task->sighand != NULL,
247 * but we can read the already freed and reused memory.
248 */
249 retry:
250 task = rcu_dereference(*ptask);
251 if (!task)
252 return NULL;
253
254 probe_kernel_address(&task->sighand, sighand);
255
256 /*
257 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
258 * was already freed we can not miss the preceding update of this
259 * pointer.
260 */
261 smp_rmb();
262 if (unlikely(task != READ_ONCE(*ptask)))
263 goto retry;
264
265 /*
266 * We've re-checked that "task == *ptask", now we have two different
267 * cases:
268 *
269 * 1. This is actually the same task/task_struct. In this case
270 * sighand != NULL tells us it is still alive.
271 *
272 * 2. This is another task which got the same memory for task_struct.
273 * We can't know this of course, and we can not trust
274 * sighand != NULL.
275 *
276 * In this case we actually return a random value, but this is
277 * correct.
278 *
279 * If we return NULL - we can pretend that we actually noticed that
280 * *ptask was updated when the previous task has exited. Or pretend
281 * that probe_slab_address(&sighand) reads NULL.
282 *
283 * If we return the new task (because sighand is not NULL for any
284 * reason) - this is fine too. This (new) task can't go away before
285 * another gp pass.
286 *
287 * And note: We could even eliminate the false positive if re-read
288 * task->sighand once again to avoid the falsely NULL. But this case
289 * is very unlikely so we don't care.
290 */
291 if (!sighand)
292 return NULL;
293
294 return task;
295 }
296
297 void rcuwait_wake_up(struct rcuwait *w)
298 {
299 struct task_struct *task;
300
301 rcu_read_lock();
302
303 /*
304 * Order condition vs @task, such that everything prior to the load
305 * of @task is visible. This is the condition as to why the user called
306 * rcuwait_trywake() in the first place. Pairs with set_current_state()
307 * barrier (A) in rcuwait_wait_event().
308 *
309 * WAIT WAKE
310 * [S] tsk = current [S] cond = true
311 * MB (A) MB (B)
312 * [L] cond [L] tsk
313 */
314 smp_rmb(); /* (B) */
315
316 /*
317 * Avoid using task_rcu_dereference() magic as long as we are careful,
318 * see comment in rcuwait_wait_event() regarding ->exit_state.
319 */
320 task = rcu_dereference(w->task);
321 if (task)
322 wake_up_process(task);
323 rcu_read_unlock();
324 }
325
326 /*
327 * Determine if a process group is "orphaned", according to the POSIX
328 * definition in 2.2.2.52. Orphaned process groups are not to be affected
329 * by terminal-generated stop signals. Newly orphaned process groups are
330 * to receive a SIGHUP and a SIGCONT.
331 *
332 * "I ask you, have you ever known what it is to be an orphan?"
333 */
334 static int will_become_orphaned_pgrp(struct pid *pgrp,
335 struct task_struct *ignored_task)
336 {
337 struct task_struct *p;
338
339 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
340 if ((p == ignored_task) ||
341 (p->exit_state && thread_group_empty(p)) ||
342 is_global_init(p->real_parent))
343 continue;
344
345 if (task_pgrp(p->real_parent) != pgrp &&
346 task_session(p->real_parent) == task_session(p))
347 return 0;
348 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
349
350 return 1;
351 }
352
353 int is_current_pgrp_orphaned(void)
354 {
355 int retval;
356
357 read_lock(&tasklist_lock);
358 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
359 read_unlock(&tasklist_lock);
360
361 return retval;
362 }
363
364 static bool has_stopped_jobs(struct pid *pgrp)
365 {
366 struct task_struct *p;
367
368 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
369 if (p->signal->flags & SIGNAL_STOP_STOPPED)
370 return true;
371 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
372
373 return false;
374 }
375
376 /*
377 * Check to see if any process groups have become orphaned as
378 * a result of our exiting, and if they have any stopped jobs,
379 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
380 */
381 static void
382 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
383 {
384 struct pid *pgrp = task_pgrp(tsk);
385 struct task_struct *ignored_task = tsk;
386
387 if (!parent)
388 /* exit: our father is in a different pgrp than
389 * we are and we were the only connection outside.
390 */
391 parent = tsk->real_parent;
392 else
393 /* reparent: our child is in a different pgrp than
394 * we are, and it was the only connection outside.
395 */
396 ignored_task = NULL;
397
398 if (task_pgrp(parent) != pgrp &&
399 task_session(parent) == task_session(tsk) &&
400 will_become_orphaned_pgrp(pgrp, ignored_task) &&
401 has_stopped_jobs(pgrp)) {
402 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
403 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
404 }
405 }
406
407 #ifdef CONFIG_MEMCG
408 /*
409 * A task is exiting. If it owned this mm, find a new owner for the mm.
410 */
411 void mm_update_next_owner(struct mm_struct *mm)
412 {
413 struct task_struct *c, *g, *p = current;
414
415 retry:
416 /*
417 * If the exiting or execing task is not the owner, it's
418 * someone else's problem.
419 */
420 if (mm->owner != p)
421 return;
422 /*
423 * The current owner is exiting/execing and there are no other
424 * candidates. Do not leave the mm pointing to a possibly
425 * freed task structure.
426 */
427 if (atomic_read(&mm->mm_users) <= 1) {
428 mm->owner = NULL;
429 return;
430 }
431
432 read_lock(&tasklist_lock);
433 /*
434 * Search in the children
435 */
436 list_for_each_entry(c, &p->children, sibling) {
437 if (c->mm == mm)
438 goto assign_new_owner;
439 }
440
441 /*
442 * Search in the siblings
443 */
444 list_for_each_entry(c, &p->real_parent->children, sibling) {
445 if (c->mm == mm)
446 goto assign_new_owner;
447 }
448
449 /*
450 * Search through everything else, we should not get here often.
