[COMMON] kernel: cpu: fix conflict
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / exit.c
1 /*
2 * linux/kernel/exit.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/cpufreq_times.h>
66 #include <linux/ems.h>
67
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/pgtable.h>
71 #include <asm/mmu_context.h>
72
73 static void __unhash_process(struct task_struct *p, bool group_dead)
74 {
75 nr_threads--;
76 detach_pid(p, PIDTYPE_PID);
77 if (group_dead) {
78 detach_pid(p, PIDTYPE_PGID);
79 detach_pid(p, PIDTYPE_SID);
80
81 list_del_rcu(&p->tasks);
82 list_del_init(&p->sibling);
83 __this_cpu_dec(process_counts);
84 }
85 list_del_rcu(&p->thread_group);
86 list_del_rcu(&p->thread_node);
87 }
88
89 /*
90 * This function expects the tasklist_lock write-locked.
91 */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94 struct signal_struct *sig = tsk->signal;
95 bool group_dead = thread_group_leader(tsk);
96 struct sighand_struct *sighand;
97 struct tty_struct *uninitialized_var(tty);
98 u64 utime, stime;
99
100 sighand = rcu_dereference_check(tsk->sighand,
101 lockdep_tasklist_lock_is_held());
102 spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105 posix_cpu_timers_exit(tsk);
106 if (group_dead) {
107 posix_cpu_timers_exit_group(tsk);
108 } else {
109 /*
110 * This can only happen if the caller is de_thread().
111 * FIXME: this is the temporary hack, we should teach
112 * posix-cpu-timers to handle this case correctly.
113 */
114 if (unlikely(has_group_leader_pid(tsk)))
115 posix_cpu_timers_exit_group(tsk);
116 }
117 #endif
118
119 if (group_dead) {
120 tty = sig->tty;
121 sig->tty = NULL;
122 } else {
123 /*
124 * If there is any task waiting for the group exit
125 * then notify it:
126 */
127 if (sig->notify_count > 0 && !--sig->notify_count)
128 wake_up_process(sig->group_exit_task);
129
130 if (tsk == sig->curr_target)
131 sig->curr_target = next_thread(tsk);
132 }
133
134 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
135 sizeof(unsigned long long));
136
137 /*
138 * Accumulate here the counters for all threads as they die. We could
139 * skip the group leader because it is the last user of signal_struct,
140 * but we want to avoid the race with thread_group_cputime() which can
141 * see the empty ->thread_head list.
142 */
143 task_cputime(tsk, &utime, &stime);
144 write_seqlock(&sig->stats_lock);
145 sig->utime += utime;
146 sig->stime += stime;
147 sig->gtime += task_gtime(tsk);
148 sig->min_flt += tsk->min_flt;
149 sig->maj_flt += tsk->maj_flt;
150 sig->nvcsw += tsk->nvcsw;
151 sig->nivcsw += tsk->nivcsw;
152 sig->inblock += task_io_get_inblock(tsk);
153 sig->oublock += task_io_get_oublock(tsk);
154 task_io_accounting_add(&sig->ioac, &tsk->ioac);
155 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
156 sig->nr_threads--;
157 __unhash_process(tsk, group_dead);
158 write_sequnlock(&sig->stats_lock);
159
160 /*
161 * Do this under ->siglock, we can race with another thread
162 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
163 */
164 flush_sigqueue(&tsk->pending);
165 tsk->sighand = NULL;
166 spin_unlock(&sighand->siglock);
167
168 __cleanup_sighand(sighand);
169 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
170 if (group_dead) {
171 flush_sigqueue(&sig->shared_pending);
172 tty_kref_put(tty);
173 }
174 }
175
176 static void delayed_put_task_struct(struct rcu_head *rhp)
177 {
178 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
179
180 perf_event_delayed_put(tsk);
181 trace_sched_process_free(tsk);
182 put_task_struct(tsk);
183 }
184
185
186 void release_task(struct task_struct *p)
187 {
188 struct task_struct *leader;
189 int zap_leader;
190 #ifdef CONFIG_CPU_FREQ_TIMES
191 cpufreq_task_times_exit(p);
192 #endif
193 repeat:
194 /* don't need to get the RCU readlock here - the process is dead and
195 * can't be modifying its own credentials. But shut RCU-lockdep up */
196 rcu_read_lock();
197 atomic_dec(&__task_cred(p)->user->processes);
198 rcu_read_unlock();
199
200 proc_flush_task(p);
201
202 write_lock_irq(&tasklist_lock);
203 ptrace_release_task(p);
204 __exit_signal(p);
205
206 /*
207 * If we are the last non-leader member of the thread
208 * group, and the leader is zombie, then notify the
209 * group leader's parent process. (if it wants notification.)
210 */
211 zap_leader = 0;
212 leader = p->group_leader;
213 if (leader != p && thread_group_empty(leader)
214 && leader->exit_state == EXIT_ZOMBIE) {
215 /*
216 * If we were the last child thread and the leader has
217 * exited already, and the leader's parent ignores SIGCHLD,
218 * then we are the one who should release the leader.
219 */
220 zap_leader = do_notify_parent(leader, leader->exit_signal);
221 if (zap_leader)
222 leader->exit_state = EXIT_DEAD;
223 }
224
225 write_unlock_irq(&tasklist_lock);
226 cgroup_release(p);
227 release_thread(p);
228 call_rcu(&p->rcu, delayed_put_task_struct);
229
230 p = leader;
231 if (unlikely(zap_leader))
232 goto repeat;
233 }
234
235 /*
236 * Note that if this function returns a valid task_struct pointer (!NULL)
237 * task->usage must remain >0 for the duration of the RCU critical section.
238 */
239 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
240 {
241 struct sighand_struct *sighand;
242 struct task_struct *task;
243
244 /*
245 * We need to verify that release_task() was not called and thus
246 * delayed_put_task_struct() can't run and drop the last reference
247 * before rcu_read_unlock(). We check task->sighand != NULL,
248 * but we can read the already freed and reused memory.
249 */
250 retry:
251 task = rcu_dereference(*ptask);
252 if (!task)
253 return NULL;
254
255 probe_kernel_address(&task->sighand, sighand);
256
257 /*
258 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
259 * was already freed we can not miss the preceding update of this
260 * pointer.
261 */
262 smp_rmb();
263 if (unlikely(task != READ_ONCE(*ptask)))
264 goto retry;
265
266 /*
267 * We've re-checked that "task == *ptask", now we have two different
268 * cases:
269 *
270 * 1. This is actually the same task/task_struct. In this case
271 * sighand != NULL tells us it is still alive.
