Merge 4.14.37 into android-4.14
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/cpufreq_times.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 nr_threads--;
75 detach_pid(p, PIDTYPE_PID);
76 if (group_dead) {
77 detach_pid(p, PIDTYPE_PGID);
78 detach_pid(p, PIDTYPE_SID);
79
80 list_del_rcu(&p->tasks);
81 list_del_init(&p->sibling);
82 __this_cpu_dec(process_counts);
83 }
84 list_del_rcu(&p->thread_group);
85 list_del_rcu(&p->thread_node);
86 }
87
88 /*
89 * This function expects the tasklist_lock write-locked.
90 */
91 static void __exit_signal(struct task_struct *tsk)
92 {
93 struct signal_struct *sig = tsk->signal;
94 bool group_dead = thread_group_leader(tsk);
95 struct sighand_struct *sighand;
96 struct tty_struct *uninitialized_var(tty);
97 u64 utime, stime;
98
99 sighand = rcu_dereference_check(tsk->sighand,
100 lockdep_tasklist_lock_is_held());
101 spin_lock(&sighand->siglock);
102
103 #ifdef CONFIG_POSIX_TIMERS
104 posix_cpu_timers_exit(tsk);
105 if (group_dead) {
106 posix_cpu_timers_exit_group(tsk);
107 } else {
108 /*
109 * This can only happen if the caller is de_thread().
110 * FIXME: this is the temporary hack, we should teach
111 * posix-cpu-timers to handle this case correctly.
112 */
113 if (unlikely(has_group_leader_pid(tsk)))
114 posix_cpu_timers_exit_group(tsk);
115 }
116 #endif
117
118 if (group_dead) {
119 tty = sig->tty;
120 sig->tty = NULL;
121 } else {
122 /*
123 * If there is any task waiting for the group exit
124 * then notify it:
125 */
126 if (sig->notify_count > 0 && !--sig->notify_count)
127 wake_up_process(sig->group_exit_task);
128
129 if (tsk == sig->curr_target)
130 sig->curr_target = next_thread(tsk);
131 }
132
133 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
134 sizeof(unsigned long long));
135
136 /*
137 * Accumulate here the counters for all threads as they die. We could
138 * skip the group leader because it is the last user of signal_struct,
139 * but we want to avoid the race with thread_group_cputime() which can
140 * see the empty ->thread_head list.
141 */
142 task_cputime(tsk, &utime, &stime);
143 write_seqlock(&sig->stats_lock);
144 sig->utime += utime;
145 sig->stime += stime;
146 sig->gtime += task_gtime(tsk);
147 sig->min_flt += tsk->min_flt;
148 sig->maj_flt += tsk->maj_flt;
149 sig->nvcsw += tsk->nvcsw;
150 sig->nivcsw += tsk->nivcsw;
151 sig->inblock += task_io_get_inblock(tsk);
152 sig->oublock += task_io_get_oublock(tsk);
153 task_io_accounting_add(&sig->ioac, &tsk->ioac);
154 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
155 sig->nr_threads--;
156 __unhash_process(tsk, group_dead);
157 write_sequnlock(&sig->stats_lock);
158
159 /*
160 * Do this under ->siglock, we can race with another thread
161 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
162 */
163 flush_sigqueue(&tsk->pending);
164 tsk->sighand = NULL;
165 spin_unlock(&sighand->siglock);
166
167 __cleanup_sighand(sighand);
168 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
169 if (group_dead) {
170 flush_sigqueue(&sig->shared_pending);
171 tty_kref_put(tty);
172 }
173 }
174
175 static void delayed_put_task_struct(struct rcu_head *rhp)
176 {
177 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
178
179 perf_event_delayed_put(tsk);
180 trace_sched_process_free(tsk);
181 put_task_struct(tsk);
182 }
183
184
185 void release_task(struct task_struct *p)
186 {
187 struct task_struct *leader;
188 int zap_leader;
189 #ifdef CONFIG_CPU_FREQ_TIMES
190 cpufreq_task_times_exit(p);
191 #endif
192 repeat:
193 /* don't need to get the RCU readlock here - the process is dead and
194 * can't be modifying its own credentials. But shut RCU-lockdep up */
195 rcu_read_lock();
196 atomic_dec(&__task_cred(p)->user->processes);
197 rcu_read_unlock();
198
199 proc_flush_task(p);
200
201 write_lock_irq(&tasklist_lock);
202 ptrace_release_task(p);
203 __exit_signal(p);
204
205 /*
206 * If we are the last non-leader member of the thread
207 * group, and the leader is zombie, then notify the
208 * group leader's parent process. (if it wants notification.)
209 */
210 zap_leader = 0;
211 leader = p->group_leader;
212 if (leader != p && thread_group_empty(leader)
213 && leader->exit_state == EXIT_ZOMBIE) {
214 /*
215 * If we were the last child thread and the leader has
216 * exited already, and the leader's parent ignores SIGCHLD,
217 * then we are the one who should release the leader.
218 */
219 zap_leader = do_notify_parent(leader, leader->exit_signal);
220 if (zap_leader)
221 leader->exit_state = EXIT_DEAD;
222 }
223
224 write_unlock_irq(&tasklist_lock);
225 release_thread(p);
226 call_rcu(&p->rcu, delayed_put_task_struct);
227
228 p = leader;
229 if (unlikely(zap_leader))
230 goto repeat;
231 }
232
233 /*
234 * Note that if this function returns a valid task_struct pointer (!NULL)
235 * task->usage must remain >0 for the duration of the RCU critical section.
236 */
237 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
238 {
239 struct sighand_struct *sighand;
240 struct task_struct *task;
241
242 /*
243 * We need to verify that release_task() was not called and thus
244 * delayed_put_task_struct() can't run and drop the last reference
245 * before rcu_read_unlock(). We check task->sighand != NULL,
246 * but we can read the already freed and reused memory.
247 */
248 retry:
249 task = rcu_dereference(*ptask);
250 if (!task)
251 return NULL;
252
253 probe_kernel_address(&task->sighand, sighand);
254
255 /*
256 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
257 * was already freed we can not miss the preceding update of this
258 * pointer.
259 */
260 smp_rmb();
261 if (unlikely(task != READ_ONCE(*ptask)))
262 goto retry;
263
264 /*
265 * We've re-checked that "task == *ptask", now we have two different
266 * cases:
267 *
268 * 1. This is actually the same task/task_struct. In this case
269 * sighand != NULL tells us it is still alive.
270 *
271 * 2. This is another task which got the same memory for task_struct.
