Merge branch 'for-linus' of git://oss.sgi.com:8090/xfs/xfs-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/kthread.h>
30 #include <linux/mempolicy.h>
31 #include <linux/taskstats_kern.h>
32 #include <linux/delayacct.h>
33 #include <linux/freezer.h>
34 #include <linux/cgroup.h>
35 #include <linux/syscalls.h>
36 #include <linux/signal.h>
37 #include <linux/posix-timers.h>
38 #include <linux/cn_proc.h>
39 #include <linux/mutex.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47
48 #include <asm/uaccess.h>
49 #include <asm/unistd.h>
50 #include <asm/pgtable.h>
51 #include <asm/mmu_context.h>
52
53 static void exit_mm(struct task_struct * tsk);
54
55 static void __unhash_process(struct task_struct *p)
56 {
57 nr_threads--;
58 detach_pid(p, PIDTYPE_PID);
59 if (thread_group_leader(p)) {
60 detach_pid(p, PIDTYPE_PGID);
61 detach_pid(p, PIDTYPE_SID);
62
63 list_del_rcu(&p->tasks);
64 __get_cpu_var(process_counts)--;
65 }
66 list_del_rcu(&p->thread_group);
67 remove_parent(p);
68 }
69
70 /*
71 * This function expects the tasklist_lock write-locked.
72 */
73 static void __exit_signal(struct task_struct *tsk)
74 {
75 struct signal_struct *sig = tsk->signal;
76 struct sighand_struct *sighand;
77
78 BUG_ON(!sig);
79 BUG_ON(!atomic_read(&sig->count));
80
81 rcu_read_lock();
82 sighand = rcu_dereference(tsk->sighand);
83 spin_lock(&sighand->siglock);
84
85 posix_cpu_timers_exit(tsk);
86 if (atomic_dec_and_test(&sig->count))
87 posix_cpu_timers_exit_group(tsk);
88 else {
89 /*
90 * If there is any task waiting for the group exit
91 * then notify it:
92 */
93 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count)
94 wake_up_process(sig->group_exit_task);
95
96 if (tsk == sig->curr_target)
97 sig->curr_target = next_thread(tsk);
98 /*
99 * Accumulate here the counters for all threads but the
100 * group leader as they die, so they can be added into
101 * the process-wide totals when those are taken.
102 * The group leader stays around as a zombie as long
103 * as there are other threads. When it gets reaped,
104 * the exit.c code will add its counts into these totals.
105 * We won't ever get here for the group leader, since it
106 * will have been the last reference on the signal_struct.
107 */
108 sig->utime = cputime_add(sig->utime, tsk->utime);
109 sig->stime = cputime_add(sig->stime, tsk->stime);
110 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
111 sig->min_flt += tsk->min_flt;
112 sig->maj_flt += tsk->maj_flt;
113 sig->nvcsw += tsk->nvcsw;
114 sig->nivcsw += tsk->nivcsw;
115 sig->inblock += task_io_get_inblock(tsk);
116 sig->oublock += task_io_get_oublock(tsk);
117 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
118 sig = NULL; /* Marker for below. */
119 }
120
121 __unhash_process(tsk);
122
123 tsk->signal = NULL;
124 tsk->sighand = NULL;
125 spin_unlock(&sighand->siglock);
126 rcu_read_unlock();
127
128 __cleanup_sighand(sighand);
129 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
130 flush_sigqueue(&tsk->pending);
131 if (sig) {
132 flush_sigqueue(&sig->shared_pending);
133 taskstats_tgid_free(sig);
134 __cleanup_signal(sig);
135 }
136 }
137
138 static void delayed_put_task_struct(struct rcu_head *rhp)
139 {
140 put_task_struct(container_of(rhp, struct task_struct, rcu));
141 }
142
143 void release_task(struct task_struct * p)
144 {
145 struct task_struct *leader;
146 int zap_leader;
147 repeat:
148 atomic_dec(&p->user->processes);
149 proc_flush_task(p);
150 write_lock_irq(&tasklist_lock);
151 ptrace_unlink(p);
152 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
153 __exit_signal(p);
154
155 /*
156 * If we are the last non-leader member of the thread
157 * group, and the leader is zombie, then notify the
158 * group leader's parent process. (if it wants notification.)
159 */
160 zap_leader = 0;
161 leader = p->group_leader;
162 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
163 BUG_ON(leader->exit_signal == -1);
164 do_notify_parent(leader, leader->exit_signal);
165 /*
166 * If we were the last child thread and the leader has
167 * exited already, and the leader's parent ignores SIGCHLD,
168 * then we are the one who should release the leader.
169 *
170 * do_notify_parent() will have marked it self-reaping in
171 * that case.
172 */
173 zap_leader = (leader->exit_signal == -1);
174 }
175
176 write_unlock_irq(&tasklist_lock);
177 release_thread(p);
178 call_rcu(&p->rcu, delayed_put_task_struct);
179
180 p = leader;
181 if (unlikely(zap_leader))
182 goto repeat;
183 }
184
185 /*
186 * This checks not only the pgrp, but falls back on the pid if no
187 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
188 * without this...
189 *
190 * The caller must hold rcu lock or the tasklist lock.
191 */
192 struct pid *session_of_pgrp(struct pid *pgrp)
193 {
194 struct task_struct *p;
195 struct pid *sid = NULL;
196
197 p = pid_task(pgrp, PIDTYPE_PGID);
198 if (p == NULL)
199 p = pid_task(pgrp, PIDTYPE_PID);
200 if (p != NULL)
201 sid = task_session(p);
202
203 return sid;
204 }
205
206 /*
207 * Determine if a process group is "orphaned", according to the POSIX
208 * definition in 2.2.2.52. Orphaned process groups are not to be affected
209 * by terminal-generated stop signals. Newly orphaned process groups are
210 * to receive a SIGHUP and a SIGCONT.
211 *
212 * "I ask you, have you ever known what it is to be an orphan?"
213 */
214 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
215 {
216 struct task_struct *p;
217 int ret = 1;
218
219 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
220 if (p == ignored_task
221 || p->exit_state
222 || is_global_init(p->real_parent))
223 continue;
224 if (task_pgrp(p->real_parent) != pgrp &&
225 task_session(p->real_parent) == task_session(p)) {
226 ret = 0;
227 break;
228 }
229 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
230 return ret; /* (sighing) "Often!" */
231 }
232
233 int is_current_pgrp_orphaned(void)
234 {
235 int retval;
236
237 read_lock(&tasklist_lock);
238 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
239 read_unlock(&tasklist_lock);
240
241 return retval;
242 }
243
244 static int has_stopped_jobs(struct pid *pgrp)
245 {
246 int retval = 0;
247 struct task_struct *p;
248
249 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
250 if (!task_is_stopped(p))
251 continue;
252 retval = 1;
253 break;
254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255 return retval;
256 }
257
258 /**
259 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
260 *
261 * If a kernel thread is launched as a result of a system call, or if
262 * it ever exits, it should generally reparent itself to kthreadd so it
263 * isn't in the way of other processes and is correctly cleaned up on exit.
