ANDROID: Reduce use of #ifdef CONFIG_CPU_FREQ_TIMES
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/cpufreq_times.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_PGID);
78 detach_pid(p, PIDTYPE_SID);
79
80 list_del_rcu(&p->tasks);
81 list_del_init(&p->sibling);
82 __this_cpu_dec(process_counts);
83 }
84 list_del_rcu(&p->thread_group);
85 list_del_rcu(&p->thread_node);
86 }
87
88 /*
89 * This function expects the tasklist_lock write-locked.
90 */
91 static void __exit_signal(struct task_struct *tsk)
92 {
93 struct signal_struct *sig = tsk->signal;
94 bool group_dead = thread_group_leader(tsk);
95 struct sighand_struct *sighand;
96 struct tty_struct *uninitialized_var(tty);
97 u64 utime, stime;
98
99 sighand = rcu_dereference_check(tsk->sighand,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand->siglock);
102
103 #ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk);
105 if (group_dead) {
106 posix_cpu_timers_exit_group(tsk);
107 } else {
108 /*
109 * This can only happen if the caller is de_thread().
110 * FIXME: this is the temporary hack, we should teach
111 * posix-cpu-timers to handle this case correctly.
112 */
113 if (unlikely(has_group_leader_pid(tsk)))
114 posix_cpu_timers_exit_group(tsk);
115 }
116 #endif
117
118 if (group_dead) {
119 tty = sig->tty;
120 sig->tty = NULL;
121 } else {
122 /*
123 * If there is any task waiting for the group exit
124 * then notify it:
125 */
126 if (sig->notify_count > 0 && !--sig->notify_count)
127 wake_up_process(sig->group_exit_task);
128
129 if (tsk == sig->curr_target)
130 sig->curr_target = next_thread(tsk);
131 }
132
133 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
134 sizeof(unsigned long long));
135
136 /*
137 * Accumulate here the counters for all threads as they die. We could
138 * skip the group leader because it is the last user of signal_struct,
139 * but we want to avoid the race with thread_group_cputime() which can
140 * see the empty ->thread_head list.
141 */
142 task_cputime(tsk, &utime, &stime);
143 write_seqlock(&sig->stats_lock);
144 sig->utime += utime;
145 sig->stime += stime;
146 sig->gtime += task_gtime(tsk);
147 sig->min_flt += tsk->min_flt;
148 sig->maj_flt += tsk->maj_flt;
149 sig->nvcsw += tsk->nvcsw;
150 sig->nivcsw += tsk->nivcsw;
151 sig->inblock += task_io_get_inblock(tsk);
152 sig->oublock += task_io_get_oublock(tsk);
153 task_io_accounting_add(&sig->ioac, &tsk->ioac);
154 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
155 sig->nr_threads--;
156 __unhash_process(tsk, group_dead);
157 write_sequnlock(&sig->stats_lock);
158
159 /*
160 * Do this under ->siglock, we can race with another thread
161 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
162 */
163 flush_sigqueue(&tsk->pending);
164 tsk->sighand = NULL;
165 spin_unlock(&sighand->siglock);
166
167 __cleanup_sighand(sighand);
168 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
169 if (group_dead) {
170 flush_sigqueue(&sig->shared_pending);
171 tty_kref_put(tty);
172 }
173 }
174
175 static void delayed_put_task_struct(struct rcu_head *rhp)
176 {
177 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
178
179 perf_event_delayed_put(tsk);
180 trace_sched_process_free(tsk);
181 put_task_struct(tsk);
182 }
183
184
185 void release_task(struct task_struct *p)
186 {
187 struct task_struct *leader;
188 int zap_leader;
189
190 cpufreq_task_times_exit(p);
191 repeat:
192 /* don't need to get the RCU readlock here - the process is dead and
193 * can't be modifying its own credentials. But shut RCU-lockdep up */
194 rcu_read_lock();
195 atomic_dec(&__task_cred(p)->user->processes);
196 rcu_read_unlock();
197
198 proc_flush_task(p);
199
200 write_lock_irq(&tasklist_lock);
201 ptrace_release_task(p);
202 __exit_signal(p);
203
204 /*
205 * If we are the last non-leader member of the thread
206 * group, and the leader is zombie, then notify the
207 * group leader's parent process. (if it wants notification.)
208 */
209 zap_leader = 0;
210 leader = p->group_leader;
211 if (leader != p && thread_group_empty(leader)
212 && leader->exit_state == EXIT_ZOMBIE) {
213 /*
214 * If we were the last child thread and the leader has
215 * exited already, and the leader's parent ignores SIGCHLD,
216 * then we are the one who should release the leader.
217 */
218 zap_leader = do_notify_parent(leader, leader->exit_signal);
219 if (zap_leader)
220 leader->exit_state = EXIT_DEAD;
221 }
222
223 write_unlock_irq(&tasklist_lock);
224 release_thread(p);
225 call_rcu(&p->rcu, delayed_put_task_struct);
226
227 p = leader;
228 if (unlikely(zap_leader))
229 goto repeat;
230 }
231
232 /*
233 * Note that if this function returns a valid task_struct pointer (!NULL)
234 * task->usage must remain >0 for the duration of the RCU critical section.
235 */
236 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
237 {
238 struct sighand_struct *sighand;
239 struct task_struct *task;
240
241 /*
242 * We need to verify that release_task() was not called and thus
243 * delayed_put_task_struct() can't run and drop the last reference
244 * before rcu_read_unlock(). We check task->sighand != NULL,
245 * but we can read the already freed and reused memory.
246 */
247 retry:
248 task = rcu_dereference(*ptask);
249 if (!task)
250 return NULL;
251
252 probe_kernel_address(&task->sighand, sighand);
253
254 /*
255 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
256 * was already freed we can not miss the preceding update of this
257 * pointer.
258 */
259 smp_rmb();
260 if (unlikely(task != READ_ONCE(*ptask)))
261 goto retry;
262
263 /*
264 * We've re-checked that "task == *ptask", now we have two different
265 * cases:
266 *
267 * 1. This is actually the same task/task_struct. In this case
268 * sighand != NULL tells us it is still alive.
269 *
270 * 2. This is another task which got the same memory for task_struct.
271 * We can't know this of course, and we can not trust
272 * sighand != NULL.
273 *
274 * In this case we actually return a random value, but this is
275 * correct.
276 *
277 * If we return NULL - we can pretend that we actually noticed that
278 * *ptask was updated when the previous task has exited. Or pretend
279 * that probe_slab_address(&sighand) reads NULL.
