cpusets: randomize node rotor used in cpuset_mem_spread_node()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54
55 #include <asm/uaccess.h>
56 #include <asm/unistd.h>
57 #include <asm/pgtable.h>
58 #include <asm/mmu_context.h>
59
60 static void exit_mm(struct task_struct * tsk);
61
62 static void __unhash_process(struct task_struct *p, bool group_dead)
63 {
64 nr_threads--;
65 detach_pid(p, PIDTYPE_PID);
66 if (group_dead) {
67 detach_pid(p, PIDTYPE_PGID);
68 detach_pid(p, PIDTYPE_SID);
69
70 list_del_rcu(&p->tasks);
71 list_del_init(&p->sibling);
72 __this_cpu_dec(process_counts);
73 }
74 list_del_rcu(&p->thread_group);
75 }
76
77 /*
78 * This function expects the tasklist_lock write-locked.
79 */
80 static void __exit_signal(struct task_struct *tsk)
81 {
82 struct signal_struct *sig = tsk->signal;
83 bool group_dead = thread_group_leader(tsk);
84 struct sighand_struct *sighand;
85 struct tty_struct *uninitialized_var(tty);
86
87 sighand = rcu_dereference_check(tsk->sighand,
88 lockdep_tasklist_lock_is_held());
89 spin_lock(&sighand->siglock);
90
91 posix_cpu_timers_exit(tsk);
92 if (group_dead) {
93 posix_cpu_timers_exit_group(tsk);
94 tty = sig->tty;
95 sig->tty = NULL;
96 } else {
97 /*
98 * This can only happen if the caller is de_thread().
99 * FIXME: this is the temporary hack, we should teach
100 * posix-cpu-timers to handle this case correctly.
101 */
102 if (unlikely(has_group_leader_pid(tsk)))
103 posix_cpu_timers_exit_group(tsk);
104
105 /*
106 * If there is any task waiting for the group exit
107 * then notify it:
108 */
109 if (sig->notify_count > 0 && !--sig->notify_count)
110 wake_up_process(sig->group_exit_task);
111
112 if (tsk == sig->curr_target)
113 sig->curr_target = next_thread(tsk);
114 /*
115 * Accumulate here the counters for all threads but the
116 * group leader as they die, so they can be added into
117 * the process-wide totals when those are taken.
118 * The group leader stays around as a zombie as long
119 * as there are other threads. When it gets reaped,
120 * the exit.c code will add its counts into these totals.
121 * We won't ever get here for the group leader, since it
122 * will have been the last reference on the signal_struct.
123 */
124 sig->utime = cputime_add(sig->utime, tsk->utime);
125 sig->stime = cputime_add(sig->stime, tsk->stime);
126 sig->gtime = cputime_add(sig->gtime, tsk->gtime);
127 sig->min_flt += tsk->min_flt;
128 sig->maj_flt += tsk->maj_flt;
129 sig->nvcsw += tsk->nvcsw;
130 sig->nivcsw += tsk->nivcsw;
131 sig->inblock += task_io_get_inblock(tsk);
132 sig->oublock += task_io_get_oublock(tsk);
133 task_io_accounting_add(&sig->ioac, &tsk->ioac);
134 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
135 }
136
137 sig->nr_threads--;
138 __unhash_process(tsk, group_dead);
139
140 /*
141 * Do this under ->siglock, we can race with another thread
142 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
143 */
144 flush_sigqueue(&tsk->pending);
145 tsk->sighand = NULL;
146 spin_unlock(&sighand->siglock);
147
148 __cleanup_sighand(sighand);
149 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
150 if (group_dead) {
151 flush_sigqueue(&sig->shared_pending);
152 tty_kref_put(tty);
153 }
154 }
155
156 static void delayed_put_task_struct(struct rcu_head *rhp)
157 {
158 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
159
160 perf_event_delayed_put(tsk);
161 trace_sched_process_free(tsk);
162 put_task_struct(tsk);
163 }
164
165
166 void release_task(struct task_struct * p)
167 {
168 struct task_struct *leader;
169 int zap_leader;
170 repeat:
171 /* don't need to get the RCU readlock here - the process is dead and
172 * can't be modifying its own credentials. But shut RCU-lockdep up */
173 rcu_read_lock();
174 atomic_dec(&__task_cred(p)->user->processes);
175 rcu_read_unlock();
176
177 proc_flush_task(p);
178
179 write_lock_irq(&tasklist_lock);
180 ptrace_release_task(p);
181 __exit_signal(p);
182
183 /*
184 * If we are the last non-leader member of the thread
185 * group, and the leader is zombie, then notify the
186 * group leader's parent process. (if it wants notification.)
187 */
188 zap_leader = 0;
189 leader = p->group_leader;
190 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
191 /*
192 * If we were the last child thread and the leader has
193 * exited already, and the leader's parent ignores SIGCHLD,
194 * then we are the one who should release the leader.
195 */
196 zap_leader = do_notify_parent(leader, leader->exit_signal);
197 if (zap_leader)
198 leader->exit_state = EXIT_DEAD;
199 }
200
201 write_unlock_irq(&tasklist_lock);
202 release_thread(p);
203 call_rcu(&p->rcu, delayed_put_task_struct);
204
205 p = leader;
206 if (unlikely(zap_leader))
207 goto repeat;
208 }
209
210 /*
211 * This checks not only the pgrp, but falls back on the pid if no
212 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
213 * without this...
214 *
215 * The caller must hold rcu lock or the tasklist lock.
216 */
217 struct pid *session_of_pgrp(struct pid *pgrp)
218 {
219 struct task_struct *p;
220 struct pid *sid = NULL;
221
222 p = pid_task(pgrp, PIDTYPE_PGID);
223 if (p == NULL)
224 p = pid_task(pgrp, PIDTYPE_PID);
225 if (p != NULL)
226 sid = task_session(p);
227
228 return sid;
229 }
230
231 /*
232 * Determine if a process group is "orphaned", according to the POSIX
233 * definition in 2.2.2.52. Orphaned process groups are not to be affected
234 * by terminal-generated stop signals. Newly orphaned process groups are
235 * to receive a SIGHUP and a SIGCONT.
236 *
237 * "I ask you, have you ever known what it is to be an orphan?"
238 */
239 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
240 {
241 struct task_struct *p;
242
243 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
244 if ((p == ignored_task) ||
245 (p->exit_state && thread_group_empty(p)) ||
246 is_global_init(p->real_parent))
247 continue;
248
249 if (task_pgrp(p->real_parent) != pgrp &&
250 task_session(p->real_parent) == task_session(p))
251 return 0;
252 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
253
254 return 1;
255 }
256
257 int is_current_pgrp_orphaned(void)
258 {
259 int retval;
260
261 read_lock(&tasklist_lock);
262 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
263 read_unlock(&tasklist_lock);
264
265 return retval;
266 }
267
268 static bool has_stopped_jobs(struct pid *pgrp)
269 {
270 struct task_struct *p;
271
272 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
273 if (p->signal->flags & SIGNAL_STOP_STOPPED)
274 return true;
275 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
276
277 return false;
278 }
279
280 /*
281 * Check to see if any process groups have become orphaned as
282 * a result of our exiting, and if they have any stopped jobs,
283 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
284 */
285 static void
286 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
287 {
288 struct pid *pgrp = task_pgrp(tsk);
289 struct task_struct *ignored_task = tsk;
290
291 if (!parent)
292 /* exit: our father is in a different pgrp than
293 * we are and we were the only connection outside.