264 *
265 * The various task state such as scheduling policy and priority may have
266 * been inherited from a user process, so we reset them to sane values here.
267 *
268 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
269 */
270 static void reparent_to_kthreadd(void)
271 {
272 write_lock_irq(&tasklist_lock);
273
274 ptrace_unlink(current);
275 /* Reparent to init */
276 remove_parent(current);
277 current->real_parent = current->parent = kthreadd_task;
278 add_parent(current);
279
280 /* Set the exit signal to SIGCHLD so we signal init on exit */
281 current->exit_signal = SIGCHLD;
282
283 if (task_nice(current) < 0)
284 set_user_nice(current, 0);
285 /* cpus_allowed? */
286 /* rt_priority? */
287 /* signals? */
288 security_task_reparent_to_init(current);
289 memcpy(current->signal->rlim, init_task.signal->rlim,
290 sizeof(current->signal->rlim));
291 atomic_inc(&(INIT_USER->__count));
292 write_unlock_irq(&tasklist_lock);
293 switch_uid(INIT_USER);
294 }
295
296 void __set_special_pids(pid_t session, pid_t pgrp)
297 {
298 struct task_struct *curr = current->group_leader;
299
300 if (task_session_nr(curr) != session) {
301 detach_pid(curr, PIDTYPE_SID);
302 set_task_session(curr, session);
303 attach_pid(curr, PIDTYPE_SID, find_pid(session));
304 }
305 if (task_pgrp_nr(curr) != pgrp) {
306 detach_pid(curr, PIDTYPE_PGID);
307 set_task_pgrp(curr, pgrp);
308 attach_pid(curr, PIDTYPE_PGID, find_pid(pgrp));
309 }
310 }
311
312 static void set_special_pids(pid_t session, pid_t pgrp)
313 {
314 write_lock_irq(&tasklist_lock);
315 __set_special_pids(session, pgrp);
316 write_unlock_irq(&tasklist_lock);
317 }
318
319 /*
320 * Let kernel threads use this to say that they
321 * allow a certain signal (since daemonize() will
322 * have disabled all of them by default).
323 */
324 int allow_signal(int sig)
325 {
326 if (!valid_signal(sig) || sig < 1)
327 return -EINVAL;
328
329 spin_lock_irq(&current->sighand->siglock);
330 sigdelset(&current->blocked, sig);
331 if (!current->mm) {
332 /* Kernel threads handle their own signals.
333 Let the signal code know it'll be handled, so
334 that they don't get converted to SIGKILL or
335 just silently dropped */
336 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
337 }
338 recalc_sigpending();
339 spin_unlock_irq(&current->sighand->siglock);
340 return 0;
341 }
342
343 EXPORT_SYMBOL(allow_signal);
344
345 int disallow_signal(int sig)
346 {
347 if (!valid_signal(sig) || sig < 1)
348 return -EINVAL;
349
350 spin_lock_irq(&current->sighand->siglock);
351 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
352 recalc_sigpending();
353 spin_unlock_irq(&current->sighand->siglock);
354 return 0;
355 }
356
357 EXPORT_SYMBOL(disallow_signal);
358
359 /*
360 * Put all the gunge required to become a kernel thread without
361 * attached user resources in one place where it belongs.
362 */
363
364 void daemonize(const char *name, ...)
365 {
366 va_list args;
367 struct fs_struct *fs;
368 sigset_t blocked;
369
370 va_start(args, name);
371 vsnprintf(current->comm, sizeof(current->comm), name, args);
372 va_end(args);
373
374 /*
375 * If we were started as result of loading a module, close all of the
376 * user space pages. We don't need them, and if we didn't close them
377 * they would be locked into memory.
378 */
379 exit_mm(current);
380 /*
381 * We don't want to have TIF_FREEZE set if the system-wide hibernation
382 * or suspend transition begins right now.
383 */
384 current->flags |= PF_NOFREEZE;
385
386 set_special_pids(1, 1);
387 proc_clear_tty(current);
388
389 /* Block and flush all signals */
390 sigfillset(&blocked);
391 sigprocmask(SIG_BLOCK, &blocked, NULL);
392 flush_signals(current);
393
394 /* Become as one with the init task */
395
396 exit_fs(current); /* current->fs->count--; */
397 fs = init_task.fs;
398 current->fs = fs;
399 atomic_inc(&fs->count);
400
401 if (current->nsproxy != init_task.nsproxy) {
402 get_nsproxy(init_task.nsproxy);
403 switch_task_namespaces(current, init_task.nsproxy);
404 }
405
406 exit_files(current);
407 current->files = init_task.files;
408 atomic_inc(&current->files->count);
409
410 reparent_to_kthreadd();
411 }
412
413 EXPORT_SYMBOL(daemonize);
414
415 static void close_files(struct files_struct * files)
416 {
417 int i, j;
418 struct fdtable *fdt;
419
420 j = 0;
421
422 /*
423 * It is safe to dereference the fd table without RCU or
424 * ->file_lock because this is the last reference to the
425 * files structure.
426 */
427 fdt = files_fdtable(files);
428 for (;;) {
429 unsigned long set;
430 i = j * __NFDBITS;
431 if (i >= fdt->max_fds)
432 break;
433 set = fdt->open_fds->fds_bits[j++];
434 while (set) {
435 if (set & 1) {
436 struct file * file = xchg(&fdt->fd[i], NULL);
437 if (file) {
438 filp_close(file, files);
439 cond_resched();
440 }
441 }
442 i++;
443 set >>= 1;
444 }
445 }
446 }
447
448 struct files_struct *get_files_struct(struct task_struct *task)
449 {
450 struct files_struct *files;
451
452 task_lock(task);
453 files = task->files;
454 if (files)
455 atomic_inc(&files->count);
456 task_unlock(task);
457
458 return files;
459 }
460
461 void fastcall put_files_struct(struct files_struct *files)
462 {
463 struct fdtable *fdt;
464
465 if (atomic_dec_and_test(&files->count)) {
466 close_files(files);
467 /*
468 * Free the fd and fdset arrays if we expanded them.
469 * If the fdtable was embedded, pass files for freeing
470 * at the end of the RCU grace period. Otherwise,
471 * you can free files immediately.