280 *
281 * If we return the new task (because sighand is not NULL for any
282 * reason) - this is fine too. This (new) task can't go away before
283 * another gp pass.
284 *
285 * And note: We could even eliminate the false positive if re-read
286 * task->sighand once again to avoid the falsely NULL. But this case
287 * is very unlikely so we don't care.
288 */
289 if (!sighand)
290 return NULL;
291
292 return task;
293 }
294
295 void rcuwait_wake_up(struct rcuwait *w)
296 {
297 struct task_struct *task;
298
299 rcu_read_lock();
300
301 /*
302 * Order condition vs @task, such that everything prior to the load
303 * of @task is visible. This is the condition as to why the user called
304 * rcuwait_trywake() in the first place. Pairs with set_current_state()
305 * barrier (A) in rcuwait_wait_event().
306 *
307 * WAIT WAKE
308 * [S] tsk = current [S] cond = true
309 * MB (A) MB (B)
310 * [L] cond [L] tsk
311 */
312 smp_rmb(); /* (B) */
313
314 /*
315 * Avoid using task_rcu_dereference() magic as long as we are careful,
316 * see comment in rcuwait_wait_event() regarding ->exit_state.
317 */
318 task = rcu_dereference(w->task);
319 if (task)
320 wake_up_process(task);
321 rcu_read_unlock();
322 }
323
324 /*
325 * Determine if a process group is "orphaned", according to the POSIX
326 * definition in 2.2.2.52. Orphaned process groups are not to be affected
327 * by terminal-generated stop signals. Newly orphaned process groups are
328 * to receive a SIGHUP and a SIGCONT.
329 *
330 * "I ask you, have you ever known what it is to be an orphan?"
331 */
332 static int will_become_orphaned_pgrp(struct pid *pgrp,
333 struct task_struct *ignored_task)
334 {
335 struct task_struct *p;
336
337 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
338 if ((p == ignored_task) ||
339 (p->exit_state && thread_group_empty(p)) ||
340 is_global_init(p->real_parent))
341 continue;
342
343 if (task_pgrp(p->real_parent) != pgrp &&
344 task_session(p->real_parent) == task_session(p))
345 return 0;
346 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
347
348 return 1;
349 }
350
351 int is_current_pgrp_orphaned(void)
352 {
353 int retval;
354
355 read_lock(&tasklist_lock);
356 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
357 read_unlock(&tasklist_lock);
358
359 return retval;
360 }
361
362 static bool has_stopped_jobs(struct pid *pgrp)
363 {
364 struct task_struct *p;
365
366 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
367 if (p->signal->flags & SIGNAL_STOP_STOPPED)
368 return true;
369 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
370
371 return false;
372 }
373
374 /*
375 * Check to see if any process groups have become orphaned as
376 * a result of our exiting, and if they have any stopped jobs,
377 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
378 */
379 static void
380 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
381 {
382 struct pid *pgrp = task_pgrp(tsk);
383 struct task_struct *ignored_task = tsk;
384
385 if (!parent)
386 /* exit: our father is in a different pgrp than
387 * we are and we were the only connection outside.
388 */
389 parent = tsk->real_parent;
390 else
391 /* reparent: our child is in a different pgrp than
392 * we are, and it was the only connection outside.
393 */
394 ignored_task = NULL;
395
396 if (task_pgrp(parent) != pgrp &&
397 task_session(parent) == task_session(tsk) &&
398 will_become_orphaned_pgrp(pgrp, ignored_task) &&
399 has_stopped_jobs(pgrp)) {
400 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
401 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
402 }
403 }
404
405 #ifdef CONFIG_MEMCG
406 /*
407 * A task is exiting. If it owned this mm, find a new owner for the mm.
408 */
409 void mm_update_next_owner(struct mm_struct *mm)
410 {
411 struct task_struct *c, *g, *p = current;
412
413 retry:
414 /*
415 * If the exiting or execing task is not the owner, it's
416 * someone else's problem.
417 */
418 if (mm->owner != p)
419 return;
420 /*
421 * The current owner is exiting/execing and there are no other
422 * candidates. Do not leave the mm pointing to a possibly
423 * freed task structure.
424 */
425 if (atomic_read(&mm->mm_users) <= 1) {
426 mm->owner = NULL;
427 return;
428 }
429
430 read_lock(&tasklist_lock);
431 /*
432 * Search in the children
433 */
434 list_for_each_entry(c, &p->children, sibling) {
435 if (c->mm == mm)
436 goto assign_new_owner;
437 }
438
439 /*
440 * Search in the siblings
441 */
442 list_for_each_entry(c, &p->real_parent->children, sibling) {
443 if (c->mm == mm)
444 goto assign_new_owner;
445 }
446
447 /*
448 * Search through everything else, we should not get here often.
449 */
450 for_each_process(g) {
451 if (g->flags & PF_KTHREAD)
452 continue;
453 for_each_thread(g, c) {
454 if (c->mm == mm)
455 goto assign_new_owner;
456 if (c->mm)
457 break;
458 }
459 }
460 read_unlock(&tasklist_lock);
461 /*
462 * We found no owner yet mm_users > 1: this implies that we are
463 * most likely racing with swapoff (try_to_unuse()) or /proc or
464 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
465 */
466 mm->owner = NULL;
467 return;
468
469 assign_new_owner:
470 BUG_ON(c == p);
471 get_task_struct(c);
472 /*
473 * The task_lock protects c->mm from changing.
474 * We always want mm->owner->mm == mm
475 */
476 task_lock(c);
477 /*
478 * Delay read_unlock() till we have the task_lock()
479 * to ensure that c does not slip away underneath us
480 */
481 read_unlock(&tasklist_lock);
482 if (c->mm != mm) {
483 task_unlock(c);
484 put_task_struct(c);
485 goto retry;
486 }
487 mm->owner = c;
488 task_unlock(c);
489 put_task_struct(c);
490 }
491 #endif /* CONFIG_MEMCG */
492
493 /*
494 * Turn us into a lazy TLB process if we
495 * aren't already..
496 */
497 static void exit_mm(void)
498 {
499 struct mm_struct *mm = current->mm;
500 struct core_state *core_state;
501
502 mm_release(current, mm);
503 if (!mm)
504 return;
505 sync_mm_rss(mm);
506 /*
507 * Serialize with any possible pending coredump.