294 */
295 parent = tsk->real_parent;
296 else
297 /* reparent: our child is in a different pgrp than
298 * we are, and it was the only connection outside.
299 */
300 ignored_task = NULL;
301
302 if (task_pgrp(parent) != pgrp &&
303 task_session(parent) == task_session(tsk) &&
304 will_become_orphaned_pgrp(pgrp, ignored_task) &&
305 has_stopped_jobs(pgrp)) {
306 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
307 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
308 }
309 }
310
311 /**
312 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
313 *
314 * If a kernel thread is launched as a result of a system call, or if
315 * it ever exits, it should generally reparent itself to kthreadd so it
316 * isn't in the way of other processes and is correctly cleaned up on exit.
317 *
318 * The various task state such as scheduling policy and priority may have
319 * been inherited from a user process, so we reset them to sane values here.
320 *
321 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
322 */
323 static void reparent_to_kthreadd(void)
324 {
325 write_lock_irq(&tasklist_lock);
326
327 ptrace_unlink(current);
328 /* Reparent to init */
329 current->real_parent = current->parent = kthreadd_task;
330 list_move_tail(&current->sibling, &current->real_parent->children);
331
332 /* Set the exit signal to SIGCHLD so we signal init on exit */
333 current->exit_signal = SIGCHLD;
334
335 if (task_nice(current) < 0)
336 set_user_nice(current, 0);
337 /* cpus_allowed? */
338 /* rt_priority? */
339 /* signals? */
340 memcpy(current->signal->rlim, init_task.signal->rlim,
341 sizeof(current->signal->rlim));
342
343 atomic_inc(&init_cred.usage);
344 commit_creds(&init_cred);
345 write_unlock_irq(&tasklist_lock);
346 }
347
348 void __set_special_pids(struct pid *pid)
349 {
350 struct task_struct *curr = current->group_leader;
351
352 if (task_session(curr) != pid)
353 change_pid(curr, PIDTYPE_SID, pid);
354
355 if (task_pgrp(curr) != pid)
356 change_pid(curr, PIDTYPE_PGID, pid);
357 }
358
359 static void set_special_pids(struct pid *pid)
360 {
361 write_lock_irq(&tasklist_lock);
362 __set_special_pids(pid);
363 write_unlock_irq(&tasklist_lock);
364 }
365
366 /*
367 * Let kernel threads use this to say that they allow a certain signal.
368 * Must not be used if kthread was cloned with CLONE_SIGHAND.
369 */
370 int allow_signal(int sig)
371 {
372 if (!valid_signal(sig) || sig < 1)
373 return -EINVAL;
374
375 spin_lock_irq(&current->sighand->siglock);
376 /* This is only needed for daemonize()'ed kthreads */
377 sigdelset(&current->blocked, sig);
378 /*
379 * Kernel threads handle their own signals. Let the signal code
380 * know it'll be handled, so that they don't get converted to
381 * SIGKILL or just silently dropped.
382 */
383 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
384 recalc_sigpending();
385 spin_unlock_irq(&current->sighand->siglock);
386 return 0;
387 }
388
389 EXPORT_SYMBOL(allow_signal);
390
391 int disallow_signal(int sig)
392 {
393 if (!valid_signal(sig) || sig < 1)
394 return -EINVAL;
395
396 spin_lock_irq(&current->sighand->siglock);
397 current->sighand->action[(sig)-1].sa.sa_handler = SIG_IGN;
398 recalc_sigpending();
399 spin_unlock_irq(&current->sighand->siglock);
400 return 0;
401 }
402
403 EXPORT_SYMBOL(disallow_signal);
404
405 /*
406 * Put all the gunge required to become a kernel thread without
407 * attached user resources in one place where it belongs.
408 */
409
410 void daemonize(const char *name, ...)
411 {
412 va_list args;
413 sigset_t blocked;
414
415 va_start(args, name);
416 vsnprintf(current->comm, sizeof(current->comm), name, args);
417 va_end(args);
418
419 /*
420 * If we were started as result of loading a module, close all of the
421 * user space pages. We don't need them, and if we didn't close them
422 * they would be locked into memory.
423 */
424 exit_mm(current);
425 /*
426 * We don't want to have TIF_FREEZE set if the system-wide hibernation
427 * or suspend transition begins right now.
428 */
429 current->flags |= (PF_NOFREEZE | PF_KTHREAD);
430
431 if (current->nsproxy != &init_nsproxy) {
432 get_nsproxy(&init_nsproxy);
433 switch_task_namespaces(current, &init_nsproxy);
434 }
435 set_special_pids(&init_struct_pid);
436 proc_clear_tty(current);
437
438 /* Block and flush all signals */
439 sigfillset(&blocked);
440 sigprocmask(SIG_BLOCK, &blocked, NULL);
441 flush_signals(current);
442
443 /* Become as one with the init task */
444
445 daemonize_fs_struct();
446 exit_files(current);
447 current->files = init_task.files;
448 atomic_inc(&current->files->count);
449
450 reparent_to_kthreadd();
451 }
452
453 EXPORT_SYMBOL(daemonize);
454
455 static void close_files(struct files_struct * files)
456 {
457 int i, j;
458 struct fdtable *fdt;
459
460 j = 0;
461
462 /*
463 * It is safe to dereference the fd table without RCU or
464 * ->file_lock because this is the last reference to the
465 * files structure. But use RCU to shut RCU-lockdep up.
466 */
467 rcu_read_lock();
468 fdt = files_fdtable(files);
469 rcu_read_unlock();
470 for (;;) {
471 unsigned long set;
472 i = j * __NFDBITS;
473 if (i >= fdt->max_fds)
474 break;
475 set = fdt->open_fds->fds_bits[j++];
476 while (set) {
477 if (set & 1) {
478 struct file * file = xchg(&fdt->fd[i], NULL);
479 if (file) {
480 filp_close(file, files);
481 cond_resched();
482 }
483 }
484 i++;
485 set >>= 1;
486 }
487 }
488 }
489
490 struct files_struct *get_files_struct(struct task_struct *task)
491 {
492 struct files_struct *files;
493
494 task_lock(task);
495 files = task->files;
496 if (files)
497 atomic_inc(&files->count);
498 task_unlock(task);
499
500 return files;
501 }
502
503 void put_files_struct(struct files_struct *files)
504 {
505 struct fdtable *fdt;
506
507 if (atomic_dec_and_test(&files->count)) {
508 close_files(files);
509 /*
510 * Free the fd and fdset arrays if we expanded them.
511 * If the fdtable was embedded, pass files for freeing
512 * at the end of the RCU grace period. Otherwise,
513 * you can free files immediately.