451 */
452 for_each_process(g) {
453 if (g->flags & PF_KTHREAD)
454 continue;
455 for_each_thread(g, c) {
456 if (c->mm == mm)
457 goto assign_new_owner;
458 if (c->mm)
459 break;
460 }
461 }
462 read_unlock(&tasklist_lock);
463 /*
464 * We found no owner yet mm_users > 1: this implies that we are
465 * most likely racing with swapoff (try_to_unuse()) or /proc or
466 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
467 */
468 mm->owner = NULL;
469 return;
470
471 assign_new_owner:
472 BUG_ON(c == p);
473 get_task_struct(c);
474 /*
475 * The task_lock protects c->mm from changing.
476 * We always want mm->owner->mm == mm
477 */
478 task_lock(c);
479 /*
480 * Delay read_unlock() till we have the task_lock()
481 * to ensure that c does not slip away underneath us
482 */
483 read_unlock(&tasklist_lock);
484 if (c->mm != mm) {
485 task_unlock(c);
486 put_task_struct(c);
487 goto retry;
488 }
489 mm->owner = c;
490 task_unlock(c);
491 put_task_struct(c);
492 }
493 #endif /* CONFIG_MEMCG */
494
495 /*
496 * Turn us into a lazy TLB process if we
497 * aren't already..
498 */
499 static void exit_mm(void)
500 {
501 struct mm_struct *mm = current->mm;
502 struct core_state *core_state;
503
504 mm_release(current, mm);
505 if (!mm)
506 return;
507 sync_mm_rss(mm);
508 /*
509 * Serialize with any possible pending coredump.
510 * We must hold mmap_sem around checking core_state
511 * and clearing tsk->mm. The core-inducing thread
512 * will increment ->nr_threads for each thread in the
513 * group with ->mm != NULL.
514 */
515 down_read(&mm->mmap_sem);
516 core_state = mm->core_state;
517 if (core_state) {
518 struct core_thread self;
519
520 up_read(&mm->mmap_sem);
521
522 self.task = current;
523 self.next = xchg(&core_state->dumper.next, &self);
524 /*
525 * Implies mb(), the result of xchg() must be visible
526 * to core_state->dumper.
527 */
528 if (atomic_dec_and_test(&core_state->nr_threads))
529 complete(&core_state->startup);
530
531 for (;;) {
532 set_current_state(TASK_UNINTERRUPTIBLE);
533 if (!self.task) /* see coredump_finish() */
534 break;
535 freezable_schedule();
536 }
537 __set_current_state(TASK_RUNNING);
538 down_read(&mm->mmap_sem);
539 }
540 mmgrab(mm);
541 BUG_ON(mm != current->active_mm);
542 /* more a memory barrier than a real lock */
543 task_lock(current);
544 current->mm = NULL;
545 up_read(&mm->mmap_sem);
546 enter_lazy_tlb(mm, current);
547 task_unlock(current);
548 mm_update_next_owner(mm);
549 mmput(mm);
550 if (test_thread_flag(TIF_MEMDIE))
551 exit_oom_victim();
552 }
553
554 static struct task_struct *find_alive_thread(struct task_struct *p)
555 {
556 struct task_struct *t;
557
558 for_each_thread(p, t) {
559 if (!(t->flags & PF_EXITING))
560 return t;
561 }
562 return NULL;
563 }
564
565 static struct task_struct *find_child_reaper(struct task_struct *father)
566 __releases(&tasklist_lock)
567 __acquires(&tasklist_lock)
568 {
569 struct pid_namespace *pid_ns = task_active_pid_ns(father);
570 struct task_struct *reaper = pid_ns->child_reaper;
571
572 if (likely(reaper != father))
573 return reaper;
574
575 reaper = find_alive_thread(father);
576 if (reaper) {
577 pid_ns->child_reaper = reaper;
578 return reaper;
579 }
580
581 write_unlock_irq(&tasklist_lock);
582 if (unlikely(pid_ns == &init_pid_ns)) {
583 panic("Attempted to kill init! exitcode=0x%08x\n",
584 father->signal->group_exit_code ?: father->exit_code);
585 }
586 zap_pid_ns_processes(pid_ns);
587 write_lock_irq(&tasklist_lock);
588
589 return father;
590 }
591
592 /*
593 * When we die, we re-parent all our children, and try to:
594 * 1. give them to another thread in our thread group, if such a member exists
595 * 2. give it to the first ancestor process which prctl'd itself as a
596 * child_subreaper for its children (like a service manager)
597 * 3. give it to the init process (PID 1) in our pid namespace
598 */
599 static struct task_struct *find_new_reaper(struct task_struct *father,
600 struct task_struct *child_reaper)
601 {
602 struct task_struct *thread, *reaper;
603
604 thread = find_alive_thread(father);
605 if (thread)
606 return thread;
607
608 if (father->signal->has_child_subreaper) {
609 unsigned int ns_level = task_pid(father)->level;
610 /*
611 * Find the first ->is_child_subreaper ancestor in our pid_ns.
612 * We can't check reaper != child_reaper to ensure we do not
613 * cross the namespaces, the exiting parent could be injected
614 * by setns() + fork().
615 * We check pid->level, this is slightly more efficient than
616 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
617 */
618 for (reaper = father->real_parent;
619 task_pid(reaper)->level == ns_level;
620 reaper = reaper->real_parent) {
621 if (reaper == &init_task)
622 break;
623 if (!reaper->signal->is_child_subreaper)
624 continue;
625 thread = find_alive_thread(reaper);
626 if (thread)
627 return thread;
628 }
629 }
630
631 return child_reaper;
632 }
633
634 /*
635 * Any that need to be release_task'd are put on the @dead list.
