watchdog: update MAINTAINERS entry
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53
54 #include <asm/uaccess.h>
55 #include <asm/unistd.h>
56 #include <asm/pgtable.h>
57 #include <asm/mmu_context.h>
58
59 static void exit_mm(struct task_struct * tsk);
60
61 static void __unhash_process(struct task_struct *p, bool group_dead)
62 {
63 nr_threads--;
64 detach_pid(p, PIDTYPE_PID);
65 if (group_dead) {
66 detach_pid(p, PIDTYPE_PGID);
67 detach_pid(p, PIDTYPE_SID);
68
69 list_del_rcu(&p->tasks);
70 list_del_init(&p->sibling);
71 __get_cpu_var(process_counts)--;
72 }
73 list_del_rcu(&p->thread_group);
74 }
75
76 /*
77 * This function expects the tasklist_lock write-locked.
78 */
79 static void __exit_signal(struct task_struct *tsk)
80 {
81 struct signal_struct *sig = tsk->signal;
82 bool group_dead = thread_group_leader(tsk);
83 struct sighand_struct *sighand;
84 struct tty_struct *uninitialized_var(tty);
85
86 sighand = rcu_dereference_check(tsk->sighand,
87 rcu_read_lock_held() ||
88 lockdep_tasklist_lock_is_held());
89 spin_lock(&sighand->siglock);
90
91 posix_cpu_timers_exit(tsk);
92 if (group_dead) {
93 posix_cpu_timers_exit_group(tsk);
94 tty = sig->tty;
95 sig->tty = NULL;
96 } else {
97 /*
98 * If there is any task waiting for the group exit
99 * then notify it:
100 */
101 if (sig->notify_count > 0 && !--sig->notify_count)
102 wake_up_process(sig->group_exit_task);
103
104 if (tsk == sig->curr_target)
105 sig->curr_target = next_thread(tsk);
106 /*
107 * Accumulate here the counters for all threads but the
108 * group leader as they die, so they can be added into
109 * the process-wide totals when those are taken.
110 * The group leader stays around as a zombie as long
111 * as there are other threads. When it gets reaped,
112 * the exit.c code will add its counts into these totals.
113 * We won't ever get here for the group leader, since it
114 * will have been the last reference on the signal_struct.
115 */
116 sig->utime = cputime_add(sig->utime, tsk->utime);
117 sig->stime = cputime_add(sig->stime, tsk->stime);
118 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
119 sig->min_flt += tsk->min_flt;
120 sig->maj_flt += tsk->maj_flt;
121 sig->nvcsw += tsk->nvcsw;
122 sig->nivcsw += tsk->nivcsw;
123 sig->inblock += task_io_get_inblock(tsk);
124 sig->oublock += task_io_get_oublock(tsk);
125 task_io_accounting_add(&sig->ioac, &tsk->ioac);
126 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
127 }
128
129 sig->nr_threads--;
130 __unhash_process(tsk, group_dead);
131
132 /*
133 * Do this under ->siglock, we can race with another thread
134 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
135 */
136 flush_sigqueue(&tsk->pending);
137 tsk->sighand = NULL;
138 spin_unlock(&sighand->siglock);
139
140 __cleanup_sighand(sighand);
141 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
142 if (group_dead) {
143 flush_sigqueue(&sig->shared_pending);
144 tty_kref_put(tty);
145 }
146 }
147
148 static void delayed_put_task_struct(struct rcu_head *rhp)
149 {
150 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
151
152 #ifdef CONFIG_PERF_EVENTS
153 WARN_ON_ONCE(tsk->perf_event_ctxp);
154 #endif
155 trace_sched_process_free(tsk);
156 put_task_struct(tsk);
157 }
158
159
160 void release_task(struct task_struct * p)
161 {
162 struct task_struct *leader;
163 int zap_leader;
164 repeat:
165 tracehook_prepare_release_task(p);
166 /* don't need to get the RCU readlock here - the process is dead and
167 * can't be modifying its own credentials. But shut RCU-lockdep up */
168 rcu_read_lock();
169 atomic_dec(&__task_cred(p)->user->processes);
170 rcu_read_unlock();
171
172 proc_flush_task(p);
173
174 write_lock_irq(&tasklist_lock);
175 tracehook_finish_release_task(p);
176 __exit_signal(p);
177
178 /*
179 * If we are the last non-leader member of the thread
180 * group, and the leader is zombie, then notify the
181 * group leader's parent process. (if it wants notification.)
182 */
183 zap_leader = 0;
184 leader = p->group_leader;
185 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
186 BUG_ON(task_detached(leader));
187 do_notify_parent(leader, leader->exit_signal);
188 /*
189 * If we were the last child thread and the leader has
190 * exited already, and the leader's parent ignores SIGCHLD,
191 * then we are the one who should release the leader.
192 *
193 * do_notify_parent() will have marked it self-reaping in
194 * that case.
195 */
196 zap_leader = task_detached(leader);
197
198 /*
199 * This maintains the invariant that release_task()
200 * only runs on a task in EXIT_DEAD, just for sanity.
201 */
202 if (zap_leader)
203 leader->exit_state = EXIT_DEAD;
204 }
205
206 write_unlock_irq(&tasklist_lock);
207 release_thread(p);
208 call_rcu(&p->rcu, delayed_put_task_struct);
209
210 p = leader;
211 if (unlikely(zap_leader))
212 goto repeat;
213 }
214
215 /*
216 * This checks not only the pgrp, but falls back on the pid if no
217 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
218 * without this...
219 *
220 * The caller must hold rcu lock or the tasklist lock.
221 */
222 struct pid *session_of_pgrp(struct pid *pgrp)
223 {
224 struct task_struct *p;
225 struct pid *sid = NULL;
226
227 p = pid_task(pgrp, PIDTYPE_PGID);
228 if (p == NULL)
229 p = pid_task(pgrp, PIDTYPE_PID);
230 if (p != NULL)
231 sid = task_session(p);
232
233 return sid;
234 }
235
236 /*
237 * Determine if a process group is "orphaned", according to the POSIX
238 * definition in 2.2.2.52. Orphaned process groups are not to be affected
239 * by terminal-generated stop signals. Newly orphaned process groups are
240 * to receive a SIGHUP and a SIGCONT.
241 *
242 * "I ask you, have you ever known what it is to be an orphan?"
