0cefde276641783f66f470f8d4dac04d87cfcf81
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / uprobes.c
1 /*
2 * User-space Probes (UProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright (C) IBM Corporation, 2008-2012
19 * Authors:
20 * Srikar Dronamraju
21 * Jim Keniston
22 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h> /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/rmap.h> /* anon_vma_prepare */
31 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
32 #include <linux/swap.h> /* try_to_free_swap */
33 #include <linux/ptrace.h> /* user_enable_single_step */
34 #include <linux/kdebug.h> /* notifier mechanism */
35 #include "../../mm/internal.h" /* munlock_vma_page */
36
37 #include <linux/uprobes.h>
38
39 #define UINSNS_PER_PAGE (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
40 #define MAX_UPROBE_XOL_SLOTS UINSNS_PER_PAGE
41
42 static struct rb_root uprobes_tree = RB_ROOT;
43
44 static DEFINE_SPINLOCK(uprobes_treelock); /* serialize rbtree access */
45
46 #define UPROBES_HASH_SZ 13
47
48 /*
49 * We need separate register/unregister and mmap/munmap lock hashes because
50 * of mmap_sem nesting.
51 *
52 * uprobe_register() needs to install probes on (potentially) all processes
53 * and thus needs to acquire multiple mmap_sems (consequtively, not
54 * concurrently), whereas uprobe_mmap() is called while holding mmap_sem
55 * for the particular process doing the mmap.
56 *
57 * uprobe_register()->register_for_each_vma() needs to drop/acquire mmap_sem
58 * because of lock order against i_mmap_mutex. This means there's a hole in
59 * the register vma iteration where a mmap() can happen.
60 *
61 * Thus uprobe_register() can race with uprobe_mmap() and we can try and
62 * install a probe where one is already installed.
63 */
64
65 /* serialize (un)register */
66 static struct mutex uprobes_mutex[UPROBES_HASH_SZ];
67
68 #define uprobes_hash(v) (&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
69
70 /* serialize uprobe->pending_list */
71 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
72 #define uprobes_mmap_hash(v) (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
73
74 /*
75 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
76 * events active at this time. Probably a fine grained per inode count is
77 * better?
78 */
79 static atomic_t uprobe_events = ATOMIC_INIT(0);
80
81 struct uprobe {
82 struct rb_node rb_node; /* node in the rb tree */
83 atomic_t ref;
84 struct rw_semaphore consumer_rwsem;
85 struct list_head pending_list;
86 struct uprobe_consumer *consumers;
87 struct inode *inode; /* Also hold a ref to inode */
88 loff_t offset;
89 int flags;
90 struct arch_uprobe arch;
91 };
92
93 /*
94 * valid_vma: Verify if the specified vma is an executable vma
95 * Relax restrictions while unregistering: vm_flags might have
96 * changed after breakpoint was inserted.
97 * - is_register: indicates if we are in register context.
98 * - Return 1 if the specified virtual address is in an
99 * executable vma.
100 */
101 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
102 {
103 if (!vma->vm_file)
104 return false;
105
106 if (!is_register)
107 return true;
108
109 if ((vma->vm_flags & (VM_HUGETLB|VM_READ|VM_WRITE|VM_EXEC|VM_SHARED))
110 == (VM_READ|VM_EXEC))
111 return true;
112
113 return false;
114 }
115
116 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
117 {
118 return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
119 }
120
121 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
122 {
123 return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
124 }
125
126 /**
127 * __replace_page - replace page in vma by new page.
128 * based on replace_page in mm/ksm.c
129 *
130 * @vma: vma that holds the pte pointing to page
131 * @addr: address the old @page is mapped at
132 * @page: the cowed page we are replacing by kpage
133 * @kpage: the modified page we replace page by
134 *
135 * Returns 0 on success, -EFAULT on failure.
136 */
137 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
138 struct page *page, struct page *kpage)
139 {
140 struct mm_struct *mm = vma->vm_mm;
141 spinlock_t *ptl;
142 pte_t *ptep;
143 int err;
144
145 /* For try_to_free_swap() and munlock_vma_page() below */
146 lock_page(page);
147
148 err = -EAGAIN;
149 ptep = page_check_address(page, mm, addr, &ptl, 0);
150 if (!ptep)
151 goto unlock;
152
153 get_page(kpage);
154 page_add_new_anon_rmap(kpage, vma, addr);
155
156 if (!PageAnon(page)) {
157 dec_mm_counter(mm, MM_FILEPAGES);
158 inc_mm_counter(mm, MM_ANONPAGES);
159 }
160
161 flush_cache_page(vma, addr, pte_pfn(*ptep));
162 ptep_clear_flush(vma, addr, ptep);
163 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
164
165 page_remove_rmap(page);
166 if (!page_mapped(page))
167 try_to_free_swap(page);
168 pte_unmap_unlock(ptep, ptl);
169
170 if (vma->vm_flags & VM_LOCKED)
171 munlock_vma_page(page);
172 put_page(page);
173
174 err = 0;
175 unlock:
176 unlock_page(page);
177 return err;
178 }
179
180 /**
181 * is_swbp_insn - check if instruction is breakpoint instruction.
182 * @insn: instruction to be checked.
183 * Default implementation of is_swbp_insn
184 * Returns true if @insn is a breakpoint instruction.
185 */
186 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
187 {
188 return *insn == UPROBE_SWBP_INSN;
189 }
190
191 /*
192 * NOTE:
193 * Expect the breakpoint instruction to be the smallest size instruction for
194 * the architecture. If an arch has variable length instruction and the
195 * breakpoint instruction is not of the smallest length instruction
196 * supported by that architecture then we need to modify read_opcode /
197 * write_opcode accordingly. This would never be a problem for archs that
198 * have fixed length instructions.
