staging: zram: show correct disksize
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
59 #include <asm/pgtable.h>
60 #include <asm/mmu_context.h>
61
62 static void exit_mm(struct task_struct * tsk);
63
64 static void __unhash_process(struct task_struct *p, bool group_dead)
65 {
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
71
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
75 }
76 list_del_rcu(&p->thread_group);
77 }
78
79 /*
80 * This function expects the tasklist_lock write-locked.
81 */
82 static void __exit_signal(struct task_struct *tsk)
83 {
84 struct signal_struct *sig = tsk->signal;
85 bool group_dead = thread_group_leader(tsk);
86 struct sighand_struct *sighand;
87 struct tty_struct *uninitialized_var(tty);
88
89 sighand = rcu_dereference_check(tsk->sighand,
90 lockdep_tasklist_lock_is_held());
91 spin_lock(&sighand->siglock);
92
93 posix_cpu_timers_exit(tsk);
94 if (group_dead) {
95 posix_cpu_timers_exit_group(tsk);
96 tty = sig->tty;
97 sig->tty = NULL;
98 } else {
99 /*
100 * This can only happen if the caller is de_thread().
101 * FIXME: this is the temporary hack, we should teach
102 * posix-cpu-timers to handle this case correctly.
103 */
104 if (unlikely(has_group_leader_pid(tsk)))
105 posix_cpu_timers_exit_group(tsk);
106
107 /*
108 * If there is any task waiting for the group exit
109 * then notify it:
110 */
111 if (sig->notify_count > 0 && !--sig->notify_count)
112 wake_up_process(sig->group_exit_task);
113
114 if (tsk == sig->curr_target)
115 sig->curr_target = next_thread(tsk);
116 /*
117 * Accumulate here the counters for all threads but the
118 * group leader as they die, so they can be added into
119 * the process-wide totals when those are taken.
120 * The group leader stays around as a zombie as long
121 * as there are other threads. When it gets reaped,
122 * the exit.c code will add its counts into these totals.
123 * We won't ever get here for the group leader, since it
124 * will have been the last reference on the signal_struct.
125 */
126 sig->utime += tsk->utime;
127 sig->stime += tsk->stime;
128 sig->gtime += tsk->gtime;
129 sig->min_flt += tsk->min_flt;
130 sig->maj_flt += tsk->maj_flt;
131 sig->nvcsw += tsk->nvcsw;
132 sig->nivcsw += tsk->nivcsw;
133 sig->inblock += task_io_get_inblock(tsk);
134 sig->oublock += task_io_get_oublock(tsk);
135 task_io_accounting_add(&sig->ioac, &tsk->ioac);
136 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
137 }
138
139 sig->nr_threads--;
140 __unhash_process(tsk, group_dead);
141
142 /*
143 * Do this under ->siglock, we can race with another thread
144 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
145 */
146 flush_sigqueue(&tsk->pending);
147 tsk->sighand = NULL;
148 spin_unlock(&sighand->siglock);
149
150 __cleanup_sighand(sighand);
151 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
152 if (group_dead) {
153 flush_sigqueue(&sig->shared_pending);
154 tty_kref_put(tty);
155 }
156 }
157
158 static void delayed_put_task_struct(struct rcu_head *rhp)
159 {
160 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
161
162 perf_event_delayed_put(tsk);
163 trace_sched_process_free(tsk);
164 put_task_struct(tsk);
165 }
166
167
168 void release_task(struct task_struct * p)
169 {
170 struct task_struct *leader;
171 int zap_leader;
172 repeat:
173 /* don't need to get the RCU readlock here - the process is dead and
174 * can't be modifying its own credentials. But shut RCU-lockdep up */
175 rcu_read_lock();
176 atomic_dec(&__task_cred(p)->user->processes);
177 rcu_read_unlock();
178
179 proc_flush_task(p);
180
181 write_lock_irq(&tasklist_lock);
182 ptrace_release_task(p);
183 __exit_signal(p);
184
185 /*
186 * If we are the last non-leader member of the thread
187 * group, and the leader is zombie, then notify the
188 * group leader's parent process. (if it wants notification.)
189 */
190 zap_leader = 0;
191 leader = p->group_leader;
192 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
193 /*
194 * If we were the last child thread and the leader has
195 * exited already, and the leader's parent ignores SIGCHLD,
196 * then we are the one who should release the leader.
197 */
198 zap_leader = do_notify_parent(leader, leader->exit_signal);
199 if (zap_leader)
200 leader->exit_state = EXIT_DEAD;
201 }
202
203 write_unlock_irq(&tasklist_lock);
204 release_thread(p);
205 call_rcu(&p->rcu, delayed_put_task_struct);
206
207 p = leader;
208 if (unlikely(zap_leader))
209 goto repeat;
210 }
211
212 /*
213 * This checks not only the pgrp, but falls back on the pid if no
214 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
215 * without this...
216 *
217 * The caller must hold rcu lock or the tasklist lock.
218 */
219 struct pid *session_of_pgrp(struct pid *pgrp)
220 {
221 struct task_struct *p;
222 struct pid *sid = NULL;
223
224 p = pid_task(pgrp, PIDTYPE_PGID);
225 if (p == NULL)
226 p = pid_task(pgrp, PIDTYPE_PID);
227 if (p != NULL)
228 sid = task_session(p);
229
230 return sid;
231 }
232
233 /*
234 * Determine if a process group is "orphaned", according to the POSIX
235 * definition in 2.2.2.52. Orphaned process groups are not to be affected
236 * by terminal-generated stop signals. Newly orphaned process groups are
237 * to receive a SIGHUP and a SIGCONT.
238 *
239 * "I ask you, have you ever known what it is to be an orphan?"
240 */
241 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
242 {
243 struct task_struct *p;
244
245 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
246 if ((p == ignored_task) ||
247 (p->exit_state && thread_group_empty(p)) ||
248 is_global_init(p->real_parent))
249 continue;
250
251 if (task_pgrp(p->real_parent) != pgrp &&
252 task_session(p->real_parent) == task_session(p))
253 return 0;
254 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
255
256 return 1;
257 }
258
259 int is_current_pgrp_orphaned(void)
260 {
261 int retval;
262
263 read_lock(&tasklist_lock);
264 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
265 read_unlock(&tasklist_lock);
266
267 return retval;
268 }
269
270 static bool has_stopped_jobs(struct pid *pgrp)
271 {
272 struct task_struct *p;
273
274 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 if (p->signal->flags & SIGNAL_STOP_STOPPED)
276 return true;
277 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
278
279 return false;
280 }
281
282 /*
283 * Check to see if any process groups have become orphaned as
284 * a result of our exiting, and if they have any stopped jobs,
285 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
286 */
287 static void
288 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
289 {
290 struct pid *pgrp = task_pgrp(tsk);
291 struct task_struct *ignored_task = tsk;
292
293 if (!parent)
294 /* exit: our father is in a different pgrp than
295 * we are and we were the only connection outside.