243 */
244 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
245 {
246 struct task_struct *p;
247
248 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
249 if ((p == ignored_task) ||
250 (p->exit_state && thread_group_empty(p)) ||
251 is_global_init(p->real_parent))
252 continue;
253
254 if (task_pgrp(p->real_parent) != pgrp &&
255 task_session(p->real_parent) == task_session(p))
256 return 0;
257 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
258
259 return 1;
260 }
261
262 int is_current_pgrp_orphaned(void)
263 {
264 int retval;
265
266 read_lock(&tasklist_lock);
267 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
268 read_unlock(&tasklist_lock);
269
270 return retval;
271 }
272
273 static int has_stopped_jobs(struct pid *pgrp)
274 {
275 int retval = 0;
276 struct task_struct *p;
277
278 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
279 if (!task_is_stopped(p))
280 continue;
281 retval = 1;
282 break;
283 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 return retval;
285 }
286
287 /*
288 * Check to see if any process groups have become orphaned as
289 * a result of our exiting, and if they have any stopped jobs,
290 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
291 */
292 static void
293 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
294 {
295 struct pid *pgrp = task_pgrp(tsk);
296 struct task_struct *ignored_task = tsk;
297
298 if (!parent)
299 /* exit: our father is in a different pgrp than
300 * we are and we were the only connection outside.
301 */
302 parent = tsk->real_parent;
303 else
304 /* reparent: our child is in a different pgrp than
305 * we are, and it was the only connection outside.
306 */
307 ignored_task = NULL;
308
309 if (task_pgrp(parent) != pgrp &&
310 task_session(parent) == task_session(tsk) &&
311 will_become_orphaned_pgrp(pgrp, ignored_task) &&
312 has_stopped_jobs(pgrp)) {
313 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
314 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
315 }
316 }
317
318 /**
319 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
320 *
321 * If a kernel thread is launched as a result of a system call, or if
322 * it ever exits, it should generally reparent itself to kthreadd so it
323 * isn't in the way of other processes and is correctly cleaned up on exit.
324 *
325 * The various task state such as scheduling policy and priority may have
326 * been inherited from a user process, so we reset them to sane values here.
327 *
328 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
329 */
330 static void reparent_to_kthreadd(void)
331 {
332 write_lock_irq(&tasklist_lock);
333
334 ptrace_unlink(current);
335 /* Reparent to init */
336 current->real_parent = current->parent = kthreadd_task;
337 list_move_tail(&current->sibling, &current->real_parent->children);
338
339 /* Set the exit signal to SIGCHLD so we signal init on exit */
340 current->exit_signal = SIGCHLD;
341
342 if (task_nice(current) < 0)
343 set_user_nice(current, 0);
344 /* cpus_allowed? */
345 /* rt_priority? */
346 /* signals? */
347 memcpy(current->signal->rlim, init_task.signal->rlim,
348 sizeof(current->signal->rlim));
349
350 atomic_inc(&init_cred.usage);
351 commit_creds(&init_cred);
352 write_unlock_irq(&tasklist_lock);
353 }
354
355 void __set_special_pids(struct pid *pid)
356 {
357 struct task_struct *curr = current->group_leader;
358
359 if (task_session(curr) != pid)
360 change_pid(curr, PIDTYPE_SID, pid);
361
362 if (task_pgrp(curr) != pid)
363 change_pid(curr, PIDTYPE_PGID, pid);
364 }
365
366 static void set_special_pids(struct pid *pid)
367 {
368 write_lock_irq(&tasklist_lock);
369 __set_special_pids(pid);
370 write_unlock_irq(&tasklist_lock);
371 }
372
373 /*
374 * Let kernel threads use this to say that they allow a certain signal.
375 * Must not be used if kthread was cloned with CLONE_SIGHAND.
376 */
377 int allow_signal(int sig)
378 {
379 if (!valid_signal(sig) || sig < 1)
380 return -EINVAL;
381
382 spin_lock_irq(&current->sighand->siglock);
383 /* This is only needed for daemonize()'ed kthreads */
384 sigdelset(&current->blocked, sig);
385 /*
386 * Kernel threads handle their own signals. Let the signal code
387 * know it'll be handled, so that they don't get converted to
388 * SIGKILL or just silently dropped.
389 */
390 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
391 recalc_sigpending();
392 spin_unlock_irq(&current->sighand->siglock);
393 return 0;
394 }
395
396 EXPORT_SYMBOL(allow_signal);
397
398 int disallow_signal(int sig)
399 {
400 if (!valid_signal(sig) || sig < 1)
401 return -EINVAL;
402
403 spin_lock_irq(&current->sighand->siglock);
404 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
405 recalc_sigpending();
406 spin_unlock_irq(&current->sighand->siglock);
407 return 0;
408 }
409
410 EXPORT_SYMBOL(disallow_signal);
411
412 /*
413 * Put all the gunge required to become a kernel thread without
414 * attached user resources in one place where it belongs.
415 */
416
417 void daemonize(const char *name, ...)
418 {
419 va_list args;
420 sigset_t blocked;
421
422 va_start(args, name);
423 vsnprintf(current->comm, sizeof(current->comm), name, args);
424 va_end(args);
425
426 /*
427 * If we were started as result of loading a module, close all of the
428 * user space pages. We don't need them, and if we didn't close them
429 * they would be locked into memory.
430 */
431 exit_mm(current);
432 /*
433 * We don't want to have TIF_FREEZE set if the system-wide hibernation
434 * or suspend transition begins right now.
435 */
436 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
437
438 if (current->nsproxy != &init_nsproxy) {
439 get_nsproxy(&init_nsproxy);
440 switch_task_namespaces(current, &init_nsproxy);
441 }
442 set_special_pids(&init_struct_pid);
443 proc_clear_tty(current);
444
445 /* Block and flush all signals */
446 sigfillset(&blocked);
447 sigprocmask(SIG_BLOCK, &blocked, NULL);
448 flush_signals(current);
449
450 /* Become as one with the init task */
451
452 daemonize_fs_struct();
453 exit_files(current);
454 current->files = init_task.files;
455 atomic_inc(&current->files->count);
456
457 reparent_to_kthreadd();
458 }
459
460 EXPORT_SYMBOL(daemonize);
461
462 static void close_files(struct files_struct * files)
463 {
464 int i, j;
465 struct fdtable *fdt;
466
467 j = 0;
468
469 /*
470 * It is safe to dereference the fd table without RCU or
471 * ->file_lock because this is the last reference to the
472 * files structure. But use RCU to shut RCU-lockdep up.