472 */
473 fdt = files_fdtable(files);
474 if (fdt != &files->fdtab)
475 kmem_cache_free(files_cachep, files);
476 free_fdtable(fdt);
477 }
478 }
479
480 EXPORT_SYMBOL(put_files_struct);
481
482 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
483 {
484 struct files_struct *old;
485
486 old = tsk->files;
487 task_lock(tsk);
488 tsk->files = files;
489 task_unlock(tsk);
490 put_files_struct(old);
491 }
492 EXPORT_SYMBOL(reset_files_struct);
493
494 static void __exit_files(struct task_struct *tsk)
495 {
496 struct files_struct * files = tsk->files;
497
498 if (files) {
499 task_lock(tsk);
500 tsk->files = NULL;
501 task_unlock(tsk);
502 put_files_struct(files);
503 }
504 }
505
506 void exit_files(struct task_struct *tsk)
507 {
508 __exit_files(tsk);
509 }
510
511 static void __put_fs_struct(struct fs_struct *fs)
512 {
513 /* No need to hold fs->lock if we are killing it */
514 if (atomic_dec_and_test(&fs->count)) {
515 dput(fs->root);
516 mntput(fs->rootmnt);
517 dput(fs->pwd);
518 mntput(fs->pwdmnt);
519 if (fs->altroot) {
520 dput(fs->altroot);
521 mntput(fs->altrootmnt);
522 }
523 kmem_cache_free(fs_cachep, fs);
524 }
525 }
526
527 void put_fs_struct(struct fs_struct *fs)
528 {
529 __put_fs_struct(fs);
530 }
531
532 static void __exit_fs(struct task_struct *tsk)
533 {
534 struct fs_struct * fs = tsk->fs;
535
536 if (fs) {
537 task_lock(tsk);
538 tsk->fs = NULL;
539 task_unlock(tsk);
540 __put_fs_struct(fs);
541 }
542 }
543
544 void exit_fs(struct task_struct *tsk)
545 {
546 __exit_fs(tsk);
547 }
548
549 EXPORT_SYMBOL_GPL(exit_fs);
550
551 /*
552 * Turn us into a lazy TLB process if we
553 * aren't already..
554 */
555 static void exit_mm(struct task_struct * tsk)
556 {
557 struct mm_struct *mm = tsk->mm;
558
559 mm_release(tsk, mm);
560 if (!mm)
561 return;
562 /*
563 * Serialize with any possible pending coredump.
564 * We must hold mmap_sem around checking core_waiters
565 * and clearing tsk->mm. The core-inducing thread
566 * will increment core_waiters for each thread in the
567 * group with ->mm != NULL.
568 */
569 down_read(&mm->mmap_sem);
570 if (mm->core_waiters) {
571 up_read(&mm->mmap_sem);
572 down_write(&mm->mmap_sem);
573 if (!--mm->core_waiters)
574 complete(mm->core_startup_done);
575 up_write(&mm->mmap_sem);
576
577 wait_for_completion(&mm->core_done);
578 down_read(&mm->mmap_sem);
579 }
580 atomic_inc(&mm->mm_count);
581 BUG_ON(mm != tsk->active_mm);
582 /* more a memory barrier than a real lock */
583 task_lock(tsk);
584 tsk->mm = NULL;
585 up_read(&mm->mmap_sem);
586 enter_lazy_tlb(mm, current);
587 /* We don't want this task to be frozen prematurely */
588 clear_freeze_flag(tsk);
589 task_unlock(tsk);
590 mmput(mm);
591 }
592
593 static void
594 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
595 {
596 if (p->pdeath_signal)
597 /* We already hold the tasklist_lock here. */
598 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
599
600 /* Move the child from its dying parent to the new one. */
601 if (unlikely(traced)) {
602 /* Preserve ptrace links if someone else is tracing this child. */
603 list_del_init(&p->ptrace_list);
604 if (p->parent != p->real_parent)
605 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
606 } else {
607 /* If this child is being traced, then we're the one tracing it
608 * anyway, so let go of it.
609 */
610 p->ptrace = 0;
611 remove_parent(p);
612 p->parent = p->real_parent;
613 add_parent(p);
614
615 if (task_is_traced(p)) {
616 /*
617 * If it was at a trace stop, turn it into
618 * a normal stop since it's no longer being
619 * traced.
620 */
621 ptrace_untrace(p);
622 }
623 }
624
625 /* If this is a threaded reparent there is no need to
626 * notify anyone anything has happened.
627 */
628 if (p->real_parent->group_leader == father->group_leader)
629 return;
630
631 /* We don't want people slaying init. */
632 if (p->exit_signal != -1)
633 p->exit_signal = SIGCHLD;
634
635 /* If we'd notified the old parent about this child's death,
636 * also notify the new parent.
637 */
638 if (!traced && p->exit_state == EXIT_ZOMBIE &&
639 p->exit_signal != -1 && thread_group_empty(p))
640 do_notify_parent(p, p->exit_signal);
641
642 /*
643 * process group orphan check
644 * Case ii: Our child is in a different pgrp
645 * than we are, and it was the only connection
646 * outside, so the child pgrp is now orphaned.
647 */
648 if ((task_pgrp(p) != task_pgrp(father)) &&
649 (task_session(p) == task_session(father))) {
650 struct pid *pgrp = task_pgrp(p);
651
652 if (will_become_orphaned_pgrp(pgrp, NULL) &&
653 has_stopped_jobs(pgrp)) {
654 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
655 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
656 }
657 }
658 }
659
660 /*
661 * When we die, we re-parent all our children.
662 * Try to give them to another thread in our thread
663 * group, and if no such member exists, give it to
664 * the child reaper process (ie "init") in our pid
665 * space.
666 */
667 static void forget_original_parent(struct task_struct *father)
668 {
669 struct task_struct *p, *n, *reaper = father;
670 struct list_head ptrace_dead;
671
672 INIT_LIST_HEAD(&ptrace_dead);
673
674 write_lock_irq(&tasklist_lock);
675
676 do {
677 reaper = next_thread(reaper);
678 if (reaper == father) {
679 reaper = task_child_reaper(father);
680 break;
681 }
682 } while (reaper->flags & PF_EXITING);
683
684 /*
685 * There are only two places where our children can be:
686 *
687 * - in our child list
688 * - in our ptraced child list
689 *
690 * Search them and reparent children.
691 */
692 list_for_each_entry_safe(p, n, &father->children, sibling) {
693 int ptrace;
694
695 ptrace = p->ptrace;
696
697 /* if father isn't the real parent, then ptrace must be enabled */
698 BUG_ON(father != p->real_parent && !ptrace);
699
700 if (father == p->real_parent) {
701 /* reparent with a reaper, real father it's us */
702 p->real_parent = reaper;
703 reparent_thread(p, father, 0);
704 } else {
705 /* reparent ptraced task to its real parent */
706 __ptrace_unlink (p);
707 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
708 thread_group_empty(p))
709 do_notify_parent(p, p->exit_signal);
710 }
711
712 /*
713 * if the ptraced child is a zombie with exit_signal == -1
714 * we must collect it before we exit, or it will remain
715 * zombie forever since we prevented it from self-reap itself
716 * while it was being traced by us, to be able to see it in wait4.