636 */
637 static void reparent_leader(struct task_struct *father, struct task_struct *p,
638 struct list_head *dead)
639 {
640 if (unlikely(p->exit_state == EXIT_DEAD))
641 return;
642
643 /* We don't want people slaying init. */
644 p->exit_signal = SIGCHLD;
645
646 /* If it has exited notify the new parent about this child's death. */
647 if (!p->ptrace &&
648 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
649 if (do_notify_parent(p, p->exit_signal)) {
650 p->exit_state = EXIT_DEAD;
651 list_add(&p->ptrace_entry, dead);
652 }
653 }
654
655 kill_orphaned_pgrp(p, father);
656 }
657
658 /*
659 * This does two things:
660 *
661 * A. Make init inherit all the child processes
662 * B. Check to see if any process groups have become orphaned
663 * as a result of our exiting, and if they have any stopped
664 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
665 */
666 static void forget_original_parent(struct task_struct *father,
667 struct list_head *dead)
668 {
669 struct task_struct *p, *t, *reaper;
670
671 if (unlikely(!list_empty(&father->ptraced)))
672 exit_ptrace(father, dead);
673
674 /* Can drop and reacquire tasklist_lock */
675 reaper = find_child_reaper(father);
676 if (list_empty(&father->children))
677 return;
678
679 reaper = find_new_reaper(father, reaper);
680 list_for_each_entry(p, &father->children, sibling) {
681 for_each_thread(p, t) {
682 t->real_parent = reaper;
683 BUG_ON((!t->ptrace) != (t->parent == father));
684 if (likely(!t->ptrace))
685 t->parent = t->real_parent;
686 if (t->pdeath_signal)
687 group_send_sig_info(t->pdeath_signal,
688 SEND_SIG_NOINFO, t);
689 }
690 /*
691 * If this is a threaded reparent there is no need to
692 * notify anyone anything has happened.
693 */
694 if (!same_thread_group(reaper, father))
695 reparent_leader(father, p, dead);
696 }
697 list_splice_tail_init(&father->children, &reaper->children);
698 }
699
700 /*
701 * Send signals to all our closest relatives so that they know
702 * to properly mourn us..
703 */
704 static void exit_notify(struct task_struct *tsk, int group_dead)
705 {
706 bool autoreap;
707 struct task_struct *p, *n;
708 LIST_HEAD(dead);
709
710 write_lock_irq(&tasklist_lock);
711 forget_original_parent(tsk, &dead);
712
713 if (group_dead)
714 kill_orphaned_pgrp(tsk->group_leader, NULL);
715
716 if (unlikely(tsk->ptrace)) {
717 int sig = thread_group_leader(tsk) &&
718 thread_group_empty(tsk) &&
719 !ptrace_reparented(tsk) ?
720 tsk->exit_signal : SIGCHLD;
721 autoreap = do_notify_parent(tsk, sig);
722 } else if (thread_group_leader(tsk)) {
723 autoreap = thread_group_empty(tsk) &&
724 do_notify_parent(tsk, tsk->exit_signal);
725 } else {
726 autoreap = true;
727 }
728
729 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
730 if (tsk->exit_state == EXIT_DEAD)
731 list_add(&tsk->ptrace_entry, &dead);
732
733 /* mt-exec, de_thread() is waiting for group leader */
734 if (unlikely(tsk->signal->notify_count < 0))
735 wake_up_process(tsk->signal->group_exit_task);
736 write_unlock_irq(&tasklist_lock);
737
738 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
739 list_del_init(&p->ptrace_entry);
740 release_task(p);
741 }
742 }
743
744 #ifdef CONFIG_DEBUG_STACK_USAGE
745 static void check_stack_usage(void)
746 {
747 static DEFINE_SPINLOCK(low_water_lock);
748 static int lowest_to_date = THREAD_SIZE;
749 unsigned long free;
750
751 free = stack_not_used(current);
752
753 if (free >= lowest_to_date)
754 return;
755
756 spin_lock(&low_water_lock);
757 if (free < lowest_to_date) {
758 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
759 current->comm, task_pid_nr(current), free);
760 lowest_to_date = free;
761 }
762 spin_unlock(&low_water_lock);
763 }
764 #else
765 static inline void check_stack_usage(void) {}
766 #endif
767
768 void __noreturn do_exit(long code)
769 {
770 struct task_struct *tsk = current;
771 int group_dead;
772
773 profile_task_exit(tsk);
774 kcov_task_exit(tsk);
775
776 WARN_ON(blk_needs_flush_plug(tsk));
777
778 if (unlikely(in_interrupt()))
779 panic("Aiee, killing interrupt handler!");
780 if (unlikely(!tsk->pid))
781 panic("Attempted to kill the idle task!");
782
783 /*
784 * If do_exit is called because this processes oopsed, it's possible
785 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
786 * continuing. Amongst other possible reasons, this is to prevent
787 * mm_release()->clear_child_tid() from writing to a user-controlled
788 * kernel address.
789 */
790 set_fs(USER_DS);
791
792 ptrace_event(PTRACE_EVENT_EXIT, code);
793
794 validate_creds_for_do_exit(tsk);
795
796 /*
797 * We're taking recursive faults here in do_exit. Safest is to just
798 * leave this task alone and wait for reboot.
799 */
800 if (unlikely(tsk->flags & PF_EXITING)) {
801 pr_alert("Fixing recursive fault but reboot is needed!\n");
802 /*
803 * We can do this unlocked here. The futex code uses
804 * this flag just to verify whether the pi state
805 * cleanup has been done or not. In the worst case it
806 * loops once more. We pretend that the cleanup was
807 * done as there is no way to return. Either the
808 * OWNER_DIED bit is set by now or we push the blocked
809 * task into the wait for ever nirwana as well.