473 */
474 rcu_read_lock();
475 fdt = files_fdtable(files);
476 rcu_read_unlock();
477 for (;;) {
478 unsigned long set;
479 i = j * __NFDBITS;
480 if (i >= fdt->max_fds)
481 break;
482 set = fdt->open_fds->fds_bits[j++];
483 while (set) {
484 if (set & 1) {
485 struct file * file = xchg(&fdt->fd[i], NULL);
486 if (file) {
487 filp_close(file, files);
488 cond_resched();
489 }
490 }
491 i++;
492 set >>= 1;
493 }
494 }
495 }
496
497 struct files_struct *get_files_struct(struct task_struct *task)
498 {
499 struct files_struct *files;
500
501 task_lock(task);
502 files = task->files;
503 if (files)
504 atomic_inc(&files->count);
505 task_unlock(task);
506
507 return files;
508 }
509
510 void put_files_struct(struct files_struct *files)
511 {
512 struct fdtable *fdt;
513
514 if (atomic_dec_and_test(&files->count)) {
515 close_files(files);
516 /*
517 * Free the fd and fdset arrays if we expanded them.
518 * If the fdtable was embedded, pass files for freeing
519 * at the end of the RCU grace period. Otherwise,
520 * you can free files immediately.
521 */
522 rcu_read_lock();
523 fdt = files_fdtable(files);
524 if (fdt != &files->fdtab)
525 kmem_cache_free(files_cachep, files);
526 free_fdtable(fdt);
527 rcu_read_unlock();
528 }
529 }
530
531 void reset_files_struct(struct files_struct *files)
532 {
533 struct task_struct *tsk = current;
534 struct files_struct *old;
535
536 old = tsk->files;
537 task_lock(tsk);
538 tsk->files = files;
539 task_unlock(tsk);
540 put_files_struct(old);
541 }
542
543 void exit_files(struct task_struct *tsk)
544 {
545 struct files_struct * files = tsk->files;
546
547 if (files) {
548 task_lock(tsk);
549 tsk->files = NULL;
550 task_unlock(tsk);
551 put_files_struct(files);
552 }
553 }
554
555 #ifdef CONFIG_MM_OWNER
556 /*
557 * Task p is exiting and it owned mm, lets find a new owner for it
558 */
559 static inline int
560 mm_need_new_owner(struct mm_struct *mm, struct task_struct *p)
561 {
562 /*
563 * If there are other users of the mm and the owner (us) is exiting
564 * we need to find a new owner to take on the responsibility.
565 */
566 if (atomic_read(&mm->mm_users) <= 1)
567 return 0;
568 if (mm->owner != p)
569 return 0;
570 return 1;
571 }
572
573 void mm_update_next_owner(struct mm_struct *mm)
574 {
575 struct task_struct *c, *g, *p = current;
576
577 retry:
578 if (!mm_need_new_owner(mm, p))
579 return;
580
581 read_lock(&tasklist_lock);
582 /*
583 * Search in the children
584 */
585 list_for_each_entry(c, &p->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
588 }
589
590 /*
591 * Search in the siblings
592 */
593 list_for_each_entry(c, &p->real_parent->children, sibling) {
594 if (c->mm == mm)
595 goto assign_new_owner;
596 }
597
598 /*
599 * Search through everything else. We should not get
600 * here often
601 */
602 do_each_thread(g, c) {
603 if (c->mm == mm)
604 goto assign_new_owner;
605 } while_each_thread(g, c);
606
607 read_unlock(&tasklist_lock);
608 /*
609 * We found no owner yet mm_users > 1: this implies that we are
610 * most likely racing with swapoff (try_to_unuse()) or /proc or
611 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
612 */
613 mm->owner = NULL;
614 return;
615
616 assign_new_owner:
617 BUG_ON(c == p);
618 get_task_struct(c);
619 /*
620 * The task_lock protects c->mm from changing.
621 * We always want mm->owner->mm == mm
622 */
623 task_lock(c);
624 /*
625 * Delay read_unlock() till we have the task_lock()
626 * to ensure that c does not slip away underneath us
627 */
628 read_unlock(&tasklist_lock);
629 if (c->mm != mm) {
630 task_unlock(c);
631 put_task_struct(c);
632 goto retry;
633 }
634 mm->owner = c;
635 task_unlock(c);
636 put_task_struct(c);
637 }
638 #endif /* CONFIG_MM_OWNER */
639
640 /*
641 * Turn us into a lazy TLB process if we
642 * aren't already..
643 */
644 static void exit_mm(struct task_struct * tsk)
645 {
646 struct mm_struct *mm = tsk->mm;
647 struct core_state *core_state;
648
649 mm_release(tsk, mm);
650 if (!mm)
651 return;
652 /*
653 * Serialize with any possible pending coredump.
654 * We must hold mmap_sem around checking core_state
655 * and clearing tsk->mm. The core-inducing thread
656 * will increment ->nr_threads for each thread in the
657 * group with ->mm != NULL.
658 */
659 down_read(&mm->mmap_sem);
660 core_state = mm->core_state;
661 if (core_state) {
662 struct core_thread self;
663 up_read(&mm->mmap_sem);
664
665 self.task = tsk;
666 self.next = xchg(&core_state->dumper.next, &self);
667 /*
668 * Implies mb(), the result of xchg() must be visible
669 * to core_state->dumper.
670 */
671 if (atomic_dec_and_test(&core_state->nr_threads))
672 complete(&core_state->startup);
673
674 for (;;) {
675 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
676 if (!self.task) /* see coredump_finish() */
677 break;
678 schedule();
679 }
680 __set_task_state(tsk, TASK_RUNNING);
681 down_read(&mm->mmap_sem);
682 }
683 atomic_inc(&mm->mm_count);
684 BUG_ON(mm != tsk->active_mm);
685 /* more a memory barrier than a real lock */
686 task_lock(tsk);
687 tsk->mm = NULL;
688 up_read(&mm->mmap_sem);
689 enter_lazy_tlb(mm, current);
690 /* We don't want this task to be frozen prematurely */
691 clear_freeze_flag(tsk);
692 task_unlock(tsk);
693 mm_update_next_owner(mm);
694 mmput(mm);
695 }
696
697 /*
698 * When we die, we re-parent all our children.
699 * Try to give them to another thread in our thread
700 * group, and if no such member exists, give it to
701 * the child reaper process (ie "init") in our pid
702 * space.
703 */
704 static struct task_struct *find_new_reaper(struct task_struct *father)
705 {
706 struct pid_namespace *pid_ns = task_active_pid_ns(father);
707 struct task_struct *thread;
708
709 thread = father;
710 while_each_thread(father, thread) {
711 if (thread->flags & PF_EXITING)
712 continue;
713 if (unlikely(pid_ns->child_reaper == father))
714 pid_ns->child_reaper = thread;
715 return thread;
716 }
717
718 if (unlikely(pid_ns->child_reaper == father)) {
719 write_unlock_irq(&tasklist_lock);
720 if (unlikely(pid_ns == &init_pid_ns))
721 panic("Attempted to kill init!");
722
723 zap_pid_ns_processes(pid_ns);
724 write_lock_irq(&tasklist_lock);
725 /*
726 * We can not clear ->child_reaper or leave it alone.