717 */
718 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
719 list_add(&p->ptrace_list, &ptrace_dead);
720 }
721
722 list_for_each_entry_safe(p, n, &father->ptrace_children, ptrace_list) {
723 p->real_parent = reaper;
724 reparent_thread(p, father, 1);
725 }
726
727 write_unlock_irq(&tasklist_lock);
728 BUG_ON(!list_empty(&father->children));
729 BUG_ON(!list_empty(&father->ptrace_children));
730
731 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_list) {
732 list_del_init(&p->ptrace_list);
733 release_task(p);
734 }
735
736 }
737
738 /*
739 * Send signals to all our closest relatives so that they know
740 * to properly mourn us..
741 */
742 static void exit_notify(struct task_struct *tsk)
743 {
744 int state;
745 struct task_struct *t;
746 struct pid *pgrp;
747
748 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
749 && !thread_group_empty(tsk)) {
750 /*
751 * This occurs when there was a race between our exit
752 * syscall and a group signal choosing us as the one to
753 * wake up. It could be that we are the only thread
754 * alerted to check for pending signals, but another thread
755 * should be woken now to take the signal since we will not.
756 * Now we'll wake all the threads in the group just to make
757 * sure someone gets all the pending signals.
758 */
759 spin_lock_irq(&tsk->sighand->siglock);
760 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
761 if (!signal_pending(t) && !(t->flags & PF_EXITING))
762 recalc_sigpending_and_wake(t);
763 spin_unlock_irq(&tsk->sighand->siglock);
764 }
765
766 /*
767 * This does two things:
768 *
769 * A. Make init inherit all the child processes
770 * B. Check to see if any process groups have become orphaned
771 * as a result of our exiting, and if they have any stopped
772 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
773 */
774 forget_original_parent(tsk);
775 exit_task_namespaces(tsk);
776
777 write_lock_irq(&tasklist_lock);
778 /*
779 * Check to see if any process groups have become orphaned
780 * as a result of our exiting, and if they have any stopped
781 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
782 *
783 * Case i: Our father is in a different pgrp than we are
784 * and we were the only connection outside, so our pgrp
785 * is about to become orphaned.
786 */
787 t = tsk->real_parent;
788
789 pgrp = task_pgrp(tsk);
790 if ((task_pgrp(t) != pgrp) &&
791 (task_session(t) == task_session(tsk)) &&
792 will_become_orphaned_pgrp(pgrp, tsk) &&
793 has_stopped_jobs(pgrp)) {
794 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
795 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
796 }
797
798 /* Let father know we died
799 *
800 * Thread signals are configurable, but you aren't going to use
801 * that to send signals to arbitary processes.
802 * That stops right now.
803 *
804 * If the parent exec id doesn't match the exec id we saved
805 * when we started then we know the parent has changed security
806 * domain.
807 *
808 * If our self_exec id doesn't match our parent_exec_id then
809 * we have changed execution domain as these two values started
810 * the same after a fork.
811 */
812 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
813 ( tsk->parent_exec_id != t->self_exec_id ||
814 tsk->self_exec_id != tsk->parent_exec_id)
815 && !capable(CAP_KILL))
816 tsk->exit_signal = SIGCHLD;
817
818
819 /* If something other than our normal parent is ptracing us, then
820 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
821 * only has special meaning to our real parent.
822 */
823 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
824 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
825 do_notify_parent(tsk, signal);
826 } else if (tsk->ptrace) {
827 do_notify_parent(tsk, SIGCHLD);
828 }
829
830 state = EXIT_ZOMBIE;
831 if (tsk->exit_signal == -1 && likely(!tsk->ptrace))
832 state = EXIT_DEAD;
833 tsk->exit_state = state;
834
835 if (thread_group_leader(tsk) &&
836 tsk->signal->notify_count < 0 &&
837 tsk->signal->group_exit_task)
838 wake_up_process(tsk->signal->group_exit_task);
839
840 write_unlock_irq(&tasklist_lock);
841
842 /* If the process is dead, release it - nobody will wait for it */
843 if (state == EXIT_DEAD)
844 release_task(tsk);
845 }
846
847 #ifdef CONFIG_DEBUG_STACK_USAGE
848 static void check_stack_usage(void)
849 {
850 static DEFINE_SPINLOCK(low_water_lock);
851 static int lowest_to_date = THREAD_SIZE;
852 unsigned long *n = end_of_stack(current);
853 unsigned long free;
854
855 while (*n == 0)
856 n++;
857 free = (unsigned long)n - (unsigned long)end_of_stack(current);
858
859 if (free >= lowest_to_date)
860 return;
861
862 spin_lock(&low_water_lock);
863 if (free < lowest_to_date) {
864 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
865 "left\n",
866 current->comm, free);
867 lowest_to_date = free;
868 }
869 spin_unlock(&low_water_lock);
870 }
871 #else
872 static inline void check_stack_usage(void) {}
873 #endif
874
875 static inline void exit_child_reaper(struct task_struct *tsk)
876 {
877 if (likely(tsk->group_leader != task_child_reaper(tsk)))
878 return;
879
880 if (tsk->nsproxy->pid_ns == &init_pid_ns)
881 panic("Attempted to kill init!");
882
883 /*
884 * @tsk is the last thread in the 'cgroup-init' and is exiting.
885 * Terminate all remaining processes in the namespace and reap them
886 * before exiting @tsk.
887 *
888 * Note that @tsk (last thread of cgroup-init) may not necessarily
889 * be the child-reaper (i.e main thread of cgroup-init) of the
890 * namespace i.e the child_reaper may have already exited.
891 *
892 * Even after a child_reaper exits, we let it inherit orphaned children,
893 * because, pid_ns->child_reaper remains valid as long as there is
894 * at least one living sub-thread in the cgroup init.
895
896 * This living sub-thread of the cgroup-init will be notified when
897 * a child inherited by the 'child-reaper' exits (do_notify_parent()
898 * uses __group_send_sig_info()). Further, when reaping child processes,
899 * do_wait() iterates over children of all living sub threads.
900
901 * i.e even though 'child_reaper' thread is listed as the parent of the
902 * orphaned children, any living sub-thread in the cgroup-init can
903 * perform the role of the child_reaper.