199 */
200
201 /*
202 * write_opcode - write the opcode at a given virtual address.
203 * @auprobe: arch breakpointing information.
204 * @mm: the probed process address space.
205 * @vaddr: the virtual address to store the opcode.
206 * @opcode: opcode to be written at @vaddr.
207 *
208 * Called with mm->mmap_sem held (for read and with a reference to
209 * mm).
210 *
211 * For mm @mm, write the opcode at @vaddr.
212 * Return 0 (success) or a negative errno.
213 */
214 static int write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
215 unsigned long vaddr, uprobe_opcode_t opcode)
216 {
217 struct page *old_page, *new_page;
218 void *vaddr_old, *vaddr_new;
219 struct vm_area_struct *vma;
220 int ret;
221
222 retry:
223 /* Read the page with vaddr into memory */
224 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
225 if (ret <= 0)
226 return ret;
227
228 ret = -ENOMEM;
229 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
230 if (!new_page)
231 goto put_old;
232
233 __SetPageUptodate(new_page);
234
235 /* copy the page now that we've got it stable */
236 vaddr_old = kmap_atomic(old_page);
237 vaddr_new = kmap_atomic(new_page);
238
239 memcpy(vaddr_new, vaddr_old, PAGE_SIZE);
240 memcpy(vaddr_new + (vaddr & ~PAGE_MASK), &opcode, UPROBE_SWBP_INSN_SIZE);
241
242 kunmap_atomic(vaddr_new);
243 kunmap_atomic(vaddr_old);
244
245 ret = anon_vma_prepare(vma);
246 if (ret)
247 goto put_new;
248
249 ret = __replace_page(vma, vaddr, old_page, new_page);
250
251 put_new:
252 page_cache_release(new_page);
253 put_old:
254 put_page(old_page);
255
256 if (unlikely(ret == -EAGAIN))
257 goto retry;
258 return ret;
259 }
260
261 /**
262 * read_opcode - read the opcode at a given virtual address.
263 * @mm: the probed process address space.
264 * @vaddr: the virtual address to read the opcode.
265 * @opcode: location to store the read opcode.
266 *
267 * Called with mm->mmap_sem held (for read and with a reference to
268 * mm.
269 *
270 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
271 * Return 0 (success) or a negative errno.
272 */
273 static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
274 {
275 struct page *page;
276 void *vaddr_new;
277 int ret;
278
279 ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
280 if (ret <= 0)
281 return ret;
282
283 vaddr_new = kmap_atomic(page);
284 vaddr &= ~PAGE_MASK;
285 memcpy(opcode, vaddr_new + vaddr, UPROBE_SWBP_INSN_SIZE);
286 kunmap_atomic(vaddr_new);
287
288 put_page(page);
289
290 return 0;
291 }
292
293 static int is_swbp_at_addr(struct mm_struct *mm, unsigned long vaddr)
294 {
295 uprobe_opcode_t opcode;
296 int result;
297
298 if (current->mm == mm) {
299 pagefault_disable();
300 result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
301 sizeof(opcode));
302 pagefault_enable();
303
304 if (likely(result == 0))
305 goto out;
306 }
307
308 result = read_opcode(mm, vaddr, &opcode);
309 if (result)
310 return result;
311 out:
312 if (is_swbp_insn(&opcode))
313 return 1;
314
315 return 0;
316 }
317
318 /**
319 * set_swbp - store breakpoint at a given address.
320 * @auprobe: arch specific probepoint information.
321 * @mm: the probed process address space.
322 * @vaddr: the virtual address to insert the opcode.
323 *
324 * For mm @mm, store the breakpoint instruction at @vaddr.
325 * Return 0 (success) or a negative errno.
326 */
327 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
328 {
329 int result;
330 /*
331 * See the comment near uprobes_hash().
332 */
333 result = is_swbp_at_addr(mm, vaddr);
334 if (result == 1)
335 return -EEXIST;
336
337 if (result)
338 return result;
339
340 return write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
341 }
342
343 /**
344 * set_orig_insn - Restore the original instruction.
345 * @mm: the probed process address space.
346 * @auprobe: arch specific probepoint information.
347 * @vaddr: the virtual address to insert the opcode.
348 * @verify: if true, verify existance of breakpoint instruction.
349 *
350 * For mm @mm, restore the original opcode (opcode) at @vaddr.
351 * Return 0 (success) or a negative errno.