272 * We can't know this of course, and we can not trust
273 * sighand != NULL.
274 *
275 * In this case we actually return a random value, but this is
276 * correct.
277 *
278 * If we return NULL - we can pretend that we actually noticed that
279 * *ptask was updated when the previous task has exited. Or pretend
280 * that probe_slab_address(&sighand) reads NULL.
281 *
282 * If we return the new task (because sighand is not NULL for any
283 * reason) - this is fine too. This (new) task can't go away before
284 * another gp pass.
285 *
286 * And note: We could even eliminate the false positive if re-read
287 * task->sighand once again to avoid the falsely NULL. But this case
288 * is very unlikely so we don't care.
289 */
290 if (!sighand)
291 return NULL;
292
293 return task;
294 }
295
296 void rcuwait_wake_up(struct rcuwait *w)
297 {
298 struct task_struct *task;
299
300 rcu_read_lock();
301
302 /*
303 * Order condition vs @task, such that everything prior to the load
304 * of @task is visible. This is the condition as to why the user called
305 * rcuwait_trywake() in the first place. Pairs with set_current_state()
306 * barrier (A) in rcuwait_wait_event().
307 *
308 * WAIT WAKE
309 * [S] tsk = current [S] cond = true
310 * MB (A) MB (B)
311 * [L] cond [L] tsk
312 */
313 smp_rmb(); /* (B) */
314
315 /*
316 * Avoid using task_rcu_dereference() magic as long as we are careful,
317 * see comment in rcuwait_wait_event() regarding ->exit_state.
318 */
319 task = rcu_dereference(w->task);
320 if (task)
321 wake_up_process(task);
322 rcu_read_unlock();
323 }
324
325 /*
326 * Determine if a process group is "orphaned", according to the POSIX
327 * definition in 2.2.2.52. Orphaned process groups are not to be affected
328 * by terminal-generated stop signals. Newly orphaned process groups are
329 * to receive a SIGHUP and a SIGCONT.
330 *
331 * "I ask you, have you ever known what it is to be an orphan?"
332 */
333 static int will_become_orphaned_pgrp(struct pid *pgrp,
334 struct task_struct *ignored_task)
335 {
336 struct task_struct *p;
337
338 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
339 if ((p == ignored_task) ||
340 (p->exit_state && thread_group_empty(p)) ||
341 is_global_init(p->real_parent))
342 continue;
343
344 if (task_pgrp(p->real_parent) != pgrp &&
345 task_session(p->real_parent) == task_session(p))
346 return 0;
347 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
348
349 return 1;
350 }
351
352 int is_current_pgrp_orphaned(void)
353 {
354 int retval;
355
356 read_lock(&tasklist_lock);
357 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
358 read_unlock(&tasklist_lock);
359
360 return retval;
361 }
362
363 static bool has_stopped_jobs(struct pid *pgrp)
364 {
365 struct task_struct *p;
366
367 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
368 if (p->signal->flags & SIGNAL_STOP_STOPPED)
369 return true;
370 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
371
372 return false;
373 }
374
375 /*
376 * Check to see if any process groups have become orphaned as
377 * a result of our exiting, and if they have any stopped jobs,
378 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
379 */
380 static void
381 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
382 {
383 struct pid *pgrp = task_pgrp(tsk);
384 struct task_struct *ignored_task = tsk;
385
386 if (!parent)
387 /* exit: our father is in a different pgrp than
388 * we are and we were the only connection outside.
389 */
390 parent = tsk->real_parent;
391 else
392 /* reparent: our child is in a different pgrp than
393 * we are, and it was the only connection outside.
394 */
395 ignored_task = NULL;
396
397 if (task_pgrp(parent) != pgrp &&
398 task_session(parent) == task_session(tsk) &&
399 will_become_orphaned_pgrp(pgrp, ignored_task) &&
400 has_stopped_jobs(pgrp)) {
401 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
402 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
403 }
404 }
405
406 #ifdef CONFIG_MEMCG
407 /*
408 * A task is exiting. If it owned this mm, find a new owner for the mm.
409 */
410 void mm_update_next_owner(struct mm_struct *mm)
411 {
412 struct task_struct *c, *g, *p = current;
413
414 retry:
415 /*
416 * If the exiting or execing task is not the owner, it's
417 * someone else's problem.
418 */
419 if (mm->owner != p)
420 return;
421 /*
422 * The current owner is exiting/execing and there are no other
423 * candidates. Do not leave the mm pointing to a possibly
424 * freed task structure.
425 */
426 if (atomic_read(&mm->mm_users) <= 1) {
427 mm->owner = NULL;
428 return;
429 }
430
431 read_lock(&tasklist_lock);
432 /*
433 * Search in the children
434 */
435 list_for_each_entry(c, &p->children, sibling) {
436 if (c->mm == mm)
437 goto assign_new_owner;
438 }
439
440 /*
441 * Search in the siblings
442 */
443 list_for_each_entry(c, &p->real_parent->children, sibling) {
444 if (c->mm == mm)
445 goto assign_new_owner;
446 }
447
448 /*
449 * Search through everything else, we should not get here often.
450 */
451 for_each_process(g) {
452 if (g->flags & PF_KTHREAD)
453 continue;
454 for_each_thread(g, c) {
455 if (c->mm == mm)
456 goto assign_new_owner;
457 if (c->mm)
458 break;
459 }
460 }
461 read_unlock(&tasklist_lock);
462 /*
463 * We found no owner yet mm_users > 1: this implies that we are
464 * most likely racing with swapoff (try_to_unuse()) or /proc or
465 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
466 */
467 mm->owner = NULL;
468 return;
469
470 assign_new_owner:
471 BUG_ON(c == p);
472 get_task_struct(c);
473 /*
474 * The task_lock protects c->mm from changing.
475 * We always want mm->owner->mm == mm
476 */
477 task_lock(c);
478 /*
479 * Delay read_unlock() till we have the task_lock()
480 * to ensure that c does not slip away underneath us
481 */
482 read_unlock(&tasklist_lock);
483 if (c->mm != mm) {
484 task_unlock(c);
485 put_task_struct(c);
486 goto retry;
487 }
488 mm->owner = c;
489 task_unlock(c);
490 put_task_struct(c);
491 }
492 #endif /* CONFIG_MEMCG */
493
494 /*
495 * Turn us into a lazy TLB process if we
496 * aren't already..