272 *
273 * 2. This is another task which got the same memory for task_struct.
274 * We can't know this of course, and we can not trust
275 * sighand != NULL.
276 *
277 * In this case we actually return a random value, but this is
278 * correct.
279 *
280 * If we return NULL - we can pretend that we actually noticed that
281 * *ptask was updated when the previous task has exited. Or pretend
282 * that probe_slab_address(&sighand) reads NULL.
283 *
284 * If we return the new task (because sighand is not NULL for any
285 * reason) - this is fine too. This (new) task can't go away before
286 * another gp pass.
287 *
288 * And note: We could even eliminate the false positive if re-read
289 * task->sighand once again to avoid the falsely NULL. But this case
290 * is very unlikely so we don't care.
291 */
292 if (!sighand)
293 return NULL;
294
295 return task;
296 }
297
298 void rcuwait_wake_up(struct rcuwait *w)
299 {
300 struct task_struct *task;
301
302 rcu_read_lock();
303
304 /*
305 * Order condition vs @task, such that everything prior to the load
306 * of @task is visible. This is the condition as to why the user called
307 * rcuwait_trywake() in the first place. Pairs with set_current_state()
308 * barrier (A) in rcuwait_wait_event().
309 *
310 * WAIT WAKE
311 * [S] tsk = current [S] cond = true
312 * MB (A) MB (B)
313 * [L] cond [L] tsk
314 */
315 smp_mb(); /* (B) */
316
317 /*
318 * Avoid using task_rcu_dereference() magic as long as we are careful,
319 * see comment in rcuwait_wait_event() regarding ->exit_state.
320 */
321 task = rcu_dereference(w->task);
322 if (task)
323 wake_up_process(task);
324 rcu_read_unlock();
325 }
326
327 /*
328 * Determine if a process group is "orphaned", according to the POSIX
329 * definition in 2.2.2.52. Orphaned process groups are not to be affected
330 * by terminal-generated stop signals. Newly orphaned process groups are
331 * to receive a SIGHUP and a SIGCONT.
332 *
333 * "I ask you, have you ever known what it is to be an orphan?"
334 */
335 static int will_become_orphaned_pgrp(struct pid *pgrp,
336 struct task_struct *ignored_task)
337 {
338 struct task_struct *p;
339
340 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
341 if ((p == ignored_task) ||
342 (p->exit_state && thread_group_empty(p)) ||
343 is_global_init(p->real_parent))
344 continue;
345
346 if (task_pgrp(p->real_parent) != pgrp &&
347 task_session(p->real_parent) == task_session(p))
348 return 0;
349 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
350
351 return 1;
352 }
353
354 int is_current_pgrp_orphaned(void)
355 {
356 int retval;
357
358 read_lock(&tasklist_lock);
359 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
360 read_unlock(&tasklist_lock);
361
362 return retval;
363 }
364
365 static bool has_stopped_jobs(struct pid *pgrp)
366 {
367 struct task_struct *p;
368
369 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
370 if (p->signal->flags & SIGNAL_STOP_STOPPED)
371 return true;
372 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
373
374 return false;
375 }
376
377 /*
378 * Check to see if any process groups have become orphaned as
379 * a result of our exiting, and if they have any stopped jobs,
380 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
381 */
382 static void
383 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
384 {
385 struct pid *pgrp = task_pgrp(tsk);
386 struct task_struct *ignored_task = tsk;
387
388 if (!parent)
389 /* exit: our father is in a different pgrp than
390 * we are and we were the only connection outside.
391 */
392 parent = tsk->real_parent;
393 else
394 /* reparent: our child is in a different pgrp than
395 * we are, and it was the only connection outside.
396 */
397 ignored_task = NULL;
398
399 if (task_pgrp(parent) != pgrp &&
400 task_session(parent) == task_session(tsk) &&
401 will_become_orphaned_pgrp(pgrp, ignored_task) &&
402 has_stopped_jobs(pgrp)) {
403 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
404 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
405 }
406 }
407
408 #ifdef CONFIG_MEMCG
409 /*
410 * A task is exiting. If it owned this mm, find a new owner for the mm.
411 */
412 void mm_update_next_owner(struct mm_struct *mm)
413 {
414 struct task_struct *c, *g, *p = current;
415
416 retry:
417 /*
418 * If the exiting or execing task is not the owner, it's
419 * someone else's problem.
420 */
421 if (mm->owner != p)
422 return;
423 /*
424 * The current owner is exiting/execing and there are no other
425 * candidates. Do not leave the mm pointing to a possibly
426 * freed task structure.
427 */
428 if (atomic_read(&mm->mm_users) <= 1) {
429 mm->owner = NULL;
430 return;
431 }
432
433 read_lock(&tasklist_lock);
434 /*
435 * Search in the children
436 */
437 list_for_each_entry(c, &p->children, sibling) {
438 if (c->mm == mm)
439 goto assign_new_owner;
440 }
441
442 /*
443 * Search in the siblings
444 */
445 list_for_each_entry(c, &p->real_parent->children, sibling) {
446 if (c->mm == mm)
447 goto assign_new_owner;
448 }
449
450 /*
451 * Search through everything else, we should not get here often.
452 */
453 for_each_process(g) {
454 if (g->flags & PF_KTHREAD)
455 continue;
456 for_each_thread(g, c) {
457 if (c->mm == mm)
458 goto assign_new_owner;
459 if (c->mm)
460 break;
461 }
462 }
463 read_unlock(&tasklist_lock);
464 /*
465 * We found no owner yet mm_users > 1: this implies that we are
466 * most likely racing with swapoff (try_to_unuse()) or /proc or
467 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
468 */
469 mm->owner = NULL;
470 return;
471
472 assign_new_owner:
473 BUG_ON(c == p);
474 get_task_struct(c);
475 /*
476 * The task_lock protects c->mm from changing.
477 * We always want mm->owner->mm == mm
478 */
479 task_lock(c);
480 /*
481 * Delay read_unlock() till we have the task_lock()
482 * to ensure that c does not slip away underneath us
483 */
484 read_unlock(&tasklist_lock);
485 if (c->mm != mm) {
486 task_unlock(c);
487 put_task_struct(c);
488 goto retry;
489 }
490 mm->owner = c;
491 task_unlock(c);
492 put_task_struct(c);
493 }
494 #endif /* CONFIG_MEMCG */
495
496 /*
497 * Turn us into a lazy TLB process if we
498 * aren't already..