904 */
905 zap_pid_ns_processes(tsk->nsproxy->pid_ns);
906 }
907
908 fastcall NORET_TYPE void do_exit(long code)
909 {
910 struct task_struct *tsk = current;
911 int group_dead;
912
913 profile_task_exit(tsk);
914
915 WARN_ON(atomic_read(&tsk->fs_excl));
916
917 if (unlikely(in_interrupt()))
918 panic("Aiee, killing interrupt handler!");
919 if (unlikely(!tsk->pid))
920 panic("Attempted to kill the idle task!");
921
922 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
923 current->ptrace_message = code;
924 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
925 }
926
927 /*
928 * We're taking recursive faults here in do_exit. Safest is to just
929 * leave this task alone and wait for reboot.
930 */
931 if (unlikely(tsk->flags & PF_EXITING)) {
932 printk(KERN_ALERT
933 "Fixing recursive fault but reboot is needed!\n");
934 /*
935 * We can do this unlocked here. The futex code uses
936 * this flag just to verify whether the pi state
937 * cleanup has been done or not. In the worst case it
938 * loops once more. We pretend that the cleanup was
939 * done as there is no way to return. Either the
940 * OWNER_DIED bit is set by now or we push the blocked
941 * task into the wait for ever nirwana as well.
942 */
943 tsk->flags |= PF_EXITPIDONE;
944 if (tsk->io_context)
945 exit_io_context();
946 set_current_state(TASK_UNINTERRUPTIBLE);
947 schedule();
948 }
949
950 tsk->flags |= PF_EXITING;
951 /*
952 * tsk->flags are checked in the futex code to protect against
953 * an exiting task cleaning up the robust pi futexes.
954 */
955 smp_mb();
956 spin_unlock_wait(&tsk->pi_lock);
957
958 if (unlikely(in_atomic()))
959 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
960 current->comm, task_pid_nr(current),
961 preempt_count());
962
963 acct_update_integrals(tsk);
964 if (tsk->mm) {
965 update_hiwater_rss(tsk->mm);
966 update_hiwater_vm(tsk->mm);
967 }
968 group_dead = atomic_dec_and_test(&tsk->signal->live);
969 if (group_dead) {
970 exit_child_reaper(tsk);
971 hrtimer_cancel(&tsk->signal->real_timer);
972 exit_itimers(tsk->signal);
973 }
974 acct_collect(code, group_dead);
975 #ifdef CONFIG_FUTEX
976 if (unlikely(tsk->robust_list))
977 exit_robust_list(tsk);
978 #ifdef CONFIG_COMPAT
979 if (unlikely(tsk->compat_robust_list))
980 compat_exit_robust_list(tsk);
981 #endif
982 #endif
983 if (group_dead)
984 tty_audit_exit();
985 if (unlikely(tsk->audit_context))
986 audit_free(tsk);
987
988 tsk->exit_code = code;
989 taskstats_exit(tsk, group_dead);
990
991 exit_mm(tsk);
992
993 if (group_dead)
994 acct_process();
995 exit_sem(tsk);
996 __exit_files(tsk);
997 __exit_fs(tsk);
998 check_stack_usage();
999 exit_thread();
1000 cgroup_exit(tsk, 1);
1001 exit_keys(tsk);
1002
1003 if (group_dead && tsk->signal->leader)
1004 disassociate_ctty(1);
1005
1006 module_put(task_thread_info(tsk)->exec_domain->module);
1007 if (tsk->binfmt)
1008 module_put(tsk->binfmt->module);
1009
1010 proc_exit_connector(tsk);
1011 exit_notify(tsk);
1012 #ifdef CONFIG_NUMA
1013 mpol_free(tsk->mempolicy);
1014 tsk->mempolicy = NULL;
1015 #endif
1016 #ifdef CONFIG_FUTEX
1017 /*
1018 * This must happen late, after the PID is not
1019 * hashed anymore:
1020 */
1021 if (unlikely(!list_empty(&tsk->pi_state_list)))
1022 exit_pi_state_list(tsk);
1023 if (unlikely(current->pi_state_cache))
1024 kfree(current->pi_state_cache);
1025 #endif
1026 /*
1027 * Make sure we are holding no locks:
1028 */
1029 debug_check_no_locks_held(tsk);
1030 /*
1031 * We can do this unlocked here. The futex code uses this flag
1032 * just to verify whether the pi state cleanup has been done
1033 * or not. In the worst case it loops once more.
1034 */
1035 tsk->flags |= PF_EXITPIDONE;
1036
1037 if (tsk->io_context)
1038 exit_io_context();
1039
1040 if (tsk->splice_pipe)
1041 __free_pipe_info(tsk->splice_pipe);
1042
1043 preempt_disable();
1044 /* causes final put_task_struct in finish_task_switch(). */
1045 tsk->state = TASK_DEAD;
1046
1047 schedule();
1048 BUG();
1049 /* Avoid "noreturn function does return". */
1050 for (;;)
1051 cpu_relax(); /* For when BUG is null */
1052 }
1053
1054 EXPORT_SYMBOL_GPL(do_exit);
1055
1056 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1057 {
1058 if (comp)
1059 complete(comp);
1060
1061 do_exit(code);
1062 }
1063
1064 EXPORT_SYMBOL(complete_and_exit);
1065
1066 asmlinkage long sys_exit(int error_code)
1067 {
1068 do_exit((error_code&0xff)<<8);
1069 }
1070
1071 /*
1072 * Take down every thread in the group. This is called by fatal signals
1073 * as well as by sys_exit_group (below).
1074 */
1075 NORET_TYPE void
1076 do_group_exit(int exit_code)
1077 {
1078 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1079
1080 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1081 exit_code = current->signal->group_exit_code;
1082 else if (!thread_group_empty(current)) {
1083 struct signal_struct *const sig = current->signal;
1084 struct sighand_struct *const sighand = current->sighand;
1085 spin_lock_irq(&sighand->siglock);
1086 if (signal_group_exit(sig))
1087 /* Another thread got here before we took the lock. */
1088 exit_code = sig->group_exit_code;
1089 else {
1090 sig->group_exit_code = exit_code;
1091 sig->flags = SIGNAL_GROUP_EXIT;
1092 zap_other_threads(current);
1093 }
1094 spin_unlock_irq(&sighand->siglock);
1095 }
1096
1097 do_exit(exit_code);
1098 /* NOTREACHED */
1099 }
1100
1101 /*
1102 * this kills every thread in the thread group. Note that any externally
1103 * wait4()-ing process will get the correct exit code - even if this
1104 * thread is not the thread group leader.