296 */
297 parent = tsk->real_parent;
298 else
299 /* reparent: our child is in a different pgrp than
300 * we are, and it was the only connection outside.
301 */
302 ignored_task = NULL;
303
304 if (task_pgrp(parent) != pgrp &&
305 task_session(parent) == task_session(tsk) &&
306 will_become_orphaned_pgrp(pgrp, ignored_task) &&
307 has_stopped_jobs(pgrp)) {
308 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
309 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
310 }
311 }
312
313 void __set_special_pids(struct pid *pid)
314 {
315 struct task_struct *curr = current->group_leader;
316
317 if (task_session(curr) != pid)
318 change_pid(curr, PIDTYPE_SID, pid);
319
320 if (task_pgrp(curr) != pid)
321 change_pid(curr, PIDTYPE_PGID, pid);
322 }
323
324 /*
325 * Let kernel threads use this to say that they allow a certain signal.
326 * Must not be used if kthread was cloned with CLONE_SIGHAND.
327 */
328 int allow_signal(int sig)
329 {
330 if (!valid_signal(sig) || sig < 1)
331 return -EINVAL;
332
333 spin_lock_irq(&current->sighand->siglock);
334 /* This is only needed for daemonize()'ed kthreads */
335 sigdelset(&current->blocked, sig);
336 /*
337 * Kernel threads handle their own signals. Let the signal code
338 * know it'll be handled, so that they don't get converted to
339 * SIGKILL or just silently dropped.
340 */
341 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
342 recalc_sigpending();
343 spin_unlock_irq(&current->sighand->siglock);
344 return 0;
345 }
346
347 EXPORT_SYMBOL(allow_signal);
348
349 int disallow_signal(int sig)
350 {
351 if (!valid_signal(sig) || sig < 1)
352 return -EINVAL;
353
354 spin_lock_irq(&current->sighand->siglock);
355 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
356 recalc_sigpending();
357 spin_unlock_irq(&current->sighand->siglock);
358 return 0;
359 }
360
361 EXPORT_SYMBOL(disallow_signal);
362
363 #ifdef CONFIG_MM_OWNER
364 /*
365 * A task is exiting. If it owned this mm, find a new owner for the mm.
366 */
367 void mm_update_next_owner(struct mm_struct *mm)
368 {
369 struct task_struct *c, *g, *p = current;
370
371 retry:
372 /*
373 * If the exiting or execing task is not the owner, it's
374 * someone else's problem.
375 */
376 if (mm->owner != p)
377 return;
378 /*
379 * The current owner is exiting/execing and there are no other
380 * candidates. Do not leave the mm pointing to a possibly
381 * freed task structure.
382 */
383 if (atomic_read(&mm->mm_users) <= 1) {
384 mm->owner = NULL;
385 return;
386 }
387
388 read_lock(&tasklist_lock);
389 /*
390 * Search in the children
391 */
392 list_for_each_entry(c, &p->children, sibling) {
393 if (c->mm == mm)
394 goto assign_new_owner;
395 }
396
397 /*
398 * Search in the siblings
399 */
400 list_for_each_entry(c, &p->real_parent->children, sibling) {
401 if (c->mm == mm)
402 goto assign_new_owner;
403 }
404
405 /*
406 * Search through everything else. We should not get
407 * here often
408 */
409 do_each_thread(g, c) {
410 if (c->mm == mm)
411 goto assign_new_owner;
412 } while_each_thread(g, c);
413
414 read_unlock(&tasklist_lock);
415 /*
416 * We found no owner yet mm_users > 1: this implies that we are
417 * most likely racing with swapoff (try_to_unuse()) or /proc or
418 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
419 */
420 mm->owner = NULL;
421 return;
422
423 assign_new_owner:
424 BUG_ON(c == p);
425 get_task_struct(c);
426 /*
427 * The task_lock protects c->mm from changing.
428 * We always want mm->owner->mm == mm
429 */
430 task_lock(c);
431 /*
432 * Delay read_unlock() till we have the task_lock()
433 * to ensure that c does not slip away underneath us
434 */
435 read_unlock(&tasklist_lock);
436 if (c->mm != mm) {
437 task_unlock(c);
438 put_task_struct(c);
439 goto retry;
440 }
441 mm->owner = c;
442 task_unlock(c);
443 put_task_struct(c);
444 }
445 #endif /* CONFIG_MM_OWNER */
446
447 /*
448 * Turn us into a lazy TLB process if we
449 * aren't already..
450 */
451 static void exit_mm(struct task_struct * tsk)
452 {
453 struct mm_struct *mm = tsk->mm;
454 struct core_state *core_state;
455
456 mm_release(tsk, mm);
457 if (!mm)
458 return;
459 sync_mm_rss(mm);
460 /*
461 * Serialize with any possible pending coredump.
462 * We must hold mmap_sem around checking core_state
463 * and clearing tsk->mm. The core-inducing thread
464 * will increment ->nr_threads for each thread in the
465 * group with ->mm != NULL.
466 */
467 down_read(&mm->mmap_sem);
468 core_state = mm->core_state;
469 if (core_state) {
470 struct core_thread self;
471 up_read(&mm->mmap_sem);
472
473 self.task = tsk;
474 self.next = xchg(&core_state->dumper.next, &self);
475 /*
476 * Implies mb(), the result of xchg() must be visible
477 * to core_state->dumper.