497 */
498 static void exit_mm(void)
499 {
500 struct mm_struct *mm = current->mm;
501 struct core_state *core_state;
502
503 mm_release(current, mm);
504 if (!mm)
505 return;
506 sync_mm_rss(mm);
507 /*
508 * Serialize with any possible pending coredump.
509 * We must hold mmap_sem around checking core_state
510 * and clearing tsk->mm. The core-inducing thread
511 * will increment ->nr_threads for each thread in the
512 * group with ->mm != NULL.
513 */
514 down_read(&mm->mmap_sem);
515 core_state = mm->core_state;
516 if (core_state) {
517 struct core_thread self;
518
519 up_read(&mm->mmap_sem);
520
521 self.task = current;
522 self.next = xchg(&core_state->dumper.next, &self);
523 /*
524 * Implies mb(), the result of xchg() must be visible
525 * to core_state->dumper.
526 */
527 if (atomic_dec_and_test(&core_state->nr_threads))
528 complete(&core_state->startup);
529
530 for (;;) {
531 set_current_state(TASK_UNINTERRUPTIBLE);
532 if (!self.task) /* see coredump_finish() */
533 break;
534 freezable_schedule();
535 }
536 __set_current_state(TASK_RUNNING);
537 down_read(&mm->mmap_sem);
538 }
539 mmgrab(mm);
540 BUG_ON(mm != current->active_mm);
541 /* more a memory barrier than a real lock */
542 task_lock(current);
543 current->mm = NULL;
544 up_read(&mm->mmap_sem);
545 enter_lazy_tlb(mm, current);
546 task_unlock(current);
547 mm_update_next_owner(mm);
548 mmput(mm);
549 if (test_thread_flag(TIF_MEMDIE))
550 exit_oom_victim();
551 }
552
553 static struct task_struct *find_alive_thread(struct task_struct *p)
554 {
555 struct task_struct *t;
556
557 for_each_thread(p, t) {
558 if (!(t->flags & PF_EXITING))
559 return t;
560 }
561 return NULL;
562 }
563
564 static struct task_struct *find_child_reaper(struct task_struct *father)
565 __releases(&tasklist_lock)
566 __acquires(&tasklist_lock)
567 {
568 struct pid_namespace *pid_ns = task_active_pid_ns(father);
569 struct task_struct *reaper = pid_ns->child_reaper;
570
571 if (likely(reaper != father))
572 return reaper;
573
574 reaper = find_alive_thread(father);
575 if (reaper) {
576 pid_ns->child_reaper = reaper;
577 return reaper;
578 }
579
580 write_unlock_irq(&tasklist_lock);
581 if (unlikely(pid_ns == &init_pid_ns)) {
582 panic("Attempted to kill init! exitcode=0x%08x\n",
583 father->signal->group_exit_code ?: father->exit_code);
584 }
585 zap_pid_ns_processes(pid_ns);
586 write_lock_irq(&tasklist_lock);
587
588 return father;
589 }
590
591 /*
592 * When we die, we re-parent all our children, and try to:
593 * 1. give them to another thread in our thread group, if such a member exists
594 * 2. give it to the first ancestor process which prctl'd itself as a
595 * child_subreaper for its children (like a service manager)
596 * 3. give it to the init process (PID 1) in our pid namespace
597 */
598 static struct task_struct *find_new_reaper(struct task_struct *father,
599 struct task_struct *child_reaper)
600 {
601 struct task_struct *thread, *reaper;
602
603 thread = find_alive_thread(father);
604 if (thread)
605 return thread;
606
607 if (father->signal->has_child_subreaper) {
608 unsigned int ns_level = task_pid(father)->level;
609 /*
610 * Find the first ->is_child_subreaper ancestor in our pid_ns.
611 * We can't check reaper != child_reaper to ensure we do not
612 * cross the namespaces, the exiting parent could be injected
613 * by setns() + fork().
614 * We check pid->level, this is slightly more efficient than
615 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
616 */
617 for (reaper = father->real_parent;
618 task_pid(reaper)->level == ns_level;
619 reaper = reaper->real_parent) {
620 if (reaper == &init_task)
621 break;
622 if (!reaper->signal->is_child_subreaper)
623 continue;
624 thread = find_alive_thread(reaper);
625 if (thread)
626 return thread;
627 }
628 }
629
630 return child_reaper;
631 }
632
633 /*
634 * Any that need to be release_task'd are put on the @dead list.
635 */
636 static void reparent_leader(struct task_struct *father, struct task_struct *p,
637 struct list_head *dead)
638 {
639 if (unlikely(p->exit_state == EXIT_DEAD))
640 return;
641
642 /* We don't want people slaying init. */
643 p->exit_signal = SIGCHLD;
644
645 /* If it has exited notify the new parent about this child's death. */
646 if (!p->ptrace &&
647 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
648 if (do_notify_parent(p, p->exit_signal)) {
649 p->exit_state = EXIT_DEAD;
650 list_add(&p->ptrace_entry, dead);
651 }
652 }
653
654 kill_orphaned_pgrp(p, father);
655 }
656
657 /*
658 * This does two things:
659 *
660 * A. Make init inherit all the child processes
661 * B. Check to see if any process groups have become orphaned
662 * as a result of our exiting, and if they have any stopped
663 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
664 */
665 static void forget_original_parent(struct task_struct *father,
666 struct list_head *dead)
667 {
668 struct task_struct *p, *t, *reaper;
669
670 if (unlikely(!list_empty(&father->ptraced)))
671 exit_ptrace(father, dead);
672
673 /* Can drop and reacquire tasklist_lock */
674 reaper = find_child_reaper(father);
675 if (list_empty(&father->children))
676 return;
677
678 reaper = find_new_reaper(father, reaper);
679 list_for_each_entry(p, &father->children, sibling) {
680 for_each_thread(p, t) {
681 t->real_parent = reaper;
682 BUG_ON((!t->ptrace) != (t->parent == father));
683 if (likely(!t->ptrace))
684 t->parent = t->real_parent;
685 if (t->pdeath_signal)
686 group_send_sig_info(t->pdeath_signal,
687 SEND_SIG_NOINFO, t);
688 }
689 /*
690 * If this is a threaded reparent there is no need to
691 * notify anyone anything has happened.
692 */
693 if (!same_thread_group(reaper, father))
694 reparent_leader(father, p, dead);
695 }
696 list_splice_tail_init(&father->children, &reaper->children);
697 }
698
699 /*
700 * Send signals to all our closest relatives so that they know
701 * to properly mourn us..