1105 */
1106 asmlinkage void sys_exit_group(int error_code)
1107 {
1108 do_group_exit((error_code & 0xff) << 8);
1109 }
1110
1111 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1112 {
1113 int err;
1114 struct pid_namespace *ns;
1115
1116 ns = current->nsproxy->pid_ns;
1117 if (pid > 0) {
1118 if (task_pid_nr_ns(p, ns) != pid)
1119 return 0;
1120 } else if (!pid) {
1121 if (task_pgrp_nr_ns(p, ns) != task_pgrp_vnr(current))
1122 return 0;
1123 } else if (pid != -1) {
1124 if (task_pgrp_nr_ns(p, ns) != -pid)
1125 return 0;
1126 }
1127
1128 /*
1129 * Do not consider detached threads that are
1130 * not ptraced:
1131 */
1132 if (p->exit_signal == -1 && !p->ptrace)
1133 return 0;
1134
1135 /* Wait for all children (clone and not) if __WALL is set;
1136 * otherwise, wait for clone children *only* if __WCLONE is
1137 * set; otherwise, wait for non-clone children *only*. (Note:
1138 * A "clone" child here is one that reports to its parent
1139 * using a signal other than SIGCHLD.) */
1140 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1141 && !(options & __WALL))
1142 return 0;
1143 /*
1144 * Do not consider thread group leaders that are
1145 * in a non-empty thread group:
1146 */
1147 if (delay_group_leader(p))
1148 return 2;
1149
1150 err = security_task_wait(p);
1151 if (err)
1152 return err;
1153
1154 return 1;
1155 }
1156
1157 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1158 int why, int status,
1159 struct siginfo __user *infop,
1160 struct rusage __user *rusagep)
1161 {
1162 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1163
1164 put_task_struct(p);
1165 if (!retval)
1166 retval = put_user(SIGCHLD, &infop->si_signo);
1167 if (!retval)
1168 retval = put_user(0, &infop->si_errno);
1169 if (!retval)
1170 retval = put_user((short)why, &infop->si_code);
1171 if (!retval)
1172 retval = put_user(pid, &infop->si_pid);
1173 if (!retval)
1174 retval = put_user(uid, &infop->si_uid);
1175 if (!retval)
1176 retval = put_user(status, &infop->si_status);
1177 if (!retval)
1178 retval = pid;
1179 return retval;
1180 }
1181
1182 /*
1183 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1184 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1185 * the lock and this task is uninteresting. If we return nonzero, we have
1186 * released the lock and the system call should return.
1187 */
1188 static int wait_task_zombie(struct task_struct *p, int noreap,
1189 struct siginfo __user *infop,
1190 int __user *stat_addr, struct rusage __user *ru)
1191 {
1192 unsigned long state;
1193 int retval, status, traced;
1194 struct pid_namespace *ns;
1195
1196 ns = current->nsproxy->pid_ns;
1197
1198 if (unlikely(noreap)) {
1199 pid_t pid = task_pid_nr_ns(p, ns);
1200 uid_t uid = p->uid;
1201 int exit_code = p->exit_code;
1202 int why, status;
1203
1204 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1205 return 0;
1206 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1207 return 0;
1208 get_task_struct(p);
1209 read_unlock(&tasklist_lock);
1210 if ((exit_code & 0x7f) == 0) {
1211 why = CLD_EXITED;
1212 status = exit_code >> 8;
1213 } else {
1214 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1215 status = exit_code & 0x7f;
1216 }
1217 return wait_noreap_copyout(p, pid, uid, why,
1218 status, infop, ru);
1219 }
1220
1221 /*
1222 * Try to move the task's state to DEAD
1223 * only one thread is allowed to do this:
1224 */
1225 state = xchg(&p->exit_state, EXIT_DEAD);
1226 if (state != EXIT_ZOMBIE) {
1227 BUG_ON(state != EXIT_DEAD);
1228 return 0;
1229 }
1230
1231 /* traced means p->ptrace, but not vice versa */
1232 traced = (p->real_parent != p->parent);
1233
1234 if (likely(!traced)) {
1235 struct signal_struct *psig;
1236 struct signal_struct *sig;
1237
1238 /*
1239 * The resource counters for the group leader are in its
1240 * own task_struct. Those for dead threads in the group
1241 * are in its signal_struct, as are those for the child
1242 * processes it has previously reaped. All these
1243 * accumulate in the parent's signal_struct c* fields.
1244 *
1245 * We don't bother to take a lock here to protect these
1246 * p->signal fields, because they are only touched by
1247 * __exit_signal, which runs with tasklist_lock
1248 * write-locked anyway, and so is excluded here. We do
1249 * need to protect the access to p->parent->signal fields,
1250 * as other threads in the parent group can be right
1251 * here reaping other children at the same time.
1252 */
1253 spin_lock_irq(&p->parent->sighand->siglock);
1254 psig = p->parent->signal;
1255 sig = p->signal;
1256 psig->cutime =
1257 cputime_add(psig->cutime,
1258 cputime_add(p->utime,
1259 cputime_add(sig->utime,
1260 sig->cutime)));
1261 psig->cstime =
1262 cputime_add(psig->cstime,
1263 cputime_add(p->stime,
1264 cputime_add(sig->stime,
1265 sig->cstime)));
1266 psig->cgtime =
1267 cputime_add(psig->cgtime,
1268 cputime_add(p->gtime,
1269 cputime_add(sig->gtime,
1270 sig->cgtime)));
1271 psig->cmin_flt +=
1272 p->min_flt + sig->min_flt + sig->cmin_flt;
1273 psig->cmaj_flt +=
1274 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1275 psig->cnvcsw +=
1276 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1277 psig->cnivcsw +=
1278 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1279 psig->cinblock +=
1280 task_io_get_inblock(p) +
1281 sig->inblock + sig->cinblock;
1282 psig->coublock +=
1283 task_io_get_oublock(p) +
1284 sig->oublock + sig->coublock;
1285 spin_unlock_irq(&p->parent->sighand->siglock);
1286 }
1287
1288 /*
1289 * Now we are sure this task is interesting, and no other
1290 * thread can reap it because we set its state to EXIT_DEAD.
1291 */
1292 read_unlock(&tasklist_lock);
1293
1294 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1295 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1296 ? p->signal->group_exit_code : p->exit_code;
1297 if (!retval && stat_addr)
1298 retval = put_user(status, stat_addr);
1299 if (!retval && infop)
1300 retval = put_user(SIGCHLD, &infop->si_signo);
1301 if (!retval && infop)
1302 retval = put_user(0, &infop->si_errno);
1303 if (!retval && infop) {
1304 int why;
1305
1306 if ((status & 0x7f) == 0) {
1307 why = CLD_EXITED;
1308 status >>= 8;
1309 } else {
1310 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1311 status &= 0x7f;
1312 }
1313 retval = put_user((short)why, &infop->si_code);
1314 if (!retval)
1315 retval = put_user(status, &infop->si_status);
1316 }
1317 if (!retval && infop)
1318 retval = put_user(task_pid_nr_ns(p, ns), &infop->si_pid);
1319 if (!retval && infop)
1320 retval = put_user(p->uid, &infop->si_uid);
1321 if (!retval)
1322 retval = task_pid_nr_ns(p, ns);
1323
1324 if (traced) {
1325 write_lock_irq(&tasklist_lock);
1326 /* We dropped tasklist, ptracer could die and untrace */
1327 ptrace_unlink(p);
1328 /*
1329 * If this is not a detached task, notify the parent.