352 */
353 int __weak
354 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr, bool verify)
355 {
356 if (verify) {
357 int result;
358
359 result = is_swbp_at_addr(mm, vaddr);
360 if (!result)
361 return -EINVAL;
362
363 if (result != 1)
364 return result;
365 }
366 return write_opcode(auprobe, mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
367 }
368
369 static int match_uprobe(struct uprobe *l, struct uprobe *r)
370 {
371 if (l->inode < r->inode)
372 return -1;
373
374 if (l->inode > r->inode)
375 return 1;
376
377 if (l->offset < r->offset)
378 return -1;
379
380 if (l->offset > r->offset)
381 return 1;
382
383 return 0;
384 }
385
386 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
387 {
388 struct uprobe u = { .inode = inode, .offset = offset };
389 struct rb_node *n = uprobes_tree.rb_node;
390 struct uprobe *uprobe;
391 int match;
392
393 while (n) {
394 uprobe = rb_entry(n, struct uprobe, rb_node);
395 match = match_uprobe(&u, uprobe);
396 if (!match) {
397 atomic_inc(&uprobe->ref);
398 return uprobe;
399 }
400
401 if (match < 0)
402 n = n->rb_left;
403 else
404 n = n->rb_right;
405 }
406 return NULL;
407 }
408
409 /*
410 * Find a uprobe corresponding to a given inode:offset
411 * Acquires uprobes_treelock
412 */
413 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
414 {
415 struct uprobe *uprobe;
416 unsigned long flags;
417
418 spin_lock_irqsave(&uprobes_treelock, flags);
419 uprobe = __find_uprobe(inode, offset);
420 spin_unlock_irqrestore(&uprobes_treelock, flags);
421
422 return uprobe;
423 }
424
425 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
426 {
427 struct rb_node **p = &uprobes_tree.rb_node;
428 struct rb_node *parent = NULL;
429 struct uprobe *u;
430 int match;
431
432 while (*p) {
433 parent = *p;
434 u = rb_entry(parent, struct uprobe, rb_node);
435 match = match_uprobe(uprobe, u);
436 if (!match) {
437 atomic_inc(&u->ref);
438 return u;
439 }
440
441 if (match < 0)
442 p = &parent->rb_left;
443 else
444 p = &parent->rb_right;
445
446 }
447
448 u = NULL;
449 rb_link_node(&uprobe->rb_node, parent, p);
450 rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451 /* get access + creation ref */
452 atomic_set(&uprobe->ref, 2);
453
454 return u;
455 }
456
457 /*
458 * Acquire uprobes_treelock.
459 * Matching uprobe already exists in rbtree;
460 * increment (access refcount) and return the matching uprobe.
461 *
462 * No matching uprobe; insert the uprobe in rb_tree;
463 * get a double refcount (access + creation) and return NULL.
464 */
465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 {
467 unsigned long flags;
468 struct uprobe *u;
469
470 spin_lock_irqsave(&uprobes_treelock, flags);
471 u = __insert_uprobe(uprobe);
472 spin_unlock_irqrestore(&uprobes_treelock, flags);
473
474 /* For now assume that the instruction need not be single-stepped */
475 uprobe->flags |= UPROBE_SKIP_SSTEP;
476
477 return u;
478 }
479
480 static void put_uprobe(struct uprobe *uprobe)
481 {
482 if (atomic_dec_and_test(&uprobe->ref))
483 kfree(uprobe);
484 }
485
486 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
487 {
488 struct uprobe *uprobe, *cur_uprobe;
489
490 uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
491 if (!uprobe)
492 return NULL;
493
494 uprobe->inode = igrab(inode);
495 uprobe->offset = offset;
496 init_rwsem(&uprobe->consumer_rwsem);
497
498 /* add to uprobes_tree, sorted on inode:offset */
499 cur_uprobe = insert_uprobe(uprobe);
500
501 /* a uprobe exists for this inode:offset combination */
502 if (cur_uprobe) {
503 kfree(uprobe);
504 uprobe = cur_uprobe;
505 iput(inode);
506 } else {
507 atomic_inc(&uprobe_events);
508 }
509
510 return uprobe;
511 }
512
513 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
514 {
515 struct uprobe_consumer *uc;
516
517 if (!(uprobe->flags & UPROBE_RUN_HANDLER))
518 return;
519
520 down_read(&uprobe->consumer_rwsem);
521 for (uc = uprobe->consumers; uc; uc = uc->next) {
522 if (!uc->filter || uc->filter(uc, current))
523 uc->handler(uc, regs);
524 }
525 up_read(&uprobe->consumer_rwsem);
526 }
527
528 /* Returns the previous consumer */
529 static struct uprobe_consumer *
530 consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
531 {
532 down_write(&uprobe->consumer_rwsem);
533 uc->next = uprobe->consumers;
534 uprobe->consumers = uc;
535 up_write(&uprobe->consumer_rwsem);
536
537 return uc->next;
538 }
539
540 /*
541 * For uprobe @uprobe, delete the consumer @uc.
542 * Return true if the @uc is deleted successfully
543 * or return false.
544 */
545 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
546 {
547 struct uprobe_consumer **con;
548 bool ret = false;
549
550 down_write(&uprobe->consumer_rwsem);
551 for (con = &uprobe->consumers; *con; con = &(*con)->next) {
552 if (*con == uc) {
553 *con = uc->next;
554 ret = true;
555 break;
556 }
557 }
558 up_write(&uprobe->consumer_rwsem);
559
560 return ret;
561 }
562
563 static int
564 __copy_insn(struct address_space *mapping, struct file *filp, char *insn,
565 unsigned long nbytes, loff_t offset)
566 {
567 struct page *page;
568 void *vaddr;
569 unsigned long off;
570 pgoff_t idx;
571
572 if (!filp)
573 return -EINVAL;
574
575 if (!mapping->a_ops->readpage)
576 return -EIO;
577
578 idx = offset >> PAGE_CACHE_SHIFT;
579 off = offset & ~PAGE_MASK;
580
581 /*
582 * Ensure that the page that has the original instruction is
583 * populated and in page-cache.
584 */
585 page = read_mapping_page(mapping, idx, filp);
586 if (IS_ERR(page))
587 return PTR_ERR(page);
588
589 vaddr = kmap_atomic(page);
590 memcpy(insn, vaddr + off, nbytes);
591 kunmap_atomic(vaddr);
592 page_cache_release(page);
593
594 return 0;
595 }
596
597 static int copy_insn(struct uprobe *uprobe, struct file *filp)
598 {
599 struct address_space *mapping;
600 unsigned long nbytes;
601 int bytes;
602
603 nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
604 mapping = uprobe->inode->i_mapping;
605
606 /* Instruction at end of binary; copy only available bytes */
607 if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
608 bytes = uprobe->inode->i_size - uprobe->offset;
609 else
610 bytes = MAX_UINSN_BYTES;
611
612 /* Instruction at the page-boundary; copy bytes in second page */
613 if (nbytes < bytes) {
614 int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
615 bytes - nbytes, uprobe->offset + nbytes);
616 if (err)
617 return err;
618 bytes = nbytes;
619 }
620 return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
621 }
622
623 /*
624 * How mm->uprobes_state.count gets updated
625 * uprobe_mmap() increments the count if
626 * - it successfully adds a breakpoint.