810 */
811 tsk->flags |= PF_EXITPIDONE;
812 set_current_state(TASK_UNINTERRUPTIBLE);
813 schedule();
814 }
815
816 exit_signals(tsk); /* sets PF_EXITING */
817 sync_band(tsk, LEAVE_BAND);
818
819 /*
820 * Ensure that all new tsk->pi_lock acquisitions must observe
821 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
822 */
823 smp_mb();
824 /*
825 * Ensure that we must observe the pi_state in exit_mm() ->
826 * mm_release() -> exit_pi_state_list().
827 */
828 raw_spin_lock_irq(&tsk->pi_lock);
829 raw_spin_unlock_irq(&tsk->pi_lock);
830
831 if (unlikely(in_atomic())) {
832 pr_info("note: %s[%d] exited with preempt_count %d\n",
833 current->comm, task_pid_nr(current),
834 preempt_count());
835 preempt_count_set(PREEMPT_ENABLED);
836 }
837
838 /* sync mm's RSS info before statistics gathering */
839 if (tsk->mm)
840 sync_mm_rss(tsk->mm);
841 acct_update_integrals(tsk);
842 group_dead = atomic_dec_and_test(&tsk->signal->live);
843 if (group_dead) {
844 #ifdef CONFIG_POSIX_TIMERS
845 hrtimer_cancel(&tsk->signal->real_timer);
846 exit_itimers(tsk->signal);
847 #endif
848 if (tsk->mm)
849 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
850 }
851 acct_collect(code, group_dead);
852 if (group_dead)
853 tty_audit_exit();
854 audit_free(tsk);
855
856 tsk->exit_code = code;
857 taskstats_exit(tsk, group_dead);
858
859 exit_mm();
860
861 if (group_dead)
862 acct_process();
863 trace_sched_process_exit(tsk);
864
865 exit_sem(tsk);
866 exit_shm(tsk);
867 exit_files(tsk);
868 exit_fs(tsk);
869 if (group_dead)
870 disassociate_ctty(1);
871 exit_task_namespaces(tsk);
872 exit_task_work(tsk);
873 exit_thread(tsk);
874
875 /*
876 * Flush inherited counters to the parent - before the parent
877 * gets woken up by child-exit notifications.
878 *
879 * because of cgroup mode, must be called before cgroup_exit()
880 */
881 perf_event_exit_task(tsk);
882
883 sched_autogroup_exit_task(tsk);
884 cgroup_exit(tsk);
885
886 /*
887 * FIXME: do that only when needed, using sched_exit tracepoint
888 */
889 flush_ptrace_hw_breakpoint(tsk);
890
891 exit_tasks_rcu_start();
892 exit_notify(tsk, group_dead);
893 proc_exit_connector(tsk);
894 mpol_put_task_policy(tsk);
895 #ifdef CONFIG_FUTEX
896 if (unlikely(current->pi_state_cache))
897 kfree(current->pi_state_cache);
898 #endif
899 /*
900 * Make sure we are holding no locks:
901 */
902 debug_check_no_locks_held();
903 /*
904 * We can do this unlocked here. The futex code uses this flag
905 * just to verify whether the pi state cleanup has been done
906 * or not. In the worst case it loops once more.
907 */
908 tsk->flags |= PF_EXITPIDONE;
909
910 if (tsk->io_context)
911 exit_io_context(tsk);
912
913 if (tsk->splice_pipe)
914 free_pipe_info(tsk->splice_pipe);
915
916 if (tsk->task_frag.page)
917 put_page(tsk->task_frag.page);
918
919 validate_creds_for_do_exit(tsk);
920
921 check_stack_usage();
922 preempt_disable();
923 if (tsk->nr_dirtied)
924 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
925 exit_rcu();
926 exit_tasks_rcu_finish();
927
928 lockdep_free_task(tsk);
929 do_task_dead();
930 }
931 EXPORT_SYMBOL_GPL(do_exit);
932
933 void complete_and_exit(struct completion *comp, long code)
934 {
935 if (comp)
936 complete(comp);
937
938 do_exit(code);
939 }
940 EXPORT_SYMBOL(complete_and_exit);
941
942 SYSCALL_DEFINE1(exit, int, error_code)
943 {
944 do_exit((error_code&0xff)<<8);
945 }
946
947 /*
948 * Take down every thread in the group. This is called by fatal signals
949 * as well as by sys_exit_group (below).
950 */
951 void
952 do_group_exit(int exit_code)
953 {
954 struct signal_struct *sig = current->signal;
955
956 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
957
958 if (signal_group_exit(sig))
959 exit_code = sig->group_exit_code;
960 else if (!thread_group_empty(current)) {
961 struct sighand_struct *const sighand = current->sighand;
962
963 spin_lock_irq(&sighand->siglock);
964 if (signal_group_exit(sig))
965 /* Another thread got here before we took the lock. */
966 exit_code = sig->group_exit_code;
967 else {
968 sig->group_exit_code = exit_code;
969 sig->flags = SIGNAL_GROUP_EXIT;
970 zap_other_threads(current);
971 }
972 spin_unlock_irq(&sighand->siglock);
973 }
974
975 do_exit(exit_code);
976 /* NOTREACHED */
977 }
978
979 /*
980 * this kills every thread in the thread group. Note that any externally
981 * wait4()-ing process will get the correct exit code - even if this
982 * thread is not the thread group leader.