478 */
479 if (atomic_dec_and_test(&core_state->nr_threads))
480 complete(&core_state->startup);
481
482 for (;;) {
483 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
484 if (!self.task) /* see coredump_finish() */
485 break;
486 schedule();
487 }
488 __set_task_state(tsk, TASK_RUNNING);
489 down_read(&mm->mmap_sem);
490 }
491 atomic_inc(&mm->mm_count);
492 BUG_ON(mm != tsk->active_mm);
493 /* more a memory barrier than a real lock */
494 task_lock(tsk);
495 tsk->mm = NULL;
496 up_read(&mm->mmap_sem);
497 enter_lazy_tlb(mm, current);
498 task_unlock(tsk);
499 mm_update_next_owner(mm);
500 mmput(mm);
501 }
502
503 /*
504 * When we die, we re-parent all our children, and try to:
505 * 1. give them to another thread in our thread group, if such a member exists
506 * 2. give it to the first ancestor process which prctl'd itself as a
507 * child_subreaper for its children (like a service manager)
508 * 3. give it to the init process (PID 1) in our pid namespace
509 */
510 static struct task_struct *find_new_reaper(struct task_struct *father)
511 __releases(&tasklist_lock)
512 __acquires(&tasklist_lock)
513 {
514 struct pid_namespace *pid_ns = task_active_pid_ns(father);
515 struct task_struct *thread;
516
517 thread = father;
518 while_each_thread(father, thread) {
519 if (thread->flags & PF_EXITING)
520 continue;
521 if (unlikely(pid_ns->child_reaper == father))
522 pid_ns->child_reaper = thread;
523 return thread;
524 }
525
526 if (unlikely(pid_ns->child_reaper == father)) {
527 write_unlock_irq(&tasklist_lock);
528 if (unlikely(pid_ns == &init_pid_ns)) {
529 panic("Attempted to kill init! exitcode=0x%08x\n",
530 father->signal->group_exit_code ?:
531 father->exit_code);
532 }
533
534 zap_pid_ns_processes(pid_ns);
535 write_lock_irq(&tasklist_lock);
536 } else if (father->signal->has_child_subreaper) {
537 struct task_struct *reaper;
538
539 /*
540 * Find the first ancestor marked as child_subreaper.
541 * Note that the code below checks same_thread_group(reaper,
542 * pid_ns->child_reaper). This is what we need to DTRT in a
543 * PID namespace. However we still need the check above, see
544 * http://marc.info/?l=linux-kernel&m=131385460420380
545 */
546 for (reaper = father->real_parent;
547 reaper != &init_task;
548 reaper = reaper->real_parent) {
549 if (same_thread_group(reaper, pid_ns->child_reaper))
550 break;
551 if (!reaper->signal->is_child_subreaper)
552 continue;
553 thread = reaper;
554 do {
555 if (!(thread->flags & PF_EXITING))
556 return reaper;
557 } while_each_thread(reaper, thread);
558 }
559 }
560
561 return pid_ns->child_reaper;
562 }
563
564 /*
565 * Any that need to be release_task'd are put on the @dead list.
566 */
567 static void reparent_leader(struct task_struct *father, struct task_struct *p,
568 struct list_head *dead)
569 {
570 list_move_tail(&p->sibling, &p->real_parent->children);
571
572 if (p->exit_state == EXIT_DEAD)
573 return;
574 /*
575 * If this is a threaded reparent there is no need to
576 * notify anyone anything has happened.
577 */
578 if (same_thread_group(p->real_parent, father))
579 return;
580
581 /* We don't want people slaying init. */
582 p->exit_signal = SIGCHLD;
583
584 /* If it has exited notify the new parent about this child's death. */
585 if (!p->ptrace &&
586 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
587 if (do_notify_parent(p, p->exit_signal)) {
588 p->exit_state = EXIT_DEAD;
589 list_move_tail(&p->sibling, dead);
590 }
591 }
592
593 kill_orphaned_pgrp(p, father);
594 }
595
596 static void forget_original_parent(struct task_struct *father)
597 {
598 struct task_struct *p, *n, *reaper;
599 LIST_HEAD(dead_children);
600
601 write_lock_irq(&tasklist_lock);
602 /*
603 * Note that exit_ptrace() and find_new_reaper() might
604 * drop tasklist_lock and reacquire it.
605 */
606 exit_ptrace(father);
607 reaper = find_new_reaper(father);
608
609 list_for_each_entry_safe(p, n, &father->children, sibling) {
610 struct task_struct *t = p;
611 do {
612 t->real_parent = reaper;
613 if (t->parent == father) {
614 BUG_ON(t->ptrace);
615 t->parent = t->real_parent;
616 }
617 if (t->pdeath_signal)
618 group_send_sig_info(t->pdeath_signal,
619 SEND_SIG_NOINFO, t);
620 } while_each_thread(p, t);
621 reparent_leader(father, p, &dead_children);
622 }
623 write_unlock_irq(&tasklist_lock);
624
625 BUG_ON(!list_empty(&father->children));
626
627 list_for_each_entry_safe(p, n, &dead_children, sibling) {
628 list_del_init(&p->sibling);
629 release_task(p);
630 }
631 }
632
633 /*
634 * Send signals to all our closest relatives so that they know
635 * to properly mourn us..
636 */
637 static void exit_notify(struct task_struct *tsk, int group_dead)
638 {
639 bool autoreap;
640
641 /*
642 * This does two things:
643 *
644 * A. Make init inherit all the child processes
645 * B. Check to see if any process groups have become orphaned
646 * as a result of our exiting, and if they have any stopped
647 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
648 */
649 forget_original_parent(tsk);
650 exit_task_namespaces(tsk);
651
652 write_lock_irq(&tasklist_lock);
653 if (group_dead)
654 kill_orphaned_pgrp(tsk->group_leader, NULL);
655
656 if (unlikely(tsk->ptrace)) {
657 int sig = thread_group_leader(tsk) &&
658 thread_group_empty(tsk) &&
659 !ptrace_reparented(tsk) ?