627 * - it cannot add a breakpoint, but sees that there is a underlying
628 * breakpoint (via a is_swbp_at_addr()).
629 *
630 * uprobe_munmap() decrements the count if
631 * - it sees a underlying breakpoint, (via is_swbp_at_addr)
632 * (Subsequent uprobe_unregister wouldnt find the breakpoint
633 * unless a uprobe_mmap kicks in, since the old vma would be
634 * dropped just after uprobe_munmap.)
635 *
636 * uprobe_register increments the count if:
637 * - it successfully adds a breakpoint.
638 *
639 * uprobe_unregister decrements the count if:
640 * - it sees a underlying breakpoint and removes successfully.
641 * (via is_swbp_at_addr)
642 * (Subsequent uprobe_munmap wouldnt find the breakpoint
643 * since there is no underlying breakpoint after the
644 * breakpoint removal.)
645 */
646 static int
647 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
648 struct vm_area_struct *vma, unsigned long vaddr)
649 {
650 int ret;
651
652 /*
653 * If probe is being deleted, unregister thread could be done with
654 * the vma-rmap-walk through. Adding a probe now can be fatal since
655 * nobody will be able to cleanup. Also we could be from fork or
656 * mremap path, where the probe might have already been inserted.
657 * Hence behave as if probe already existed.
658 */
659 if (!uprobe->consumers)
660 return -EEXIST;
661
662 if (!(uprobe->flags & UPROBE_COPY_INSN)) {
663 ret = copy_insn(uprobe, vma->vm_file);
664 if (ret)
665 return ret;
666
667 if (is_swbp_insn((uprobe_opcode_t *)uprobe->arch.insn))
668 return -ENOTSUPP;
669
670 ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
671 if (ret)
672 return ret;
673
674 /* write_opcode() assumes we don't cross page boundary */
675 BUG_ON((uprobe->offset & ~PAGE_MASK) +
676 UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
677
678 uprobe->flags |= UPROBE_COPY_INSN;
679 }
680
681 /*
682 * Ideally, should be updating the probe count after the breakpoint
683 * has been successfully inserted. However a thread could hit the
684 * breakpoint we just inserted even before the probe count is
685 * incremented. If this is the first breakpoint placed, breakpoint
686 * notifier might ignore uprobes and pass the trap to the thread.
687 * Hence increment before and decrement on failure.
688 */
689 atomic_inc(&mm->uprobes_state.count);
690 ret = set_swbp(&uprobe->arch, mm, vaddr);
691 if (ret)
692 atomic_dec(&mm->uprobes_state.count);
693
694 return ret;
695 }
696
697 static void
698 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
699 {
700 if (!set_orig_insn(&uprobe->arch, mm, vaddr, true))
701 atomic_dec(&mm->uprobes_state.count);
702 }
703
704 /*
705 * There could be threads that have already hit the breakpoint. They
706 * will recheck the current insn and restart if find_uprobe() fails.
707 * See find_active_uprobe().
708 */
709 static void delete_uprobe(struct uprobe *uprobe)
710 {
711 unsigned long flags;
712
713 spin_lock_irqsave(&uprobes_treelock, flags);
714 rb_erase(&uprobe->rb_node, &uprobes_tree);
715 spin_unlock_irqrestore(&uprobes_treelock, flags);
716 iput(uprobe->inode);
717 put_uprobe(uprobe);
718 atomic_dec(&uprobe_events);
719 }
720
721 struct map_info {
722 struct map_info *next;
723 struct mm_struct *mm;
724 unsigned long vaddr;
725 };
726
727 static inline struct map_info *free_map_info(struct map_info *info)
728 {
729 struct map_info *next = info->next;
730 kfree(info);
731 return next;
732 }
733
734 static struct map_info *
735 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
736 {
737 unsigned long pgoff = offset >> PAGE_SHIFT;
738 struct prio_tree_iter iter;
739 struct vm_area_struct *vma;
740 struct map_info *curr = NULL;
741 struct map_info *prev = NULL;
742 struct map_info *info;
743 int more = 0;
744
745 again:
746 mutex_lock(&mapping->i_mmap_mutex);
747 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
748 if (!valid_vma(vma, is_register))
749 continue;
750
751 if (!prev && !more) {
752 /*
753 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
754 * reclaim. This is optimistic, no harm done if it fails.