1330 * If it's still not detached after that, don't release
1331 * it now.
1332 */
1333 if (p->exit_signal != -1) {
1334 do_notify_parent(p, p->exit_signal);
1335 if (p->exit_signal != -1) {
1336 p->exit_state = EXIT_ZOMBIE;
1337 p = NULL;
1338 }
1339 }
1340 write_unlock_irq(&tasklist_lock);
1341 }
1342 if (p != NULL)
1343 release_task(p);
1344
1345 return retval;
1346 }
1347
1348 /*
1349 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1350 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1351 * the lock and this task is uninteresting. If we return nonzero, we have
1352 * released the lock and the system call should return.
1353 */
1354 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1355 int noreap, struct siginfo __user *infop,
1356 int __user *stat_addr, struct rusage __user *ru)
1357 {
1358 int retval, exit_code;
1359 pid_t pid;
1360
1361 if (!p->exit_code)
1362 return 0;
1363 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1364 p->signal->group_stop_count > 0)
1365 /*
1366 * A group stop is in progress and this is the group leader.
1367 * We won't report until all threads have stopped.
1368 */
1369 return 0;
1370
1371 /*
1372 * Now we are pretty sure this task is interesting.
1373 * Make sure it doesn't get reaped out from under us while we
1374 * give up the lock and then examine it below. We don't want to
1375 * keep holding onto the tasklist_lock while we call getrusage and
1376 * possibly take page faults for user memory.
1377 */
1378 pid = task_pid_nr_ns(p, current->nsproxy->pid_ns);
1379 get_task_struct(p);
1380 read_unlock(&tasklist_lock);
1381
1382 if (unlikely(noreap)) {
1383 uid_t uid = p->uid;
1384 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1385
1386 exit_code = p->exit_code;
1387 if (unlikely(!exit_code) || unlikely(p->exit_state))
1388 goto bail_ref;
1389 return wait_noreap_copyout(p, pid, uid,
1390 why, exit_code,
1391 infop, ru);
1392 }
1393
1394 write_lock_irq(&tasklist_lock);
1395
1396 /*
1397 * This uses xchg to be atomic with the thread resuming and setting
1398 * it. It must also be done with the write lock held to prevent a
1399 * race with the EXIT_ZOMBIE case.
1400 */
1401 exit_code = xchg(&p->exit_code, 0);
1402 if (unlikely(p->exit_state)) {
1403 /*
1404 * The task resumed and then died. Let the next iteration
1405 * catch it in EXIT_ZOMBIE. Note that exit_code might
1406 * already be zero here if it resumed and did _exit(0).
1407 * The task itself is dead and won't touch exit_code again;
1408 * other processors in this function are locked out.
1409 */
1410 p->exit_code = exit_code;
1411 exit_code = 0;
1412 }
1413 if (unlikely(exit_code == 0)) {
1414 /*
1415 * Another thread in this function got to it first, or it
1416 * resumed, or it resumed and then died.
1417 */
1418 write_unlock_irq(&tasklist_lock);
1419 bail_ref:
1420 put_task_struct(p);
1421 /*
1422 * We are returning to the wait loop without having successfully
1423 * removed the process and having released the lock. We cannot
1424 * continue, since the "p" task pointer is potentially stale.
1425 *
1426 * Return -EAGAIN, and do_wait() will restart the loop from the
1427 * beginning. Do _not_ re-acquire the lock.
1428 */
1429 return -EAGAIN;
1430 }
1431
1432 /* move to end of parent's list to avoid starvation */
1433 remove_parent(p);
1434 add_parent(p);
1435
1436 write_unlock_irq(&tasklist_lock);
1437
1438 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1439 if (!retval && stat_addr)
1440 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1441 if (!retval && infop)
1442 retval = put_user(SIGCHLD, &infop->si_signo);
1443 if (!retval && infop)
1444 retval = put_user(0, &infop->si_errno);
1445 if (!retval && infop)
1446 retval = put_user((short)((p->ptrace & PT_PTRACED)
1447 ? CLD_TRAPPED : CLD_STOPPED),
1448 &infop->si_code);
1449 if (!retval && infop)
1450 retval = put_user(exit_code, &infop->si_status);
1451 if (!retval && infop)
1452 retval = put_user(pid, &infop->si_pid);
1453 if (!retval && infop)
1454 retval = put_user(p->uid, &infop->si_uid);
1455 if (!retval)
1456 retval = pid;
1457 put_task_struct(p);
1458
1459 BUG_ON(!retval);
1460 return retval;
1461 }
1462
1463 /*
1464 * Handle do_wait work for one task in a live, non-stopped state.
1465 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1466 * the lock and this task is uninteresting. If we return nonzero, we have
1467 * released the lock and the system call should return.
1468 */
1469 static int wait_task_continued(struct task_struct *p, int noreap,
1470 struct siginfo __user *infop,
1471 int __user *stat_addr, struct rusage __user *ru)
1472 {
1473 int retval;
1474 pid_t pid;
1475 uid_t uid;
1476 struct pid_namespace *ns;
1477
1478 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1479 return 0;
1480
1481 spin_lock_irq(&p->sighand->siglock);
1482 /* Re-check with the lock held. */
1483 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1484 spin_unlock_irq(&p->sighand->siglock);
1485 return 0;
1486 }
1487 if (!noreap)
1488 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1489 spin_unlock_irq(&p->sighand->siglock);
1490
1491 ns = current->nsproxy->pid_ns;
1492 pid = task_pid_nr_ns(p, ns);
1493 uid = p->uid;
1494 get_task_struct(p);
1495 read_unlock(&tasklist_lock);
1496
1497 if (!infop) {
1498 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1499 put_task_struct(p);
1500 if (!retval && stat_addr)
1501 retval = put_user(0xffff, stat_addr);
1502 if (!retval)
1503 retval = task_pid_nr_ns(p, ns);
1504 } else {
1505 retval = wait_noreap_copyout(p, pid, uid,
1506 CLD_CONTINUED, SIGCONT,
1507 infop, ru);
1508 BUG_ON(retval == 0);
1509 }
1510
1511 return retval;
1512 }
1513
1514
1515 static inline int my_ptrace_child(struct task_struct *p)
1516 {
1517 if (!(p->ptrace & PT_PTRACED))
1518 return 0;
1519 if (!(p->ptrace & PT_ATTACHED))
1520 return 1;
1521 /*
1522 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1523 * we are the attacher. If we are the real parent, this is a race
1524 * inside ptrace_attach. It is waiting for the tasklist_lock,
1525 * which we have to switch the parent links, but has already set
1526 * the flags in p->ptrace.