983 */
984 SYSCALL_DEFINE1(exit_group, int, error_code)
985 {
986 do_group_exit((error_code & 0xff) << 8);
987 /* NOTREACHED */
988 return 0;
989 }
990
991 struct waitid_info {
992 pid_t pid;
993 uid_t uid;
994 int status;
995 int cause;
996 };
997
998 struct wait_opts {
999 enum pid_type wo_type;
1000 int wo_flags;
1001 struct pid *wo_pid;
1002
1003 struct waitid_info *wo_info;
1004 int wo_stat;
1005 struct rusage *wo_rusage;
1006
1007 wait_queue_entry_t child_wait;
1008 int notask_error;
1009 };
1010
1011 static inline
1012 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1013 {
1014 if (type != PIDTYPE_PID)
1015 task = task->group_leader;
1016 return task->pids[type].pid;
1017 }
1018
1019 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1020 {
1021 return wo->wo_type == PIDTYPE_MAX ||
1022 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1023 }
1024
1025 static int
1026 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1027 {
1028 if (!eligible_pid(wo, p))
1029 return 0;
1030
1031 /*
1032 * Wait for all children (clone and not) if __WALL is set or
1033 * if it is traced by us.
1034 */
1035 if (ptrace || (wo->wo_flags & __WALL))
1036 return 1;
1037
1038 /*
1039 * Otherwise, wait for clone children *only* if __WCLONE is set;
1040 * otherwise, wait for non-clone children *only*.
1041 *
1042 * Note: a "clone" child here is one that reports to its parent
1043 * using a signal other than SIGCHLD, or a non-leader thread which
1044 * we can only see if it is traced by us.
1045 */
1046 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1047 return 0;
1048
1049 return 1;
1050 }
1051
1052 /*
1053 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1054 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1055 * the lock and this task is uninteresting. If we return nonzero, we have
1056 * released the lock and the system call should return.
1057 */
1058 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1059 {
1060 int state, status;
1061 pid_t pid = task_pid_vnr(p);
1062 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1063 struct waitid_info *infop;
1064
1065 if (!likely(wo->wo_flags & WEXITED))
1066 return 0;
1067
1068 if (unlikely(wo->wo_flags & WNOWAIT)) {
1069 status = p->exit_code;
1070 get_task_struct(p);
1071 read_unlock(&tasklist_lock);
1072 sched_annotate_sleep();
1073 if (wo->wo_rusage)
1074 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1075 put_task_struct(p);
1076 goto out_info;
1077 }
1078 /*
1079 * Move the task's state to DEAD/TRACE, only one thread can do this.
1080 */
1081 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1082 EXIT_TRACE : EXIT_DEAD;
1083 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1084 return 0;
1085 /*
1086 * We own this thread, nobody else can reap it.
1087 */
1088 read_unlock(&tasklist_lock);
1089 sched_annotate_sleep();
1090
1091 /*
1092 * Check thread_group_leader() to exclude the traced sub-threads.
1093 */
1094 if (state == EXIT_DEAD && thread_group_leader(p)) {
1095 struct signal_struct *sig = p->signal;
1096 struct signal_struct *psig = current->signal;
1097 unsigned long maxrss;
1098 u64 tgutime, tgstime;
1099
1100 /*
1101 * The resource counters for the group leader are in its
1102 * own task_struct. Those for dead threads in the group
1103 * are in its signal_struct, as are those for the child
1104 * processes it has previously reaped. All these
1105 * accumulate in the parent's signal_struct c* fields.
1106 *
1107 * We don't bother to take a lock here to protect these
1108 * p->signal fields because the whole thread group is dead
1109 * and nobody can change them.
1110 *
1111 * psig->stats_lock also protects us from our sub-theads
1112 * which can reap other children at the same time. Until
1113 * we change k_getrusage()-like users to rely on this lock
1114 * we have to take ->siglock as well.
1115 *
1116 * We use thread_group_cputime_adjusted() to get times for
1117 * the thread group, which consolidates times for all threads
1118 * in the group including the group leader.
1119 */
1120 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1121 spin_lock_irq(&current->sighand->siglock);
1122 write_seqlock(&psig->stats_lock);
1123 psig->cutime += tgutime + sig->cutime;
1124 psig->cstime += tgstime + sig->cstime;
1125 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1126 psig->cmin_flt +=
1127 p->min_flt + sig->min_flt + sig->cmin_flt;
1128 psig->cmaj_flt +=
1129 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1130 psig->cnvcsw +=
1131 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1132 psig->cnivcsw +=
1133 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1134 psig->cinblock +=
1135 task_io_get_inblock(p) +
1136 sig->inblock + sig->cinblock;
1137 psig->coublock +=
1138 task_io_get_oublock(p) +
1139 sig->oublock + sig->coublock;
1140 maxrss = max(sig->maxrss, sig->cmaxrss);
1141 if (psig->cmaxrss < maxrss)
1142 psig->cmaxrss = maxrss;
1143 task_io_accounting_add(&psig->ioac, &p->ioac);
1144 task_io_accounting_add(&psig->ioac, &sig->ioac);
1145 write_sequnlock(&psig->stats_lock);
1146 spin_unlock_irq(&current->sighand->siglock);
1147 }
1148
1149 if (wo->wo_rusage)
1150 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1151 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1152 ? p->signal->group_exit_code : p->exit_code;
1153 wo->wo_stat = status;
1154
1155 if (state == EXIT_TRACE) {
1156 write_lock_irq(&tasklist_lock);
1157 /* We dropped tasklist, ptracer could die and untrace */
1158 ptrace_unlink(p);
1159
1160 /* If parent wants a zombie, don't release it now */
1161 state = EXIT_ZOMBIE;
1162 if (do_notify_parent(p, p->exit_signal))
1163 state = EXIT_DEAD;
1164 p->exit_state = state;
1165 write_unlock_irq(&tasklist_lock);
1166 }
1167 if (state == EXIT_DEAD)
1168 release_task(p);
1169
1170 out_info:
1171 infop = wo->wo_info;
1172 if (infop) {
1173 if ((status & 0x7f) == 0) {
1174 infop->cause = CLD_EXITED;
1175 infop->status = status >> 8;
1176 } else {
1177 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1178 infop->status = status & 0x7f;
1179 }
1180 infop->pid = pid;
1181 infop->uid = uid;
1182 }
1183
1184 return pid;
1185 }
1186
1187 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1188 {
1189 if (ptrace) {
1190 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1191 return &p->exit_code;
1192 } else {
1193 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1194 return &p->signal->group_exit_code;
1195 }
1196 return NULL;
1197 }
1198
1199 /**
1200 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1201 * @wo: wait options
1202 * @ptrace: is the wait for ptrace
1203 * @p: task to wait for
1204 *
1205 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1206 *
1207 * CONTEXT:
1208 * read_lock(&tasklist_lock), which is released if return value is
1209 * non-zero. Also, grabs and releases @p->sighand->siglock.