702 */
703 static void exit_notify(struct task_struct *tsk, int group_dead)
704 {
705 bool autoreap;
706 struct task_struct *p, *n;
707 LIST_HEAD(dead);
708
709 write_lock_irq(&tasklist_lock);
710 forget_original_parent(tsk, &dead);
711
712 if (group_dead)
713 kill_orphaned_pgrp(tsk->group_leader, NULL);
714
715 if (unlikely(tsk->ptrace)) {
716 int sig = thread_group_leader(tsk) &&
717 thread_group_empty(tsk) &&
718 !ptrace_reparented(tsk) ?
719 tsk->exit_signal : SIGCHLD;
720 autoreap = do_notify_parent(tsk, sig);
721 } else if (thread_group_leader(tsk)) {
722 autoreap = thread_group_empty(tsk) &&
723 do_notify_parent(tsk, tsk->exit_signal);
724 } else {
725 autoreap = true;
726 }
727
728 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
729 if (tsk->exit_state == EXIT_DEAD)
730 list_add(&tsk->ptrace_entry, &dead);
731
732 /* mt-exec, de_thread() is waiting for group leader */
733 if (unlikely(tsk->signal->notify_count < 0))
734 wake_up_process(tsk->signal->group_exit_task);
735 write_unlock_irq(&tasklist_lock);
736
737 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
738 list_del_init(&p->ptrace_entry);
739 release_task(p);
740 }
741 }
742
743 #ifdef CONFIG_DEBUG_STACK_USAGE
744 static void check_stack_usage(void)
745 {
746 static DEFINE_SPINLOCK(low_water_lock);
747 static int lowest_to_date = THREAD_SIZE;
748 unsigned long free;
749
750 free = stack_not_used(current);
751
752 if (free >= lowest_to_date)
753 return;
754
755 spin_lock(&low_water_lock);
756 if (free < lowest_to_date) {
757 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
758 current->comm, task_pid_nr(current), free);
759 lowest_to_date = free;
760 }
761 spin_unlock(&low_water_lock);
762 }
763 #else
764 static inline void check_stack_usage(void) {}
765 #endif
766
767 void __noreturn do_exit(long code)
768 {
769 struct task_struct *tsk = current;
770 int group_dead;
771
772 profile_task_exit(tsk);
773 kcov_task_exit(tsk);
774
775 WARN_ON(blk_needs_flush_plug(tsk));
776
777 if (unlikely(in_interrupt()))
778 panic("Aiee, killing interrupt handler!");
779 if (unlikely(!tsk->pid))
780 panic("Attempted to kill the idle task!");
781
782 /*
783 * If do_exit is called because this processes oopsed, it's possible
784 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
785 * continuing. Amongst other possible reasons, this is to prevent
786 * mm_release()->clear_child_tid() from writing to a user-controlled
787 * kernel address.
788 */
789 set_fs(USER_DS);
790
791 ptrace_event(PTRACE_EVENT_EXIT, code);
792
793 validate_creds_for_do_exit(tsk);
794
795 /*
796 * We're taking recursive faults here in do_exit. Safest is to just
797 * leave this task alone and wait for reboot.
798 */
799 if (unlikely(tsk->flags & PF_EXITING)) {
800 pr_alert("Fixing recursive fault but reboot is needed!\n");
801 /*
802 * We can do this unlocked here. The futex code uses
803 * this flag just to verify whether the pi state
804 * cleanup has been done or not. In the worst case it
805 * loops once more. We pretend that the cleanup was
806 * done as there is no way to return. Either the
807 * OWNER_DIED bit is set by now or we push the blocked
808 * task into the wait for ever nirwana as well.
809 */
810 tsk->flags |= PF_EXITPIDONE;
811 set_current_state(TASK_UNINTERRUPTIBLE);
812 schedule();
813 }
814
815 exit_signals(tsk); /* sets PF_EXITING */
816 /*
817 * Ensure that all new tsk->pi_lock acquisitions must observe
818 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
819 */
820 smp_mb();
821 /*
822 * Ensure that we must observe the pi_state in exit_mm() ->
823 * mm_release() -> exit_pi_state_list().
824 */
825 raw_spin_lock_irq(&tsk->pi_lock);
826 raw_spin_unlock_irq(&tsk->pi_lock);
827
828 if (unlikely(in_atomic())) {
829 pr_info("note: %s[%d] exited with preempt_count %d\n",
830 current->comm, task_pid_nr(current),
831 preempt_count());
832 preempt_count_set(PREEMPT_ENABLED);
833 }
834
835 /* sync mm's RSS info before statistics gathering */
836 if (tsk->mm)
837 sync_mm_rss(tsk->mm);
838 acct_update_integrals(tsk);
839 group_dead = atomic_dec_and_test(&tsk->signal->live);
840 if (group_dead) {
841 #ifdef CONFIG_POSIX_TIMERS
842 hrtimer_cancel(&tsk->signal->real_timer);
843 exit_itimers(tsk->signal);
844 #endif
845 if (tsk->mm)
846 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
847 }
848 acct_collect(code, group_dead);
849 if (group_dead)
850 tty_audit_exit();
851 audit_free(tsk);
852
853 tsk->exit_code = code;
854 taskstats_exit(tsk, group_dead);
855
856 exit_mm();
857
858 if (group_dead)
859 acct_process();
860 trace_sched_process_exit(tsk);
861
862 exit_sem(tsk);
863 exit_shm(tsk);
864 exit_files(tsk);
865 exit_fs(tsk);
866 if (group_dead)
867 disassociate_ctty(1);
868 exit_task_namespaces(tsk);
869 exit_task_work(tsk);
870 exit_thread(tsk);
871
872 /*
873 * Flush inherited counters to the parent - before the parent
874 * gets woken up by child-exit notifications.
875 *
876 * because of cgroup mode, must be called before cgroup_exit()
877 */
878 perf_event_exit_task(tsk);
879
880 sched_autogroup_exit_task(tsk);
881 cgroup_exit(tsk);
882
883 /*
884 * FIXME: do that only when needed, using sched_exit tracepoint
885 */
886 flush_ptrace_hw_breakpoint(tsk);
887
888 exit_tasks_rcu_start();
889 exit_notify(tsk, group_dead);
890 proc_exit_connector(tsk);
891 mpol_put_task_policy(tsk);
892 #ifdef CONFIG_FUTEX
893 if (unlikely(current->pi_state_cache))
894 kfree(current->pi_state_cache);
895 #endif
896 /*
897 * Make sure we are holding no locks:
898 */
899 debug_check_no_locks_held();
900 /*
901 * We can do this unlocked here. The futex code uses this flag
902 * just to verify whether the pi state cleanup has been done
903 * or not. In the worst case it loops once more.