1527 */
1528 return (p->parent != p->real_parent);
1529 }
1530
1531 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1532 int __user *stat_addr, struct rusage __user *ru)
1533 {
1534 DECLARE_WAITQUEUE(wait, current);
1535 struct task_struct *tsk;
1536 int flag, retval;
1537 int allowed, denied;
1538
1539 add_wait_queue(&current->signal->wait_chldexit,&wait);
1540 repeat:
1541 /*
1542 * We will set this flag if we see any child that might later
1543 * match our criteria, even if we are not able to reap it yet.
1544 */
1545 flag = 0;
1546 allowed = denied = 0;
1547 current->state = TASK_INTERRUPTIBLE;
1548 read_lock(&tasklist_lock);
1549 tsk = current;
1550 do {
1551 struct task_struct *p;
1552 int ret;
1553
1554 list_for_each_entry(p, &tsk->children, sibling) {
1555 ret = eligible_child(pid, options, p);
1556 if (!ret)
1557 continue;
1558
1559 if (unlikely(ret < 0)) {
1560 denied = ret;
1561 continue;
1562 }
1563 allowed = 1;
1564
1565 if (task_is_stopped_or_traced(p)) {
1566 /*
1567 * It's stopped now, so it might later
1568 * continue, exit, or stop again.
1569 *
1570 * When we hit the race with PTRACE_ATTACH, we
1571 * will not report this child. But the race
1572 * means it has not yet been moved to our
1573 * ptrace_children list, so we need to set the
1574 * flag here to avoid a spurious ECHILD when
1575 * the race happens with the only child.
1576 */
1577 flag = 1;
1578
1579 if (!my_ptrace_child(p)) {
1580 if (task_is_traced(p))
1581 continue;
1582 if (!(options & WUNTRACED))
1583 continue;
1584 }
1585
1586 retval = wait_task_stopped(p, ret == 2,
1587 (options & WNOWAIT), infop,
1588 stat_addr, ru);
1589 if (retval == -EAGAIN)
1590 goto repeat;
1591 if (retval != 0) /* He released the lock. */
1592 goto end;
1593 } else if (p->exit_state == EXIT_ZOMBIE) {
1594 /*
1595 * Eligible but we cannot release it yet:
1596 */
1597 if (ret == 2)
1598 goto check_continued;
1599 if (!likely(options & WEXITED))
1600 continue;
1601 retval = wait_task_zombie(p,
1602 (options & WNOWAIT), infop,
1603 stat_addr, ru);
1604 /* He released the lock. */
1605 if (retval != 0)
1606 goto end;
1607 } else if (p->exit_state != EXIT_DEAD) {
1608 check_continued:
1609 /*
1610 * It's running now, so it might later
1611 * exit, stop, or stop and then continue.
1612 */
1613 flag = 1;
1614 if (!unlikely(options & WCONTINUED))
1615 continue;
1616 retval = wait_task_continued(p,
1617 (options & WNOWAIT), infop,
1618 stat_addr, ru);
1619 if (retval != 0) /* He released the lock. */
1620 goto end;
1621 }
1622 }
1623 if (!flag) {
1624 list_for_each_entry(p, &tsk->ptrace_children,
1625 ptrace_list) {
1626 if (!eligible_child(pid, options, p))
1627 continue;
1628 flag = 1;
1629 break;
1630 }
1631 }
1632 if (options & __WNOTHREAD)
1633 break;
1634 tsk = next_thread(tsk);
1635 BUG_ON(tsk->signal != current->signal);
1636 } while (tsk != current);
1637
1638 read_unlock(&tasklist_lock);
1639 if (flag) {
1640 retval = 0;
1641 if (options & WNOHANG)
1642 goto end;
1643 retval = -ERESTARTSYS;
1644 if (signal_pending(current))
1645 goto end;
1646 schedule();
1647 goto repeat;
1648 }
1649 retval = -ECHILD;
1650 if (unlikely(denied) && !allowed)
1651 retval = denied;
1652 end:
1653 current->state = TASK_RUNNING;
1654 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1655 if (infop) {
1656 if (retval > 0)
1657 retval = 0;
1658 else {
1659 /*
1660 * For a WNOHANG return, clear out all the fields
1661 * we would set so the user can easily tell the
1662 * difference.
1663 */
1664 if (!retval)
1665 retval = put_user(0, &infop->si_signo);
1666 if (!retval)
1667 retval = put_user(0, &infop->si_errno);
1668 if (!retval)
1669 retval = put_user(0, &infop->si_code);
1670 if (!retval)
1671 retval = put_user(0, &infop->si_pid);
1672 if (!retval)
1673 retval = put_user(0, &infop->si_uid);
1674 if (!retval)
1675 retval = put_user(0, &infop->si_status);
1676 }
1677 }
1678 return retval;
1679 }
1680
1681 asmlinkage long sys_waitid(int which, pid_t pid,
1682 struct siginfo __user *infop, int options,
1683 struct rusage __user *ru)
1684 {
1685 long ret;
1686
1687 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1688 return -EINVAL;
1689 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1690 return -EINVAL;
1691
1692 switch (which) {
1693 case P_ALL:
1694 pid = -1;
1695 break;
1696 case P_PID:
1697 if (pid <= 0)
1698 return -EINVAL;
1699 break;
1700 case P_PGID:
1701 if (pid <= 0)
1702 return -EINVAL;
1703 pid = -pid;
1704 break;
1705 default:
1706 return -EINVAL;
1707 }
1708
1709 ret = do_wait(pid, options, infop, NULL, ru);
1710
1711 /* avoid REGPARM breakage on x86: */
1712 prevent_tail_call(ret);
1713 return ret;
1714 }
1715
1716 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1717 int options, struct rusage __user *ru)
1718 {
1719 long ret;
1720
1721 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1722 __WNOTHREAD|__WCLONE|__WALL))
1723 return -EINVAL;
1724 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1725
1726 /* avoid REGPARM breakage on x86: */
1727 prevent_tail_call(ret);
1728 return ret;
1729 }
1730
1731 #ifdef __ARCH_WANT_SYS_WAITPID
1732
1733 /*
1734 * sys_waitpid() remains for compatibility. waitpid() should be
1735 * implemented by calling sys_wait4() from libc.a.
1736 */
1737 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1738 {
1739 return sys_wait4(pid, stat_addr, options, NULL);
1740 }
1741
1742 #endif