514 */
515 rcu_read_lock();
516 fdt = files_fdtable(files);
517 if (fdt != &files->fdtab)
518 kmem_cache_free(files_cachep, files);
519 free_fdtable(fdt);
520 rcu_read_unlock();
521 }
522 }
523
524 void reset_files_struct(struct files_struct *files)
525 {
526 struct task_struct *tsk = current;
527 struct files_struct *old;
528
529 old = tsk->files;
530 task_lock(tsk);
531 tsk->files = files;
532 task_unlock(tsk);
533 put_files_struct(old);
534 }
535
536 void exit_files(struct task_struct *tsk)
537 {
538 struct files_struct * files = tsk->files;
539
540 if (files) {
541 task_lock(tsk);
542 tsk->files = NULL;
543 task_unlock(tsk);
544 put_files_struct(files);
545 }
546 }
547
548 #ifdef CONFIG_MM_OWNER
549 /*
550 * A task is exiting. If it owned this mm, find a new owner for the mm.
551 */
552 void mm_update_next_owner(struct mm_struct *mm)
553 {
554 struct task_struct *c, *g, *p = current;
555
556 retry:
557 /*
558 * If the exiting or execing task is not the owner, it's
559 * someone else's problem.
560 */
561 if (mm->owner != p)
562 return;
563 /*
564 * The current owner is exiting/execing and there are no other
565 * candidates. Do not leave the mm pointing to a possibly
566 * freed task structure.
567 */
568 if (atomic_read(&mm->mm_users) <= 1) {
569 mm->owner = NULL;
570 return;
571 }
572
573 read_lock(&tasklist_lock);
574 /*
575 * Search in the children
576 */
577 list_for_each_entry(c, &p->children, sibling) {
578 if (c->mm == mm)
579 goto assign_new_owner;
580 }
581
582 /*
583 * Search in the siblings
584 */
585 list_for_each_entry(c, &p->real_parent->children, sibling) {
586 if (c->mm == mm)
587 goto assign_new_owner;
588 }
589
590 /*
591 * Search through everything else. We should not get
592 * here often
593 */
594 do_each_thread(g, c) {
595 if (c->mm == mm)
596 goto assign_new_owner;
597 } while_each_thread(g, c);
598
599 read_unlock(&tasklist_lock);
600 /*
601 * We found no owner yet mm_users > 1: this implies that we are
602 * most likely racing with swapoff (try_to_unuse()) or /proc or
603 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
604 */
605 mm->owner = NULL;
606 return;
607
608 assign_new_owner:
609 BUG_ON(c == p);
610 get_task_struct(c);
611 /*
612 * The task_lock protects c->mm from changing.
613 * We always want mm->owner->mm == mm
614 */
615 task_lock(c);
616 /*
617 * Delay read_unlock() till we have the task_lock()
618 * to ensure that c does not slip away underneath us
619 */
620 read_unlock(&tasklist_lock);
621 if (c->mm != mm) {
622 task_unlock(c);
623 put_task_struct(c);
624 goto retry;
625 }
626 mm->owner = c;
627 task_unlock(c);
628 put_task_struct(c);
629 }
630 #endif /* CONFIG_MM_OWNER */
631
632 /*
633 * Turn us into a lazy TLB process if we
634 * aren't already..
635 */
636 static void exit_mm(struct task_struct * tsk)
637 {
638 struct mm_struct *mm = tsk->mm;
639 struct core_state *core_state;
640
641 mm_release(tsk, mm);
642 if (!mm)
643 return;
644 /*
645 * Serialize with any possible pending coredump.
646 * We must hold mmap_sem around checking core_state
647 * and clearing tsk->mm. The core-inducing thread
648 * will increment ->nr_threads for each thread in the
649 * group with ->mm != NULL.
650 */
651 down_read(&mm->mmap_sem);
652 core_state = mm->core_state;
653 if (core_state) {
654 struct core_thread self;
655 up_read(&mm->mmap_sem);
656
657 self.task = tsk;
658 self.next = xchg(&core_state->dumper.next, &self);
659 /*
660 * Implies mb(), the result of xchg() must be visible
661 * to core_state->dumper.
662 */
663 if (atomic_dec_and_test(&core_state->nr_threads))
664 complete(&core_state->startup);
665
666 for (;;) {
667 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
668 if (!self.task) /* see coredump_finish() */
669 break;
670 schedule();
671 }
672 __set_task_state(tsk, TASK_RUNNING);
673 down_read(&mm->mmap_sem);
674 }
675 atomic_inc(&mm->mm_count);
676 BUG_ON(mm != tsk->active_mm);
677 /* more a memory barrier than a real lock */
678 task_lock(tsk);
679 tsk->mm = NULL;
680 up_read(&mm->mmap_sem);
681 enter_lazy_tlb(mm, current);
682 /* We don't want this task to be frozen prematurely */
683 clear_freeze_flag(tsk);
684 if (tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
685 atomic_dec(&mm->oom_disable_count);
686 task_unlock(tsk);
687 mm_update_next_owner(mm);
688 mmput(mm);
689 }
690
691 /*
692 * When we die, we re-parent all our children.
693 * Try to give them to another thread in our thread
694 * group, and if no such member exists, give it to
695 * the child reaper process (ie "init") in our pid
696 * space.
697 */
698 static struct task_struct *find_new_reaper(struct task_struct *father)
699 __releases(&tasklist_lock)
700 __acquires(&tasklist_lock)
701 {
702 struct pid_namespace *pid_ns = task_active_pid_ns(father);
703 struct task_struct *thread;
704
705 thread = father;
706 while_each_thread(father, thread) {
707 if (thread->flags & PF_EXITING)
708 continue;
709 if (unlikely(pid_ns->child_reaper == father))
710 pid_ns->child_reaper = thread;
711 return thread;
712 }
713
714 if (unlikely(pid_ns->child_reaper == father)) {
715 write_unlock_irq(&tasklist_lock);
716 if (unlikely(pid_ns == &init_pid_ns))
717 panic("Attempted to kill init!");
718
719 zap_pid_ns_processes(pid_ns);
720 write_lock_irq(&tasklist_lock);
721 /*
722 * We can not clear ->child_reaper or leave it alone.
723 * There may by stealth EXIT_DEAD tasks on ->children,
724 * forget_original_parent() must move them somewhere.
725 */
726 pid_ns->child_reaper = init_pid_ns.child_reaper;
727 }
728
729 return pid_ns->child_reaper;
730 }
731
732 /*
733 * Any that need to be release_task'd are put on the @dead list.
734 */
735 static void reparent_leader(struct task_struct *father, struct task_struct *p,
736 struct list_head *dead)
737 {
738 list_move_tail(&p->sibling, &p->real_parent->children);
739
740 if (p->exit_state == EXIT_DEAD)
741 return;
742 /*
743 * If this is a threaded reparent there is no need to
744 * notify anyone anything has happened.