508 * We must hold mmap_sem around checking core_state
509 * and clearing tsk->mm. The core-inducing thread
510 * will increment ->nr_threads for each thread in the
511 * group with ->mm != NULL.
512 */
513 down_read(&mm->mmap_sem);
514 core_state = mm->core_state;
515 if (core_state) {
516 struct core_thread self;
517
518 up_read(&mm->mmap_sem);
519
520 self.task = current;
521 self.next = xchg(&core_state->dumper.next, &self);
522 /*
523 * Implies mb(), the result of xchg() must be visible
524 * to core_state->dumper.
525 */
526 if (atomic_dec_and_test(&core_state->nr_threads))
527 complete(&core_state->startup);
528
529 for (;;) {
530 set_current_state(TASK_UNINTERRUPTIBLE);
531 if (!self.task) /* see coredump_finish() */
532 break;
533 freezable_schedule();
534 }
535 __set_current_state(TASK_RUNNING);
536 down_read(&mm->mmap_sem);
537 }
538 mmgrab(mm);
539 BUG_ON(mm != current->active_mm);
540 /* more a memory barrier than a real lock */
541 task_lock(current);
542 current->mm = NULL;
543 up_read(&mm->mmap_sem);
544 enter_lazy_tlb(mm, current);
545 task_unlock(current);
546 mm_update_next_owner(mm);
547 mmput(mm);
548 if (test_thread_flag(TIF_MEMDIE))
549 exit_oom_victim();
550 }
551
552 static struct task_struct *find_alive_thread(struct task_struct *p)
553 {
554 struct task_struct *t;
555
556 for_each_thread(p, t) {
557 if (!(t->flags & PF_EXITING))
558 return t;
559 }
560 return NULL;
561 }
562
563 static struct task_struct *find_child_reaper(struct task_struct *father)
564 __releases(&tasklist_lock)
565 __acquires(&tasklist_lock)
566 {
567 struct pid_namespace *pid_ns = task_active_pid_ns(father);
568 struct task_struct *reaper = pid_ns->child_reaper;
569
570 if (likely(reaper != father))
571 return reaper;
572
573 reaper = find_alive_thread(father);
574 if (reaper) {
575 pid_ns->child_reaper = reaper;
576 return reaper;
577 }
578
579 write_unlock_irq(&tasklist_lock);
580 if (unlikely(pid_ns == &init_pid_ns)) {
581 panic("Attempted to kill init! exitcode=0x%08x\n",
582 father->signal->group_exit_code ?: father->exit_code);
583 }
584 zap_pid_ns_processes(pid_ns);
585 write_lock_irq(&tasklist_lock);
586
587 return father;
588 }
589
590 /*
591 * When we die, we re-parent all our children, and try to:
592 * 1. give them to another thread in our thread group, if such a member exists
593 * 2. give it to the first ancestor process which prctl'd itself as a
594 * child_subreaper for its children (like a service manager)
595 * 3. give it to the init process (PID 1) in our pid namespace
596 */
597 static struct task_struct *find_new_reaper(struct task_struct *father,
598 struct task_struct *child_reaper)
599 {
600 struct task_struct *thread, *reaper;
601
602 thread = find_alive_thread(father);
603 if (thread)
604 return thread;
605
606 if (father->signal->has_child_subreaper) {
607 unsigned int ns_level = task_pid(father)->level;
608 /*
609 * Find the first ->is_child_subreaper ancestor in our pid_ns.
610 * We can't check reaper != child_reaper to ensure we do not
611 * cross the namespaces, the exiting parent could be injected
612 * by setns() + fork().
613 * We check pid->level, this is slightly more efficient than
614 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
615 */
616 for (reaper = father->real_parent;
617 task_pid(reaper)->level == ns_level;
618 reaper = reaper->real_parent) {
619 if (reaper == &init_task)
620 break;
621 if (!reaper->signal->is_child_subreaper)
622 continue;
623 thread = find_alive_thread(reaper);
624 if (thread)
625 return thread;
626 }
627 }
628
629 return child_reaper;
630 }
631
632 /*
633 * Any that need to be release_task'd are put on the @dead list.
634 */
635 static void reparent_leader(struct task_struct *father, struct task_struct *p,
636 struct list_head *dead)
637 {
638 if (unlikely(p->exit_state == EXIT_DEAD))
639 return;
640
641 /* We don't want people slaying init. */
642 p->exit_signal = SIGCHLD;
643
644 /* If it has exited notify the new parent about this child's death. */
645 if (!p->ptrace &&
646 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
647 if (do_notify_parent(p, p->exit_signal)) {
648 p->exit_state = EXIT_DEAD;
649 list_add(&p->ptrace_entry, dead);
650 }
651 }
652
653 kill_orphaned_pgrp(p, father);
654 }
655
656 /*
657 * This does two things:
658 *
659 * A. Make init inherit all the child processes
660 * B. Check to see if any process groups have become orphaned
661 * as a result of our exiting, and if they have any stopped
662 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
663 */
664 static void forget_original_parent(struct task_struct *father,
665 struct list_head *dead)
666 {
667 struct task_struct *p, *t, *reaper;
668
669 if (unlikely(!list_empty(&father->ptraced)))
670 exit_ptrace(father, dead);
671
672 /* Can drop and reacquire tasklist_lock */
673 reaper = find_child_reaper(father);
674 if (list_empty(&father->children))
675 return;
676
677 reaper = find_new_reaper(father, reaper);
678 list_for_each_entry(p, &father->children, sibling) {
679 for_each_thread(p, t) {
680 t->real_parent = reaper;
681 BUG_ON((!t->ptrace) != (t->parent == father));
682 if (likely(!t->ptrace))
683 t->parent = t->real_parent;
684 if (t->pdeath_signal)
685 group_send_sig_info(t->pdeath_signal,
686 SEND_SIG_NOINFO, t);
687 }
688 /*
689 * If this is a threaded reparent there is no need to
690 * notify anyone anything has happened.
691 */
692 if (!same_thread_group(reaper, father))
693 reparent_leader(father, p, dead);
694 }
695 list_splice_tail_init(&father->children, &reaper->children);
696 }
697
698 /*
699 * Send signals to all our closest relatives so that they know
700 * to properly mourn us..
701 */
702 static void exit_notify(struct task_struct *tsk, int group_dead)
703 {
704 bool autoreap;
705 struct task_struct *p, *n;
706 LIST_HEAD(dead);
707
708 write_lock_irq(&tasklist_lock);
709 forget_original_parent(tsk, &dead);
710
711 if (group_dead)
712 kill_orphaned_pgrp(tsk->group_leader, NULL);
713
714 if (unlikely(tsk->ptrace)) {
715 int sig = thread_group_leader(tsk) &&
716 thread_group_empty(tsk) &&
717 !ptrace_reparented(tsk) ?