499 */
500 static void exit_mm(void)
501 {
502 struct mm_struct *mm = current->mm;
503 struct core_state *core_state;
504
505 mm_release(current, mm);
506 if (!mm)
507 return;
508 sync_mm_rss(mm);
509 /*
510 * Serialize with any possible pending coredump.
511 * We must hold mmap_sem around checking core_state
512 * and clearing tsk->mm. The core-inducing thread
513 * will increment ->nr_threads for each thread in the
514 * group with ->mm != NULL.
515 */
516 down_read(&mm->mmap_sem);
517 core_state = mm->core_state;
518 if (core_state) {
519 struct core_thread self;
520
521 up_read(&mm->mmap_sem);
522
523 self.task = current;
524 self.next = xchg(&core_state->dumper.next, &self);
525 /*
526 * Implies mb(), the result of xchg() must be visible
527 * to core_state->dumper.
528 */
529 if (atomic_dec_and_test(&core_state->nr_threads))
530 complete(&core_state->startup);
531
532 for (;;) {
533 set_current_state(TASK_UNINTERRUPTIBLE);
534 if (!self.task) /* see coredump_finish() */
535 break;
536 freezable_schedule();
537 }
538 __set_current_state(TASK_RUNNING);
539 down_read(&mm->mmap_sem);
540 }
541 mmgrab(mm);
542 BUG_ON(mm != current->active_mm);
543 /* more a memory barrier than a real lock */
544 task_lock(current);
545 current->mm = NULL;
546 up_read(&mm->mmap_sem);
547 enter_lazy_tlb(mm, current);
548 task_unlock(current);
549 mm_update_next_owner(mm);
550 mmput(mm);
551 if (test_thread_flag(TIF_MEMDIE))
552 exit_oom_victim();
553 }
554
555 static struct task_struct *find_alive_thread(struct task_struct *p)
556 {
557 struct task_struct *t;
558
559 for_each_thread(p, t) {
560 if (!(t->flags & PF_EXITING))
561 return t;
562 }
563 return NULL;
564 }
565
566 static struct task_struct *find_child_reaper(struct task_struct *father,
567 struct list_head *dead)
568 __releases(&tasklist_lock)
569 __acquires(&tasklist_lock)
570 {
571 struct pid_namespace *pid_ns = task_active_pid_ns(father);
572 struct task_struct *reaper = pid_ns->child_reaper;
573 struct task_struct *p, *n;
574
575 if (likely(reaper != father))
576 return reaper;
577
578 reaper = find_alive_thread(father);
579 if (reaper) {
580 pid_ns->child_reaper = reaper;
581 return reaper;
582 }
583
584 write_unlock_irq(&tasklist_lock);
585 if (unlikely(pid_ns == &init_pid_ns)) {
586 panic("Attempted to kill init! exitcode=0x%08x\n",
587 father->signal->group_exit_code ?: father->exit_code);
588 }
589
590 list_for_each_entry_safe(p, n, dead, ptrace_entry) {
591 list_del_init(&p->ptrace_entry);
592 release_task(p);
593 }
594
595 zap_pid_ns_processes(pid_ns);
596 write_lock_irq(&tasklist_lock);
597
598 return father;
599 }
600
601 /*
602 * When we die, we re-parent all our children, and try to:
603 * 1. give them to another thread in our thread group, if such a member exists
604 * 2. give it to the first ancestor process which prctl'd itself as a
605 * child_subreaper for its children (like a service manager)
606 * 3. give it to the init process (PID 1) in our pid namespace
607 */
608 static struct task_struct *find_new_reaper(struct task_struct *father,
609 struct task_struct *child_reaper)
610 {
611 struct task_struct *thread, *reaper;
612
613 thread = find_alive_thread(father);
614 if (thread)
615 return thread;
616
617 if (father->signal->has_child_subreaper) {
618 unsigned int ns_level = task_pid(father)->level;
619 /*
620 * Find the first ->is_child_subreaper ancestor in our pid_ns.
621 * We can't check reaper != child_reaper to ensure we do not
622 * cross the namespaces, the exiting parent could be injected
623 * by setns() + fork().
624 * We check pid->level, this is slightly more efficient than
625 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
626 */
627 for (reaper = father->real_parent;
628 task_pid(reaper)->level == ns_level;
629 reaper = reaper->real_parent) {
630 if (reaper == &init_task)
631 break;
632 if (!reaper->signal->is_child_subreaper)
633 continue;
634 thread = find_alive_thread(reaper);
635 if (thread)
636 return thread;
637 }
638 }
639
640 return child_reaper;
641 }
642
643 /*
644 * Any that need to be release_task'd are put on the @dead list.
645 */
646 static void reparent_leader(struct task_struct *father, struct task_struct *p,
647 struct list_head *dead)
648 {
649 if (unlikely(p->exit_state == EXIT_DEAD))
650 return;
651
652 /* We don't want people slaying init. */
653 p->exit_signal = SIGCHLD;
654
655 /* If it has exited notify the new parent about this child's death. */
656 if (!p->ptrace &&
657 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
658 if (do_notify_parent(p, p->exit_signal)) {
659 p->exit_state = EXIT_DEAD;
660 list_add(&p->ptrace_entry, dead);
661 }
662 }
663
664 kill_orphaned_pgrp(p, father);
665 }
666
667 /*
668 * This does two things:
669 *
670 * A. Make init inherit all the child processes
671 * B. Check to see if any process groups have become orphaned
672 * as a result of our exiting, and if they have any stopped
673 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
674 */
675 static void forget_original_parent(struct task_struct *father,
676 struct list_head *dead)
677 {
678 struct task_struct *p, *t, *reaper;
679
680 if (unlikely(!list_empty(&father->ptraced)))
681 exit_ptrace(father, dead);
682
683 /* Can drop and reacquire tasklist_lock */
684 reaper = find_child_reaper(father, dead);
685 if (list_empty(&father->children))
686 return;
687
688 reaper = find_new_reaper(father, reaper);
689 list_for_each_entry(p, &father->children, sibling) {
690 for_each_thread(p, t) {
691 t->real_parent = reaper;
692 BUG_ON((!t->ptrace) != (t->parent == father));
693 if (likely(!t->ptrace))
694 t->parent = t->real_parent;
695 if (t->pdeath_signal)
696 group_send_sig_info(t->pdeath_signal,
697 SEND_SIG_NOINFO, t);
698 }
699 /*
700 * If this is a threaded reparent there is no need to
701 * notify anyone anything has happened.
702 */
703 if (!same_thread_group(reaper, father))
704 reparent_leader(father, p, dead);
705 }
706 list_splice_tail_init(&father->children, &reaper->children);
707 }
708
709 /*
710 * Send signals to all our closest relatives so that they know
711 * to properly mourn us..