727 * There may by stealth EXIT_DEAD tasks on ->children,
728 * forget_original_parent() must move them somewhere.
729 */
730 pid_ns->child_reaper = init_pid_ns.child_reaper;
731 }
732
733 return pid_ns->child_reaper;
734 }
735
736 /*
737 * Any that need to be release_task'd are put on the @dead list.
738 */
739 static void reparent_leader(struct task_struct *father, struct task_struct *p,
740 struct list_head *dead)
741 {
742 list_move_tail(&p->sibling, &p->real_parent->children);
743
744 if (task_detached(p))
745 return;
746 /*
747 * If this is a threaded reparent there is no need to
748 * notify anyone anything has happened.
749 */
750 if (same_thread_group(p->real_parent, father))
751 return;
752
753 /* We don't want people slaying init. */
754 p->exit_signal = SIGCHLD;
755
756 /* If it has exited notify the new parent about this child's death. */
757 if (!task_ptrace(p) &&
758 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
759 do_notify_parent(p, p->exit_signal);
760 if (task_detached(p)) {
761 p->exit_state = EXIT_DEAD;
762 list_move_tail(&p->sibling, dead);
763 }
764 }
765
766 kill_orphaned_pgrp(p, father);
767 }
768
769 static void forget_original_parent(struct task_struct *father)
770 {
771 struct task_struct *p, *n, *reaper;
772 LIST_HEAD(dead_children);
773
774 exit_ptrace(father);
775
776 write_lock_irq(&tasklist_lock);
777 reaper = find_new_reaper(father);
778
779 list_for_each_entry_safe(p, n, &father->children, sibling) {
780 struct task_struct *t = p;
781 do {
782 t->real_parent = reaper;
783 if (t->parent == father) {
784 BUG_ON(task_ptrace(t));
785 t->parent = t->real_parent;
786 }
787 if (t->pdeath_signal)
788 group_send_sig_info(t->pdeath_signal,
789 SEND_SIG_NOINFO, t);
790 } while_each_thread(p, t);
791 reparent_leader(father, p, &dead_children);
792 }
793 write_unlock_irq(&tasklist_lock);
794
795 BUG_ON(!list_empty(&father->children));
796
797 list_for_each_entry_safe(p, n, &dead_children, sibling) {
798 list_del_init(&p->sibling);
799 release_task(p);
800 }
801 }
802
803 /*
804 * Send signals to all our closest relatives so that they know
805 * to properly mourn us..
806 */
807 static void exit_notify(struct task_struct *tsk, int group_dead)
808 {
809 int signal;
810 void *cookie;
811
812 /*
813 * This does two things:
814 *
815 * A. Make init inherit all the child processes
816 * B. Check to see if any process groups have become orphaned
817 * as a result of our exiting, and if they have any stopped
818 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
819 */
820 forget_original_parent(tsk);
821 exit_task_namespaces(tsk);
822
823 write_lock_irq(&tasklist_lock);
824 if (group_dead)
825 kill_orphaned_pgrp(tsk->group_leader, NULL);
826
827 /* Let father know we died
828 *
829 * Thread signals are configurable, but you aren't going to use
830 * that to send signals to arbitary processes.
831 * That stops right now.
832 *
833 * If the parent exec id doesn't match the exec id we saved
834 * when we started then we know the parent has changed security
835 * domain.
836 *
837 * If our self_exec id doesn't match our parent_exec_id then
838 * we have changed execution domain as these two values started
839 * the same after a fork.
840 */
841 if (tsk->exit_signal != SIGCHLD && !task_detached(tsk) &&
842 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
843 tsk->self_exec_id != tsk->parent_exec_id))
844 tsk->exit_signal = SIGCHLD;
845
846 signal = tracehook_notify_death(tsk, &cookie, group_dead);
847 if (signal >= 0)
848 signal = do_notify_parent(tsk, signal);
849
850 tsk->exit_state = signal == DEATH_REAP ? EXIT_DEAD : EXIT_ZOMBIE;
851
852 /* mt-exec, de_thread() is waiting for group leader */
853 if (unlikely(tsk->signal->notify_count < 0))
854 wake_up_process(tsk->signal->group_exit_task);
855 write_unlock_irq(&tasklist_lock);
856
857 tracehook_report_death(tsk, signal, cookie, group_dead);
858
859 /* If the process is dead, release it - nobody will wait for it */
860 if (signal == DEATH_REAP)
861 release_task(tsk);
862 }
863
864 #ifdef CONFIG_DEBUG_STACK_USAGE
865 static void check_stack_usage(void)
866 {
867 static DEFINE_SPINLOCK(low_water_lock);
868 static int lowest_to_date = THREAD_SIZE;
869 unsigned long free;
870
871 free = stack_not_used(current);
872
873 if (free >= lowest_to_date)
874 return;
875
876 spin_lock(&low_water_lock);
877 if (free < lowest_to_date) {
878 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
879 "left\n",
880 current->comm, free);
881 lowest_to_date = free;
882 }
883 spin_unlock(&low_water_lock);
884 }
885 #else
886 static inline void check_stack_usage(void) {}
887 #endif
888
889 NORET_TYPE void do_exit(long code)
890 {
891 struct task_struct *tsk = current;
892 int group_dead;
893
894 profile_task_exit(tsk);
895
896 WARN_ON(atomic_read(&tsk->fs_excl));
897
898 if (unlikely(in_interrupt()))
899 panic("Aiee, killing interrupt handler!");
900 if (unlikely(!tsk->pid))
901 panic("Attempted to kill the idle task!");
902
903 tracehook_report_exit(&code);
904
905 validate_creds_for_do_exit(tsk);
906
907 /*
908 * We're taking recursive faults here in do_exit. Safest is to just
909 * leave this task alone and wait for reboot.
910 */
911 if (unlikely(tsk->flags & PF_EXITING)) {
912 printk(KERN_ALERT
913 "Fixing recursive fault but reboot is needed!\n");
914 /*
915 * We can do this unlocked here. The futex code uses
916 * this flag just to verify whether the pi state
917 * cleanup has been done or not. In the worst case it
918 * loops once more. We pretend that the cleanup was
919 * done as there is no way to return. Either the
920 * OWNER_DIED bit is set by now or we push the blocked
921 * task into the wait for ever nirwana as well.