755 */
756 prev = kmalloc(sizeof(struct map_info),
757 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
758 if (prev)
759 prev->next = NULL;
760 }
761 if (!prev) {
762 more++;
763 continue;
764 }
765
766 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
767 continue;
768
769 info = prev;
770 prev = prev->next;
771 info->next = curr;
772 curr = info;
773
774 info->mm = vma->vm_mm;
775 info->vaddr = offset_to_vaddr(vma, offset);
776 }
777 mutex_unlock(&mapping->i_mmap_mutex);
778
779 if (!more)
780 goto out;
781
782 prev = curr;
783 while (curr) {
784 mmput(curr->mm);
785 curr = curr->next;
786 }
787
788 do {
789 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
790 if (!info) {
791 curr = ERR_PTR(-ENOMEM);
792 goto out;
793 }
794 info->next = prev;
795 prev = info;
796 } while (--more);
797
798 goto again;
799 out:
800 while (prev)
801 prev = free_map_info(prev);
802 return curr;
803 }
804
805 static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
806 {
807 struct map_info *info;
808 int err = 0;
809
810 info = build_map_info(uprobe->inode->i_mapping,
811 uprobe->offset, is_register);
812 if (IS_ERR(info))
813 return PTR_ERR(info);
814
815 while (info) {
816 struct mm_struct *mm = info->mm;
817 struct vm_area_struct *vma;
818
819 if (err)
820 goto free;
821
822 down_write(&mm->mmap_sem);
823 vma = find_vma(mm, info->vaddr);
824 if (!vma || !valid_vma(vma, is_register) ||
825 vma->vm_file->f_mapping->host != uprobe->inode)
826 goto unlock;
827
828 if (vma->vm_start > info->vaddr ||
829 vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
830 goto unlock;
831
832 if (is_register) {
833 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
834 /*
835 * We can race against uprobe_mmap(), see the
836 * comment near uprobe_hash().
837 */
838 if (err == -EEXIST)
839 err = 0;
840 } else {
841 remove_breakpoint(uprobe, mm, info->vaddr);
842 }
843 unlock:
844 up_write(&mm->mmap_sem);
845 free:
846 mmput(mm);
847 info = free_map_info(info);
848 }
849
850 return err;
851 }
852
853 static int __uprobe_register(struct uprobe *uprobe)
854 {
855 return register_for_each_vma(uprobe, true);
856 }
857
858 static void __uprobe_unregister(struct uprobe *uprobe)
859 {
860 if (!register_for_each_vma(uprobe, false))
861 delete_uprobe(uprobe);
862
863 /* TODO : cant unregister? schedule a worker thread */
864 }
865
866 /*
867 * uprobe_register - register a probe
868 * @inode: the file in which the probe has to be placed.
869 * @offset: offset from the start of the file.
870 * @uc: information on howto handle the probe..
871 *
872 * Apart from the access refcount, uprobe_register() takes a creation
873 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
874 * inserted into the rbtree (i.e first consumer for a @inode:@offset
875 * tuple). Creation refcount stops uprobe_unregister from freeing the
876 * @uprobe even before the register operation is complete. Creation
877 * refcount is released when the last @uc for the @uprobe
878 * unregisters.
879 *
880 * Return errno if it cannot successully install probes
881 * else return 0 (success)
882 */
883 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
884 {
885 struct uprobe *uprobe;
886 int ret;
887
888 if (!inode || !uc || uc->next)
889 return -EINVAL;
890
891 if (offset > i_size_read(inode))
892 return -EINVAL;
893
894 ret = 0;
895 mutex_lock(uprobes_hash(inode));
896 uprobe = alloc_uprobe(inode, offset);
897
898 if (uprobe && !consumer_add(uprobe, uc)) {
899 ret = __uprobe_register(uprobe);
900 if (ret) {
901 uprobe->consumers = NULL;
902 __uprobe_unregister(uprobe);
903 } else {
904 uprobe->flags |= UPROBE_RUN_HANDLER;
905 }
906 }
907
908 mutex_unlock(uprobes_hash(inode));
909 put_uprobe(uprobe);
910
911 return ret;
912 }
913
914 /*
915 * uprobe_unregister - unregister a already registered probe.
916 * @inode: the file in which the probe has to be removed.
917 * @offset: offset from the start of the file.
918 * @uc: identify which probe if multiple probes are colocated.
919 */
920 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
921 {
922 struct uprobe *uprobe;
923
924 if (!inode || !uc)
925 return;
926
927 uprobe = find_uprobe(inode, offset);
928 if (!uprobe)
929 return;
930
931 mutex_lock(uprobes_hash(inode));
932
933 if (consumer_del(uprobe, uc)) {
934 if (!uprobe->consumers) {
935 __uprobe_unregister(uprobe);
936 uprobe->flags &= ~UPROBE_RUN_HANDLER;
937 }
938 }
939
940 mutex_unlock(uprobes_hash(inode));
941 if (uprobe)
942 put_uprobe(uprobe);
943 }
944
945 static struct rb_node *
946 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
947 {
948 struct rb_node *n = uprobes_tree.rb_node;
949
950 while (n) {
951 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
952
953 if (inode < u->inode) {
954 n = n->rb_left;
955 } else if (inode > u->inode) {
956 n = n->rb_right;
957 } else {
958 if (max < u->offset)
959 n = n->rb_left;
960 else if (min > u->offset)
961 n = n->rb_right;
962 else
963 break;
964 }
965 }
966
967 return n;
968 }
969
970 /*
971 * For a given range in vma, build a list of probes that need to be inserted.
972 */
973 static void build_probe_list(struct inode *inode,
974 struct vm_area_struct *vma,
975 unsigned long start, unsigned long end,
976 struct list_head *head)
977 {
978 loff_t min, max;
979 unsigned long flags;
980 struct rb_node *n, *t;
981 struct uprobe *u;
982
983 INIT_LIST_HEAD(head);
984 min = vaddr_to_offset(vma, start);
985 max = min + (end - start) - 1;
986
987 spin_lock_irqsave(&uprobes_treelock, flags);
988 n = find_node_in_range(inode, min, max);
989 if (n) {
990 for (t = n; t; t = rb_prev(t)) {
991 u = rb_entry(t, struct uprobe, rb_node);
992 if (u->inode != inode || u->offset < min)
993 break;
994 list_add(&u->pending_list, head);
995 atomic_inc(&u->ref);
996 }
997 for (t = n; (t = rb_next(t)); ) {
998 u = rb_entry(t, struct uprobe, rb_node);
999 if (u->inode != inode || u->offset > max)
1000 break;
1001 list_add(&u->pending_list, head);
1002 atomic_inc(&u->ref);
1003 }
1004 }
1005 spin_unlock_irqrestore(&uprobes_treelock, flags);
1006 }
1007
1008 /*
1009 * Called from mmap_region.