660 tsk->exit_signal : SIGCHLD;
661 autoreap = do_notify_parent(tsk, sig);
662 } else if (thread_group_leader(tsk)) {
663 autoreap = thread_group_empty(tsk) &&
664 do_notify_parent(tsk, tsk->exit_signal);
665 } else {
666 autoreap = true;
667 }
668
669 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
670
671 /* mt-exec, de_thread() is waiting for group leader */
672 if (unlikely(tsk->signal->notify_count < 0))
673 wake_up_process(tsk->signal->group_exit_task);
674 write_unlock_irq(&tasklist_lock);
675
676 /* If the process is dead, release it - nobody will wait for it */
677 if (autoreap)
678 release_task(tsk);
679 }
680
681 #ifdef CONFIG_DEBUG_STACK_USAGE
682 static void check_stack_usage(void)
683 {
684 static DEFINE_SPINLOCK(low_water_lock);
685 static int lowest_to_date = THREAD_SIZE;
686 unsigned long free;
687
688 free = stack_not_used(current);
689
690 if (free >= lowest_to_date)
691 return;
692
693 spin_lock(&low_water_lock);
694 if (free < lowest_to_date) {
695 printk(KERN_WARNING "%s (%d) used greatest stack depth: "
696 "%lu bytes left\n",
697 current->comm, task_pid_nr(current), free);
698 lowest_to_date = free;
699 }
700 spin_unlock(&low_water_lock);
701 }
702 #else
703 static inline void check_stack_usage(void) {}
704 #endif
705
706 void do_exit(long code)
707 {
708 struct task_struct *tsk = current;
709 int group_dead;
710
711 profile_task_exit(tsk);
712
713 WARN_ON(blk_needs_flush_plug(tsk));
714
715 if (unlikely(in_interrupt()))
716 panic("Aiee, killing interrupt handler!");
717 if (unlikely(!tsk->pid))
718 panic("Attempted to kill the idle task!");
719
720 /*
721 * If do_exit is called because this processes oopsed, it's possible
722 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
723 * continuing. Amongst other possible reasons, this is to prevent
724 * mm_release()->clear_child_tid() from writing to a user-controlled
725 * kernel address.
726 */
727 set_fs(USER_DS);
728
729 ptrace_event(PTRACE_EVENT_EXIT, code);
730
731 validate_creds_for_do_exit(tsk);
732
733 /*
734 * We're taking recursive faults here in do_exit. Safest is to just
735 * leave this task alone and wait for reboot.
736 */
737 if (unlikely(tsk->flags & PF_EXITING)) {
738 printk(KERN_ALERT
739 "Fixing recursive fault but reboot is needed!\n");
740 /*
741 * We can do this unlocked here. The futex code uses
742 * this flag just to verify whether the pi state
743 * cleanup has been done or not. In the worst case it
744 * loops once more. We pretend that the cleanup was
745 * done as there is no way to return. Either the
746 * OWNER_DIED bit is set by now or we push the blocked
747 * task into the wait for ever nirwana as well.
748 */
749 tsk->flags |= PF_EXITPIDONE;
750 set_current_state(TASK_UNINTERRUPTIBLE);
751 schedule();
752 }
753
754 exit_signals(tsk); /* sets PF_EXITING */
755 /*
756 * tsk->flags are checked in the futex code to protect against
757 * an exiting task cleaning up the robust pi futexes.
758 */
759 smp_mb();
760 raw_spin_unlock_wait(&tsk->pi_lock);
761
762 if (unlikely(in_atomic()))
763 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
764 current->comm, task_pid_nr(current),
765 preempt_count());
766
767 acct_update_integrals(tsk);
768 /* sync mm's RSS info before statistics gathering */
769 if (tsk->mm)
770 sync_mm_rss(tsk->mm);
771 group_dead = atomic_dec_and_test(&tsk->signal->live);
772 if (group_dead) {
773 hrtimer_cancel(&tsk->signal->real_timer);
774 exit_itimers(tsk->signal);
775 if (tsk->mm)
776 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
777 }
778 acct_collect(code, group_dead);
779 if (group_dead)
780 tty_audit_exit();
781 audit_free(tsk);
782
783 tsk->exit_code = code;
784 taskstats_exit(tsk, group_dead);
785
786 exit_mm(tsk);
787
788 if (group_dead)
789 acct_process();
790 trace_sched_process_exit(tsk);
791
792 exit_sem(tsk);
793 exit_shm(tsk);
794 exit_files(tsk);
795 exit_fs(tsk);
796 exit_task_work(tsk);
797 check_stack_usage();
798 exit_thread();
799
800 /*
801 * Flush inherited counters to the parent - before the parent
802 * gets woken up by child-exit notifications.
803 *
804 * because of cgroup mode, must be called before cgroup_exit()
805 */
806 perf_event_exit_task(tsk);
807
808 cgroup_exit(tsk, 1);
809
810 if (group_dead)
811 disassociate_ctty(1);
812
813 module_put(task_thread_info(tsk)->exec_domain->module);
814
815 proc_exit_connector(tsk);
816
817 /*
818 * FIXME: do that only when needed, using sched_exit tracepoint
819 */
820 ptrace_put_breakpoints(tsk);
821
822 exit_notify(tsk, group_dead);
823 #ifdef CONFIG_NUMA
824 task_lock(tsk);
825 mpol_put(tsk->mempolicy);
826 tsk->mempolicy = NULL;
827 task_unlock(tsk);
828 #endif
829 #ifdef CONFIG_FUTEX
830 if (unlikely(current->pi_state_cache))
831 kfree(current->pi_state_cache);
832 #endif
833 /*
834 * Make sure we are holding no locks:
835 */
836 debug_check_no_locks_held(tsk);
837 /*
838 * We can do this unlocked here. The futex code uses this flag
839 * just to verify whether the pi state cleanup has been done
840 * or not. In the worst case it loops once more.
841 */
842 tsk->flags |= PF_EXITPIDONE;
843
844 if (tsk->io_context)
845 exit_io_context(tsk);
846
847 if (tsk->splice_pipe)
848 __free_pipe_info(tsk->splice_pipe);
849
850 if (tsk->task_frag.page)
851 put_page(tsk->task_frag.page);
852
853 validate_creds_for_do_exit(tsk);
854
855 preempt_disable();
856 if (tsk->nr_dirtied)
857 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
858 exit_rcu();
859
860 /*
861 * The setting of TASK_RUNNING by try_to_wake_up() may be delayed
862 * when the following two conditions become true.
863 * - There is race condition of mmap_sem (It is acquired by
864 * exit_mm()), and
865 * - SMI occurs before setting TASK_RUNINNG.