904 */
905 tsk->flags |= PF_EXITPIDONE;
906
907 if (tsk->io_context)
908 exit_io_context(tsk);
909
910 if (tsk->splice_pipe)
911 free_pipe_info(tsk->splice_pipe);
912
913 if (tsk->task_frag.page)
914 put_page(tsk->task_frag.page);
915
916 validate_creds_for_do_exit(tsk);
917
918 check_stack_usage();
919 preempt_disable();
920 if (tsk->nr_dirtied)
921 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
922 exit_rcu();
923 exit_tasks_rcu_finish();
924
925 lockdep_free_task(tsk);
926 do_task_dead();
927 }
928 EXPORT_SYMBOL_GPL(do_exit);
929
930 void complete_and_exit(struct completion *comp, long code)
931 {
932 if (comp)
933 complete(comp);
934
935 do_exit(code);
936 }
937 EXPORT_SYMBOL(complete_and_exit);
938
939 SYSCALL_DEFINE1(exit, int, error_code)
940 {
941 do_exit((error_code&0xff)<<8);
942 }
943
944 /*
945 * Take down every thread in the group. This is called by fatal signals
946 * as well as by sys_exit_group (below).
947 */
948 void
949 do_group_exit(int exit_code)
950 {
951 struct signal_struct *sig = current->signal;
952
953 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
954
955 if (signal_group_exit(sig))
956 exit_code = sig->group_exit_code;
957 else if (!thread_group_empty(current)) {
958 struct sighand_struct *const sighand = current->sighand;
959
960 spin_lock_irq(&sighand->siglock);
961 if (signal_group_exit(sig))
962 /* Another thread got here before we took the lock. */
963 exit_code = sig->group_exit_code;
964 else {
965 sig->group_exit_code = exit_code;
966 sig->flags = SIGNAL_GROUP_EXIT;
967 zap_other_threads(current);
968 }
969 spin_unlock_irq(&sighand->siglock);
970 }
971
972 do_exit(exit_code);
973 /* NOTREACHED */
974 }
975
976 /*
977 * this kills every thread in the thread group. Note that any externally
978 * wait4()-ing process will get the correct exit code - even if this
979 * thread is not the thread group leader.
980 */
981 SYSCALL_DEFINE1(exit_group, int, error_code)
982 {
983 do_group_exit((error_code & 0xff) << 8);
984 /* NOTREACHED */
985 return 0;
986 }
987
988 struct waitid_info {
989 pid_t pid;
990 uid_t uid;
991 int status;
992 int cause;
993 };
994
995 struct wait_opts {
996 enum pid_type wo_type;
997 int wo_flags;
998 struct pid *wo_pid;
999
1000 struct waitid_info *wo_info;
1001 int wo_stat;
1002 struct rusage *wo_rusage;
1003
1004 wait_queue_entry_t child_wait;
1005 int notask_error;
1006 };
1007
1008 static inline
1009 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1010 {
1011 if (type != PIDTYPE_PID)
1012 task = task->group_leader;
1013 return task->pids[type].pid;
1014 }
1015
1016 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1017 {
1018 return wo->wo_type == PIDTYPE_MAX ||
1019 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1020 }
1021
1022 static int
1023 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1024 {
1025 if (!eligible_pid(wo, p))
1026 return 0;
1027
1028 /*
1029 * Wait for all children (clone and not) if __WALL is set or
1030 * if it is traced by us.
1031 */
1032 if (ptrace || (wo->wo_flags & __WALL))
1033 return 1;
1034
1035 /*
1036 * Otherwise, wait for clone children *only* if __WCLONE is set;
1037 * otherwise, wait for non-clone children *only*.
1038 *
1039 * Note: a "clone" child here is one that reports to its parent
1040 * using a signal other than SIGCHLD, or a non-leader thread which
1041 * we can only see if it is traced by us.
1042 */
1043 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1044 return 0;
1045
1046 return 1;
1047 }
1048
1049 /*
1050 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1051 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1052 * the lock and this task is uninteresting. If we return nonzero, we have
1053 * released the lock and the system call should return.
1054 */
1055 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1056 {
1057 int state, status;
1058 pid_t pid = task_pid_vnr(p);
1059 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1060 struct waitid_info *infop;
1061
1062 if (!likely(wo->wo_flags & WEXITED))
1063 return 0;
1064
1065 if (unlikely(wo->wo_flags & WNOWAIT)) {
1066 status = p->exit_code;
1067 get_task_struct(p);
1068 read_unlock(&tasklist_lock);
1069 sched_annotate_sleep();
1070 if (wo->wo_rusage)
1071 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1072 put_task_struct(p);
1073 goto out_info;
1074 }
1075 /*
1076 * Move the task's state to DEAD/TRACE, only one thread can do this.
1077 */
1078 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1079 EXIT_TRACE : EXIT_DEAD;
1080 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1081 return 0;
1082 /*
1083 * We own this thread, nobody else can reap it.
1084 */
1085 read_unlock(&tasklist_lock);
1086 sched_annotate_sleep();
1087
1088 /*
1089 * Check thread_group_leader() to exclude the traced sub-threads.
1090 */
1091 if (state == EXIT_DEAD && thread_group_leader(p)) {
1092 struct signal_struct *sig = p->signal;
1093 struct signal_struct *psig = current->signal;
1094 unsigned long maxrss;
1095 u64 tgutime, tgstime;
1096
1097 /*
1098 * The resource counters for the group leader are in its
1099 * own task_struct. Those for dead threads in the group
1100 * are in its signal_struct, as are those for the child
1101 * processes it has previously reaped. All these
1102 * accumulate in the parent's signal_struct c* fields.
1103 *
1104 * We don't bother to take a lock here to protect these
1105 * p->signal fields because the whole thread group is dead
1106 * and nobody can change them.
1107 *
1108 * psig->stats_lock also protects us from our sub-theads
1109 * which can reap other children at the same time. Until
1110 * we change k_getrusage()-like users to rely on this lock
1111 * we have to take ->siglock as well.
1112 *
1113 * We use thread_group_cputime_adjusted() to get times for
1114 * the thread group, which consolidates times for all threads
1115 * in the group including the group leader.