922 */
923 tsk->flags |= PF_EXITPIDONE;
924 set_current_state(TASK_UNINTERRUPTIBLE);
925 schedule();
926 }
927
928 exit_irq_thread();
929
930 exit_signals(tsk); /* sets PF_EXITING */
931 /*
932 * tsk->flags are checked in the futex code to protect against
933 * an exiting task cleaning up the robust pi futexes.
934 */
935 smp_mb();
936 raw_spin_unlock_wait(&tsk->pi_lock);
937
938 if (unlikely(in_atomic()))
939 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
940 current->comm, task_pid_nr(current),
941 preempt_count());
942
943 acct_update_integrals(tsk);
944 /* sync mm's RSS info before statistics gathering */
945 if (tsk->mm)
946 sync_mm_rss(tsk, tsk->mm);
947 group_dead = atomic_dec_and_test(&tsk->signal->live);
948 if (group_dead) {
949 hrtimer_cancel(&tsk->signal->real_timer);
950 exit_itimers(tsk->signal);
951 if (tsk->mm)
952 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
953 }
954 acct_collect(code, group_dead);
955 if (group_dead)
956 tty_audit_exit();
957 if (unlikely(tsk->audit_context))
958 audit_free(tsk);
959
960 tsk->exit_code = code;
961 taskstats_exit(tsk, group_dead);
962
963 exit_mm(tsk);
964
965 if (group_dead)
966 acct_process();
967 trace_sched_process_exit(tsk);
968
969 exit_sem(tsk);
970 exit_files(tsk);
971 exit_fs(tsk);
972 check_stack_usage();
973 exit_thread();
974 cgroup_exit(tsk, 1);
975
976 if (group_dead)
977 disassociate_ctty(1);
978
979 module_put(task_thread_info(tsk)->exec_domain->module);
980
981 proc_exit_connector(tsk);
982
983 /*
984 * FIXME: do that only when needed, using sched_exit tracepoint
985 */
986 flush_ptrace_hw_breakpoint(tsk);
987 /*
988 * Flush inherited counters to the parent - before the parent
989 * gets woken up by child-exit notifications.
990 */
991 perf_event_exit_task(tsk);
992
993 exit_notify(tsk, group_dead);
994 #ifdef CONFIG_NUMA
995 task_lock(tsk);
996 mpol_put(tsk->mempolicy);
997 tsk->mempolicy = NULL;
998 task_unlock(tsk);
999 #endif
1000 #ifdef CONFIG_FUTEX
1001 if (unlikely(current->pi_state_cache))
1002 kfree(current->pi_state_cache);
1003 #endif
1004 /*
1005 * Make sure we are holding no locks:
1006 */
1007 debug_check_no_locks_held(tsk);
1008 /*
1009 * We can do this unlocked here. The futex code uses this flag
1010 * just to verify whether the pi state cleanup has been done
1011 * or not. In the worst case it loops once more.
1012 */
1013 tsk->flags |= PF_EXITPIDONE;
1014
1015 if (tsk->io_context)
1016 exit_io_context(tsk);
1017
1018 if (tsk->splice_pipe)
1019 __free_pipe_info(tsk->splice_pipe);
1020
1021 validate_creds_for_do_exit(tsk);
1022
1023 preempt_disable();
1024 exit_rcu();
1025 /* causes final put_task_struct in finish_task_switch(). */
1026 tsk->state = TASK_DEAD;
1027 schedule();
1028 BUG();
1029 /* Avoid "noreturn function does return". */
1030 for (;;)
1031 cpu_relax(); /* For when BUG is null */
1032 }
1033
1034 EXPORT_SYMBOL_GPL(do_exit);
1035
1036 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1037 {
1038 if (comp)
1039 complete(comp);
1040
1041 do_exit(code);
1042 }
1043
1044 EXPORT_SYMBOL(complete_and_exit);
1045
1046 SYSCALL_DEFINE1(exit, int, error_code)
1047 {
1048 do_exit((error_code&0xff)<<8);
1049 }
1050
1051 /*
1052 * Take down every thread in the group. This is called by fatal signals
1053 * as well as by sys_exit_group (below).
1054 */
1055 NORET_TYPE void
1056 do_group_exit(int exit_code)
1057 {
1058 struct signal_struct *sig = current->signal;
1059
1060 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1061
1062 if (signal_group_exit(sig))
1063 exit_code = sig->group_exit_code;
1064 else if (!thread_group_empty(current)) {
1065 struct sighand_struct *const sighand = current->sighand;
1066 spin_lock_irq(&sighand->siglock);
1067 if (signal_group_exit(sig))
1068 /* Another thread got here before we took the lock. */
1069 exit_code = sig->group_exit_code;
1070 else {
1071 sig->group_exit_code = exit_code;
1072 sig->flags = SIGNAL_GROUP_EXIT;
1073 zap_other_threads(current);
1074 }
1075 spin_unlock_irq(&sighand->siglock);
1076 }
1077
1078 do_exit(exit_code);
1079 /* NOTREACHED */
1080 }
1081
1082 /*
1083 * this kills every thread in the thread group. Note that any externally
1084 * wait4()-ing process will get the correct exit code - even if this
1085 * thread is not the thread group leader.
1086 */
1087 SYSCALL_DEFINE1(exit_group, int, error_code)
1088 {
1089 do_group_exit((error_code & 0xff) << 8);
1090 /* NOTREACHED */
1091 return 0;
1092 }
1093
1094 struct wait_opts {
1095 enum pid_type wo_type;
1096 int wo_flags;
1097 struct pid *wo_pid;
1098
1099 struct siginfo __user *wo_info;
1100 int __user *wo_stat;
1101 struct rusage __user *wo_rusage;
1102
1103 wait_queue_t child_wait;
1104 int notask_error;
1105 };
1106
1107 static inline
1108 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1109 {
1110 if (type != PIDTYPE_PID)
1111 task = task->group_leader;
1112 return task->pids[type].pid;
1113 }
1114
1115 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1116 {
1117 return wo->wo_type == PIDTYPE_MAX ||
1118 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1119 }
1120
1121 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1122 {
1123 if (!eligible_pid(wo, p))
1124 return 0;
1125 /* Wait for all children (clone and not) if __WALL is set;
1126 * otherwise, wait for clone children *only* if __WCLONE is
1127 * set; otherwise, wait for non-clone children *only*. (Note:
1128 * A "clone" child here is one that reports to its parent
1129 * using a signal other than SIGCHLD.) */
1130 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1131 && !(wo->wo_flags & __WALL))
1132 return 0;
1133
1134 return 1;
1135 }
1136
1137 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1138 pid_t pid, uid_t uid, int why, int status)
1139 {
1140 struct siginfo __user *infop;
1141 int retval = wo->wo_rusage
1142 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1143
1144 put_task_struct(p);
1145 infop = wo->wo_info;
1146 if (infop) {
1147 if (!retval)
1148 retval = put_user(SIGCHLD, &infop->si_signo);
1149 if (!retval)
1150 retval = put_user(0, &infop->si_errno);
1151 if (!retval)
1152 retval = put_user((short)why, &infop->si_code);
1153 if (!retval)
1154 retval = put_user(pid, &infop->si_pid);
1155 if (!retval)
1156 retval = put_user(uid, &infop->si_uid);
1157 if (!retval)
1158 retval = put_user(status, &infop->si_status);
1159 }
1160 if (!retval)
1161 retval = pid;
1162 return retval;
1163 }
1164
1165 /*
1166 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1167 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1168 * the lock and this task is uninteresting. If we return nonzero, we have
1169 * released the lock and the system call should return.