866 * (or hypervisor of virtual machine switches to other guest)
867 * As a result, we may become TASK_RUNNING after becoming TASK_DEAD
868 *
869 * To avoid it, we have to wait for releasing tsk->pi_lock which
870 * is held by try_to_wake_up()
871 */
872 smp_mb();
873 raw_spin_unlock_wait(&tsk->pi_lock);
874
875 /* causes final put_task_struct in finish_task_switch(). */
876 tsk->state = TASK_DEAD;
877 tsk->flags |= PF_NOFREEZE; /* tell freezer to ignore us */
878 schedule();
879 BUG();
880 /* Avoid "noreturn function does return". */
881 for (;;)
882 cpu_relax(); /* For when BUG is null */
883 }
884
885 EXPORT_SYMBOL_GPL(do_exit);
886
887 void complete_and_exit(struct completion *comp, long code)
888 {
889 if (comp)
890 complete(comp);
891
892 do_exit(code);
893 }
894
895 EXPORT_SYMBOL(complete_and_exit);
896
897 SYSCALL_DEFINE1(exit, int, error_code)
898 {
899 do_exit((error_code&0xff)<<8);
900 }
901
902 /*
903 * Take down every thread in the group. This is called by fatal signals
904 * as well as by sys_exit_group (below).
905 */
906 void
907 do_group_exit(int exit_code)
908 {
909 struct signal_struct *sig = current->signal;
910
911 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
912
913 if (signal_group_exit(sig))
914 exit_code = sig->group_exit_code;
915 else if (!thread_group_empty(current)) {
916 struct sighand_struct *const sighand = current->sighand;
917 spin_lock_irq(&sighand->siglock);
918 if (signal_group_exit(sig))
919 /* Another thread got here before we took the lock. */
920 exit_code = sig->group_exit_code;
921 else {
922 sig->group_exit_code = exit_code;
923 sig->flags = SIGNAL_GROUP_EXIT;
924 zap_other_threads(current);
925 }
926 spin_unlock_irq(&sighand->siglock);
927 }
928
929 do_exit(exit_code);
930 /* NOTREACHED */
931 }
932
933 /*
934 * this kills every thread in the thread group. Note that any externally
935 * wait4()-ing process will get the correct exit code - even if this
936 * thread is not the thread group leader.
937 */
938 SYSCALL_DEFINE1(exit_group, int, error_code)
939 {
940 do_group_exit((error_code & 0xff) << 8);
941 /* NOTREACHED */
942 return 0;
943 }
944
945 struct wait_opts {
946 enum pid_type wo_type;
947 int wo_flags;
948 struct pid *wo_pid;
949
950 struct siginfo __user *wo_info;
951 int __user *wo_stat;
952 struct rusage __user *wo_rusage;
953
954 wait_queue_t child_wait;
955 int notask_error;
956 };
957
958 static inline
959 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
960 {
961 if (type != PIDTYPE_PID)
962 task = task->group_leader;
963 return task->pids[type].pid;
964 }
965
966 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
967 {
968 return wo->wo_type == PIDTYPE_MAX ||
969 task_pid_type(p, wo->wo_type) == wo->wo_pid;
970 }
971
972 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
973 {
974 if (!eligible_pid(wo, p))
975 return 0;
976 /* Wait for all children (clone and not) if __WALL is set;
977 * otherwise, wait for clone children *only* if __WCLONE is
978 * set; otherwise, wait for non-clone children *only*. (Note:
979 * A "clone" child here is one that reports to its parent
980 * using a signal other than SIGCHLD.) */
981 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
982 && !(wo->wo_flags & __WALL))
983 return 0;
984
985 return 1;
986 }
987
988 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
989 pid_t pid, uid_t uid, int why, int status)
990 {
991 struct siginfo __user *infop;
992 int retval = wo->wo_rusage
993 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
994
995 put_task_struct(p);
996 infop = wo->wo_info;
997 if (infop) {
998 if (!retval)
999 retval = put_user(SIGCHLD, &infop->si_signo);
1000 if (!retval)
1001 retval = put_user(0, &infop->si_errno);
1002 if (!retval)
1003 retval = put_user((short)why, &infop->si_code);
1004 if (!retval)
1005 retval = put_user(pid, &infop->si_pid);
1006 if (!retval)
1007 retval = put_user(uid, &infop->si_uid);
1008 if (!retval)
1009 retval = put_user(status, &infop->si_status);
1010 }
1011 if (!retval)
1012 retval = pid;
1013 return retval;
1014 }
1015
1016 /*
1017 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1018 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1019 * the lock and this task is uninteresting. If we return nonzero, we have
1020 * released the lock and the system call should return.
1021 */
1022 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1023 {
1024 unsigned long state;
1025 int retval, status, traced;
1026 pid_t pid = task_pid_vnr(p);
1027 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1028 struct siginfo __user *infop;
1029
1030 if (!likely(wo->wo_flags & WEXITED))
1031 return 0;
1032
1033 if (unlikely(wo->wo_flags & WNOWAIT)) {
1034 int exit_code = p->exit_code;
1035 int why;
1036
1037 get_task_struct(p);
1038 read_unlock(&tasklist_lock);
1039 if ((exit_code & 0x7f) == 0) {
1040 why = CLD_EXITED;
1041 status = exit_code >> 8;
1042 } else {
1043 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1044 status = exit_code & 0x7f;
1045 }
1046 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1047 }
1048
1049 /*
1050 * Try to move the task's state to DEAD
1051 * only one thread is allowed to do this:
1052 */
1053 state = xchg(&p->exit_state, EXIT_DEAD);
1054 if (state != EXIT_ZOMBIE) {
1055 BUG_ON(state != EXIT_DEAD);
1056 return 0;
1057 }
1058
1059 traced = ptrace_reparented(p);
1060 /*
1061 * It can be ptraced but not reparented, check
1062 * thread_group_leader() to filter out sub-threads.
1063 */
1064 if (likely(!traced) && thread_group_leader(p)) {
1065 struct signal_struct *psig;
1066 struct signal_struct *sig;
1067 unsigned long maxrss;
1068 cputime_t tgutime, tgstime;
1069
1070 /*
1071 * The resource counters for the group leader are in its
1072 * own task_struct. Those for dead threads in the group
1073 * are in its signal_struct, as are those for the child
1074 * processes it has previously reaped. All these
1075 * accumulate in the parent's signal_struct c* fields.
1076 *
1077 * We don't bother to take a lock here to protect these
1078 * p->signal fields, because they are only touched by
1079 * __exit_signal, which runs with tasklist_lock
1080 * write-locked anyway, and so is excluded here. We do
1081 * need to protect the access to parent->signal fields,
1082 * as other threads in the parent group can be right
1083 * here reaping other children at the same time.