745 */
746 if (same_thread_group(p->real_parent, father))
747 return;
748
749 /* We don't want people slaying init. */
750 p->exit_signal = SIGCHLD;
751
752 /* If it has exited notify the new parent about this child's death. */
753 if (!p->ptrace &&
754 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
755 if (do_notify_parent(p, p->exit_signal)) {
756 p->exit_state = EXIT_DEAD;
757 list_move_tail(&p->sibling, dead);
758 }
759 }
760
761 kill_orphaned_pgrp(p, father);
762 }
763
764 static void forget_original_parent(struct task_struct *father)
765 {
766 struct task_struct *p, *n, *reaper;
767 LIST_HEAD(dead_children);
768
769 write_lock_irq(&tasklist_lock);
770 /*
771 * Note that exit_ptrace() and find_new_reaper() might
772 * drop tasklist_lock and reacquire it.
773 */
774 exit_ptrace(father);
775 reaper = find_new_reaper(father);
776
777 list_for_each_entry_safe(p, n, &father->children, sibling) {
778 struct task_struct *t = p;
779 do {
780 t->real_parent = reaper;
781 if (t->parent == father) {
782 BUG_ON(t->ptrace);
783 t->parent = t->real_parent;
784 }
785 if (t->pdeath_signal)
786 group_send_sig_info(t->pdeath_signal,
787 SEND_SIG_NOINFO, t);
788 } while_each_thread(p, t);
789 reparent_leader(father, p, &dead_children);
790 }
791 write_unlock_irq(&tasklist_lock);
792
793 BUG_ON(!list_empty(&father->children));
794
795 list_for_each_entry_safe(p, n, &dead_children, sibling) {
796 list_del_init(&p->sibling);
797 release_task(p);
798 }
799 }
800
801 /*
802 * Send signals to all our closest relatives so that they know
803 * to properly mourn us..
804 */
805 static void exit_notify(struct task_struct *tsk, int group_dead)
806 {
807 bool autoreap;
808
809 /*
810 * This does two things:
811 *
812 * A. Make init inherit all the child processes
813 * B. Check to see if any process groups have become orphaned
814 * as a result of our exiting, and if they have any stopped
815 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
816 */
817 forget_original_parent(tsk);
818 exit_task_namespaces(tsk);
819
820 write_lock_irq(&tasklist_lock);
821 if (group_dead)
822 kill_orphaned_pgrp(tsk->group_leader, NULL);
823
824 /* Let father know we died
825 *
826 * Thread signals are configurable, but you aren't going to use
827 * that to send signals to arbitrary processes.
828 * That stops right now.
829 *
830 * If the parent exec id doesn't match the exec id we saved
831 * when we started then we know the parent has changed security
832 * domain.
833 *
834 * If our self_exec id doesn't match our parent_exec_id then
835 * we have changed execution domain as these two values started
836 * the same after a fork.
837 */
838 if (thread_group_leader(tsk) && tsk->exit_signal != SIGCHLD &&
839 (tsk->parent_exec_id != tsk->real_parent->self_exec_id ||
840 tsk->self_exec_id != tsk->parent_exec_id))
841 tsk->exit_signal = SIGCHLD;
842
843 if (unlikely(tsk->ptrace)) {
844 int sig = thread_group_leader(tsk) &&
845 thread_group_empty(tsk) &&
846 !ptrace_reparented(tsk) ?
847 tsk->exit_signal : SIGCHLD;
848 autoreap = do_notify_parent(tsk, sig);
849 } else if (thread_group_leader(tsk)) {
850 autoreap = thread_group_empty(tsk) &&
851 do_notify_parent(tsk, tsk->exit_signal);
852 } else {
853 autoreap = true;
854 }
855
856 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
857
858 /* mt-exec, de_thread() is waiting for group leader */
859 if (unlikely(tsk->signal->notify_count < 0))
860 wake_up_process(tsk->signal->group_exit_task);
861 write_unlock_irq(&tasklist_lock);
862
863 /* If the process is dead, release it - nobody will wait for it */
864 if (autoreap)
865 release_task(tsk);
866 }
867
868 #ifdef CONFIG_DEBUG_STACK_USAGE
869 static void check_stack_usage(void)
870 {
871 static DEFINE_SPINLOCK(low_water_lock);
872 static int lowest_to_date = THREAD_SIZE;
873 unsigned long free;
874
875 free = stack_not_used(current);
876
877 if (free >= lowest_to_date)
878 return;
879
880 spin_lock(&low_water_lock);
881 if (free < lowest_to_date) {
882 printk(KERN_WARNING "%s used greatest stack depth: %lu bytes "
883 "left\n",
884 current->comm, free);
885 lowest_to_date = free;
886 }
887 spin_unlock(&low_water_lock);
888 }
889 #else
890 static inline void check_stack_usage(void) {}
891 #endif
892
893 NORET_TYPE void do_exit(long code)
894 {
895 struct task_struct *tsk = current;
896 int group_dead;
897
898 profile_task_exit(tsk);
899
900 WARN_ON(blk_needs_flush_plug(tsk));
901
902 if (unlikely(in_interrupt()))
903 panic("Aiee, killing interrupt handler!");
904 if (unlikely(!tsk->pid))
905 panic("Attempted to kill the idle task!");
906
907 /*
908 * If do_exit is called because this processes oopsed, it's possible
909 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
910 * continuing. Amongst other possible reasons, this is to prevent
911 * mm_release()->clear_child_tid() from writing to a user-controlled
912 * kernel address.
913 */
914 set_fs(USER_DS);
915
916 ptrace_event(PTRACE_EVENT_EXIT, code);
917
918 validate_creds_for_do_exit(tsk);
919
920 /*
921 * We're taking recursive faults here in do_exit. Safest is to just
922 * leave this task alone and wait for reboot.
923 */
924 if (unlikely(tsk->flags & PF_EXITING)) {
925 printk(KERN_ALERT
926 "Fixing recursive fault but reboot is needed!\n");
927 /*
928 * We can do this unlocked here. The futex code uses
929 * this flag just to verify whether the pi state
930 * cleanup has been done or not. In the worst case it
931 * loops once more. We pretend that the cleanup was
932 * done as there is no way to return. Either the
933 * OWNER_DIED bit is set by now or we push the blocked
934 * task into the wait for ever nirwana as well.
935 */
936 tsk->flags |= PF_EXITPIDONE;
937 set_current_state(TASK_UNINTERRUPTIBLE);
938 schedule();
939 }
940
941 exit_irq_thread();
942
943 exit_signals(tsk); /* sets PF_EXITING */
944 /*
945 * tsk->flags are checked in the futex code to protect against
946 * an exiting task cleaning up the robust pi futexes.