1116 */
1117 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1118 spin_lock_irq(&current->sighand->siglock);
1119 write_seqlock(&psig->stats_lock);
1120 psig->cutime += tgutime + sig->cutime;
1121 psig->cstime += tgstime + sig->cstime;
1122 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1123 psig->cmin_flt +=
1124 p->min_flt + sig->min_flt + sig->cmin_flt;
1125 psig->cmaj_flt +=
1126 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1127 psig->cnvcsw +=
1128 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1129 psig->cnivcsw +=
1130 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1131 psig->cinblock +=
1132 task_io_get_inblock(p) +
1133 sig->inblock + sig->cinblock;
1134 psig->coublock +=
1135 task_io_get_oublock(p) +
1136 sig->oublock + sig->coublock;
1137 maxrss = max(sig->maxrss, sig->cmaxrss);
1138 if (psig->cmaxrss < maxrss)
1139 psig->cmaxrss = maxrss;
1140 task_io_accounting_add(&psig->ioac, &p->ioac);
1141 task_io_accounting_add(&psig->ioac, &sig->ioac);
1142 write_sequnlock(&psig->stats_lock);
1143 spin_unlock_irq(&current->sighand->siglock);
1144 }
1145
1146 if (wo->wo_rusage)
1147 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1148 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1149 ? p->signal->group_exit_code : p->exit_code;
1150 wo->wo_stat = status;
1151
1152 if (state == EXIT_TRACE) {
1153 write_lock_irq(&tasklist_lock);
1154 /* We dropped tasklist, ptracer could die and untrace */
1155 ptrace_unlink(p);
1156
1157 /* If parent wants a zombie, don't release it now */
1158 state = EXIT_ZOMBIE;
1159 if (do_notify_parent(p, p->exit_signal))
1160 state = EXIT_DEAD;
1161 p->exit_state = state;
1162 write_unlock_irq(&tasklist_lock);
1163 }
1164 if (state == EXIT_DEAD)
1165 release_task(p);
1166
1167 out_info:
1168 infop = wo->wo_info;
1169 if (infop) {
1170 if ((status & 0x7f) == 0) {
1171 infop->cause = CLD_EXITED;
1172 infop->status = status >> 8;
1173 } else {
1174 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1175 infop->status = status & 0x7f;
1176 }
1177 infop->pid = pid;
1178 infop->uid = uid;
1179 }
1180
1181 return pid;
1182 }
1183
1184 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1185 {
1186 if (ptrace) {
1187 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1188 return &p->exit_code;
1189 } else {
1190 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1191 return &p->signal->group_exit_code;
1192 }
1193 return NULL;
1194 }
1195
1196 /**
1197 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1198 * @wo: wait options
1199 * @ptrace: is the wait for ptrace
1200 * @p: task to wait for
1201 *
1202 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1203 *
1204 * CONTEXT:
1205 * read_lock(&tasklist_lock), which is released if return value is
1206 * non-zero. Also, grabs and releases @p->sighand->siglock.
1207 *
1208 * RETURNS:
1209 * 0 if wait condition didn't exist and search for other wait conditions
1210 * should continue. Non-zero return, -errno on failure and @p's pid on
1211 * success, implies that tasklist_lock is released and wait condition
1212 * search should terminate.
1213 */
1214 static int wait_task_stopped(struct wait_opts *wo,
1215 int ptrace, struct task_struct *p)
1216 {
1217 struct waitid_info *infop;
1218 int exit_code, *p_code, why;
1219 uid_t uid = 0; /* unneeded, required by compiler */
1220 pid_t pid;
1221
1222 /*
1223 * Traditionally we see ptrace'd stopped tasks regardless of options.
1224 */
1225 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1226 return 0;
1227
1228 if (!task_stopped_code(p, ptrace))
1229 return 0;
1230
1231 exit_code = 0;
1232 spin_lock_irq(&p->sighand->siglock);
1233
1234 p_code = task_stopped_code(p, ptrace);
1235 if (unlikely(!p_code))
1236 goto unlock_sig;
1237
1238 exit_code = *p_code;
1239 if (!exit_code)
1240 goto unlock_sig;
1241
1242 if (!unlikely(wo->wo_flags & WNOWAIT))
1243 *p_code = 0;
1244
1245 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1246 unlock_sig:
1247 spin_unlock_irq(&p->sighand->siglock);
1248 if (!exit_code)
1249 return 0;
1250
1251 /*
1252 * Now we are pretty sure this task is interesting.
1253 * Make sure it doesn't get reaped out from under us while we
1254 * give up the lock and then examine it below. We don't want to
1255 * keep holding onto the tasklist_lock while we call getrusage and
1256 * possibly take page faults for user memory.
1257 */
1258 get_task_struct(p);
1259 pid = task_pid_vnr(p);
1260 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1261 read_unlock(&tasklist_lock);
1262 sched_annotate_sleep();
1263 if (wo->wo_rusage)
1264 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1265 put_task_struct(p);
1266
1267 if (likely(!(wo->wo_flags & WNOWAIT)))
1268 wo->wo_stat = (exit_code << 8) | 0x7f;
1269
1270 infop = wo->wo_info;
1271 if (infop) {
1272 infop->cause = why;
1273 infop->status = exit_code;
1274 infop->pid = pid;
1275 infop->uid = uid;
1276 }
1277 return pid;
1278 }
1279
1280 /*
1281 * Handle do_wait work for one task in a live, non-stopped state.
1282 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1283 * the lock and this task is uninteresting. If we return nonzero, we have
1284 * released the lock and the system call should return.
1285 */
1286 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1287 {
1288 struct waitid_info *infop;
1289 pid_t pid;
1290 uid_t uid;
1291
1292 if (!unlikely(wo->wo_flags & WCONTINUED))
1293 return 0;
1294
1295 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1296 return 0;
1297
1298 spin_lock_irq(&p->sighand->siglock);
1299 /* Re-check with the lock held. */
1300 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1301 spin_unlock_irq(&p->sighand->siglock);
1302 return 0;
1303 }
1304 if (!unlikely(wo->wo_flags & WNOWAIT))
1305 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1306 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1307 spin_unlock_irq(&p->sighand->siglock);
1308
1309 pid = task_pid_vnr(p);
1310 get_task_struct(p);
1311 read_unlock(&tasklist_lock);
1312 sched_annotate_sleep();
1313 if (wo->wo_rusage)
1314 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1315 put_task_struct(p);
1316
1317 infop = wo->wo_info;
1318 if (!infop) {
1319 wo->wo_stat = 0xffff;
1320 } else {
1321 infop->cause = CLD_CONTINUED;
1322 infop->pid = pid;
1323 infop->uid = uid;
1324 infop->status = SIGCONT;
1325 }
1326 return pid;
1327 }
1328
1329 /*
1330 * Consider @p for a wait by @parent.