712 */
713 static void exit_notify(struct task_struct *tsk, int group_dead)
714 {
715 bool autoreap;
716 struct task_struct *p, *n;
717 LIST_HEAD(dead);
718
719 write_lock_irq(&tasklist_lock);
720 forget_original_parent(tsk, &dead);
721
722 if (group_dead)
723 kill_orphaned_pgrp(tsk->group_leader, NULL);
724
725 if (unlikely(tsk->ptrace)) {
726 int sig = thread_group_leader(tsk) &&
727 thread_group_empty(tsk) &&
728 !ptrace_reparented(tsk) ?
729 tsk->exit_signal : SIGCHLD;
730 autoreap = do_notify_parent(tsk, sig);
731 } else if (thread_group_leader(tsk)) {
732 autoreap = thread_group_empty(tsk) &&
733 do_notify_parent(tsk, tsk->exit_signal);
734 } else {
735 autoreap = true;
736 }
737
738 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
739 if (tsk->exit_state == EXIT_DEAD)
740 list_add(&tsk->ptrace_entry, &dead);
741
742 /* mt-exec, de_thread() is waiting for group leader */
743 if (unlikely(tsk->signal->notify_count < 0))
744 wake_up_process(tsk->signal->group_exit_task);
745 write_unlock_irq(&tasklist_lock);
746
747 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
748 list_del_init(&p->ptrace_entry);
749 release_task(p);
750 }
751 }
752
753 #ifdef CONFIG_DEBUG_STACK_USAGE
754 static void check_stack_usage(void)
755 {
756 static DEFINE_SPINLOCK(low_water_lock);
757 static int lowest_to_date = THREAD_SIZE;
758 unsigned long free;
759
760 free = stack_not_used(current);
761
762 if (free >= lowest_to_date)
763 return;
764
765 spin_lock(&low_water_lock);
766 if (free < lowest_to_date) {
767 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
768 current->comm, task_pid_nr(current), free);
769 lowest_to_date = free;
770 }
771 spin_unlock(&low_water_lock);
772 }
773 #else
774 static inline void check_stack_usage(void) {}
775 #endif
776
777 void __noreturn do_exit(long code)
778 {
779 struct task_struct *tsk = current;
780 int group_dead;
781
782 profile_task_exit(tsk);
783 kcov_task_exit(tsk);
784
785 WARN_ON(blk_needs_flush_plug(tsk));
786
787 if (unlikely(in_interrupt()))
788 panic("Aiee, killing interrupt handler!");
789 if (unlikely(!tsk->pid))
790 panic("Attempted to kill the idle task!");
791
792 /*
793 * If do_exit is called because this processes oopsed, it's possible
794 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
795 * continuing. Amongst other possible reasons, this is to prevent
796 * mm_release()->clear_child_tid() from writing to a user-controlled
797 * kernel address.
798 */
799 set_fs(USER_DS);
800
801 ptrace_event(PTRACE_EVENT_EXIT, code);
802
803 validate_creds_for_do_exit(tsk);
804
805 /*
806 * We're taking recursive faults here in do_exit. Safest is to just
807 * leave this task alone and wait for reboot.
808 */
809 if (unlikely(tsk->flags & PF_EXITING)) {
810 pr_alert("Fixing recursive fault but reboot is needed!\n");
811 /*
812 * We can do this unlocked here. The futex code uses
813 * this flag just to verify whether the pi state
814 * cleanup has been done or not. In the worst case it
815 * loops once more. We pretend that the cleanup was
816 * done as there is no way to return. Either the
817 * OWNER_DIED bit is set by now or we push the blocked
818 * task into the wait for ever nirwana as well.
819 */
820 tsk->flags |= PF_EXITPIDONE;
821 set_current_state(TASK_UNINTERRUPTIBLE);
822 schedule();
823 }
824
825 exit_signals(tsk); /* sets PF_EXITING */
826 sync_band(tsk, LEAVE_BAND);
827
828 /*
829 * Ensure that all new tsk->pi_lock acquisitions must observe
830 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
831 */
832 smp_mb();
833 /*
834 * Ensure that we must observe the pi_state in exit_mm() ->
835 * mm_release() -> exit_pi_state_list().
836 */
837 raw_spin_lock_irq(&tsk->pi_lock);
838 raw_spin_unlock_irq(&tsk->pi_lock);
839
840 if (unlikely(in_atomic())) {
841 pr_info("note: %s[%d] exited with preempt_count %d\n",
842 current->comm, task_pid_nr(current),
843 preempt_count());
844 preempt_count_set(PREEMPT_ENABLED);
845 }
846
847 /* sync mm's RSS info before statistics gathering */
848 if (tsk->mm)
849 sync_mm_rss(tsk->mm);
850 acct_update_integrals(tsk);
851 group_dead = atomic_dec_and_test(&tsk->signal->live);
852 if (group_dead) {
853 #ifdef CONFIG_POSIX_TIMERS
854 hrtimer_cancel(&tsk->signal->real_timer);
855 exit_itimers(tsk->signal);
856 #endif
857 if (tsk->mm)
858 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
859 }
860 acct_collect(code, group_dead);
861 if (group_dead)
862 tty_audit_exit();
863 audit_free(tsk);
864
865 tsk->exit_code = code;
866 taskstats_exit(tsk, group_dead);
867
868 exit_mm();
869
870 if (group_dead)
871 acct_process();
872 trace_sched_process_exit(tsk);
873
874 exit_sem(tsk);
875 exit_shm(tsk);
876 exit_files(tsk);
877 exit_fs(tsk);
878 if (group_dead)
879 disassociate_ctty(1);
880 exit_task_namespaces(tsk);
881 exit_task_work(tsk);
882 exit_thread(tsk);
883
884 /*
885 * Flush inherited counters to the parent - before the parent
886 * gets woken up by child-exit notifications.
887 *
888 * because of cgroup mode, must be called before cgroup_exit()
889 */
890 perf_event_exit_task(tsk);
891
892 sched_autogroup_exit_task(tsk);
893 cgroup_exit(tsk);
894
895 /*
896 * FIXME: do that only when needed, using sched_exit tracepoint
897 */
898 flush_ptrace_hw_breakpoint(tsk);
899
900 exit_tasks_rcu_start();
901 exit_notify(tsk, group_dead);
902 proc_exit_connector(tsk);
903 mpol_put_task_policy(tsk);
904 #ifdef CONFIG_FUTEX
905 if (unlikely(current->pi_state_cache))
906 kfree(current->pi_state_cache);
907 #endif
908 /*
909 * Make sure we are holding no locks:
910 */
911 debug_check_no_locks_held();
912 /*
913 * We can do this unlocked here. The futex code uses this flag
914 * just to verify whether the pi state cleanup has been done
915 * or not. In the worst case it loops once more.