718 tsk->exit_signal : SIGCHLD;
719 autoreap = do_notify_parent(tsk, sig);
720 } else if (thread_group_leader(tsk)) {
721 autoreap = thread_group_empty(tsk) &&
722 do_notify_parent(tsk, tsk->exit_signal);
723 } else {
724 autoreap = true;
725 }
726
727 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
728 if (tsk->exit_state == EXIT_DEAD)
729 list_add(&tsk->ptrace_entry, &dead);
730
731 /* mt-exec, de_thread() is waiting for group leader */
732 if (unlikely(tsk->signal->notify_count < 0))
733 wake_up_process(tsk->signal->group_exit_task);
734 write_unlock_irq(&tasklist_lock);
735
736 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
737 list_del_init(&p->ptrace_entry);
738 release_task(p);
739 }
740 }
741
742 #ifdef CONFIG_DEBUG_STACK_USAGE
743 static void check_stack_usage(void)
744 {
745 static DEFINE_SPINLOCK(low_water_lock);
746 static int lowest_to_date = THREAD_SIZE;
747 unsigned long free;
748
749 free = stack_not_used(current);
750
751 if (free >= lowest_to_date)
752 return;
753
754 spin_lock(&low_water_lock);
755 if (free < lowest_to_date) {
756 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
757 current->comm, task_pid_nr(current), free);
758 lowest_to_date = free;
759 }
760 spin_unlock(&low_water_lock);
761 }
762 #else
763 static inline void check_stack_usage(void) {}
764 #endif
765
766 void __noreturn do_exit(long code)
767 {
768 struct task_struct *tsk = current;
769 int group_dead;
770
771 profile_task_exit(tsk);
772 kcov_task_exit(tsk);
773
774 WARN_ON(blk_needs_flush_plug(tsk));
775
776 if (unlikely(in_interrupt()))
777 panic("Aiee, killing interrupt handler!");
778 if (unlikely(!tsk->pid))
779 panic("Attempted to kill the idle task!");
780
781 /*
782 * If do_exit is called because this processes oopsed, it's possible
783 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
784 * continuing. Amongst other possible reasons, this is to prevent
785 * mm_release()->clear_child_tid() from writing to a user-controlled
786 * kernel address.
787 */
788 set_fs(USER_DS);
789
790 ptrace_event(PTRACE_EVENT_EXIT, code);
791
792 validate_creds_for_do_exit(tsk);
793
794 /*
795 * We're taking recursive faults here in do_exit. Safest is to just
796 * leave this task alone and wait for reboot.
797 */
798 if (unlikely(tsk->flags & PF_EXITING)) {
799 pr_alert("Fixing recursive fault but reboot is needed!\n");
800 /*
801 * We can do this unlocked here. The futex code uses
802 * this flag just to verify whether the pi state
803 * cleanup has been done or not. In the worst case it
804 * loops once more. We pretend that the cleanup was
805 * done as there is no way to return. Either the
806 * OWNER_DIED bit is set by now or we push the blocked
807 * task into the wait for ever nirwana as well.
808 */
809 tsk->flags |= PF_EXITPIDONE;
810 set_current_state(TASK_UNINTERRUPTIBLE);
811 schedule();
812 }
813
814 exit_signals(tsk); /* sets PF_EXITING */
815 /*
816 * Ensure that all new tsk->pi_lock acquisitions must observe
817 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
818 */
819 smp_mb();
820 /*
821 * Ensure that we must observe the pi_state in exit_mm() ->
822 * mm_release() -> exit_pi_state_list().
823 */
824 raw_spin_lock_irq(&tsk->pi_lock);
825 raw_spin_unlock_irq(&tsk->pi_lock);
826
827 if (unlikely(in_atomic())) {
828 pr_info("note: %s[%d] exited with preempt_count %d\n",
829 current->comm, task_pid_nr(current),
830 preempt_count());
831 preempt_count_set(PREEMPT_ENABLED);
832 }
833
834 /* sync mm's RSS info before statistics gathering */
835 if (tsk->mm)
836 sync_mm_rss(tsk->mm);
837 acct_update_integrals(tsk);
838 group_dead = atomic_dec_and_test(&tsk->signal->live);
839 if (group_dead) {
840 #ifdef CONFIG_POSIX_TIMERS
841 hrtimer_cancel(&tsk->signal->real_timer);
842 exit_itimers(tsk->signal);
843 #endif
844 if (tsk->mm)
845 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
846 }
847 acct_collect(code, group_dead);
848 if (group_dead)
849 tty_audit_exit();
850 audit_free(tsk);
851
852 tsk->exit_code = code;
853 taskstats_exit(tsk, group_dead);
854
855 exit_mm();
856
857 if (group_dead)
858 acct_process();
859 trace_sched_process_exit(tsk);
860
861 exit_sem(tsk);
862 exit_shm(tsk);
863 exit_files(tsk);
864 exit_fs(tsk);
865 if (group_dead)
866 disassociate_ctty(1);
867 exit_task_namespaces(tsk);
868 exit_task_work(tsk);
869 exit_thread(tsk);
870
871 /*
872 * Flush inherited counters to the parent - before the parent
873 * gets woken up by child-exit notifications.
874 *
875 * because of cgroup mode, must be called before cgroup_exit()
876 */
877 perf_event_exit_task(tsk);
878
879 sched_autogroup_exit_task(tsk);
880 cgroup_exit(tsk);
881
882 /*
883 * FIXME: do that only when needed, using sched_exit tracepoint
884 */
885 flush_ptrace_hw_breakpoint(tsk);
886
887 exit_tasks_rcu_start();
888 exit_notify(tsk, group_dead);
889 proc_exit_connector(tsk);
890 mpol_put_task_policy(tsk);
891 #ifdef CONFIG_FUTEX
892 if (unlikely(current->pi_state_cache))
893 kfree(current->pi_state_cache);
894 #endif
895 /*
896 * Make sure we are holding no locks:
897 */
898 debug_check_no_locks_held();
899 /*
900 * We can do this unlocked here. The futex code uses this flag
901 * just to verify whether the pi state cleanup has been done
902 * or not. In the worst case it loops once more.