1331 *
1332 * -ECHILD should be in ->notask_error before the first call.
1333 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1334 * Returns zero if the search for a child should continue;
1335 * then ->notask_error is 0 if @p is an eligible child,
1336 * or still -ECHILD.
1337 */
1338 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1339 struct task_struct *p)
1340 {
1341 /*
1342 * We can race with wait_task_zombie() from another thread.
1343 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1344 * can't confuse the checks below.
1345 */
1346 int exit_state = ACCESS_ONCE(p->exit_state);
1347 int ret;
1348
1349 if (unlikely(exit_state == EXIT_DEAD))
1350 return 0;
1351
1352 ret = eligible_child(wo, ptrace, p);
1353 if (!ret)
1354 return ret;
1355
1356 if (unlikely(exit_state == EXIT_TRACE)) {
1357 /*
1358 * ptrace == 0 means we are the natural parent. In this case
1359 * we should clear notask_error, debugger will notify us.
1360 */
1361 if (likely(!ptrace))
1362 wo->notask_error = 0;
1363 return 0;
1364 }
1365
1366 if (likely(!ptrace) && unlikely(p->ptrace)) {
1367 /*
1368 * If it is traced by its real parent's group, just pretend
1369 * the caller is ptrace_do_wait() and reap this child if it
1370 * is zombie.
1371 *
1372 * This also hides group stop state from real parent; otherwise
1373 * a single stop can be reported twice as group and ptrace stop.
1374 * If a ptracer wants to distinguish these two events for its
1375 * own children it should create a separate process which takes
1376 * the role of real parent.
1377 */
1378 if (!ptrace_reparented(p))
1379 ptrace = 1;
1380 }
1381
1382 /* slay zombie? */
1383 if (exit_state == EXIT_ZOMBIE) {
1384 /* we don't reap group leaders with subthreads */
1385 if (!delay_group_leader(p)) {
1386 /*
1387 * A zombie ptracee is only visible to its ptracer.
1388 * Notification and reaping will be cascaded to the
1389 * real parent when the ptracer detaches.
1390 */
1391 if (unlikely(ptrace) || likely(!p->ptrace))
1392 return wait_task_zombie(wo, p);
1393 }
1394
1395 /*
1396 * Allow access to stopped/continued state via zombie by
1397 * falling through. Clearing of notask_error is complex.
1398 *
1399 * When !@ptrace:
1400 *
1401 * If WEXITED is set, notask_error should naturally be
1402 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1403 * so, if there are live subthreads, there are events to
1404 * wait for. If all subthreads are dead, it's still safe
1405 * to clear - this function will be called again in finite
1406 * amount time once all the subthreads are released and
1407 * will then return without clearing.
1408 *
1409 * When @ptrace:
1410 *
1411 * Stopped state is per-task and thus can't change once the
1412 * target task dies. Only continued and exited can happen.
1413 * Clear notask_error if WCONTINUED | WEXITED.
1414 */
1415 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1416 wo->notask_error = 0;
1417 } else {
1418 /*
1419 * @p is alive and it's gonna stop, continue or exit, so
1420 * there always is something to wait for.
1421 */
1422 wo->notask_error = 0;
1423 }
1424
1425 /*
1426 * Wait for stopped. Depending on @ptrace, different stopped state
1427 * is used and the two don't interact with each other.
1428 */
1429 ret = wait_task_stopped(wo, ptrace, p);
1430 if (ret)
1431 return ret;
1432
1433 /*
1434 * Wait for continued. There's only one continued state and the
1435 * ptracer can consume it which can confuse the real parent. Don't
1436 * use WCONTINUED from ptracer. You don't need or want it.
1437 */
1438 return wait_task_continued(wo, p);
1439 }
1440
1441 /*
1442 * Do the work of do_wait() for one thread in the group, @tsk.
1443 *
1444 * -ECHILD should be in ->notask_error before the first call.
1445 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1446 * Returns zero if the search for a child should continue; then
1447 * ->notask_error is 0 if there were any eligible children,
1448 * or still -ECHILD.
1449 */
1450 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1451 {
1452 struct task_struct *p;
1453
1454 list_for_each_entry(p, &tsk->children, sibling) {
1455 int ret = wait_consider_task(wo, 0, p);
1456
1457 if (ret)
1458 return ret;
1459 }
1460
1461 return 0;
1462 }
1463
1464 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1465 {
1466 struct task_struct *p;
1467
1468 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1469 int ret = wait_consider_task(wo, 1, p);
1470
1471 if (ret)
1472 return ret;
1473 }
1474
1475 return 0;
1476 }
1477
1478 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1479 int sync, void *key)
1480 {
1481 struct wait_opts *wo = container_of(wait, struct wait_opts,
1482 child_wait);
1483 struct task_struct *p = key;
1484
1485 if (!eligible_pid(wo, p))
1486 return 0;
1487
1488 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1489 return 0;
1490
1491 return default_wake_function(wait, mode, sync, key);
1492 }
1493
1494 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1495 {
1496 __wake_up_sync_key(&parent->signal->wait_chldexit,
1497 TASK_INTERRUPTIBLE, 1, p);
1498 }
1499
1500 static long do_wait(struct wait_opts *wo)
1501 {
1502 struct task_struct *tsk;
1503 int retval;
1504
1505 trace_sched_process_wait(wo->wo_pid);
1506
1507 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1508 wo->child_wait.private = current;
1509 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1510 repeat:
1511 /*
1512 * If there is nothing that can match our criteria, just get out.
1513 * We will clear ->notask_error to zero if we see any child that
1514 * might later match our criteria, even if we are not able to reap
1515 * it yet.