1084 *
1085 * We use thread_group_cputime_adjusted() to get times for the thread
1086 * group, which consolidates times for all threads in the
1087 * group including the group leader.
1088 */
1089 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1090 spin_lock_irq(&p->real_parent->sighand->siglock);
1091 psig = p->real_parent->signal;
1092 sig = p->signal;
1093 psig->cutime += tgutime + sig->cutime;
1094 psig->cstime += tgstime + sig->cstime;
1095 psig->cgtime += p->gtime + sig->gtime + sig->cgtime;
1096 psig->cmin_flt +=
1097 p->min_flt + sig->min_flt + sig->cmin_flt;
1098 psig->cmaj_flt +=
1099 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1100 psig->cnvcsw +=
1101 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1102 psig->cnivcsw +=
1103 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1104 psig->cinblock +=
1105 task_io_get_inblock(p) +
1106 sig->inblock + sig->cinblock;
1107 psig->coublock +=
1108 task_io_get_oublock(p) +
1109 sig->oublock + sig->coublock;
1110 maxrss = max(sig->maxrss, sig->cmaxrss);
1111 if (psig->cmaxrss < maxrss)
1112 psig->cmaxrss = maxrss;
1113 task_io_accounting_add(&psig->ioac, &p->ioac);
1114 task_io_accounting_add(&psig->ioac, &sig->ioac);
1115 spin_unlock_irq(&p->real_parent->sighand->siglock);
1116 }
1117
1118 /*
1119 * Now we are sure this task is interesting, and no other
1120 * thread can reap it because we set its state to EXIT_DEAD.
1121 */
1122 read_unlock(&tasklist_lock);
1123
1124 retval = wo->wo_rusage
1125 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1126 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1127 ? p->signal->group_exit_code : p->exit_code;
1128 if (!retval && wo->wo_stat)
1129 retval = put_user(status, wo->wo_stat);
1130
1131 infop = wo->wo_info;
1132 if (!retval && infop)
1133 retval = put_user(SIGCHLD, &infop->si_signo);
1134 if (!retval && infop)
1135 retval = put_user(0, &infop->si_errno);
1136 if (!retval && infop) {
1137 int why;
1138
1139 if ((status & 0x7f) == 0) {
1140 why = CLD_EXITED;
1141 status >>= 8;
1142 } else {
1143 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1144 status &= 0x7f;
1145 }
1146 retval = put_user((short)why, &infop->si_code);
1147 if (!retval)
1148 retval = put_user(status, &infop->si_status);
1149 }
1150 if (!retval && infop)
1151 retval = put_user(pid, &infop->si_pid);
1152 if (!retval && infop)
1153 retval = put_user(uid, &infop->si_uid);
1154 if (!retval)
1155 retval = pid;
1156
1157 if (traced) {
1158 write_lock_irq(&tasklist_lock);
1159 /* We dropped tasklist, ptracer could die and untrace */
1160 ptrace_unlink(p);
1161 /*
1162 * If this is not a sub-thread, notify the parent.
1163 * If parent wants a zombie, don't release it now.
1164 */
1165 if (thread_group_leader(p) &&
1166 !do_notify_parent(p, p->exit_signal)) {
1167 p->exit_state = EXIT_ZOMBIE;
1168 p = NULL;
1169 }
1170 write_unlock_irq(&tasklist_lock);
1171 }
1172 if (p != NULL)
1173 release_task(p);
1174
1175 return retval;
1176 }
1177
1178 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1179 {
1180 if (ptrace) {
1181 if (task_is_stopped_or_traced(p) &&
1182 !(p->jobctl & JOBCTL_LISTENING))
1183 return &p->exit_code;
1184 } else {
1185 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1186 return &p->signal->group_exit_code;
1187 }
1188 return NULL;
1189 }
1190
1191 /**
1192 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1193 * @wo: wait options
1194 * @ptrace: is the wait for ptrace
1195 * @p: task to wait for
1196 *
1197 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1198 *
1199 * CONTEXT:
1200 * read_lock(&tasklist_lock), which is released if return value is
1201 * non-zero. Also, grabs and releases @p->sighand->siglock.
1202 *
1203 * RETURNS:
1204 * 0 if wait condition didn't exist and search for other wait conditions
1205 * should continue. Non-zero return, -errno on failure and @p's pid on
1206 * success, implies that tasklist_lock is released and wait condition
1207 * search should terminate.
1208 */
1209 static int wait_task_stopped(struct wait_opts *wo,
1210 int ptrace, struct task_struct *p)
1211 {
1212 struct siginfo __user *infop;
1213 int retval, exit_code, *p_code, why;
1214 uid_t uid = 0; /* unneeded, required by compiler */
1215 pid_t pid;
1216
1217 /*
1218 * Traditionally we see ptrace'd stopped tasks regardless of options.
1219 */
1220 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1221 return 0;
1222
1223 if (!task_stopped_code(p, ptrace))
1224 return 0;
1225
1226 exit_code = 0;
1227 spin_lock_irq(&p->sighand->siglock);
1228
1229 p_code = task_stopped_code(p, ptrace);
1230 if (unlikely(!p_code))
1231 goto unlock_sig;
1232
1233 exit_code = *p_code;
1234 if (!exit_code)
1235 goto unlock_sig;
1236
1237 if (!unlikely(wo->wo_flags & WNOWAIT))
1238 *p_code = 0;
1239
1240 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1241 unlock_sig:
1242 spin_unlock_irq(&p->sighand->siglock);
1243 if (!exit_code)
1244 return 0;
1245
1246 /*
1247 * Now we are pretty sure this task is interesting.
1248 * Make sure it doesn't get reaped out from under us while we
1249 * give up the lock and then examine it below. We don't want to
1250 * keep holding onto the tasklist_lock while we call getrusage and
1251 * possibly take page faults for user memory.