916 */
917 tsk->flags |= PF_EXITPIDONE;
918
919 if (tsk->io_context)
920 exit_io_context(tsk);
921
922 if (tsk->splice_pipe)
923 free_pipe_info(tsk->splice_pipe);
924
925 if (tsk->task_frag.page)
926 put_page(tsk->task_frag.page);
927
928 validate_creds_for_do_exit(tsk);
929
930 check_stack_usage();
931 preempt_disable();
932 if (tsk->nr_dirtied)
933 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
934 exit_rcu();
935 exit_tasks_rcu_finish();
936
937 lockdep_free_task(tsk);
938 do_task_dead();
939 }
940 EXPORT_SYMBOL_GPL(do_exit);
941
942 void complete_and_exit(struct completion *comp, long code)
943 {
944 if (comp)
945 complete(comp);
946
947 do_exit(code);
948 }
949 EXPORT_SYMBOL(complete_and_exit);
950
951 SYSCALL_DEFINE1(exit, int, error_code)
952 {
953 do_exit((error_code&0xff)<<8);
954 }
955
956 /*
957 * Take down every thread in the group. This is called by fatal signals
958 * as well as by sys_exit_group (below).
959 */
960 void
961 do_group_exit(int exit_code)
962 {
963 struct signal_struct *sig = current->signal;
964
965 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
966
967 if (signal_group_exit(sig))
968 exit_code = sig->group_exit_code;
969 else if (!thread_group_empty(current)) {
970 struct sighand_struct *const sighand = current->sighand;
971
972 spin_lock_irq(&sighand->siglock);
973 if (signal_group_exit(sig))
974 /* Another thread got here before we took the lock. */
975 exit_code = sig->group_exit_code;
976 else {
977 sig->group_exit_code = exit_code;
978 sig->flags = SIGNAL_GROUP_EXIT;
979 zap_other_threads(current);
980 }
981 spin_unlock_irq(&sighand->siglock);
982 }
983
984 do_exit(exit_code);
985 /* NOTREACHED */
986 }
987
988 /*
989 * this kills every thread in the thread group. Note that any externally
990 * wait4()-ing process will get the correct exit code - even if this
991 * thread is not the thread group leader.
992 */
993 SYSCALL_DEFINE1(exit_group, int, error_code)
994 {
995 do_group_exit((error_code & 0xff) << 8);
996 /* NOTREACHED */
997 return 0;
998 }
999
1000 struct waitid_info {
1001 pid_t pid;
1002 uid_t uid;
1003 int status;
1004 int cause;
1005 };
1006
1007 struct wait_opts {
1008 enum pid_type wo_type;
1009 int wo_flags;
1010 struct pid *wo_pid;
1011
1012 struct waitid_info *wo_info;
1013 int wo_stat;
1014 struct rusage *wo_rusage;
1015
1016 wait_queue_entry_t child_wait;
1017 int notask_error;
1018 };
1019
1020 static inline
1021 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
1022 {
1023 if (type != PIDTYPE_PID)
1024 task = task->group_leader;
1025 return task->pids[type].pid;
1026 }
1027
1028 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1029 {
1030 return wo->wo_type == PIDTYPE_MAX ||
1031 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1032 }
1033
1034 static int
1035 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1036 {
1037 if (!eligible_pid(wo, p))
1038 return 0;
1039
1040 /*
1041 * Wait for all children (clone and not) if __WALL is set or
1042 * if it is traced by us.
1043 */
1044 if (ptrace || (wo->wo_flags & __WALL))
1045 return 1;
1046
1047 /*
1048 * Otherwise, wait for clone children *only* if __WCLONE is set;
1049 * otherwise, wait for non-clone children *only*.
1050 *
1051 * Note: a "clone" child here is one that reports to its parent
1052 * using a signal other than SIGCHLD, or a non-leader thread which
1053 * we can only see if it is traced by us.
1054 */
1055 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1056 return 0;
1057
1058 return 1;
1059 }
1060
1061 /*
1062 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1063 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1064 * the lock and this task is uninteresting. If we return nonzero, we have
1065 * released the lock and the system call should return.
1066 */
1067 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1068 {
1069 int state, status;
1070 pid_t pid = task_pid_vnr(p);
1071 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1072 struct waitid_info *infop;
1073
1074 if (!likely(wo->wo_flags & WEXITED))
1075 return 0;
1076
1077 if (unlikely(wo->wo_flags & WNOWAIT)) {
1078 status = p->exit_code;
1079 get_task_struct(p);
1080 read_unlock(&tasklist_lock);
1081 sched_annotate_sleep();
1082 if (wo->wo_rusage)
1083 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1084 put_task_struct(p);
1085 goto out_info;
1086 }
1087 /*
1088 * Move the task's state to DEAD/TRACE, only one thread can do this.
1089 */
1090 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1091 EXIT_TRACE : EXIT_DEAD;
1092 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1093 return 0;
1094 /*
1095 * We own this thread, nobody else can reap it.
1096 */
1097 read_unlock(&tasklist_lock);
1098 sched_annotate_sleep();
1099
1100 /*
1101 * Check thread_group_leader() to exclude the traced sub-threads.
1102 */
1103 if (state == EXIT_DEAD && thread_group_leader(p)) {
1104 struct signal_struct *sig = p->signal;
1105 struct signal_struct *psig = current->signal;
1106 unsigned long maxrss;
1107 u64 tgutime, tgstime;
1108
1109 /*
1110 * The resource counters for the group leader are in its
1111 * own task_struct. Those for dead threads in the group
1112 * are in its signal_struct, as are those for the child
1113 * processes it has previously reaped. All these
1114 * accumulate in the parent's signal_struct c* fields.
1115 *
1116 * We don't bother to take a lock here to protect these
1117 * p->signal fields because the whole thread group is dead
1118 * and nobody can change them.
1119 *
1120 * psig->stats_lock also protects us from our sub-theads
1121 * which can reap other children at the same time. Until
1122 * we change k_getrusage()-like users to rely on this lock
1123 * we have to take ->siglock as well.
1124 *
1125 * We use thread_group_cputime_adjusted() to get times for
1126 * the thread group, which consolidates times for all threads
1127 * in the group including the group leader.