1010 * called with mm->mmap_sem acquired.
1011 *
1012 * Return -ve no if we fail to insert probes and we cannot
1013 * bail-out.
1014 * Return 0 otherwise. i.e:
1015 *
1016 * - successful insertion of probes
1017 * - (or) no possible probes to be inserted.
1018 * - (or) insertion of probes failed but we can bail-out.
1019 */
1020 int uprobe_mmap(struct vm_area_struct *vma)
1021 {
1022 struct list_head tmp_list;
1023 struct uprobe *uprobe, *u;
1024 struct inode *inode;
1025 int ret, count;
1026
1027 if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
1028 return 0;
1029
1030 inode = vma->vm_file->f_mapping->host;
1031 if (!inode)
1032 return 0;
1033
1034 mutex_lock(uprobes_mmap_hash(inode));
1035 build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1036
1037 ret = 0;
1038 count = 0;
1039
1040 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1041 if (!ret) {
1042 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1043
1044 ret = install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1045 /*
1046 * We can race against uprobe_register(), see the
1047 * comment near uprobe_hash().
1048 */
1049 if (ret == -EEXIST) {
1050 ret = 0;
1051
1052 if (!is_swbp_at_addr(vma->vm_mm, vaddr))
1053 continue;
1054
1055 /*
1056 * Unable to insert a breakpoint, but
1057 * breakpoint lies underneath. Increment the
1058 * probe count.
1059 */
1060 atomic_inc(&vma->vm_mm->uprobes_state.count);
1061 }
1062
1063 if (!ret)
1064 count++;
1065 }
1066 put_uprobe(uprobe);
1067 }
1068
1069 mutex_unlock(uprobes_mmap_hash(inode));
1070
1071 if (ret)
1072 atomic_sub(count, &vma->vm_mm->uprobes_state.count);
1073
1074 return ret;
1075 }
1076
1077 /*
1078 * Called in context of a munmap of a vma.
1079 */
1080 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1081 {
1082 struct list_head tmp_list;
1083 struct uprobe *uprobe, *u;
1084 struct inode *inode;
1085
1086 if (!atomic_read(&uprobe_events) || !valid_vma(vma, false))
1087 return;
1088
1089 if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1090 return;
1091
1092 if (!atomic_read(&vma->vm_mm->uprobes_state.count))
1093 return;
1094
1095 inode = vma->vm_file->f_mapping->host;
1096 if (!inode)
1097 return;
1098
1099 mutex_lock(uprobes_mmap_hash(inode));
1100 build_probe_list(inode, vma, start, end, &tmp_list);
1101
1102 list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1103 unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1104 /*
1105 * An unregister could have removed the probe before
1106 * unmap. So check before we decrement the count.
1107 */
1108 if (is_swbp_at_addr(vma->vm_mm, vaddr) == 1)
1109 atomic_dec(&vma->vm_mm->uprobes_state.count);
1110 put_uprobe(uprobe);
1111 }
1112 mutex_unlock(uprobes_mmap_hash(inode));
1113 }
1114
1115 /* Slot allocation for XOL */
1116 static int xol_add_vma(struct xol_area *area)
1117 {
1118 struct mm_struct *mm;
1119 int ret;
1120
1121 area->page = alloc_page(GFP_HIGHUSER);
1122 if (!area->page)
1123 return -ENOMEM;
1124
1125 ret = -EALREADY;
1126 mm = current->mm;
1127
1128 down_write(&mm->mmap_sem);
1129 if (mm->uprobes_state.xol_area)
1130 goto fail;
1131
1132 ret = -ENOMEM;
1133
1134 /* Try to map as high as possible, this is only a hint. */
1135 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
1136 if (area->vaddr & ~PAGE_MASK) {
1137 ret = area->vaddr;
1138 goto fail;
1139 }
1140
1141 ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1142 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
1143 if (ret)
1144 goto fail;
1145
1146 smp_wmb(); /* pairs with get_xol_area() */
1147 mm->uprobes_state.xol_area = area;
1148 ret = 0;
1149
1150 fail:
1151 up_write(&mm->mmap_sem);
1152 if (ret)
1153 __free_page(area->page);
1154
1155 return ret;
1156 }
1157
1158 static struct xol_area *get_xol_area(struct mm_struct *mm)
1159 {
1160 struct xol_area *area;
1161
1162 area = mm->uprobes_state.xol_area;
1163 smp_read_barrier_depends(); /* pairs with wmb in xol_add_vma() */
1164
1165 return area;
1166 }
1167
1168 /*
1169 * xol_alloc_area - Allocate process's xol_area.
1170 * This area will be used for storing instructions for execution out of
1171 * line.
1172 *
1173 * Returns the allocated area or NULL.
1174 */
1175 static struct xol_area *xol_alloc_area(void)
1176 {
1177 struct xol_area *area;
1178
1179 area = kzalloc(sizeof(*area), GFP_KERNEL);
1180 if (unlikely(!area))
1181 return NULL;
1182
1183 area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1184
1185 if (!area->bitmap)
1186 goto fail;
1187
1188 init_waitqueue_head(&area->wq);
1189 if (!xol_add_vma(area))
1190 return area;
1191
1192 fail:
1193 kfree(area->bitmap);
1194 kfree(area);
1195
1196 return get_xol_area(current->mm);
1197 }
1198
1199 /*
1200 * uprobe_clear_state - Free the area allocated for slots.