1252 */
1253 get_task_struct(p);
1254 pid = task_pid_vnr(p);
1255 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1256 read_unlock(&tasklist_lock);
1257
1258 if (unlikely(wo->wo_flags & WNOWAIT))
1259 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1260
1261 retval = wo->wo_rusage
1262 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1263 if (!retval && wo->wo_stat)
1264 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1265
1266 infop = wo->wo_info;
1267 if (!retval && infop)
1268 retval = put_user(SIGCHLD, &infop->si_signo);
1269 if (!retval && infop)
1270 retval = put_user(0, &infop->si_errno);
1271 if (!retval && infop)
1272 retval = put_user((short)why, &infop->si_code);
1273 if (!retval && infop)
1274 retval = put_user(exit_code, &infop->si_status);
1275 if (!retval && infop)
1276 retval = put_user(pid, &infop->si_pid);
1277 if (!retval && infop)
1278 retval = put_user(uid, &infop->si_uid);
1279 if (!retval)
1280 retval = pid;
1281 put_task_struct(p);
1282
1283 BUG_ON(!retval);
1284 return retval;
1285 }
1286
1287 /*
1288 * Handle do_wait work for one task in a live, non-stopped state.
1289 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1290 * the lock and this task is uninteresting. If we return nonzero, we have
1291 * released the lock and the system call should return.
1292 */
1293 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1294 {
1295 int retval;
1296 pid_t pid;
1297 uid_t uid;
1298
1299 if (!unlikely(wo->wo_flags & WCONTINUED))
1300 return 0;
1301
1302 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1303 return 0;
1304
1305 spin_lock_irq(&p->sighand->siglock);
1306 /* Re-check with the lock held. */
1307 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1308 spin_unlock_irq(&p->sighand->siglock);
1309 return 0;
1310 }
1311 if (!unlikely(wo->wo_flags & WNOWAIT))
1312 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1313 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1314 spin_unlock_irq(&p->sighand->siglock);
1315
1316 pid = task_pid_vnr(p);
1317 get_task_struct(p);
1318 read_unlock(&tasklist_lock);
1319
1320 if (!wo->wo_info) {
1321 retval = wo->wo_rusage
1322 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1323 put_task_struct(p);
1324 if (!retval && wo->wo_stat)
1325 retval = put_user(0xffff, wo->wo_stat);
1326 if (!retval)
1327 retval = pid;
1328 } else {
1329 retval = wait_noreap_copyout(wo, p, pid, uid,
1330 CLD_CONTINUED, SIGCONT);
1331 BUG_ON(retval == 0);
1332 }
1333
1334 return retval;
1335 }
1336
1337 /*
1338 * Consider @p for a wait by @parent.
1339 *
1340 * -ECHILD should be in ->notask_error before the first call.
1341 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1342 * Returns zero if the search for a child should continue;
1343 * then ->notask_error is 0 if @p is an eligible child,
1344 * or another error from security_task_wait(), or still -ECHILD.
1345 */
1346 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1347 struct task_struct *p)
1348 {
1349 int ret = eligible_child(wo, p);
1350 if (!ret)
1351 return ret;
1352
1353 ret = security_task_wait(p);
1354 if (unlikely(ret < 0)) {
1355 /*
1356 * If we have not yet seen any eligible child,
1357 * then let this error code replace -ECHILD.
1358 * A permission error will give the user a clue
1359 * to look for security policy problems, rather
1360 * than for mysterious wait bugs.
1361 */
1362 if (wo->notask_error)
1363 wo->notask_error = ret;
1364 return 0;
1365 }
1366
1367 /* dead body doesn't have much to contribute */
1368 if (unlikely(p->exit_state == EXIT_DEAD)) {
1369 /*
1370 * But do not ignore this task until the tracer does
1371 * wait_task_zombie()->do_notify_parent().
1372 */
1373 if (likely(!ptrace) && unlikely(ptrace_reparented(p)))
1374 wo->notask_error = 0;
1375 return 0;
1376 }
1377
1378 /* slay zombie? */
1379 if (p->exit_state == EXIT_ZOMBIE) {
1380 /*
1381 * A zombie ptracee is only visible to its ptracer.
1382 * Notification and reaping will be cascaded to the real
1383 * parent when the ptracer detaches.
1384 */
1385 if (likely(!ptrace) && unlikely(p->ptrace)) {
1386 /* it will become visible, clear notask_error */
1387 wo->notask_error = 0;
1388 return 0;
1389 }
1390
1391 /* we don't reap group leaders with subthreads */
1392 if (!delay_group_leader(p))
1393 return wait_task_zombie(wo, p);
1394
1395 /*
1396 * Allow access to stopped/continued state via zombie by
1397 * falling through. Clearing of notask_error is complex.
1398 *
1399 * When !@ptrace:
1400 *
1401 * If WEXITED is set, notask_error should naturally be
1402 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1403 * so, if there are live subthreads, there are events to
1404 * wait for. If all subthreads are dead, it's still safe
1405 * to clear - this function will be called again in finite
1406 * amount time once all the subthreads are released and
1407 * will then return without clearing.
1408 *
1409 * When @ptrace:
1410 *
1411 * Stopped state is per-task and thus can't change once the
1412 * target task dies. Only continued and exited can happen.
1413 * Clear notask_error if WCONTINUED | WEXITED.
1414 */
1415 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1416 wo->notask_error = 0;
1417 } else {
1418 /*
1419 * If @p is ptraced by a task in its real parent's group,
1420 * hide group stop/continued state when looking at @p as
1421 * the real parent; otherwise, a single stop can be
1422 * reported twice as group and ptrace stops.
1423 *
1424 * If a ptracer wants to distinguish the two events for its
1425 * own children, it should create a separate process which
1426 * takes the role of real parent.
1427 */
1428 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1429 return 0;
1430
1431 /*
1432 * @p is alive and it's gonna stop, continue or exit, so
1433 * there always is something to wait for.
1434 */
1435 wo->notask_error = 0;
1436 }
1437
1438 /*
1439 * Wait for stopped. Depending on @ptrace, different stopped state
1440 * is used and the two don't interact with each other.
1441 */
1442 ret = wait_task_stopped(wo, ptrace, p);
1443 if (ret)
1444 return ret;
1445
1446 /*
1447 * Wait for continued. There's only one continued state and the
1448 * ptracer can consume it which can confuse the real parent. Don't
1449 * use WCONTINUED from ptracer. You don't need or want it.
1450 */
1451 return wait_task_continued(wo, p);
1452 }
1453
1454 /*
1455 * Do the work of do_wait() for one thread in the group, @tsk.
1456 *
1457 * -ECHILD should be in ->notask_error before the first call.
1458 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1459 * Returns zero if the search for a child should continue; then
1460 * ->notask_error is 0 if there were any eligible children,
1461 * or another error from security_task_wait(), or still -ECHILD.