903 */
904 tsk->flags |= PF_EXITPIDONE;
905
906 if (tsk->io_context)
907 exit_io_context(tsk);
908
909 if (tsk->splice_pipe)
910 free_pipe_info(tsk->splice_pipe);
911
912 if (tsk->task_frag.page)
913 put_page(tsk->task_frag.page);
914
915 validate_creds_for_do_exit(tsk);
916
917 check_stack_usage();
918 preempt_disable();
919 if (tsk->nr_dirtied)
920 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
921 exit_rcu();
922 exit_tasks_rcu_finish();
923
924 lockdep_free_task(tsk);
925 do_task_dead();
926 }
927 EXPORT_SYMBOL_GPL(do_exit);
928
929 void complete_and_exit(struct completion *comp, long code)
930 {
931 if (comp)
932 complete(comp);
933
934 do_exit(code);
935 }
936 EXPORT_SYMBOL(complete_and_exit);
937
938 SYSCALL_DEFINE1(exit, int, error_code)
939 {
940 do_exit((error_code&0xff)<<8);
941 }
942
943 /*
944 * Take down every thread in the group. This is called by fatal signals
945 * as well as by sys_exit_group (below).
946 */
947 void
948 do_group_exit(int exit_code)
949 {
950 struct signal_struct *sig = current->signal;
951
952 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
953
954 if (signal_group_exit(sig))
955 exit_code = sig->group_exit_code;
956 else if (!thread_group_empty(current)) {
957 struct sighand_struct *const sighand = current->sighand;
958
959 spin_lock_irq(&sighand->siglock);
960 if (signal_group_exit(sig))
961 /* Another thread got here before we took the lock. */
962 exit_code = sig->group_exit_code;
963 else {
964 sig->group_exit_code = exit_code;
965 sig->flags = SIGNAL_GROUP_EXIT;
966 zap_other_threads(current);
967 }
968 spin_unlock_irq(&sighand->siglock);
969 }
970
971 do_exit(exit_code);
972 /* NOTREACHED */
973 }
974
975 /*
976 * this kills every thread in the thread group. Note that any externally
977 * wait4()-ing process will get the correct exit code - even if this
978 * thread is not the thread group leader.
979 */
980 SYSCALL_DEFINE1(exit_group, int, error_code)
981 {
982 do_group_exit((error_code & 0xff) << 8);
983 /* NOTREACHED */
984 return 0;
985 }
986
987 struct waitid_info {
988 pid_t pid;
989 uid_t uid;
990 int status;
991 int cause;
992 };
993
994 struct wait_opts {
995 enum pid_type wo_type;
996 int wo_flags;
997 struct pid *wo_pid;
998
999 struct waitid_info *wo_info;
1000 int wo_stat;
1001 struct rusage *wo_rusage;
1002
1003 wait_queue_entry_t child_wait;
1004 int notask_error;
1005 };
1006
1007 static inline
1008 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1009 {
1010 if (type != PIDTYPE_PID)
1011 task = task->group_leader;
1012 return task->pids[type].pid;
1013 }
1014
1015 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1016 {
1017 return wo->wo_type == PIDTYPE_MAX ||
1018 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1019 }
1020
1021 static int
1022 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1023 {
1024 if (!eligible_pid(wo, p))
1025 return 0;
1026
1027 /*
1028 * Wait for all children (clone and not) if __WALL is set or
1029 * if it is traced by us.
1030 */
1031 if (ptrace || (wo->wo_flags & __WALL))
1032 return 1;
1033
1034 /*
1035 * Otherwise, wait for clone children *only* if __WCLONE is set;
1036 * otherwise, wait for non-clone children *only*.
1037 *
1038 * Note: a "clone" child here is one that reports to its parent
1039 * using a signal other than SIGCHLD, or a non-leader thread which
1040 * we can only see if it is traced by us.
1041 */
1042 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1043 return 0;
1044
1045 return 1;
1046 }
1047
1048 /*
1049 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1050 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1051 * the lock and this task is uninteresting. If we return nonzero, we have
1052 * released the lock and the system call should return.
1053 */
1054 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1055 {
1056 int state, status;
1057 pid_t pid = task_pid_vnr(p);
1058 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1059 struct waitid_info *infop;
1060
1061 if (!likely(wo->wo_flags & WEXITED))
1062 return 0;
1063
1064 if (unlikely(wo->wo_flags & WNOWAIT)) {
1065 status = p->exit_code;
1066 get_task_struct(p);
1067 read_unlock(&tasklist_lock);
1068 sched_annotate_sleep();
1069 if (wo->wo_rusage)
1070 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1071 put_task_struct(p);
1072 goto out_info;
1073 }
1074 /*
1075 * Move the task's state to DEAD/TRACE, only one thread can do this.
1076 */
1077 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1078 EXIT_TRACE : EXIT_DEAD;
1079 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1080 return 0;
1081 /*
1082 * We own this thread, nobody else can reap it.
1083 */
1084 read_unlock(&tasklist_lock);
1085 sched_annotate_sleep();
1086
1087 /*
1088 * Check thread_group_leader() to exclude the traced sub-threads.
1089 */
1090 if (state == EXIT_DEAD && thread_group_leader(p)) {
1091 struct signal_struct *sig = p->signal;
1092 struct signal_struct *psig = current->signal;
1093 unsigned long maxrss;
1094 u64 tgutime, tgstime;
1095
1096 /*
1097 * The resource counters for the group leader are in its
1098 * own task_struct. Those for dead threads in the group
1099 * are in its signal_struct, as are those for the child
1100 * processes it has previously reaped. All these
1101 * accumulate in the parent's signal_struct c* fields.
1102 *
1103 * We don't bother to take a lock here to protect these
1104 * p->signal fields because the whole thread group is dead
1105 * and nobody can change them.
1106 *
1107 * psig->stats_lock also protects us from our sub-theads
1108 * which can reap other children at the same time. Until
1109 * we change k_getrusage()-like users to rely on this lock
1110 * we have to take ->siglock as well.
1111 *
1112 * We use thread_group_cputime_adjusted() to get times for
1113 * the thread group, which consolidates times for all threads
1114 * in the group including the group leader.