1170 */
1171 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1172 {
1173 unsigned long state;
1174 int retval, status, traced;
1175 pid_t pid = task_pid_vnr(p);
1176 uid_t uid = __task_cred(p)->uid;
1177 struct siginfo __user *infop;
1178
1179 if (!likely(wo->wo_flags & WEXITED))
1180 return 0;
1181
1182 if (unlikely(wo->wo_flags & WNOWAIT)) {
1183 int exit_code = p->exit_code;
1184 int why;
1185
1186 get_task_struct(p);
1187 read_unlock(&tasklist_lock);
1188 if ((exit_code & 0x7f) == 0) {
1189 why = CLD_EXITED;
1190 status = exit_code >> 8;
1191 } else {
1192 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1193 status = exit_code & 0x7f;
1194 }
1195 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1196 }
1197
1198 /*
1199 * Try to move the task's state to DEAD
1200 * only one thread is allowed to do this:
1201 */
1202 state = xchg(&p->exit_state, EXIT_DEAD);
1203 if (state != EXIT_ZOMBIE) {
1204 BUG_ON(state != EXIT_DEAD);
1205 return 0;
1206 }
1207
1208 traced = ptrace_reparented(p);
1209 /*
1210 * It can be ptraced but not reparented, check
1211 * !task_detached() to filter out sub-threads.
1212 */
1213 if (likely(!traced) && likely(!task_detached(p))) {
1214 struct signal_struct *psig;
1215 struct signal_struct *sig;
1216 unsigned long maxrss;
1217 cputime_t tgutime, tgstime;
1218
1219 /*
1220 * The resource counters for the group leader are in its
1221 * own task_struct. Those for dead threads in the group
1222 * are in its signal_struct, as are those for the child
1223 * processes it has previously reaped. All these
1224 * accumulate in the parent's signal_struct c* fields.
1225 *
1226 * We don't bother to take a lock here to protect these
1227 * p->signal fields, because they are only touched by
1228 * __exit_signal, which runs with tasklist_lock
1229 * write-locked anyway, and so is excluded here. We do
1230 * need to protect the access to parent->signal fields,
1231 * as other threads in the parent group can be right
1232 * here reaping other children at the same time.
1233 *
1234 * We use thread_group_times() to get times for the thread
1235 * group, which consolidates times for all threads in the
1236 * group including the group leader.
1237 */
1238 thread_group_times(p, &tgutime, &tgstime);
1239 spin_lock_irq(&p->real_parent->sighand->siglock);
1240 psig = p->real_parent->signal;
1241 sig = p->signal;
1242 psig->cutime =
1243 cputime_add(psig->cutime,
1244 cputime_add(tgutime,
1245 sig->cutime));
1246 psig->cstime =
1247 cputime_add(psig->cstime,
1248 cputime_add(tgstime,
1249 sig->cstime));
1250 psig->cgtime =
1251 cputime_add(psig->cgtime,
1252 cputime_add(p->gtime,
1253 cputime_add(sig->gtime,
1254 sig->cgtime)));
1255 psig->cmin_flt +=
1256 p->min_flt + sig->min_flt + sig->cmin_flt;
1257 psig->cmaj_flt +=
1258 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1259 psig->cnvcsw +=
1260 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1261 psig->cnivcsw +=
1262 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1263 psig->cinblock +=
1264 task_io_get_inblock(p) +
1265 sig->inblock + sig->cinblock;
1266 psig->coublock +=
1267 task_io_get_oublock(p) +
1268 sig->oublock + sig->coublock;
1269 maxrss = max(sig->maxrss, sig->cmaxrss);
1270 if (psig->cmaxrss < maxrss)
1271 psig->cmaxrss = maxrss;
1272 task_io_accounting_add(&psig->ioac, &p->ioac);
1273 task_io_accounting_add(&psig->ioac, &sig->ioac);
1274 spin_unlock_irq(&p->real_parent->sighand->siglock);
1275 }
1276
1277 /*
1278 * Now we are sure this task is interesting, and no other
1279 * thread can reap it because we set its state to EXIT_DEAD.
1280 */
1281 read_unlock(&tasklist_lock);
1282
1283 retval = wo->wo_rusage
1284 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1285 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1286 ? p->signal->group_exit_code : p->exit_code;
1287 if (!retval && wo->wo_stat)
1288 retval = put_user(status, wo->wo_stat);
1289
1290 infop = wo->wo_info;
1291 if (!retval && infop)
1292 retval = put_user(SIGCHLD, &infop->si_signo);
1293 if (!retval && infop)
1294 retval = put_user(0, &infop->si_errno);
1295 if (!retval && infop) {
1296 int why;
1297
1298 if ((status & 0x7f) == 0) {
1299 why = CLD_EXITED;
1300 status >>= 8;
1301 } else {
1302 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1303 status &= 0x7f;
1304 }
1305 retval = put_user((short)why, &infop->si_code);
1306 if (!retval)
1307 retval = put_user(status, &infop->si_status);
1308 }
1309 if (!retval && infop)
1310 retval = put_user(pid, &infop->si_pid);
1311 if (!retval && infop)
1312 retval = put_user(uid, &infop->si_uid);
1313 if (!retval)
1314 retval = pid;
1315
1316 if (traced) {
1317 write_lock_irq(&tasklist_lock);
1318 /* We dropped tasklist, ptracer could die and untrace */
1319 ptrace_unlink(p);
1320 /*
1321 * If this is not a detached task, notify the parent.
1322 * If it's still not detached after that, don't release
1323 * it now.