947 */
948 smp_mb();
949 raw_spin_unlock_wait(&tsk->pi_lock);
950
951 if (unlikely(in_atomic()))
952 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
953 current->comm, task_pid_nr(current),
954 preempt_count());
955
956 acct_update_integrals(tsk);
957 /* sync mm's RSS info before statistics gathering */
958 if (tsk->mm)
959 sync_mm_rss(tsk, tsk->mm);
960 group_dead = atomic_dec_and_test(&tsk->signal->live);
961 if (group_dead) {
962 hrtimer_cancel(&tsk->signal->real_timer);
963 exit_itimers(tsk->signal);
964 if (tsk->mm)
965 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
966 }
967 acct_collect(code, group_dead);
968 if (group_dead)
969 tty_audit_exit();
970 if (unlikely(tsk->audit_context))
971 audit_free(tsk);
972
973 tsk->exit_code = code;
974 taskstats_exit(tsk, group_dead);
975
976 exit_mm(tsk);
977
978 if (group_dead)
979 acct_process();
980 trace_sched_process_exit(tsk);
981
982 exit_sem(tsk);
983 exit_files(tsk);
984 exit_fs(tsk);
985 check_stack_usage();
986 exit_thread();
987
988 /*
989 * Flush inherited counters to the parent - before the parent
990 * gets woken up by child-exit notifications.
991 *
992 * because of cgroup mode, must be called before cgroup_exit()
993 */
994 perf_event_exit_task(tsk);
995
996 cgroup_exit(tsk, 1);
997
998 if (group_dead)
999 disassociate_ctty(1);
1000
1001 module_put(task_thread_info(tsk)->exec_domain->module);
1002
1003 proc_exit_connector(tsk);
1004
1005 /*
1006 * FIXME: do that only when needed, using sched_exit tracepoint
1007 */
1008 ptrace_put_breakpoints(tsk);
1009
1010 exit_notify(tsk, group_dead);
1011 #ifdef CONFIG_NUMA
1012 task_lock(tsk);
1013 mpol_put(tsk->mempolicy);
1014 tsk->mempolicy = NULL;
1015 task_unlock(tsk);
1016 #endif
1017 #ifdef CONFIG_FUTEX
1018 if (unlikely(current->pi_state_cache))
1019 kfree(current->pi_state_cache);
1020 #endif
1021 /*
1022 * Make sure we are holding no locks:
1023 */
1024 debug_check_no_locks_held(tsk);
1025 /*
1026 * We can do this unlocked here. The futex code uses this flag
1027 * just to verify whether the pi state cleanup has been done
1028 * or not. In the worst case it loops once more.
1029 */
1030 tsk->flags |= PF_EXITPIDONE;
1031
1032 if (tsk->io_context)
1033 exit_io_context(tsk);
1034
1035 if (tsk->splice_pipe)
1036 __free_pipe_info(tsk->splice_pipe);
1037
1038 validate_creds_for_do_exit(tsk);
1039
1040 preempt_disable();
1041 exit_rcu();
1042 /* causes final put_task_struct in finish_task_switch(). */
1043 tsk->state = TASK_DEAD;
1044 schedule();
1045 BUG();
1046 /* Avoid "noreturn function does return". */
1047 for (;;)
1048 cpu_relax(); /* For when BUG is null */
1049 }
1050
1051 EXPORT_SYMBOL_GPL(do_exit);
1052
1053 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
1054 {
1055 if (comp)
1056 complete(comp);
1057
1058 do_exit(code);
1059 }
1060
1061 EXPORT_SYMBOL(complete_and_exit);
1062
1063 SYSCALL_DEFINE1(exit, int, error_code)
1064 {
1065 do_exit((error_code&0xff)<<8);
1066 }
1067
1068 /*
1069 * Take down every thread in the group. This is called by fatal signals
1070 * as well as by sys_exit_group (below).
1071 */
1072 NORET_TYPE void
1073 do_group_exit(int exit_code)
1074 {
1075 struct signal_struct *sig = current->signal;
1076
1077 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1078
1079 if (signal_group_exit(sig))
1080 exit_code = sig->group_exit_code;
1081 else if (!thread_group_empty(current)) {
1082 struct sighand_struct *const sighand = current->sighand;
1083 spin_lock_irq(&sighand->siglock);
1084 if (signal_group_exit(sig))
1085 /* Another thread got here before we took the lock. */
1086 exit_code = sig->group_exit_code;
1087 else {
1088 sig->group_exit_code = exit_code;
1089 sig->flags = SIGNAL_GROUP_EXIT;
1090 zap_other_threads(current);
1091 }
1092 spin_unlock_irq(&sighand->siglock);
1093 }
1094
1095 do_exit(exit_code);
1096 /* NOTREACHED */
1097 }
1098
1099 /*
1100 * this kills every thread in the thread group. Note that any externally
1101 * wait4()-ing process will get the correct exit code - even if this
1102 * thread is not the thread group leader.
1103 */
1104 SYSCALL_DEFINE1(exit_group, int, error_code)
1105 {
1106 do_group_exit((error_code & 0xff) << 8);
1107 /* NOTREACHED */
1108 return 0;
1109 }
1110
1111 struct wait_opts {
1112 enum pid_type wo_type;
1113 int wo_flags;
1114 struct pid *wo_pid;
1115
1116 struct siginfo __user *wo_info;
1117 int __user *wo_stat;
1118 struct rusage __user *wo_rusage;
1119
1120 wait_queue_t child_wait;
1121 int notask_error;
1122 };
1123
1124 static inline
1125 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1126 {
1127 if (type != PIDTYPE_PID)
1128 task = task->group_leader;
1129 return task->pids[type].pid;
1130 }
1131
1132 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1133 {
1134 return wo->wo_type == PIDTYPE_MAX ||
1135 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1136 }
1137
1138 static int eligible_child(struct wait_opts *wo, struct task_struct *p)
1139 {
1140 if (!eligible_pid(wo, p))
1141 return 0;
1142 /* Wait for all children (clone and not) if __WALL is set;
1143 * otherwise, wait for clone children *only* if __WCLONE is
1144 * set; otherwise, wait for non-clone children *only*. (Note:
1145 * A "clone" child here is one that reports to its parent
1146 * using a signal other than SIGCHLD.) */
1147 if (((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1148 && !(wo->wo_flags & __WALL))
1149 return 0;
1150
1151 return 1;
1152 }
1153
1154 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1155 pid_t pid, uid_t uid, int why, int status)
1156 {
1157 struct siginfo __user *infop;
1158 int retval = wo->wo_rusage
1159 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1160
1161 put_task_struct(p);
1162 infop = wo->wo_info;
1163 if (infop) {
1164 if (!retval)
1165 retval = put_user(SIGCHLD, &infop->si_signo);
1166 if (!retval)
1167 retval = put_user(0, &infop->si_errno);
1168 if (!retval)
1169 retval = put_user((short)why, &infop->si_code);
1170 if (!retval)
1171 retval = put_user(pid, &infop->si_pid);
1172 if (!retval)
1173 retval = put_user(uid, &infop->si_uid);
1174 if (!retval)
1175 retval = put_user(status, &infop->si_status);
1176 }
1177 if (!retval)
1178 retval = pid;
1179 return retval;
1180 }
1181
1182 /*
1183 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1184 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1185 * the lock and this task is uninteresting. If we return nonzero, we have
1186 * released the lock and the system call should return.