1115 */
1116 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1117 spin_lock_irq(&current->sighand->siglock);
1118 write_seqlock(&psig->stats_lock);
1119 psig->cutime += tgutime + sig->cutime;
1120 psig->cstime += tgstime + sig->cstime;
1121 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1122 psig->cmin_flt +=
1123 p->min_flt + sig->min_flt + sig->cmin_flt;
1124 psig->cmaj_flt +=
1125 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1126 psig->cnvcsw +=
1127 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1128 psig->cnivcsw +=
1129 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1130 psig->cinblock +=
1131 task_io_get_inblock(p) +
1132 sig->inblock + sig->cinblock;
1133 psig->coublock +=
1134 task_io_get_oublock(p) +
1135 sig->oublock + sig->coublock;
1136 maxrss = max(sig->maxrss, sig->cmaxrss);
1137 if (psig->cmaxrss < maxrss)
1138 psig->cmaxrss = maxrss;
1139 task_io_accounting_add(&psig->ioac, &p->ioac);
1140 task_io_accounting_add(&psig->ioac, &sig->ioac);
1141 write_sequnlock(&psig->stats_lock);
1142 spin_unlock_irq(&current->sighand->siglock);
1143 }
1144
1145 if (wo->wo_rusage)
1146 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1147 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1148 ? p->signal->group_exit_code : p->exit_code;
1149 wo->wo_stat = status;
1150
1151 if (state == EXIT_TRACE) {
1152 write_lock_irq(&tasklist_lock);
1153 /* We dropped tasklist, ptracer could die and untrace */
1154 ptrace_unlink(p);
1155
1156 /* If parent wants a zombie, don't release it now */
1157 state = EXIT_ZOMBIE;
1158 if (do_notify_parent(p, p->exit_signal))
1159 state = EXIT_DEAD;
1160 p->exit_state = state;
1161 write_unlock_irq(&tasklist_lock);
1162 }
1163 if (state == EXIT_DEAD)
1164 release_task(p);
1165
1166 out_info:
1167 infop = wo->wo_info;
1168 if (infop) {
1169 if ((status & 0x7f) == 0) {
1170 infop->cause = CLD_EXITED;
1171 infop->status = status >> 8;
1172 } else {
1173 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1174 infop->status = status & 0x7f;
1175 }
1176 infop->pid = pid;
1177 infop->uid = uid;
1178 }
1179
1180 return pid;
1181 }
1182
1183 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1184 {
1185 if (ptrace) {
1186 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1187 return &p->exit_code;
1188 } else {
1189 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1190 return &p->signal->group_exit_code;
1191 }
1192 return NULL;
1193 }
1194
1195 /**
1196 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1197 * @wo: wait options
1198 * @ptrace: is the wait for ptrace
1199 * @p: task to wait for
1200 *
1201 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1202 *
1203 * CONTEXT:
1204 * read_lock(&tasklist_lock), which is released if return value is
1205 * non-zero. Also, grabs and releases @p->sighand->siglock.
1206 *
1207 * RETURNS:
1208 * 0 if wait condition didn't exist and search for other wait conditions
1209 * should continue. Non-zero return, -errno on failure and @p's pid on
1210 * success, implies that tasklist_lock is released and wait condition
1211 * search should terminate.
1212 */
1213 static int wait_task_stopped(struct wait_opts *wo,
1214 int ptrace, struct task_struct *p)
1215 {
1216 struct waitid_info *infop;
1217 int exit_code, *p_code, why;
1218 uid_t uid = 0; /* unneeded, required by compiler */
1219 pid_t pid;
1220
1221 /*
1222 * Traditionally we see ptrace'd stopped tasks regardless of options.
1223 */
1224 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1225 return 0;
1226
1227 if (!task_stopped_code(p, ptrace))
1228 return 0;
1229
1230 exit_code = 0;
1231 spin_lock_irq(&p->sighand->siglock);
1232
1233 p_code = task_stopped_code(p, ptrace);
1234 if (unlikely(!p_code))
1235 goto unlock_sig;
1236
1237 exit_code = *p_code;
1238 if (!exit_code)
1239 goto unlock_sig;
1240
1241 if (!unlikely(wo->wo_flags & WNOWAIT))
1242 *p_code = 0;
1243
1244 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1245 unlock_sig:
1246 spin_unlock_irq(&p->sighand->siglock);
1247 if (!exit_code)
1248 return 0;
1249
1250 /*
1251 * Now we are pretty sure this task is interesting.
1252 * Make sure it doesn't get reaped out from under us while we
1253 * give up the lock and then examine it below. We don't want to
1254 * keep holding onto the tasklist_lock while we call getrusage and
1255 * possibly take page faults for user memory.
1256 */
1257 get_task_struct(p);
1258 pid = task_pid_vnr(p);
1259 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1260 read_unlock(&tasklist_lock);
1261 sched_annotate_sleep();
1262 if (wo->wo_rusage)
1263 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1264 put_task_struct(p);
1265
1266 if (likely(!(wo->wo_flags & WNOWAIT)))
1267 wo->wo_stat = (exit_code << 8) | 0x7f;
1268
1269 infop = wo->wo_info;
1270 if (infop) {
1271 infop->cause = why;
1272 infop->status = exit_code;
1273 infop->pid = pid;
1274 infop->uid = uid;
1275 }
1276 return pid;
1277 }
1278
1279 /*
1280 * Handle do_wait work for one task in a live, non-stopped state.
1281 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1282 * the lock and this task is uninteresting. If we return nonzero, we have
1283 * released the lock and the system call should return.
1284 */
1285 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1286 {
1287 struct waitid_info *infop;
1288 pid_t pid;
1289 uid_t uid;
1290
1291 if (!unlikely(wo->wo_flags & WCONTINUED))
1292 return 0;
1293
1294 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1295 return 0;
1296
1297 spin_lock_irq(&p->sighand->siglock);
1298 /* Re-check with the lock held. */
1299 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1300 spin_unlock_irq(&p->sighand->siglock);
1301 return 0;
1302 }
1303 if (!unlikely(wo->wo_flags & WNOWAIT))
1304 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1305 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1306 spin_unlock_irq(&p->sighand->siglock);
1307
1308 pid = task_pid_vnr(p);
1309 get_task_struct(p);
1310 read_unlock(&tasklist_lock);
1311 sched_annotate_sleep();
1312 if (wo->wo_rusage)
1313 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1314 put_task_struct(p);
1315
1316 infop = wo->wo_info;
1317 if (!infop) {
1318 wo->wo_stat = 0xffff;
1319 } else {
1320 infop->cause = CLD_CONTINUED;
1321 infop->pid = pid;
1322 infop->uid = uid;
1323 infop->status = SIGCONT;
1324 }
1325 return pid;
1326 }
1327
1328 /*
1329 * Consider @p for a wait by @parent.