1128 */
1129 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1130 spin_lock_irq(&current->sighand->siglock);
1131 write_seqlock(&psig->stats_lock);
1132 psig->cutime += tgutime + sig->cutime;
1133 psig->cstime += tgstime + sig->cstime;
1134 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1135 psig->cmin_flt +=
1136 p->min_flt + sig->min_flt + sig->cmin_flt;
1137 psig->cmaj_flt +=
1138 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1139 psig->cnvcsw +=
1140 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1141 psig->cnivcsw +=
1142 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1143 psig->cinblock +=
1144 task_io_get_inblock(p) +
1145 sig->inblock + sig->cinblock;
1146 psig->coublock +=
1147 task_io_get_oublock(p) +
1148 sig->oublock + sig->coublock;
1149 maxrss = max(sig->maxrss, sig->cmaxrss);
1150 if (psig->cmaxrss < maxrss)
1151 psig->cmaxrss = maxrss;
1152 task_io_accounting_add(&psig->ioac, &p->ioac);
1153 task_io_accounting_add(&psig->ioac, &sig->ioac);
1154 write_sequnlock(&psig->stats_lock);
1155 spin_unlock_irq(&current->sighand->siglock);
1156 }
1157
1158 if (wo->wo_rusage)
1159 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1160 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1161 ? p->signal->group_exit_code : p->exit_code;
1162 wo->wo_stat = status;
1163
1164 if (state == EXIT_TRACE) {
1165 write_lock_irq(&tasklist_lock);
1166 /* We dropped tasklist, ptracer could die and untrace */
1167 ptrace_unlink(p);
1168
1169 /* If parent wants a zombie, don't release it now */
1170 state = EXIT_ZOMBIE;
1171 if (do_notify_parent(p, p->exit_signal))
1172 state = EXIT_DEAD;
1173 p->exit_state = state;
1174 write_unlock_irq(&tasklist_lock);
1175 }
1176 if (state == EXIT_DEAD)
1177 release_task(p);
1178
1179 out_info:
1180 infop = wo->wo_info;
1181 if (infop) {
1182 if ((status & 0x7f) == 0) {
1183 infop->cause = CLD_EXITED;
1184 infop->status = status >> 8;
1185 } else {
1186 infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1187 infop->status = status & 0x7f;
1188 }
1189 infop->pid = pid;
1190 infop->uid = uid;
1191 }
1192
1193 return pid;
1194 }
1195
1196 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1197 {
1198 if (ptrace) {
1199 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1200 return &p->exit_code;
1201 } else {
1202 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1203 return &p->signal->group_exit_code;
1204 }
1205 return NULL;
1206 }
1207
1208 /**
1209 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1210 * @wo: wait options
1211 * @ptrace: is the wait for ptrace
1212 * @p: task to wait for
1213 *
1214 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1215 *
1216 * CONTEXT:
1217 * read_lock(&tasklist_lock), which is released if return value is
1218 * non-zero. Also, grabs and releases @p->sighand->siglock.
1219 *
1220 * RETURNS:
1221 * 0 if wait condition didn't exist and search for other wait conditions
1222 * should continue. Non-zero return, -errno on failure and @p's pid on
1223 * success, implies that tasklist_lock is released and wait condition
1224 * search should terminate.
1225 */
1226 static int wait_task_stopped(struct wait_opts *wo,
1227 int ptrace, struct task_struct *p)
1228 {
1229 struct waitid_info *infop;
1230 int exit_code, *p_code, why;
1231 uid_t uid = 0; /* unneeded, required by compiler */
1232 pid_t pid;
1233
1234 /*
1235 * Traditionally we see ptrace'd stopped tasks regardless of options.
1236 */
1237 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1238 return 0;
1239
1240 if (!task_stopped_code(p, ptrace))
1241 return 0;
1242
1243 exit_code = 0;
1244 spin_lock_irq(&p->sighand->siglock);
1245
1246 p_code = task_stopped_code(p, ptrace);
1247 if (unlikely(!p_code))
1248 goto unlock_sig;
1249
1250 exit_code = *p_code;
1251 if (!exit_code)
1252 goto unlock_sig;
1253
1254 if (!unlikely(wo->wo_flags & WNOWAIT))
1255 *p_code = 0;
1256
1257 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1258 unlock_sig:
1259 spin_unlock_irq(&p->sighand->siglock);
1260 if (!exit_code)
1261 return 0;
1262
1263 /*
1264 * Now we are pretty sure this task is interesting.
1265 * Make sure it doesn't get reaped out from under us while we
1266 * give up the lock and then examine it below. We don't want to
1267 * keep holding onto the tasklist_lock while we call getrusage and
1268 * possibly take page faults for user memory.
1269 */
1270 get_task_struct(p);
1271 pid = task_pid_vnr(p);
1272 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1273 read_unlock(&tasklist_lock);
1274 sched_annotate_sleep();
1275 if (wo->wo_rusage)
1276 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1277 put_task_struct(p);
1278
1279 if (likely(!(wo->wo_flags & WNOWAIT)))
1280 wo->wo_stat = (exit_code << 8) | 0x7f;
1281
1282 infop = wo->wo_info;
1283 if (infop) {
1284 infop->cause = why;
1285 infop->status = exit_code;
1286 infop->pid = pid;
1287 infop->uid = uid;
1288 }
1289 return pid;
1290 }
1291
1292 /*
1293 * Handle do_wait work for one task in a live, non-stopped state.
1294 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1295 * the lock and this task is uninteresting. If we return nonzero, we have
1296 * released the lock and the system call should return.
1297 */
1298 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1299 {
1300 struct waitid_info *infop;
1301 pid_t pid;
1302 uid_t uid;
1303
1304 if (!unlikely(wo->wo_flags & WCONTINUED))
1305 return 0;
1306
1307 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1308 return 0;
1309
1310 spin_lock_irq(&p->sighand->siglock);
1311 /* Re-check with the lock held. */
1312 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1313 spin_unlock_irq(&p->sighand->siglock);
1314 return 0;
1315 }
1316 if (!unlikely(wo->wo_flags & WNOWAIT))
1317 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1318 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1319 spin_unlock_irq(&p->sighand->siglock);
1320
1321 pid = task_pid_vnr(p);
1322 get_task_struct(p);
1323 read_unlock(&tasklist_lock);
1324 sched_annotate_sleep();
1325 if (wo->wo_rusage)
1326 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1327 put_task_struct(p);
1328
1329 infop = wo->wo_info;
1330 if (!infop) {
1331 wo->wo_stat = 0xffff;
1332 } else {
1333 infop->cause = CLD_CONTINUED;
1334 infop->pid = pid;
1335 infop->uid = uid;
1336 infop->status = SIGCONT;
1337 }
1338 return pid;
1339 }
1340
1341 /*
1342 * Consider @p for a wait by @parent.