1210 *
1211 * RETURNS:
1212 * 0 if wait condition didn't exist and search for other wait conditions
1213 * should continue. Non-zero return, -errno on failure and @p's pid on
1214 * success, implies that tasklist_lock is released and wait condition
1215 * search should terminate.
1216 */
1217 static int wait_task_stopped(struct wait_opts *wo,
1218 int ptrace, struct task_struct *p)
1219 {
1220 struct waitid_info *infop;
1221 int exit_code, *p_code, why;
1222 uid_t uid = 0; /* unneeded, required by compiler */
1223 pid_t pid;
1224
1225 /*
1226 * Traditionally we see ptrace'd stopped tasks regardless of options.
1227 */
1228 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1229 return 0;
1230
1231 if (!task_stopped_code(p, ptrace))
1232 return 0;
1233
1234 exit_code = 0;
1235 spin_lock_irq(&p->sighand->siglock);
1236
1237 p_code = task_stopped_code(p, ptrace);
1238 if (unlikely(!p_code))
1239 goto unlock_sig;
1240
1241 exit_code = *p_code;
1242 if (!exit_code)
1243 goto unlock_sig;
1244
1245 if (!unlikely(wo->wo_flags & WNOWAIT))
1246 *p_code = 0;
1247
1248 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1249 unlock_sig:
1250 spin_unlock_irq(&p->sighand->siglock);
1251 if (!exit_code)
1252 return 0;
1253
1254 /*
1255 * Now we are pretty sure this task is interesting.
1256 * Make sure it doesn't get reaped out from under us while we
1257 * give up the lock and then examine it below. We don't want to
1258 * keep holding onto the tasklist_lock while we call getrusage and
1259 * possibly take page faults for user memory.
1260 */
1261 get_task_struct(p);
1262 pid = task_pid_vnr(p);
1263 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1264 read_unlock(&tasklist_lock);
1265 sched_annotate_sleep();
1266 if (wo->wo_rusage)
1267 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1268 put_task_struct(p);
1269
1270 if (likely(!(wo->wo_flags & WNOWAIT)))
1271 wo->wo_stat = (exit_code << 8) | 0x7f;
1272
1273 infop = wo->wo_info;
1274 if (infop) {
1275 infop->cause = why;
1276 infop->status = exit_code;
1277 infop->pid = pid;
1278 infop->uid = uid;
1279 }
1280 return pid;
1281 }
1282
1283 /*
1284 * Handle do_wait work for one task in a live, non-stopped state.
1285 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1286 * the lock and this task is uninteresting. If we return nonzero, we have
1287 * released the lock and the system call should return.
1288 */
1289 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1290 {
1291 struct waitid_info *infop;
1292 pid_t pid;
1293 uid_t uid;
1294
1295 if (!unlikely(wo->wo_flags & WCONTINUED))
1296 return 0;
1297
1298 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1299 return 0;
1300
1301 spin_lock_irq(&p->sighand->siglock);
1302 /* Re-check with the lock held. */
1303 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1304 spin_unlock_irq(&p->sighand->siglock);
1305 return 0;
1306 }
1307 if (!unlikely(wo->wo_flags & WNOWAIT))
1308 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1309 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1310 spin_unlock_irq(&p->sighand->siglock);
1311
1312 pid = task_pid_vnr(p);
1313 get_task_struct(p);
1314 read_unlock(&tasklist_lock);
1315 sched_annotate_sleep();
1316 if (wo->wo_rusage)
1317 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1318 put_task_struct(p);
1319
1320 infop = wo->wo_info;
1321 if (!infop) {
1322 wo->wo_stat = 0xffff;
1323 } else {
1324 infop->cause = CLD_CONTINUED;
1325 infop->pid = pid;
1326 infop->uid = uid;
1327 infop->status = SIGCONT;
1328 }
1329 return pid;
1330 }
1331
1332 /*
1333 * Consider @p for a wait by @parent.
1334 *
1335 * -ECHILD should be in ->notask_error before the first call.
1336 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1337 * Returns zero if the search for a child should continue;
1338 * then ->notask_error is 0 if @p is an eligible child,
1339 * or still -ECHILD.
1340 */
1341 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1342 struct task_struct *p)
1343 {
1344 /*
1345 * We can race with wait_task_zombie() from another thread.
1346 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1347 * can't confuse the checks below.
1348 */
1349 int exit_state = ACCESS_ONCE(p->exit_state);
1350 int ret;
1351
1352 if (unlikely(exit_state == EXIT_DEAD))
1353 return 0;
1354
1355 ret = eligible_child(wo, ptrace, p);
1356 if (!ret)
1357 return ret;
1358
1359 if (unlikely(exit_state == EXIT_TRACE)) {
1360 /*
1361 * ptrace == 0 means we are the natural parent. In this case
1362 * we should clear notask_error, debugger will notify us.
1363 */
1364 if (likely(!ptrace))
1365 wo->notask_error = 0;
1366 return 0;
1367 }
1368
1369 if (likely(!ptrace) && unlikely(p->ptrace)) {
1370 /*
1371 * If it is traced by its real parent's group, just pretend
1372 * the caller is ptrace_do_wait() and reap this child if it
1373 * is zombie.