1516 */
1517 wo->notask_error = -ECHILD;
1518 if ((wo->wo_type < PIDTYPE_MAX) &&
1519 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1520 goto notask;
1521
1522 set_current_state(TASK_INTERRUPTIBLE);
1523 read_lock(&tasklist_lock);
1524 tsk = current;
1525 do {
1526 retval = do_wait_thread(wo, tsk);
1527 if (retval)
1528 goto end;
1529
1530 retval = ptrace_do_wait(wo, tsk);
1531 if (retval)
1532 goto end;
1533
1534 if (wo->wo_flags & __WNOTHREAD)
1535 break;
1536 } while_each_thread(current, tsk);
1537 read_unlock(&tasklist_lock);
1538
1539 notask:
1540 retval = wo->notask_error;
1541 if (!retval && !(wo->wo_flags & WNOHANG)) {
1542 retval = -ERESTARTSYS;
1543 if (!signal_pending(current)) {
1544 schedule();
1545 goto repeat;
1546 }
1547 }
1548 end:
1549 __set_current_state(TASK_RUNNING);
1550 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1551 return retval;
1552 }
1553
1554 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1555 int options, struct rusage *ru)
1556 {
1557 struct wait_opts wo;
1558 struct pid *pid = NULL;
1559 enum pid_type type;
1560 long ret;
1561
1562 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1563 __WNOTHREAD|__WCLONE|__WALL))
1564 return -EINVAL;
1565 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1566 return -EINVAL;
1567
1568 switch (which) {
1569 case P_ALL:
1570 type = PIDTYPE_MAX;
1571 break;
1572 case P_PID:
1573 type = PIDTYPE_PID;
1574 if (upid <= 0)
1575 return -EINVAL;
1576 break;
1577 case P_PGID:
1578 type = PIDTYPE_PGID;
1579 if (upid <= 0)
1580 return -EINVAL;
1581 break;
1582 default:
1583 return -EINVAL;
1584 }
1585
1586 if (type < PIDTYPE_MAX)
1587 pid = find_get_pid(upid);
1588
1589 wo.wo_type = type;
1590 wo.wo_pid = pid;
1591 wo.wo_flags = options;
1592 wo.wo_info = infop;
1593 wo.wo_rusage = ru;
1594 ret = do_wait(&wo);
1595
1596 put_pid(pid);
1597 return ret;
1598 }
1599
1600 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1601 infop, int, options, struct rusage __user *, ru)
1602 {
1603 struct rusage r;
1604 struct waitid_info info = {.status = 0};
1605 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1606 int signo = 0;
1607
1608 if (err > 0) {
1609 signo = SIGCHLD;
1610 err = 0;
1611 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1612 return -EFAULT;
1613 }
1614 if (!infop)
1615 return err;
1616
1617 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1618 return -EFAULT;
1619
1620 user_access_begin();
1621 unsafe_put_user(signo, &infop->si_signo, Efault);
1622 unsafe_put_user(0, &infop->si_errno, Efault);
1623 unsafe_put_user(info.cause, &infop->si_code, Efault);
1624 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1625 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1626 unsafe_put_user(info.status, &infop->si_status, Efault);
1627 user_access_end();
1628 return err;
1629 Efault:
1630 user_access_end();
1631 return -EFAULT;
1632 }
1633
1634 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1635 struct rusage *ru)
1636 {
1637 struct wait_opts wo;
1638 struct pid *pid = NULL;
1639 enum pid_type type;
1640 long ret;
1641
1642 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1643 __WNOTHREAD|__WCLONE|__WALL))
1644 return -EINVAL;
1645
1646 /* -INT_MIN is not defined */
1647 if (upid == INT_MIN)
1648 return -ESRCH;
1649
1650 if (upid == -1)
1651 type = PIDTYPE_MAX;
1652 else if (upid < 0) {
1653 type = PIDTYPE_PGID;
1654 pid = find_get_pid(-upid);
1655 } else if (upid == 0) {
1656 type = PIDTYPE_PGID;
1657 pid = get_task_pid(current, PIDTYPE_PGID);
1658 } else /* upid > 0 */ {
1659 type = PIDTYPE_PID;
1660 pid = find_get_pid(upid);
1661 }
1662
1663 wo.wo_type = type;
1664 wo.wo_pid = pid;
1665 wo.wo_flags = options | WEXITED;
1666 wo.wo_info = NULL;
1667 wo.wo_stat = 0;
1668 wo.wo_rusage = ru;
1669 ret = do_wait(&wo);
1670 put_pid(pid);
1671 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1672 ret = -EFAULT;
1673
1674 return ret;
1675 }
1676
1677 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1678 int, options, struct rusage __user *, ru)
1679 {
1680 struct rusage r;
1681 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1682
1683 if (err > 0) {
1684 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1685 return -EFAULT;
1686 }
1687 return err;
1688 }
1689
1690 #ifdef __ARCH_WANT_SYS_WAITPID
1691
1692 /*
1693 * sys_waitpid() remains for compatibility. waitpid() should be
1694 * implemented by calling sys_wait4() from libc.a.
1695 */
1696 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1697 {
1698 return sys_wait4(pid, stat_addr, options, NULL);
1699 }
1700
1701 #endif
1702
1703 #ifdef CONFIG_COMPAT
1704 COMPAT_SYSCALL_DEFINE4(wait4,
1705 compat_pid_t, pid,
1706 compat_uint_t __user *, stat_addr,
1707 int, options,
1708 struct compat_rusage __user *, ru)
1709 {
1710 struct rusage r;
1711 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1712 if (err > 0) {
1713 if (ru && put_compat_rusage(&r, ru))
1714 return -EFAULT;
1715 }
1716 return err;
1717 }
1718
1719 COMPAT_SYSCALL_DEFINE5(waitid,
1720 int, which, compat_pid_t, pid,
1721 struct compat_siginfo __user *, infop, int, options,
1722 struct compat_rusage __user *, uru)
1723 {
1724 struct rusage ru;
1725 struct waitid_info info = {.status = 0};
1726 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1727 int signo = 0;
1728 if (err > 0) {
1729 signo = SIGCHLD;
1730 err = 0;
1731 if (uru) {
1732 /* kernel_waitid() overwrites everything in ru */
1733 if (COMPAT_USE_64BIT_TIME)
1734 err = copy_to_user(uru, &ru, sizeof(ru));
1735 else
1736 err = put_compat_rusage(&ru, uru);
1737 if (err)
1738 return -EFAULT;
1739 }
1740 }
1741
1742 if (!infop)
1743 return err;
1744
1745 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1746 return -EFAULT;
1747
1748 user_access_begin();
1749 unsafe_put_user(signo, &infop->si_signo, Efault);
1750 unsafe_put_user(0, &infop->si_errno, Efault);
1751 unsafe_put_user(info.cause, &infop->si_code, Efault);
1752 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1753 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1754 unsafe_put_user(info.status, &infop->si_status, Efault);
1755 user_access_end();
1756 return err;
1757 Efault:
1758 user_access_end();
1759 return -EFAULT;
1760 }
1761 #endif
1762
1763 __weak void abort(void)
1764 {
1765 BUG();
1766
1767 /* if that doesn't kill us, halt */
1768 panic("Oops failed to kill thread");
1769 }
1770 EXPORT_SYMBOL(abort);