1462 */
1463 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1464 {
1465 struct task_struct *p;
1466
1467 list_for_each_entry(p, &tsk->children, sibling) {
1468 int ret = wait_consider_task(wo, 0, p);
1469 if (ret)
1470 return ret;
1471 }
1472
1473 return 0;
1474 }
1475
1476 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1477 {
1478 struct task_struct *p;
1479
1480 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1481 int ret = wait_consider_task(wo, 1, p);
1482 if (ret)
1483 return ret;
1484 }
1485
1486 return 0;
1487 }
1488
1489 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1490 int sync, void *key)
1491 {
1492 struct wait_opts *wo = container_of(wait, struct wait_opts,
1493 child_wait);
1494 struct task_struct *p = key;
1495
1496 if (!eligible_pid(wo, p))
1497 return 0;
1498
1499 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1500 return 0;
1501
1502 return default_wake_function(wait, mode, sync, key);
1503 }
1504
1505 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1506 {
1507 __wake_up_sync_key(&parent->signal->wait_chldexit,
1508 TASK_INTERRUPTIBLE, 1, p);
1509 }
1510
1511 static long do_wait(struct wait_opts *wo)
1512 {
1513 struct task_struct *tsk;
1514 int retval;
1515
1516 trace_sched_process_wait(wo->wo_pid);
1517
1518 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1519 wo->child_wait.private = current;
1520 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1521 repeat:
1522 /*
1523 * If there is nothing that can match our critiera just get out.
1524 * We will clear ->notask_error to zero if we see any child that
1525 * might later match our criteria, even if we are not able to reap
1526 * it yet.
1527 */
1528 wo->notask_error = -ECHILD;
1529 if ((wo->wo_type < PIDTYPE_MAX) &&
1530 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1531 goto notask;
1532
1533 set_current_state(TASK_INTERRUPTIBLE);
1534 read_lock(&tasklist_lock);
1535 tsk = current;
1536 do {
1537 retval = do_wait_thread(wo, tsk);
1538 if (retval)
1539 goto end;
1540
1541 retval = ptrace_do_wait(wo, tsk);
1542 if (retval)
1543 goto end;
1544
1545 if (wo->wo_flags & __WNOTHREAD)
1546 break;
1547 } while_each_thread(current, tsk);
1548 read_unlock(&tasklist_lock);
1549
1550 notask:
1551 retval = wo->notask_error;
1552 if (!retval && !(wo->wo_flags & WNOHANG)) {
1553 retval = -ERESTARTSYS;
1554 if (!signal_pending(current)) {
1555 schedule();
1556 goto repeat;
1557 }
1558 }
1559 end:
1560 __set_current_state(TASK_RUNNING);
1561 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1562 return retval;
1563 }
1564
1565 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1566 infop, int, options, struct rusage __user *, ru)
1567 {
1568 struct wait_opts wo;
1569 struct pid *pid = NULL;
1570 enum pid_type type;
1571 long ret;
1572
1573 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1574 return -EINVAL;
1575 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1576 return -EINVAL;
1577
1578 switch (which) {
1579 case P_ALL:
1580 type = PIDTYPE_MAX;
1581 break;
1582 case P_PID:
1583 type = PIDTYPE_PID;
1584 if (upid <= 0)
1585 return -EINVAL;
1586 break;
1587 case P_PGID:
1588 type = PIDTYPE_PGID;
1589 if (upid <= 0)
1590 return -EINVAL;
1591 break;
1592 default:
1593 return -EINVAL;
1594 }
1595
1596 if (type < PIDTYPE_MAX)
1597 pid = find_get_pid(upid);
1598
1599 wo.wo_type = type;
1600 wo.wo_pid = pid;
1601 wo.wo_flags = options;
1602 wo.wo_info = infop;
1603 wo.wo_stat = NULL;
1604 wo.wo_rusage = ru;
1605 ret = do_wait(&wo);
1606
1607 if (ret > 0) {
1608 ret = 0;
1609 } else if (infop) {
1610 /*
1611 * For a WNOHANG return, clear out all the fields
1612 * we would set so the user can easily tell the
1613 * difference.
1614 */
1615 if (!ret)
1616 ret = put_user(0, &infop->si_signo);
1617 if (!ret)
1618 ret = put_user(0, &infop->si_errno);
1619 if (!ret)
1620 ret = put_user(0, &infop->si_code);
1621 if (!ret)
1622 ret = put_user(0, &infop->si_pid);
1623 if (!ret)
1624 ret = put_user(0, &infop->si_uid);
1625 if (!ret)
1626 ret = put_user(0, &infop->si_status);
1627 }
1628
1629 put_pid(pid);
1630
1631 /* avoid REGPARM breakage on x86: */
1632 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1633 return ret;
1634 }
1635
1636 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1637 int, options, struct rusage __user *, ru)
1638 {
1639 struct wait_opts wo;
1640 struct pid *pid = NULL;
1641 enum pid_type type;
1642 long ret;
1643
1644 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1645 __WNOTHREAD|__WCLONE|__WALL))
1646 return -EINVAL;
1647
1648 if (upid == -1)
1649 type = PIDTYPE_MAX;
1650 else if (upid < 0) {
1651 type = PIDTYPE_PGID;
1652 pid = find_get_pid(-upid);
1653 } else if (upid == 0) {
1654 type = PIDTYPE_PGID;
1655 pid = get_task_pid(current, PIDTYPE_PGID);
1656 } else /* upid > 0 */ {
1657 type = PIDTYPE_PID;
1658 pid = find_get_pid(upid);
1659 }
1660
1661 wo.wo_type = type;
1662 wo.wo_pid = pid;
1663 wo.wo_flags = options | WEXITED;
1664 wo.wo_info = NULL;
1665 wo.wo_stat = stat_addr;
1666 wo.wo_rusage = ru;
1667 ret = do_wait(&wo);
1668 put_pid(pid);
1669
1670 /* avoid REGPARM breakage on x86: */
1671 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1672 return ret;
1673 }
1674
1675 #ifdef __ARCH_WANT_SYS_WAITPID
1676
1677 /*
1678 * sys_waitpid() remains for compatibility. waitpid() should be
1679 * implemented by calling sys_wait4() from libc.a.
1680 */
1681 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1682 {
1683 return sys_wait4(pid, stat_addr, options, NULL);
1684 }
1685
1686 #endif