1324 */
1325 if (!task_detached(p)) {
1326 do_notify_parent(p, p->exit_signal);
1327 if (!task_detached(p)) {
1328 p->exit_state = EXIT_ZOMBIE;
1329 p = NULL;
1330 }
1331 }
1332 write_unlock_irq(&tasklist_lock);
1333 }
1334 if (p != NULL)
1335 release_task(p);
1336
1337 return retval;
1338 }
1339
1340 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1341 {
1342 if (ptrace) {
1343 if (task_is_stopped_or_traced(p))
1344 return &p->exit_code;
1345 } else {
1346 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1347 return &p->signal->group_exit_code;
1348 }
1349 return NULL;
1350 }
1351
1352 /*
1353 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1354 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1355 * the lock and this task is uninteresting. If we return nonzero, we have
1356 * released the lock and the system call should return.
1357 */
1358 static int wait_task_stopped(struct wait_opts *wo,
1359 int ptrace, struct task_struct *p)
1360 {
1361 struct siginfo __user *infop;
1362 int retval, exit_code, *p_code, why;
1363 uid_t uid = 0; /* unneeded, required by compiler */
1364 pid_t pid;
1365
1366 /*
1367 * Traditionally we see ptrace'd stopped tasks regardless of options.
1368 */
1369 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1370 return 0;
1371
1372 exit_code = 0;
1373 spin_lock_irq(&p->sighand->siglock);
1374
1375 p_code = task_stopped_code(p, ptrace);
1376 if (unlikely(!p_code))
1377 goto unlock_sig;
1378
1379 exit_code = *p_code;
1380 if (!exit_code)
1381 goto unlock_sig;
1382
1383 if (!unlikely(wo->wo_flags & WNOWAIT))
1384 *p_code = 0;
1385
1386 /* don't need the RCU readlock here as we're holding a spinlock */
1387 uid = __task_cred(p)->uid;
1388 unlock_sig:
1389 spin_unlock_irq(&p->sighand->siglock);
1390 if (!exit_code)
1391 return 0;
1392
1393 /*
1394 * Now we are pretty sure this task is interesting.
1395 * Make sure it doesn't get reaped out from under us while we
1396 * give up the lock and then examine it below. We don't want to
1397 * keep holding onto the tasklist_lock while we call getrusage and
1398 * possibly take page faults for user memory.
1399 */
1400 get_task_struct(p);
1401 pid = task_pid_vnr(p);
1402 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1403 read_unlock(&tasklist_lock);
1404
1405 if (unlikely(wo->wo_flags & WNOWAIT))
1406 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1407
1408 retval = wo->wo_rusage
1409 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1410 if (!retval && wo->wo_stat)
1411 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1412
1413 infop = wo->wo_info;
1414 if (!retval && infop)
1415 retval = put_user(SIGCHLD, &infop->si_signo);
1416 if (!retval && infop)
1417 retval = put_user(0, &infop->si_errno);
1418 if (!retval && infop)
1419 retval = put_user((short)why, &infop->si_code);
1420 if (!retval && infop)
1421 retval = put_user(exit_code, &infop->si_status);
1422 if (!retval && infop)
1423 retval = put_user(pid, &infop->si_pid);
1424 if (!retval && infop)
1425 retval = put_user(uid, &infop->si_uid);
1426 if (!retval)
1427 retval = pid;
1428 put_task_struct(p);
1429
1430 BUG_ON(!retval);
1431 return retval;
1432 }
1433
1434 /*
1435 * Handle do_wait work for one task in a live, non-stopped state.
1436 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1437 * the lock and this task is uninteresting. If we return nonzero, we have
1438 * released the lock and the system call should return.
1439 */
1440 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1441 {
1442 int retval;
1443 pid_t pid;
1444 uid_t uid;
1445
1446 if (!unlikely(wo->wo_flags & WCONTINUED))
1447 return 0;
1448
1449 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1450 return 0;
1451
1452 spin_lock_irq(&p->sighand->siglock);
1453 /* Re-check with the lock held. */
1454 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1455 spin_unlock_irq(&p->sighand->siglock);
1456 return 0;
1457 }
1458 if (!unlikely(wo->wo_flags & WNOWAIT))
1459 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1460 uid = __task_cred(p)->uid;
1461 spin_unlock_irq(&p->sighand->siglock);
1462
1463 pid = task_pid_vnr(p);
1464 get_task_struct(p);
1465 read_unlock(&tasklist_lock);
1466
1467 if (!wo->wo_info) {
1468 retval = wo->wo_rusage
1469 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1470 put_task_struct(p);
1471 if (!retval && wo->wo_stat)
1472 retval = put_user(0xffff, wo->wo_stat);
1473 if (!retval)
1474 retval = pid;
1475 } else {
1476 retval = wait_noreap_copyout(wo, p, pid, uid,
1477 CLD_CONTINUED, SIGCONT);
1478 BUG_ON(retval == 0);
1479 }
1480
1481 return retval;
1482 }
1483
1484 /*
1485 * Consider @p for a wait by @parent.
1486 *
1487 * -ECHILD should be in ->notask_error before the first call.
1488 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1489 * Returns zero if the search for a child should continue;
1490 * then ->notask_error is 0 if @p is an eligible child,
1491 * or another error from security_task_wait(), or still -ECHILD.
1492 */
1493 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1494 struct task_struct *p)
1495 {
1496 int ret = eligible_child(wo, p);
1497 if (!ret)
1498 return ret;
1499
1500 ret = security_task_wait(p);
1501 if (unlikely(ret < 0)) {
1502 /*
1503 * If we have not yet seen any eligible child,
1504 * then let this error code replace -ECHILD.
1505 * A permission error will give the user a clue
1506 * to look for security policy problems, rather
1507 * than for mysterious wait bugs.
1508 */
1509 if (wo->notask_error)
1510 wo->notask_error = ret;
1511 return 0;
1512 }
1513
1514 if (likely(!ptrace) && unlikely(task_ptrace(p))) {
1515 /*
1516 * This child is hidden by ptrace.
1517 * We aren't allowed to see it now, but eventually we will.
1518 */
1519 wo->notask_error = 0;
1520 return 0;
1521 }
1522
1523 if (p->exit_state == EXIT_DEAD)
1524 return 0;
1525
1526 /*
1527 * We don't reap group leaders with subthreads.
1528 */
1529 if (p->exit_state == EXIT_ZOMBIE && !delay_group_leader(p))
1530 return wait_task_zombie(wo, p);
1531
1532 /*
1533 * It's stopped or running now, so it might
1534 * later continue, exit, or stop again.
1535 */
1536 wo->notask_error = 0;
1537
1538 if (task_stopped_code(p, ptrace))
1539 return wait_task_stopped(wo, ptrace, p);
1540
1541 return wait_task_continued(wo, p);
1542 }
1543
1544 /*
1545 * Do the work of do_wait() for one thread in the group, @tsk.