1343 *
1344 * -ECHILD should be in ->notask_error before the first call.
1345 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1346 * Returns zero if the search for a child should continue;
1347 * then ->notask_error is 0 if @p is an eligible child,
1348 * or still -ECHILD.
1349 */
1350 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1351 struct task_struct *p)
1352 {
1353 /*
1354 * We can race with wait_task_zombie() from another thread.
1355 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1356 * can't confuse the checks below.
1357 */
1358 int exit_state = ACCESS_ONCE(p->exit_state);
1359 int ret;
1360
1361 if (unlikely(exit_state == EXIT_DEAD))
1362 return 0;
1363
1364 ret = eligible_child(wo, ptrace, p);
1365 if (!ret)
1366 return ret;
1367
1368 if (unlikely(exit_state == EXIT_TRACE)) {
1369 /*
1370 * ptrace == 0 means we are the natural parent. In this case
1371 * we should clear notask_error, debugger will notify us.
1372 */
1373 if (likely(!ptrace))
1374 wo->notask_error = 0;
1375 return 0;
1376 }
1377
1378 if (likely(!ptrace) && unlikely(p->ptrace)) {
1379 /*
1380 * If it is traced by its real parent's group, just pretend
1381 * the caller is ptrace_do_wait() and reap this child if it
1382 * is zombie.
1383 *
1384 * This also hides group stop state from real parent; otherwise
1385 * a single stop can be reported twice as group and ptrace stop.
1386 * If a ptracer wants to distinguish these two events for its
1387 * own children it should create a separate process which takes
1388 * the role of real parent.
1389 */
1390 if (!ptrace_reparented(p))
1391 ptrace = 1;
1392 }
1393
1394 /* slay zombie? */
1395 if (exit_state == EXIT_ZOMBIE) {
1396 /* we don't reap group leaders with subthreads */
1397 if (!delay_group_leader(p)) {
1398 /*
1399 * A zombie ptracee is only visible to its ptracer.
1400 * Notification and reaping will be cascaded to the
1401 * real parent when the ptracer detaches.
1402 */
1403 if (unlikely(ptrace) || likely(!p->ptrace))
1404 return wait_task_zombie(wo, p);
1405 }
1406
1407 /*
1408 * Allow access to stopped/continued state via zombie by
1409 * falling through. Clearing of notask_error is complex.
1410 *
1411 * When !@ptrace:
1412 *
1413 * If WEXITED is set, notask_error should naturally be
1414 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1415 * so, if there are live subthreads, there are events to
1416 * wait for. If all subthreads are dead, it's still safe
1417 * to clear - this function will be called again in finite
1418 * amount time once all the subthreads are released and
1419 * will then return without clearing.
1420 *
1421 * When @ptrace:
1422 *
1423 * Stopped state is per-task and thus can't change once the
1424 * target task dies. Only continued and exited can happen.
1425 * Clear notask_error if WCONTINUED | WEXITED.
1426 */
1427 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1428 wo->notask_error = 0;
1429 } else {
1430 /*
1431 * @p is alive and it's gonna stop, continue or exit, so
1432 * there always is something to wait for.
1433 */
1434 wo->notask_error = 0;
1435 }
1436
1437 /*
1438 * Wait for stopped. Depending on @ptrace, different stopped state
1439 * is used and the two don't interact with each other.
1440 */
1441 ret = wait_task_stopped(wo, ptrace, p);
1442 if (ret)
1443 return ret;
1444
1445 /*
1446 * Wait for continued. There's only one continued state and the
1447 * ptracer can consume it which can confuse the real parent. Don't
1448 * use WCONTINUED from ptracer. You don't need or want it.
1449 */
1450 return wait_task_continued(wo, p);
1451 }
1452
1453 /*
1454 * Do the work of do_wait() for one thread in the group, @tsk.
1455 *
1456 * -ECHILD should be in ->notask_error before the first call.
1457 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1458 * Returns zero if the search for a child should continue; then
1459 * ->notask_error is 0 if there were any eligible children,
1460 * or still -ECHILD.
1461 */
1462 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1463 {
1464 struct task_struct *p;
1465
1466 list_for_each_entry(p, &tsk->children, sibling) {
1467 int ret = wait_consider_task(wo, 0, p);
1468
1469 if (ret)
1470 return ret;
1471 }
1472
1473 return 0;
1474 }
1475
1476 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1477 {
1478 struct task_struct *p;
1479
1480 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1481 int ret = wait_consider_task(wo, 1, p);
1482
1483 if (ret)
1484 return ret;
1485 }
1486
1487 return 0;
1488 }
1489
1490 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1491 int sync, void *key)
1492 {
1493 struct wait_opts *wo = container_of(wait, struct wait_opts,
1494 child_wait);
1495 struct task_struct *p = key;
1496
1497 if (!eligible_pid(wo, p))
1498 return 0;
1499
1500 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1501 return 0;
1502
1503 return default_wake_function(wait, mode, sync, key);
1504 }
1505
1506 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1507 {
1508 __wake_up_sync_key(&parent->signal->wait_chldexit,
1509 TASK_INTERRUPTIBLE, 1, p);
1510 }
1511
1512 static long do_wait(struct wait_opts *wo)
1513 {
1514 struct task_struct *tsk;
1515 int retval;
1516
1517 trace_sched_process_wait(wo->wo_pid);
1518
1519 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1520 wo->child_wait.private = current;
1521 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1522 repeat:
1523 /*
1524 * If there is nothing that can match our criteria, just get out.
1525 * We will clear ->notask_error to zero if we see any child that
1526 * might later match our criteria, even if we are not able to reap
1527 * it yet.