1201 */
1202 void uprobe_clear_state(struct mm_struct *mm)
1203 {
1204 struct xol_area *area = mm->uprobes_state.xol_area;
1205
1206 if (!area)
1207 return;
1208
1209 put_page(area->page);
1210 kfree(area->bitmap);
1211 kfree(area);
1212 }
1213
1214 /*
1215 * uprobe_reset_state - Free the area allocated for slots.
1216 */
1217 void uprobe_reset_state(struct mm_struct *mm)
1218 {
1219 mm->uprobes_state.xol_area = NULL;
1220 atomic_set(&mm->uprobes_state.count, 0);
1221 }
1222
1223 /*
1224 * - search for a free slot.
1225 */
1226 static unsigned long xol_take_insn_slot(struct xol_area *area)
1227 {
1228 unsigned long slot_addr;
1229 int slot_nr;
1230
1231 do {
1232 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1233 if (slot_nr < UINSNS_PER_PAGE) {
1234 if (!test_and_set_bit(slot_nr, area->bitmap))
1235 break;
1236
1237 slot_nr = UINSNS_PER_PAGE;
1238 continue;
1239 }
1240 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1241 } while (slot_nr >= UINSNS_PER_PAGE);
1242
1243 slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1244 atomic_inc(&area->slot_count);
1245
1246 return slot_addr;
1247 }
1248
1249 /*
1250 * xol_get_insn_slot - If was not allocated a slot, then
1251 * allocate a slot.
1252 * Returns the allocated slot address or 0.
1253 */
1254 static unsigned long xol_get_insn_slot(struct uprobe *uprobe, unsigned long slot_addr)
1255 {
1256 struct xol_area *area;
1257 unsigned long offset;
1258 void *vaddr;
1259
1260 area = get_xol_area(current->mm);
1261 if (!area) {
1262 area = xol_alloc_area();
1263 if (!area)
1264 return 0;
1265 }
1266 current->utask->xol_vaddr = xol_take_insn_slot(area);
1267
1268 /*
1269 * Initialize the slot if xol_vaddr points to valid
1270 * instruction slot.
1271 */
1272 if (unlikely(!current->utask->xol_vaddr))
1273 return 0;
1274
1275 current->utask->vaddr = slot_addr;
1276 offset = current->utask->xol_vaddr & ~PAGE_MASK;
1277 vaddr = kmap_atomic(area->page);
1278 memcpy(vaddr + offset, uprobe->arch.insn, MAX_UINSN_BYTES);
1279 kunmap_atomic(vaddr);
1280
1281 return current->utask->xol_vaddr;
1282 }
1283
1284 /*
1285 * xol_free_insn_slot - If slot was earlier allocated by
1286 * @xol_get_insn_slot(), make the slot available for
1287 * subsequent requests.
1288 */
1289 static void xol_free_insn_slot(struct task_struct *tsk)
1290 {
1291 struct xol_area *area;
1292 unsigned long vma_end;
1293 unsigned long slot_addr;
1294
1295 if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1296 return;
1297
1298 slot_addr = tsk->utask->xol_vaddr;
1299
1300 if (unlikely(!slot_addr || IS_ERR_VALUE(slot_addr)))
1301 return;
1302
1303 area = tsk->mm->uprobes_state.xol_area;
1304 vma_end = area->vaddr + PAGE_SIZE;
1305 if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1306 unsigned long offset;
1307 int slot_nr;
1308
1309 offset = slot_addr - area->vaddr;
1310 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1311 if (slot_nr >= UINSNS_PER_PAGE)
1312 return;
1313
1314 clear_bit(slot_nr, area->bitmap);
1315 atomic_dec(&area->slot_count);
1316 if (waitqueue_active(&area->wq))
1317 wake_up(&area->wq);
1318
1319 tsk->utask->xol_vaddr = 0;
1320 }
1321 }
1322
1323 /**
1324 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1325 * @regs: Reflects the saved state of the task after it has hit a breakpoint
1326 * instruction.
1327 * Return the address of the breakpoint instruction.
1328 */
1329 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1330 {
1331 return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1332 }
1333
1334 /*
1335 * Called with no locks held.
1336 * Called in context of a exiting or a exec-ing thread.
1337 */
1338 void uprobe_free_utask(struct task_struct *t)
1339 {
1340 struct uprobe_task *utask = t->utask;
1341
1342 if (!utask)
1343 return;
1344
1345 if (utask->active_uprobe)
1346 put_uprobe(utask->active_uprobe);
1347
1348 xol_free_insn_slot(t);
1349 kfree(utask);
1350 t->utask = NULL;
1351 }
1352
1353 /*
1354 * Called in context of a new clone/fork from copy_process.
1355 */
1356 void uprobe_copy_process(struct task_struct *t)
1357 {
1358 t->utask = NULL;
1359 }
1360
1361 /*
1362 * Allocate a uprobe_task object for the task.
1363 * Called when the thread hits a breakpoint for the first time.