1374 *
1375 * This also hides group stop state from real parent; otherwise
1376 * a single stop can be reported twice as group and ptrace stop.
1377 * If a ptracer wants to distinguish these two events for its
1378 * own children it should create a separate process which takes
1379 * the role of real parent.
1380 */
1381 if (!ptrace_reparented(p))
1382 ptrace = 1;
1383 }
1384
1385 /* slay zombie? */
1386 if (exit_state == EXIT_ZOMBIE) {
1387 /* we don't reap group leaders with subthreads */
1388 if (!delay_group_leader(p)) {
1389 /*
1390 * A zombie ptracee is only visible to its ptracer.
1391 * Notification and reaping will be cascaded to the
1392 * real parent when the ptracer detaches.
1393 */
1394 if (unlikely(ptrace) || likely(!p->ptrace))
1395 return wait_task_zombie(wo, p);
1396 }
1397
1398 /*
1399 * Allow access to stopped/continued state via zombie by
1400 * falling through. Clearing of notask_error is complex.
1401 *
1402 * When !@ptrace:
1403 *
1404 * If WEXITED is set, notask_error should naturally be
1405 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1406 * so, if there are live subthreads, there are events to
1407 * wait for. If all subthreads are dead, it's still safe
1408 * to clear - this function will be called again in finite
1409 * amount time once all the subthreads are released and
1410 * will then return without clearing.
1411 *
1412 * When @ptrace:
1413 *
1414 * Stopped state is per-task and thus can't change once the
1415 * target task dies. Only continued and exited can happen.
1416 * Clear notask_error if WCONTINUED | WEXITED.
1417 */
1418 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1419 wo->notask_error = 0;
1420 } else {
1421 /*
1422 * @p is alive and it's gonna stop, continue or exit, so
1423 * there always is something to wait for.
1424 */
1425 wo->notask_error = 0;
1426 }
1427
1428 /*
1429 * Wait for stopped. Depending on @ptrace, different stopped state
1430 * is used and the two don't interact with each other.
1431 */
1432 ret = wait_task_stopped(wo, ptrace, p);
1433 if (ret)
1434 return ret;
1435
1436 /*
1437 * Wait for continued. There's only one continued state and the
1438 * ptracer can consume it which can confuse the real parent. Don't
1439 * use WCONTINUED from ptracer. You don't need or want it.
1440 */
1441 return wait_task_continued(wo, p);
1442 }
1443
1444 /*
1445 * Do the work of do_wait() for one thread in the group, @tsk.
1446 *
1447 * -ECHILD should be in ->notask_error before the first call.
1448 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1449 * Returns zero if the search for a child should continue; then
1450 * ->notask_error is 0 if there were any eligible children,
1451 * or still -ECHILD.
1452 */
1453 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1454 {
1455 struct task_struct *p;
1456
1457 list_for_each_entry(p, &tsk->children, sibling) {
1458 int ret = wait_consider_task(wo, 0, p);
1459
1460 if (ret)
1461 return ret;
1462 }
1463
1464 return 0;
1465 }
1466
1467 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1468 {
1469 struct task_struct *p;
1470
1471 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1472 int ret = wait_consider_task(wo, 1, p);
1473
1474 if (ret)
1475 return ret;
1476 }
1477
1478 return 0;
1479 }
1480
1481 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1482 int sync, void *key)
1483 {
1484 struct wait_opts *wo = container_of(wait, struct wait_opts,
1485 child_wait);
1486 struct task_struct *p = key;
1487
1488 if (!eligible_pid(wo, p))
1489 return 0;
1490
1491 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1492 return 0;
1493
1494 return default_wake_function(wait, mode, sync, key);
1495 }
1496
1497 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1498 {
1499 __wake_up_sync_key(&parent->signal->wait_chldexit,
1500 TASK_INTERRUPTIBLE, 1, p);
1501 }
1502
1503 static long do_wait(struct wait_opts *wo)
1504 {
1505 struct task_struct *tsk;
1506 int retval;
1507
1508 trace_sched_process_wait(wo->wo_pid);
1509
1510 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1511 wo->child_wait.private = current;
1512 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1513 repeat:
1514 /*
1515 * If there is nothing that can match our criteria, just get out.
1516 * We will clear ->notask_error to zero if we see any child that
1517 * might later match our criteria, even if we are not able to reap
1518 * it yet.