1330 *
1331 * -ECHILD should be in ->notask_error before the first call.
1332 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1333 * Returns zero if the search for a child should continue;
1334 * then ->notask_error is 0 if @p is an eligible child,
1335 * or still -ECHILD.
1336 */
1337 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1338 struct task_struct *p)
1339 {
1340 /*
1341 * We can race with wait_task_zombie() from another thread.
1342 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1343 * can't confuse the checks below.
1344 */
1345 int exit_state = ACCESS_ONCE(p->exit_state);
1346 int ret;
1347
1348 if (unlikely(exit_state == EXIT_DEAD))
1349 return 0;
1350
1351 ret = eligible_child(wo, ptrace, p);
1352 if (!ret)
1353 return ret;
1354
1355 if (unlikely(exit_state == EXIT_TRACE)) {
1356 /*
1357 * ptrace == 0 means we are the natural parent. In this case
1358 * we should clear notask_error, debugger will notify us.
1359 */
1360 if (likely(!ptrace))
1361 wo->notask_error = 0;
1362 return 0;
1363 }
1364
1365 if (likely(!ptrace) && unlikely(p->ptrace)) {
1366 /*
1367 * If it is traced by its real parent's group, just pretend
1368 * the caller is ptrace_do_wait() and reap this child if it
1369 * is zombie.
1370 *
1371 * This also hides group stop state from real parent; otherwise
1372 * a single stop can be reported twice as group and ptrace stop.
1373 * If a ptracer wants to distinguish these two events for its
1374 * own children it should create a separate process which takes
1375 * the role of real parent.
1376 */
1377 if (!ptrace_reparented(p))
1378 ptrace = 1;
1379 }
1380
1381 /* slay zombie? */
1382 if (exit_state == EXIT_ZOMBIE) {
1383 /* we don't reap group leaders with subthreads */
1384 if (!delay_group_leader(p)) {
1385 /*
1386 * A zombie ptracee is only visible to its ptracer.
1387 * Notification and reaping will be cascaded to the
1388 * real parent when the ptracer detaches.
1389 */
1390 if (unlikely(ptrace) || likely(!p->ptrace))
1391 return wait_task_zombie(wo, p);
1392 }
1393
1394 /*
1395 * Allow access to stopped/continued state via zombie by
1396 * falling through. Clearing of notask_error is complex.
1397 *
1398 * When !@ptrace:
1399 *
1400 * If WEXITED is set, notask_error should naturally be
1401 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1402 * so, if there are live subthreads, there are events to
1403 * wait for. If all subthreads are dead, it's still safe
1404 * to clear - this function will be called again in finite
1405 * amount time once all the subthreads are released and
1406 * will then return without clearing.
1407 *
1408 * When @ptrace:
1409 *
1410 * Stopped state is per-task and thus can't change once the
1411 * target task dies. Only continued and exited can happen.
1412 * Clear notask_error if WCONTINUED | WEXITED.
1413 */
1414 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1415 wo->notask_error = 0;
1416 } else {
1417 /*
1418 * @p is alive and it's gonna stop, continue or exit, so
1419 * there always is something to wait for.
1420 */
1421 wo->notask_error = 0;
1422 }
1423
1424 /*
1425 * Wait for stopped. Depending on @ptrace, different stopped state
1426 * is used and the two don't interact with each other.
1427 */
1428 ret = wait_task_stopped(wo, ptrace, p);
1429 if (ret)
1430 return ret;
1431
1432 /*
1433 * Wait for continued. There's only one continued state and the
1434 * ptracer can consume it which can confuse the real parent. Don't
1435 * use WCONTINUED from ptracer. You don't need or want it.
1436 */
1437 return wait_task_continued(wo, p);
1438 }
1439
1440 /*
1441 * Do the work of do_wait() for one thread in the group, @tsk.
1442 *
1443 * -ECHILD should be in ->notask_error before the first call.
1444 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1445 * Returns zero if the search for a child should continue; then
1446 * ->notask_error is 0 if there were any eligible children,
1447 * or still -ECHILD.
1448 */
1449 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1450 {
1451 struct task_struct *p;
1452
1453 list_for_each_entry(p, &tsk->children, sibling) {
1454 int ret = wait_consider_task(wo, 0, p);
1455
1456 if (ret)
1457 return ret;
1458 }
1459
1460 return 0;
1461 }
1462
1463 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1464 {
1465 struct task_struct *p;
1466
1467 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1468 int ret = wait_consider_task(wo, 1, p);
1469
1470 if (ret)
1471 return ret;
1472 }
1473
1474 return 0;
1475 }
1476
1477 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1478 int sync, void *key)
1479 {
1480 struct wait_opts *wo = container_of(wait, struct wait_opts,
1481 child_wait);
1482 struct task_struct *p = key;
1483
1484 if (!eligible_pid(wo, p))
1485 return 0;
1486
1487 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1488 return 0;
1489
1490 return default_wake_function(wait, mode, sync, key);
1491 }
1492
1493 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1494 {
1495 __wake_up_sync_key(&parent->signal->wait_chldexit,
1496 TASK_INTERRUPTIBLE, 1, p);
1497 }
1498
1499 static long do_wait(struct wait_opts *wo)
1500 {
1501 struct task_struct *tsk;
1502 int retval;
1503
1504 trace_sched_process_wait(wo->wo_pid);
1505
1506 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1507 wo->child_wait.private = current;
1508 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1509 repeat:
1510 /*
1511 * If there is nothing that can match our criteria, just get out.
1512 * We will clear ->notask_error to zero if we see any child that
1513 * might later match our criteria, even if we are not able to reap
1514 * it yet.