1187 */
1188 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1189 {
1190 unsigned long state;
1191 int retval, status, traced;
1192 pid_t pid = task_pid_vnr(p);
1193 uid_t uid = __task_cred(p)->uid;
1194 struct siginfo __user *infop;
1195
1196 if (!likely(wo->wo_flags & WEXITED))
1197 return 0;
1198
1199 if (unlikely(wo->wo_flags & WNOWAIT)) {
1200 int exit_code = p->exit_code;
1201 int why;
1202
1203 get_task_struct(p);
1204 read_unlock(&tasklist_lock);
1205 if ((exit_code & 0x7f) == 0) {
1206 why = CLD_EXITED;
1207 status = exit_code >> 8;
1208 } else {
1209 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1210 status = exit_code & 0x7f;
1211 }
1212 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1213 }
1214
1215 /*
1216 * Try to move the task's state to DEAD
1217 * only one thread is allowed to do this:
1218 */
1219 state = xchg(&p->exit_state, EXIT_DEAD);
1220 if (state != EXIT_ZOMBIE) {
1221 BUG_ON(state != EXIT_DEAD);
1222 return 0;
1223 }
1224
1225 traced = ptrace_reparented(p);
1226 /*
1227 * It can be ptraced but not reparented, check
1228 * thread_group_leader() to filter out sub-threads.
1229 */
1230 if (likely(!traced) && thread_group_leader(p)) {
1231 struct signal_struct *psig;
1232 struct signal_struct *sig;
1233 unsigned long maxrss;
1234 cputime_t tgutime, tgstime;
1235
1236 /*
1237 * The resource counters for the group leader are in its
1238 * own task_struct. Those for dead threads in the group
1239 * are in its signal_struct, as are those for the child
1240 * processes it has previously reaped. All these
1241 * accumulate in the parent's signal_struct c* fields.
1242 *
1243 * We don't bother to take a lock here to protect these
1244 * p->signal fields, because they are only touched by
1245 * __exit_signal, which runs with tasklist_lock
1246 * write-locked anyway, and so is excluded here. We do
1247 * need to protect the access to parent->signal fields,
1248 * as other threads in the parent group can be right
1249 * here reaping other children at the same time.
1250 *
1251 * We use thread_group_times() to get times for the thread
1252 * group, which consolidates times for all threads in the
1253 * group including the group leader.
1254 */
1255 thread_group_times(p, &tgutime, &tgstime);
1256 spin_lock_irq(&p->real_parent->sighand->siglock);
1257 psig = p->real_parent->signal;
1258 sig = p->signal;
1259 psig->cutime =
1260 cputime_add(psig->cutime,
1261 cputime_add(tgutime,
1262 sig->cutime));
1263 psig->cstime =
1264 cputime_add(psig->cstime,
1265 cputime_add(tgstime,
1266 sig->cstime));
1267 psig->cgtime =
1268 cputime_add(psig->cgtime,
1269 cputime_add(p->gtime,
1270 cputime_add(sig->gtime,
1271 sig->cgtime)));
1272 psig->cmin_flt +=
1273 p->min_flt + sig->min_flt + sig->cmin_flt;
1274 psig->cmaj_flt +=
1275 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1276 psig->cnvcsw +=
1277 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1278 psig->cnivcsw +=
1279 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1280 psig->cinblock +=
1281 task_io_get_inblock(p) +
1282 sig->inblock + sig->cinblock;
1283 psig->coublock +=
1284 task_io_get_oublock(p) +
1285 sig->oublock + sig->coublock;
1286 maxrss = max(sig->maxrss, sig->cmaxrss);
1287 if (psig->cmaxrss < maxrss)
1288 psig->cmaxrss = maxrss;
1289 task_io_accounting_add(&psig->ioac, &p->ioac);
1290 task_io_accounting_add(&psig->ioac, &sig->ioac);
1291 spin_unlock_irq(&p->real_parent->sighand->siglock);
1292 }
1293
1294 /*
1295 * Now we are sure this task is interesting, and no other
1296 * thread can reap it because we set its state to EXIT_DEAD.
1297 */
1298 read_unlock(&tasklist_lock);
1299
1300 retval = wo->wo_rusage
1301 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1302 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1303 ? p->signal->group_exit_code : p->exit_code;
1304 if (!retval && wo->wo_stat)
1305 retval = put_user(status, wo->wo_stat);
1306
1307 infop = wo->wo_info;
1308 if (!retval && infop)
1309 retval = put_user(SIGCHLD, &infop->si_signo);
1310 if (!retval && infop)
1311 retval = put_user(0, &infop->si_errno);
1312 if (!retval && infop) {
1313 int why;
1314
1315 if ((status & 0x7f) == 0) {
1316 why = CLD_EXITED;
1317 status >>= 8;
1318 } else {
1319 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1320 status &= 0x7f;
1321 }
1322 retval = put_user((short)why, &infop->si_code);
1323 if (!retval)
1324 retval = put_user(status, &infop->si_status);
1325 }
1326 if (!retval && infop)
1327 retval = put_user(pid, &infop->si_pid);
1328 if (!retval && infop)
1329 retval = put_user(uid, &infop->si_uid);
1330 if (!retval)
1331 retval = pid;
1332
1333 if (traced) {
1334 write_lock_irq(&tasklist_lock);
1335 /* We dropped tasklist, ptracer could die and untrace */
1336 ptrace_unlink(p);
1337 /*
1338 * If this is not a sub-thread, notify the parent.
1339 * If parent wants a zombie, don't release it now.
1340 */
1341 if (thread_group_leader(p) &&
1342 !do_notify_parent(p, p->exit_signal)) {
1343 p->exit_state = EXIT_ZOMBIE;
1344 p = NULL;
1345 }
1346 write_unlock_irq(&tasklist_lock);
1347 }
1348 if (p != NULL)
1349 release_task(p);
1350
1351 return retval;
1352 }
1353
1354 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1355 {
1356 if (ptrace) {
1357 if (task_is_stopped_or_traced(p) &&
1358 !(p->jobctl & JOBCTL_LISTENING))
1359 return &p->exit_code;
1360 } else {
1361 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1362 return &p->signal->group_exit_code;
1363 }
1364 return NULL;
1365 }
1366
1367 /**
1368 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1369 * @wo: wait options
1370 * @ptrace: is the wait for ptrace
1371 * @p: task to wait for
1372 *
1373 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1374 *
1375 * CONTEXT:
1376 * read_lock(&tasklist_lock), which is released if return value is
1377 * non-zero. Also, grabs and releases @p->sighand->siglock.
1378 *
1379 * RETURNS:
1380 * 0 if wait condition didn't exist and search for other wait conditions
1381 * should continue. Non-zero return, -errno on failure and @p's pid on
1382 * success, implies that tasklist_lock is released and wait condition
1383 * search should terminate.
1384 */
1385 static int wait_task_stopped(struct wait_opts *wo,
1386 int ptrace, struct task_struct *p)
1387 {
1388 struct siginfo __user *infop;
1389 int retval, exit_code, *p_code, why;
1390 uid_t uid = 0; /* unneeded, required by compiler */
1391 pid_t pid;
1392
1393 /*
1394 * Traditionally we see ptrace'd stopped tasks regardless of options.