1546 *
1547 * -ECHILD should be in ->notask_error before the first call.
1548 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1549 * Returns zero if the search for a child should continue; then
1550 * ->notask_error is 0 if there were any eligible children,
1551 * or another error from security_task_wait(), or still -ECHILD.
1552 */
1553 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1554 {
1555 struct task_struct *p;
1556
1557 list_for_each_entry(p, &tsk->children, sibling) {
1558 int ret = wait_consider_task(wo, 0, p);
1559 if (ret)
1560 return ret;
1561 }
1562
1563 return 0;
1564 }
1565
1566 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1567 {
1568 struct task_struct *p;
1569
1570 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1571 int ret = wait_consider_task(wo, 1, p);
1572 if (ret)
1573 return ret;
1574 }
1575
1576 return 0;
1577 }
1578
1579 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1580 int sync, void *key)
1581 {
1582 struct wait_opts *wo = container_of(wait, struct wait_opts,
1583 child_wait);
1584 struct task_struct *p = key;
1585
1586 if (!eligible_pid(wo, p))
1587 return 0;
1588
1589 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1590 return 0;
1591
1592 return default_wake_function(wait, mode, sync, key);
1593 }
1594
1595 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1596 {
1597 __wake_up_sync_key(&parent->signal->wait_chldexit,
1598 TASK_INTERRUPTIBLE, 1, p);
1599 }
1600
1601 static long do_wait(struct wait_opts *wo)
1602 {
1603 struct task_struct *tsk;
1604 int retval;
1605
1606 trace_sched_process_wait(wo->wo_pid);
1607
1608 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1609 wo->child_wait.private = current;
1610 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1611 repeat:
1612 /*
1613 * If there is nothing that can match our critiera just get out.
1614 * We will clear ->notask_error to zero if we see any child that
1615 * might later match our criteria, even if we are not able to reap
1616 * it yet.
1617 */
1618 wo->notask_error = -ECHILD;
1619 if ((wo->wo_type < PIDTYPE_MAX) &&
1620 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1621 goto notask;
1622
1623 set_current_state(TASK_INTERRUPTIBLE);
1624 read_lock(&tasklist_lock);
1625 tsk = current;
1626 do {
1627 retval = do_wait_thread(wo, tsk);
1628 if (retval)
1629 goto end;
1630
1631 retval = ptrace_do_wait(wo, tsk);
1632 if (retval)
1633 goto end;
1634
1635 if (wo->wo_flags & __WNOTHREAD)
1636 break;
1637 } while_each_thread(current, tsk);
1638 read_unlock(&tasklist_lock);
1639
1640 notask:
1641 retval = wo->notask_error;
1642 if (!retval && !(wo->wo_flags & WNOHANG)) {
1643 retval = -ERESTARTSYS;
1644 if (!signal_pending(current)) {
1645 schedule();
1646 goto repeat;
1647 }
1648 }
1649 end:
1650 __set_current_state(TASK_RUNNING);
1651 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1652 return retval;
1653 }
1654
1655 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1656 infop, int, options, struct rusage __user *, ru)
1657 {
1658 struct wait_opts wo;
1659 struct pid *pid = NULL;
1660 enum pid_type type;
1661 long ret;
1662
1663 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1664 return -EINVAL;
1665 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1666 return -EINVAL;
1667
1668 switch (which) {
1669 case P_ALL:
1670 type = PIDTYPE_MAX;
1671 break;
1672 case P_PID:
1673 type = PIDTYPE_PID;
1674 if (upid <= 0)
1675 return -EINVAL;
1676 break;
1677 case P_PGID:
1678 type = PIDTYPE_PGID;
1679 if (upid <= 0)
1680 return -EINVAL;
1681 break;
1682 default:
1683 return -EINVAL;
1684 }
1685
1686 if (type < PIDTYPE_MAX)
1687 pid = find_get_pid(upid);
1688
1689 wo.wo_type = type;
1690 wo.wo_pid = pid;
1691 wo.wo_flags = options;
1692 wo.wo_info = infop;
1693 wo.wo_stat = NULL;
1694 wo.wo_rusage = ru;
1695 ret = do_wait(&wo);
1696
1697 if (ret > 0) {
1698 ret = 0;
1699 } else if (infop) {
1700 /*
1701 * For a WNOHANG return, clear out all the fields
1702 * we would set so the user can easily tell the
1703 * difference.
1704 */
1705 if (!ret)
1706 ret = put_user(0, &infop->si_signo);
1707 if (!ret)
1708 ret = put_user(0, &infop->si_errno);
1709 if (!ret)
1710 ret = put_user(0, &infop->si_code);
1711 if (!ret)
1712 ret = put_user(0, &infop->si_pid);
1713 if (!ret)
1714 ret = put_user(0, &infop->si_uid);
1715 if (!ret)
1716 ret = put_user(0, &infop->si_status);
1717 }
1718
1719 put_pid(pid);
1720
1721 /* avoid REGPARM breakage on x86: */
1722 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1723 return ret;
1724 }
1725
1726 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1727 int, options, struct rusage __user *, ru)
1728 {
1729 struct wait_opts wo;
1730 struct pid *pid = NULL;
1731 enum pid_type type;
1732 long ret;
1733
1734 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1735 __WNOTHREAD|__WCLONE|__WALL))
1736 return -EINVAL;
1737
1738 if (upid == -1)
1739 type = PIDTYPE_MAX;
1740 else if (upid < 0) {
1741 type = PIDTYPE_PGID;
1742 pid = find_get_pid(-upid);
1743 } else if (upid == 0) {
1744 type = PIDTYPE_PGID;
1745 pid = get_task_pid(current, PIDTYPE_PGID);
1746 } else /* upid > 0 */ {
1747 type = PIDTYPE_PID;
1748 pid = find_get_pid(upid);
1749 }
1750
1751 wo.wo_type = type;
1752 wo.wo_pid = pid;
1753 wo.wo_flags = options | WEXITED;
1754 wo.wo_info = NULL;
1755 wo.wo_stat = stat_addr;
1756 wo.wo_rusage = ru;
1757 ret = do_wait(&wo);
1758 put_pid(pid);
1759
1760 /* avoid REGPARM breakage on x86: */
1761 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1762 return ret;
1763 }
1764
1765 #ifdef __ARCH_WANT_SYS_WAITPID
1766
1767 /*
1768 * sys_waitpid() remains for compatibility. waitpid() should be
1769 * implemented by calling sys_wait4() from libc.a.
1770 */
1771 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1772 {
1773 return sys_wait4(pid, stat_addr, options, NULL);
1774 }
1775
1776 #endif