1528 */
1529 wo->notask_error = -ECHILD;
1530 if ((wo->wo_type < PIDTYPE_MAX) &&
1531 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1532 goto notask;
1533
1534 set_current_state(TASK_INTERRUPTIBLE);
1535 read_lock(&tasklist_lock);
1536 tsk = current;
1537 do {
1538 retval = do_wait_thread(wo, tsk);
1539 if (retval)
1540 goto end;
1541
1542 retval = ptrace_do_wait(wo, tsk);
1543 if (retval)
1544 goto end;
1545
1546 if (wo->wo_flags & __WNOTHREAD)
1547 break;
1548 } while_each_thread(current, tsk);
1549 read_unlock(&tasklist_lock);
1550
1551 notask:
1552 retval = wo->notask_error;
1553 if (!retval && !(wo->wo_flags & WNOHANG)) {
1554 retval = -ERESTARTSYS;
1555 if (!signal_pending(current)) {
1556 schedule();
1557 goto repeat;
1558 }
1559 }
1560 end:
1561 __set_current_state(TASK_RUNNING);
1562 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1563 return retval;
1564 }
1565
1566 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1567 int options, struct rusage *ru)
1568 {
1569 struct wait_opts wo;
1570 struct pid *pid = NULL;
1571 enum pid_type type;
1572 long ret;
1573
1574 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1575 __WNOTHREAD|__WCLONE|__WALL))
1576 return -EINVAL;
1577 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1578 return -EINVAL;
1579
1580 switch (which) {
1581 case P_ALL:
1582 type = PIDTYPE_MAX;
1583 break;
1584 case P_PID:
1585 type = PIDTYPE_PID;
1586 if (upid <= 0)
1587 return -EINVAL;
1588 break;
1589 case P_PGID:
1590 type = PIDTYPE_PGID;
1591 if (upid <= 0)
1592 return -EINVAL;
1593 break;
1594 default:
1595 return -EINVAL;
1596 }
1597
1598 if (type < PIDTYPE_MAX)
1599 pid = find_get_pid(upid);
1600
1601 wo.wo_type = type;
1602 wo.wo_pid = pid;
1603 wo.wo_flags = options;
1604 wo.wo_info = infop;
1605 wo.wo_rusage = ru;
1606 ret = do_wait(&wo);
1607
1608 put_pid(pid);
1609 return ret;
1610 }
1611
1612 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1613 infop, int, options, struct rusage __user *, ru)
1614 {
1615 struct rusage r;
1616 struct waitid_info info = {.status = 0};
1617 long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1618 int signo = 0;
1619
1620 if (err > 0) {
1621 signo = SIGCHLD;
1622 err = 0;
1623 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1624 return -EFAULT;
1625 }
1626 if (!infop)
1627 return err;
1628
1629 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1630 return -EFAULT;
1631
1632 user_access_begin();
1633 unsafe_put_user(signo, &infop->si_signo, Efault);
1634 unsafe_put_user(0, &infop->si_errno, Efault);
1635 unsafe_put_user(info.cause, &infop->si_code, Efault);
1636 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1637 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1638 unsafe_put_user(info.status, &infop->si_status, Efault);
1639 user_access_end();
1640 return err;
1641 Efault:
1642 user_access_end();
1643 return -EFAULT;
1644 }
1645
1646 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1647 struct rusage *ru)
1648 {
1649 struct wait_opts wo;
1650 struct pid *pid = NULL;
1651 enum pid_type type;
1652 long ret;
1653
1654 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1655 __WNOTHREAD|__WCLONE|__WALL))
1656 return -EINVAL;
1657
1658 /* -INT_MIN is not defined */
1659 if (upid == INT_MIN)
1660 return -ESRCH;
1661
1662 if (upid == -1)
1663 type = PIDTYPE_MAX;
1664 else if (upid < 0) {
1665 type = PIDTYPE_PGID;
1666 pid = find_get_pid(-upid);
1667 } else if (upid == 0) {
1668 type = PIDTYPE_PGID;
1669 pid = get_task_pid(current, PIDTYPE_PGID);
1670 } else /* upid > 0 */ {
1671 type = PIDTYPE_PID;
1672 pid = find_get_pid(upid);
1673 }
1674
1675 wo.wo_type = type;
1676 wo.wo_pid = pid;
1677 wo.wo_flags = options | WEXITED;
1678 wo.wo_info = NULL;
1679 wo.wo_stat = 0;
1680 wo.wo_rusage = ru;
1681 ret = do_wait(&wo);
1682 put_pid(pid);
1683 if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1684 ret = -EFAULT;
1685
1686 return ret;
1687 }
1688
1689 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1690 int, options, struct rusage __user *, ru)
1691 {
1692 struct rusage r;
1693 long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1694
1695 if (err > 0) {
1696 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1697 return -EFAULT;
1698 }
1699 return err;
1700 }
1701
1702 #ifdef __ARCH_WANT_SYS_WAITPID
1703
1704 /*
1705 * sys_waitpid() remains for compatibility. waitpid() should be
1706 * implemented by calling sys_wait4() from libc.a.
1707 */
1708 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1709 {
1710 return sys_wait4(pid, stat_addr, options, NULL);
1711 }
1712
1713 #endif
1714
1715 #ifdef CONFIG_COMPAT
1716 COMPAT_SYSCALL_DEFINE4(wait4,
1717 compat_pid_t, pid,
1718 compat_uint_t __user *, stat_addr,
1719 int, options,
1720 struct compat_rusage __user *, ru)
1721 {
1722 struct rusage r;
1723 long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1724 if (err > 0) {
1725 if (ru && put_compat_rusage(&r, ru))
1726 return -EFAULT;
1727 }
1728 return err;
1729 }
1730
1731 COMPAT_SYSCALL_DEFINE5(waitid,
1732 int, which, compat_pid_t, pid,
1733 struct compat_siginfo __user *, infop, int, options,
1734 struct compat_rusage __user *, uru)
1735 {
1736 struct rusage ru;
1737 struct waitid_info info = {.status = 0};
1738 long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1739 int signo = 0;
1740 if (err > 0) {
1741 signo = SIGCHLD;
1742 err = 0;
1743 if (uru) {
1744 /* kernel_waitid() overwrites everything in ru */
1745 if (COMPAT_USE_64BIT_TIME)
1746 err = copy_to_user(uru, &ru, sizeof(ru));
1747 else
1748 err = put_compat_rusage(&ru, uru);
1749 if (err)
1750 return -EFAULT;
1751 }
1752 }
1753
1754 if (!infop)
1755 return err;
1756
1757 if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1758 return -EFAULT;
1759
1760 user_access_begin();
1761 unsafe_put_user(signo, &infop->si_signo, Efault);
1762 unsafe_put_user(0, &infop->si_errno, Efault);
1763 unsafe_put_user(info.cause, &infop->si_code, Efault);
1764 unsafe_put_user(info.pid, &infop->si_pid, Efault);
1765 unsafe_put_user(info.uid, &infop->si_uid, Efault);
1766 unsafe_put_user(info.status, &infop->si_status, Efault);
1767 user_access_end();
1768 return err;
1769 Efault:
1770 user_access_end();
1771 return -EFAULT;
1772 }
1773 #endif
1774
1775 __weak void abort(void)
1776 {
1777 BUG();
1778
1779 /* if that doesn't kill us, halt */
1780 panic("Oops failed to kill thread");
1781 }
1782 EXPORT_SYMBOL(abort);