1395 */
1396 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1397 return 0;
1398
1399 if (!task_stopped_code(p, ptrace))
1400 return 0;
1401
1402 exit_code = 0;
1403 spin_lock_irq(&p->sighand->siglock);
1404
1405 p_code = task_stopped_code(p, ptrace);
1406 if (unlikely(!p_code))
1407 goto unlock_sig;
1408
1409 exit_code = *p_code;
1410 if (!exit_code)
1411 goto unlock_sig;
1412
1413 if (!unlikely(wo->wo_flags & WNOWAIT))
1414 *p_code = 0;
1415
1416 uid = task_uid(p);
1417 unlock_sig:
1418 spin_unlock_irq(&p->sighand->siglock);
1419 if (!exit_code)
1420 return 0;
1421
1422 /*
1423 * Now we are pretty sure this task is interesting.
1424 * Make sure it doesn't get reaped out from under us while we
1425 * give up the lock and then examine it below. We don't want to
1426 * keep holding onto the tasklist_lock while we call getrusage and
1427 * possibly take page faults for user memory.
1428 */
1429 get_task_struct(p);
1430 pid = task_pid_vnr(p);
1431 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1432 read_unlock(&tasklist_lock);
1433
1434 if (unlikely(wo->wo_flags & WNOWAIT))
1435 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1436
1437 retval = wo->wo_rusage
1438 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1439 if (!retval && wo->wo_stat)
1440 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1441
1442 infop = wo->wo_info;
1443 if (!retval && infop)
1444 retval = put_user(SIGCHLD, &infop->si_signo);
1445 if (!retval && infop)
1446 retval = put_user(0, &infop->si_errno);
1447 if (!retval && infop)
1448 retval = put_user((short)why, &infop->si_code);
1449 if (!retval && infop)
1450 retval = put_user(exit_code, &infop->si_status);
1451 if (!retval && infop)
1452 retval = put_user(pid, &infop->si_pid);
1453 if (!retval && infop)
1454 retval = put_user(uid, &infop->si_uid);
1455 if (!retval)
1456 retval = pid;
1457 put_task_struct(p);
1458
1459 BUG_ON(!retval);
1460 return retval;
1461 }
1462
1463 /*
1464 * Handle do_wait work for one task in a live, non-stopped state.
1465 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1466 * the lock and this task is uninteresting. If we return nonzero, we have
1467 * released the lock and the system call should return.
1468 */
1469 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1470 {
1471 int retval;
1472 pid_t pid;
1473 uid_t uid;
1474
1475 if (!unlikely(wo->wo_flags & WCONTINUED))
1476 return 0;
1477
1478 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1479 return 0;
1480
1481 spin_lock_irq(&p->sighand->siglock);
1482 /* Re-check with the lock held. */
1483 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1484 spin_unlock_irq(&p->sighand->siglock);
1485 return 0;
1486 }
1487 if (!unlikely(wo->wo_flags & WNOWAIT))
1488 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1489 uid = task_uid(p);
1490 spin_unlock_irq(&p->sighand->siglock);
1491
1492 pid = task_pid_vnr(p);
1493 get_task_struct(p);
1494 read_unlock(&tasklist_lock);
1495
1496 if (!wo->wo_info) {
1497 retval = wo->wo_rusage
1498 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1499 put_task_struct(p);
1500 if (!retval && wo->wo_stat)
1501 retval = put_user(0xffff, wo->wo_stat);
1502 if (!retval)
1503 retval = pid;
1504 } else {
1505 retval = wait_noreap_copyout(wo, p, pid, uid,
1506 CLD_CONTINUED, SIGCONT);
1507 BUG_ON(retval == 0);
1508 }
1509
1510 return retval;
1511 }
1512
1513 /*
1514 * Consider @p for a wait by @parent.
1515 *
1516 * -ECHILD should be in ->notask_error before the first call.
1517 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1518 * Returns zero if the search for a child should continue;
1519 * then ->notask_error is 0 if @p is an eligible child,
1520 * or another error from security_task_wait(), or still -ECHILD.
1521 */
1522 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1523 struct task_struct *p)
1524 {
1525 int ret = eligible_child(wo, p);
1526 if (!ret)
1527 return ret;
1528
1529 ret = security_task_wait(p);
1530 if (unlikely(ret < 0)) {
1531 /*
1532 * If we have not yet seen any eligible child,
1533 * then let this error code replace -ECHILD.
1534 * A permission error will give the user a clue
1535 * to look for security policy problems, rather
1536 * than for mysterious wait bugs.
1537 */
1538 if (wo->notask_error)
1539 wo->notask_error = ret;
1540 return 0;
1541 }
1542
1543 /* dead body doesn't have much to contribute */
1544 if (p->exit_state == EXIT_DEAD)
1545 return 0;
1546
1547 /* slay zombie? */
1548 if (p->exit_state == EXIT_ZOMBIE) {
1549 /*
1550 * A zombie ptracee is only visible to its ptracer.
1551 * Notification and reaping will be cascaded to the real
1552 * parent when the ptracer detaches.
1553 */
1554 if (likely(!ptrace) && unlikely(p->ptrace)) {
1555 /* it will become visible, clear notask_error */
1556 wo->notask_error = 0;
1557 return 0;
1558 }
1559
1560 /* we don't reap group leaders with subthreads */
1561 if (!delay_group_leader(p))
1562 return wait_task_zombie(wo, p);
1563
1564 /*
1565 * Allow access to stopped/continued state via zombie by
1566 * falling through. Clearing of notask_error is complex.
1567 *
1568 * When !@ptrace:
1569 *
1570 * If WEXITED is set, notask_error should naturally be
1571 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1572 * so, if there are live subthreads, there are events to
1573 * wait for. If all subthreads are dead, it's still safe
1574 * to clear - this function will be called again in finite
1575 * amount time once all the subthreads are released and
1576 * will then return without clearing.
1577 *
1578 * When @ptrace:
1579 *
1580 * Stopped state is per-task and thus can't change once the
1581 * target task dies. Only continued and exited can happen.
1582 * Clear notask_error if WCONTINUED | WEXITED.
1583 */
1584 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1585 wo->notask_error = 0;
1586 } else {
1587 /*
1588 * If @p is ptraced by a task in its real parent's group,
1589 * hide group stop/continued state when looking at @p as
1590 * the real parent; otherwise, a single stop can be
1591 * reported twice as group and ptrace stops.
1592 *
1593 * If a ptracer wants to distinguish the two events for its
1594 * own children, it should create a separate process which
1595 * takes the role of real parent.
1596 */
1597 if (likely(!ptrace) && p->ptrace && !ptrace_reparented(p))
1598 return 0;
1599
1600 /*
1601 * @p is alive and it's gonna stop, continue or exit, so
1602 * there always is something to wait for.
1603 */
1604 wo->notask_error = 0;
1605 }
1606
1607 /*
1608 * Wait for stopped. Depending on @ptrace, different stopped state
1609 * is used and the two don't interact with each other.