1519 */
1520 wo->notask_error = -ECHILD;
1521 if ((wo->wo_type < PIDTYPE_MAX) &&
1522 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1523 goto notask;
1524
1525 set_current_state(TASK_INTERRUPTIBLE);
1526 read_lock(&tasklist_lock);
1527 tsk = current;
1528 do {
1529 retval = do_wait_thread(wo, tsk);
1530 if (retval)
1531 goto end;
1532
1533 retval = ptrace_do_wait(wo, tsk);
1534 if (retval)
1535 goto end;
1536
1537 if (wo->wo_flags & __WNOTHREAD)
1538 break;
1539 } while_each_thread(current, tsk);
1540 read_unlock(&tasklist_lock);
1541
1542 notask:
1543 retval = wo->notask_error;
1544 if (!retval && !(wo->wo_flags & WNOHANG)) {
1545 retval = -ERESTARTSYS;
1546 if (!signal_pending(current)) {
1547 schedule();
1548 goto repeat;
1549 }
1550 }
1551 end:
1552 __set_current_state(TASK_RUNNING);
1553 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1554 return retval;
1555 }
1556
1557 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1558 int options, struct rusage *ru)
1559 {
1560 struct wait_opts wo;
1561 struct pid *pid = NULL;
1562 enum pid_type type;
1563 long ret;
1564
1565 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1566 __WNOTHREAD|__WCLONE|__WALL))
1567 return -EINVAL;
1568 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1569 return -EINVAL;
1570
1571 switch (which) {
1572 case P_ALL:
1573 type = PIDTYPE_MAX;
1574 break;
1575 case P_PID:
1576 type = PIDTYPE_PID;
1577 if (upid <= 0)
1578 return -EINVAL;
1579 break;
1580 case P_PGID:
1581 type = PIDTYPE_PGID;
1582 if (upid <= 0)
1583 return -EINVAL;
1584 break;
1585 default:
1586 return -EINVAL;
1587 }
1588
1589 if (type < PIDTYPE_MAX)
1590 pid = find_get_pid(upid);
1591
1592 wo.wo_type = type;
1593 wo.wo_pid = pid;
1594 wo.wo_flags = options;
1595 wo.wo_info = infop;
1596 wo.wo_rusage = ru;
1597 ret = do_wait(&wo);
1598
1599 put_pid(pid);
1600 return ret;
1601 }
1602
1603 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1604 infop, int, options, struct rusage __user *, ru)
1605 {
1606 struct rusage r;
1607 struct waitid_info info = {.status = 0};
1608 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1609 int signo = 0;
1610
1611 if (err > 0) {
1612 signo = SIGCHLD;
1613 err = 0;
1614 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1615 return -EFAULT;
1616 }
1617 if (!infop)
1618 return err;
1619
1620 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1621 return -EFAULT;
1622
1623 user_access_begin();
1624 unsafe_put_user(signo, &infop->si_signo, Efault);
1625 unsafe_put_user(0, &infop->si_errno, Efault);
1626 unsafe_put_user(info.cause, &infop->si_code, Efault);
1627 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1628 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1629 unsafe_put_user(info.status, &infop->si_status, Efault);
1630 user_access_end();
1631 return err;
1632 Efault:
1633 user_access_end();
1634 return -EFAULT;
1635 }
1636
1637 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1638 struct rusage *ru)
1639 {
1640 struct wait_opts wo;
1641 struct pid *pid = NULL;
1642 enum pid_type type;
1643 long ret;
1644
1645 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1646 __WNOTHREAD|__WCLONE|__WALL))
1647 return -EINVAL;
1648
1649 /* -INT_MIN is not defined */
1650 if (upid == INT_MIN)
1651 return -ESRCH;
1652
1653 if (upid == -1)
1654 type = PIDTYPE_MAX;
1655 else if (upid < 0) {
1656 type = PIDTYPE_PGID;
1657 pid = find_get_pid(-upid);
1658 } else if (upid == 0) {
1659 type = PIDTYPE_PGID;
1660 pid = get_task_pid(current, PIDTYPE_PGID);
1661 } else /* upid > 0 */ {
1662 type = PIDTYPE_PID;
1663 pid = find_get_pid(upid);
1664 }
1665
1666 wo.wo_type = type;
1667 wo.wo_pid = pid;
1668 wo.wo_flags = options | WEXITED;
1669 wo.wo_info = NULL;
1670 wo.wo_stat = 0;
1671 wo.wo_rusage = ru;
1672 ret = do_wait(&wo);
1673 put_pid(pid);
1674 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1675 ret = -EFAULT;
1676
1677 return ret;
1678 }
1679
1680 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1681 int, options, struct rusage __user *, ru)
1682 {
1683 struct rusage r;
1684 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1685
1686 if (err > 0) {
1687 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1688 return -EFAULT;
1689 }
1690 return err;
1691 }
1692
1693 #ifdef __ARCH_WANT_SYS_WAITPID
1694
1695 /*
1696 * sys_waitpid() remains for compatibility. waitpid() should be
1697 * implemented by calling sys_wait4() from libc.a.
1698 */
1699 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1700 {
1701 return sys_wait4(pid, stat_addr, options, NULL);
1702 }
1703
1704 #endif
1705
1706 #ifdef CONFIG_COMPAT
1707 COMPAT_SYSCALL_DEFINE4(wait4,
1708 compat_pid_t, pid,
1709 compat_uint_t __user *, stat_addr,
1710 int, options,
1711 struct compat_rusage __user *, ru)
1712 {
1713 struct rusage r;
1714 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1715 if (err > 0) {
1716 if (ru && put_compat_rusage(&r, ru))
1717 return -EFAULT;
1718 }
1719 return err;
1720 }
1721
1722 COMPAT_SYSCALL_DEFINE5(waitid,
1723 int, which, compat_pid_t, pid,
1724 struct compat_siginfo __user *, infop, int, options,
1725 struct compat_rusage __user *, uru)
1726 {
1727 struct rusage ru;
1728 struct waitid_info info = {.status = 0};
1729 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1730 int signo = 0;
1731 if (err > 0) {
1732 signo = SIGCHLD;
1733 err = 0;
1734 if (uru) {
1735 /* kernel_waitid() overwrites everything in ru */
1736 if (COMPAT_USE_64BIT_TIME)
1737 err = copy_to_user(uru, &ru, sizeof(ru));
1738 else
1739 err = put_compat_rusage(&ru, uru);
1740 if (err)
1741 return -EFAULT;
1742 }
1743 }
1744
1745 if (!infop)
1746 return err;
1747
1748 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1749 return -EFAULT;
1750
1751 user_access_begin();
1752 unsafe_put_user(signo, &infop->si_signo, Efault);
1753 unsafe_put_user(0, &infop->si_errno, Efault);
1754 unsafe_put_user(info.cause, &infop->si_code, Efault);
1755 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1756 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1757 unsafe_put_user(info.status, &infop->si_status, Efault);
1758 user_access_end();
1759 return err;
1760 Efault:
1761 user_access_end();
1762 return -EFAULT;
1763 }
1764 #endif
1765
1766 __weak void abort(void)
1767 {
1768 BUG();
1769
1770 /* if that doesn't kill us, halt */
1771 panic("Oops failed to kill thread");
1772 }
1773 EXPORT_SYMBOL(abort);