1515 */
1516 wo->notask_error = -ECHILD;
1517 if ((wo->wo_type < PIDTYPE_MAX) &&
1518 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1519 goto notask;
1520
1521 set_current_state(TASK_INTERRUPTIBLE);
1522 read_lock(&tasklist_lock);
1523 tsk = current;
1524 do {
1525 retval = do_wait_thread(wo, tsk);
1526 if (retval)
1527 goto end;
1528
1529 retval = ptrace_do_wait(wo, tsk);
1530 if (retval)
1531 goto end;
1532
1533 if (wo->wo_flags & __WNOTHREAD)
1534 break;
1535 } while_each_thread(current, tsk);
1536 read_unlock(&tasklist_lock);
1537
1538 notask:
1539 retval = wo->notask_error;
1540 if (!retval && !(wo->wo_flags & WNOHANG)) {
1541 retval = -ERESTARTSYS;
1542 if (!signal_pending(current)) {
1543 schedule();
1544 goto repeat;
1545 }
1546 }
1547 end:
1548 __set_current_state(TASK_RUNNING);
1549 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1550 return retval;
1551 }
1552
1553 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1554 int options, struct rusage *ru)
1555 {
1556 struct wait_opts wo;
1557 struct pid *pid = NULL;
1558 enum pid_type type;
1559 long ret;
1560
1561 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1562 __WNOTHREAD|__WCLONE|__WALL))
1563 return -EINVAL;
1564 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1565 return -EINVAL;
1566
1567 switch (which) {
1568 case P_ALL:
1569 type = PIDTYPE_MAX;
1570 break;
1571 case P_PID:
1572 type = PIDTYPE_PID;
1573 if (upid <= 0)
1574 return -EINVAL;
1575 break;
1576 case P_PGID:
1577 type = PIDTYPE_PGID;
1578 if (upid <= 0)
1579 return -EINVAL;
1580 break;
1581 default:
1582 return -EINVAL;
1583 }
1584
1585 if (type < PIDTYPE_MAX)
1586 pid = find_get_pid(upid);
1587
1588 wo.wo_type = type;
1589 wo.wo_pid = pid;
1590 wo.wo_flags = options;
1591 wo.wo_info = infop;
1592 wo.wo_rusage = ru;
1593 ret = do_wait(&wo);
1594
1595 put_pid(pid);
1596 return ret;
1597 }
1598
1599 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1600 infop, int, options, struct rusage __user *, ru)
1601 {
1602 struct rusage r;
1603 struct waitid_info info = {.status = 0};
1604 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1605 int signo = 0;
1606
1607 if (err > 0) {
1608 signo = SIGCHLD;
1609 err = 0;
1610 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1611 return -EFAULT;
1612 }
1613 if (!infop)
1614 return err;
1615
1616 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1617 return -EFAULT;
1618
1619 user_access_begin();
1620 unsafe_put_user(signo, &infop->si_signo, Efault);
1621 unsafe_put_user(0, &infop->si_errno, Efault);
1622 unsafe_put_user(info.cause, &infop->si_code, Efault);
1623 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1624 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1625 unsafe_put_user(info.status, &infop->si_status, Efault);
1626 user_access_end();
1627 return err;
1628 Efault:
1629 user_access_end();
1630 return -EFAULT;
1631 }
1632
1633 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1634 struct rusage *ru)
1635 {
1636 struct wait_opts wo;
1637 struct pid *pid = NULL;
1638 enum pid_type type;
1639 long ret;
1640
1641 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1642 __WNOTHREAD|__WCLONE|__WALL))
1643 return -EINVAL;
1644
1645 /* -INT_MIN is not defined */
1646 if (upid == INT_MIN)
1647 return -ESRCH;
1648
1649 if (upid == -1)
1650 type = PIDTYPE_MAX;
1651 else if (upid < 0) {
1652 type = PIDTYPE_PGID;
1653 pid = find_get_pid(-upid);
1654 } else if (upid == 0) {
1655 type = PIDTYPE_PGID;
1656 pid = get_task_pid(current, PIDTYPE_PGID);
1657 } else /* upid > 0 */ {
1658 type = PIDTYPE_PID;
1659 pid = find_get_pid(upid);
1660 }
1661
1662 wo.wo_type = type;
1663 wo.wo_pid = pid;
1664 wo.wo_flags = options | WEXITED;
1665 wo.wo_info = NULL;
1666 wo.wo_stat = 0;
1667 wo.wo_rusage = ru;
1668 ret = do_wait(&wo);
1669 put_pid(pid);
1670 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1671 ret = -EFAULT;
1672
1673 return ret;
1674 }
1675
1676 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1677 int, options, struct rusage __user *, ru)
1678 {
1679 struct rusage r;
1680 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1681
1682 if (err > 0) {
1683 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1684 return -EFAULT;
1685 }
1686 return err;
1687 }
1688
1689 #ifdef __ARCH_WANT_SYS_WAITPID
1690
1691 /*
1692 * sys_waitpid() remains for compatibility. waitpid() should be
1693 * implemented by calling sys_wait4() from libc.a.
1694 */
1695 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1696 {
1697 return sys_wait4(pid, stat_addr, options, NULL);
1698 }
1699
1700 #endif
1701
1702 #ifdef CONFIG_COMPAT
1703 COMPAT_SYSCALL_DEFINE4(wait4,
1704 compat_pid_t, pid,
1705 compat_uint_t __user *, stat_addr,
1706 int, options,
1707 struct compat_rusage __user *, ru)
1708 {
1709 struct rusage r;
1710 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1711 if (err > 0) {
1712 if (ru && put_compat_rusage(&r, ru))
1713 return -EFAULT;
1714 }
1715 return err;
1716 }
1717
1718 COMPAT_SYSCALL_DEFINE5(waitid,
1719 int, which, compat_pid_t, pid,
1720 struct compat_siginfo __user *, infop, int, options,
1721 struct compat_rusage __user *, uru)
1722 {
1723 struct rusage ru;
1724 struct waitid_info info = {.status = 0};
1725 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1726 int signo = 0;
1727 if (err > 0) {
1728 signo = SIGCHLD;
1729 err = 0;
1730 if (uru) {
1731 /* kernel_waitid() overwrites everything in ru */
1732 if (COMPAT_USE_64BIT_TIME)
1733 err = copy_to_user(uru, &ru, sizeof(ru));
1734 else
1735 err = put_compat_rusage(&ru, uru);
1736 if (err)
1737 return -EFAULT;
1738 }
1739 }
1740
1741 if (!infop)
1742 return err;
1743
1744 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1745 return -EFAULT;
1746
1747 user_access_begin();
1748 unsafe_put_user(signo, &infop->si_signo, Efault);
1749 unsafe_put_user(0, &infop->si_errno, Efault);
1750 unsafe_put_user(info.cause, &infop->si_code, Efault);
1751 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1752 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1753 unsafe_put_user(info.status, &infop->si_status, Efault);
1754 user_access_end();
1755 return err;
1756 Efault:
1757 user_access_end();
1758 return -EFAULT;
1759 }
1760 #endif
1761
1762 __weak void abort(void)
1763 {
1764 BUG();
1765
1766 /* if that doesn't kill us, halt */
1767 panic("Oops failed to kill thread");
1768 }
1769 EXPORT_SYMBOL(abort);