1610 */
1611 ret = wait_task_stopped(wo, ptrace, p);
1612 if (ret)
1613 return ret;
1614
1615 /*
1616 * Wait for continued. There's only one continued state and the
1617 * ptracer can consume it which can confuse the real parent. Don't
1618 * use WCONTINUED from ptracer. You don't need or want it.
1619 */
1620 return wait_task_continued(wo, p);
1621 }
1622
1623 /*
1624 * Do the work of do_wait() for one thread in the group, @tsk.
1625 *
1626 * -ECHILD should be in ->notask_error before the first call.
1627 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1628 * Returns zero if the search for a child should continue; then
1629 * ->notask_error is 0 if there were any eligible children,
1630 * or another error from security_task_wait(), or still -ECHILD.
1631 */
1632 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1633 {
1634 struct task_struct *p;
1635
1636 list_for_each_entry(p, &tsk->children, sibling) {
1637 int ret = wait_consider_task(wo, 0, p);
1638 if (ret)
1639 return ret;
1640 }
1641
1642 return 0;
1643 }
1644
1645 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1646 {
1647 struct task_struct *p;
1648
1649 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1650 int ret = wait_consider_task(wo, 1, p);
1651 if (ret)
1652 return ret;
1653 }
1654
1655 return 0;
1656 }
1657
1658 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1659 int sync, void *key)
1660 {
1661 struct wait_opts *wo = container_of(wait, struct wait_opts,
1662 child_wait);
1663 struct task_struct *p = key;
1664
1665 if (!eligible_pid(wo, p))
1666 return 0;
1667
1668 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1669 return 0;
1670
1671 return default_wake_function(wait, mode, sync, key);
1672 }
1673
1674 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1675 {
1676 __wake_up_sync_key(&parent->signal->wait_chldexit,
1677 TASK_INTERRUPTIBLE, 1, p);
1678 }
1679
1680 static long do_wait(struct wait_opts *wo)
1681 {
1682 struct task_struct *tsk;
1683 int retval;
1684
1685 trace_sched_process_wait(wo->wo_pid);
1686
1687 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1688 wo->child_wait.private = current;
1689 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1690 repeat:
1691 /*
1692 * If there is nothing that can match our critiera just get out.
1693 * We will clear ->notask_error to zero if we see any child that
1694 * might later match our criteria, even if we are not able to reap
1695 * it yet.
1696 */
1697 wo->notask_error = -ECHILD;
1698 if ((wo->wo_type < PIDTYPE_MAX) &&
1699 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1700 goto notask;
1701
1702 set_current_state(TASK_INTERRUPTIBLE);
1703 read_lock(&tasklist_lock);
1704 tsk = current;
1705 do {
1706 retval = do_wait_thread(wo, tsk);
1707 if (retval)
1708 goto end;
1709
1710 retval = ptrace_do_wait(wo, tsk);
1711 if (retval)
1712 goto end;
1713
1714 if (wo->wo_flags & __WNOTHREAD)
1715 break;
1716 } while_each_thread(current, tsk);
1717 read_unlock(&tasklist_lock);
1718
1719 notask:
1720 retval = wo->notask_error;
1721 if (!retval && !(wo->wo_flags & WNOHANG)) {
1722 retval = -ERESTARTSYS;
1723 if (!signal_pending(current)) {
1724 schedule();
1725 goto repeat;
1726 }
1727 }
1728 end:
1729 __set_current_state(TASK_RUNNING);
1730 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1731 return retval;
1732 }
1733
1734 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1735 infop, int, options, struct rusage __user *, ru)
1736 {
1737 struct wait_opts wo;
1738 struct pid *pid = NULL;
1739 enum pid_type type;
1740 long ret;
1741
1742 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1743 return -EINVAL;
1744 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1745 return -EINVAL;
1746
1747 switch (which) {
1748 case P_ALL:
1749 type = PIDTYPE_MAX;
1750 break;
1751 case P_PID:
1752 type = PIDTYPE_PID;
1753 if (upid <= 0)
1754 return -EINVAL;
1755 break;
1756 case P_PGID:
1757 type = PIDTYPE_PGID;
1758 if (upid <= 0)
1759 return -EINVAL;
1760 break;
1761 default:
1762 return -EINVAL;
1763 }
1764
1765 if (type < PIDTYPE_MAX)
1766 pid = find_get_pid(upid);
1767
1768 wo.wo_type = type;
1769 wo.wo_pid = pid;
1770 wo.wo_flags = options;
1771 wo.wo_info = infop;
1772 wo.wo_stat = NULL;
1773 wo.wo_rusage = ru;
1774 ret = do_wait(&wo);
1775
1776 if (ret > 0) {
1777 ret = 0;
1778 } else if (infop) {
1779 /*
1780 * For a WNOHANG return, clear out all the fields
1781 * we would set so the user can easily tell the
1782 * difference.
1783 */
1784 if (!ret)
1785 ret = put_user(0, &infop->si_signo);
1786 if (!ret)
1787 ret = put_user(0, &infop->si_errno);
1788 if (!ret)
1789 ret = put_user(0, &infop->si_code);
1790 if (!ret)
1791 ret = put_user(0, &infop->si_pid);
1792 if (!ret)
1793 ret = put_user(0, &infop->si_uid);
1794 if (!ret)
1795 ret = put_user(0, &infop->si_status);
1796 }
1797
1798 put_pid(pid);
1799
1800 /* avoid REGPARM breakage on x86: */
1801 asmlinkage_protect(5, ret, which, upid, infop, options, ru);
1802 return ret;
1803 }
1804
1805 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1806 int, options, struct rusage __user *, ru)
1807 {
1808 struct wait_opts wo;
1809 struct pid *pid = NULL;
1810 enum pid_type type;
1811 long ret;
1812
1813 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1814 __WNOTHREAD|__WCLONE|__WALL))
1815 return -EINVAL;
1816
1817 if (upid == -1)
1818 type = PIDTYPE_MAX;
1819 else if (upid < 0) {
1820 type = PIDTYPE_PGID;
1821 pid = find_get_pid(-upid);
1822 } else if (upid == 0) {
1823 type = PIDTYPE_PGID;
1824 pid = get_task_pid(current, PIDTYPE_PGID);
1825 } else /* upid > 0 */ {
1826 type = PIDTYPE_PID;
1827 pid = find_get_pid(upid);
1828 }
1829
1830 wo.wo_type = type;
1831 wo.wo_pid = pid;
1832 wo.wo_flags = options | WEXITED;
1833 wo.wo_info = NULL;
1834 wo.wo_stat = stat_addr;
1835 wo.wo_rusage = ru;
1836 ret = do_wait(&wo);
1837 put_pid(pid);
1838
1839 /* avoid REGPARM breakage on x86: */
1840 asmlinkage_protect(4, ret, upid, stat_addr, options, ru);
1841 return ret;
1842 }
1843
1844 #ifdef __ARCH_WANT_SYS_WAITPID
1845
1846 /*
1847 * sys_waitpid() remains for compatibility. waitpid() should be
1848 * implemented by calling sys_wait4() from libc.a.
1849 */
1850 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1851 {
1852 return sys_wait4(pid, stat_addr, options, NULL);
1853 }
1854
1855 #endif