1364 *
1365 * Returns:
1366 * - pointer to new uprobe_task on success
1367 * - NULL otherwise
1368 */
1369 static struct uprobe_task *add_utask(void)
1370 {
1371 struct uprobe_task *utask;
1372
1373 utask = kzalloc(sizeof *utask, GFP_KERNEL);
1374 if (unlikely(!utask))
1375 return NULL;
1376
1377 current->utask = utask;
1378 return utask;
1379 }
1380
1381 /* Prepare to single-step probed instruction out of line. */
1382 static int
1383 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long vaddr)
1384 {
1385 if (xol_get_insn_slot(uprobe, vaddr) && !arch_uprobe_pre_xol(&uprobe->arch, regs))
1386 return 0;
1387
1388 return -EFAULT;
1389 }
1390
1391 /*
1392 * If we are singlestepping, then ensure this thread is not connected to
1393 * non-fatal signals until completion of singlestep. When xol insn itself
1394 * triggers the signal, restart the original insn even if the task is
1395 * already SIGKILL'ed (since coredump should report the correct ip). This
1396 * is even more important if the task has a handler for SIGSEGV/etc, The
1397 * _same_ instruction should be repeated again after return from the signal
1398 * handler, and SSTEP can never finish in this case.
1399 */
1400 bool uprobe_deny_signal(void)
1401 {
1402 struct task_struct *t = current;
1403 struct uprobe_task *utask = t->utask;
1404
1405 if (likely(!utask || !utask->active_uprobe))
1406 return false;
1407
1408 WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1409
1410 if (signal_pending(t)) {
1411 spin_lock_irq(&t->sighand->siglock);
1412 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1413 spin_unlock_irq(&t->sighand->siglock);
1414
1415 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1416 utask->state = UTASK_SSTEP_TRAPPED;
1417 set_tsk_thread_flag(t, TIF_UPROBE);
1418 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1419 }
1420 }
1421
1422 return true;
1423 }
1424
1425 /*
1426 * Avoid singlestepping the original instruction if the original instruction
1427 * is a NOP or can be emulated.
1428 */
1429 static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
1430 {
1431 if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1432 return true;
1433
1434 uprobe->flags &= ~UPROBE_SKIP_SSTEP;
1435 return false;
1436 }
1437
1438 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1439 {
1440 struct mm_struct *mm = current->mm;
1441 struct uprobe *uprobe = NULL;
1442 struct vm_area_struct *vma;
1443
1444 down_read(&mm->mmap_sem);
1445 vma = find_vma(mm, bp_vaddr);
1446 if (vma && vma->vm_start <= bp_vaddr) {
1447 if (valid_vma(vma, false)) {
1448 struct inode *inode = vma->vm_file->f_mapping->host;
1449 loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1450
1451 uprobe = find_uprobe(inode, offset);
1452 }
1453
1454 if (!uprobe)
1455 *is_swbp = is_swbp_at_addr(mm, bp_vaddr);
1456 } else {
1457 *is_swbp = -EFAULT;
1458 }
1459 up_read(&mm->mmap_sem);
1460
1461 return uprobe;
1462 }
1463
1464 /*
1465 * Run handler and ask thread to singlestep.
1466 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1467 */
1468 static void handle_swbp(struct pt_regs *regs)
1469 {
1470 struct uprobe_task *utask;
1471 struct uprobe *uprobe;
1472 unsigned long bp_vaddr;
1473 int uninitialized_var(is_swbp);
1474
1475 bp_vaddr = uprobe_get_swbp_addr(regs);
1476 uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1477
1478 if (!uprobe) {
1479 if (is_swbp > 0) {
1480 /* No matching uprobe; signal SIGTRAP. */
1481 send_sig(SIGTRAP, current, 0);
1482 } else {
1483 /*
1484 * Either we raced with uprobe_unregister() or we can't
1485 * access this memory. The latter is only possible if
1486 * another thread plays with our ->mm. In both cases
1487 * we can simply restart. If this vma was unmapped we
1488 * can pretend this insn was not executed yet and get
1489 * the (correct) SIGSEGV after restart.
1490 */
1491 instruction_pointer_set(regs, bp_vaddr);
1492 }
1493 return;
1494 }
1495
1496 utask = current->utask;
1497 if (!utask) {
1498 utask = add_utask();
1499 /* Cannot allocate; re-execute the instruction. */
1500 if (!utask)
1501 goto cleanup_ret;
1502 }
1503 utask->active_uprobe = uprobe;
1504 handler_chain(uprobe, regs);
1505 if (uprobe->flags & UPROBE_SKIP_SSTEP && can_skip_sstep(uprobe, regs))
1506 goto cleanup_ret;
1507
1508 utask->state = UTASK_SSTEP;
1509 if (!pre_ssout(uprobe, regs, bp_vaddr)) {
1510 user_enable_single_step(current);
1511 return;
1512 }
1513
1514 cleanup_ret:
1515 if (utask) {
1516 utask->active_uprobe = NULL;
1517 utask->state = UTASK_RUNNING;
1518 }
1519 if (!(uprobe->flags & UPROBE_SKIP_SSTEP))
1520
1521 /*
1522 * cannot singlestep; cannot skip instruction;
1523 * re-execute the instruction.
1524 */
1525 instruction_pointer_set(regs, bp_vaddr);
1526
1527 put_uprobe(uprobe);
1528 }
1529
1530 /*
1531 * Perform required fix-ups and disable singlestep.
1532 * Allow pending signals to take effect.
1533 */
1534 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1535 {
1536 struct uprobe *uprobe;
1537
1538 uprobe = utask->active_uprobe;
1539 if (utask->state == UTASK_SSTEP_ACK)
1540 arch_uprobe_post_xol(&uprobe->arch, regs);
1541 else if (utask->state == UTASK_SSTEP_TRAPPED)
1542 arch_uprobe_abort_xol(&uprobe->arch, regs);
1543 else
1544 WARN_ON_ONCE(1);
1545
1546 put_uprobe(uprobe);
1547 utask->active_uprobe = NULL;
1548 utask->state = UTASK_RUNNING;
1549 user_disable_single_step(current);
1550 xol_free_insn_slot(current);
1551
1552 spin_lock_irq(&current->sighand->siglock);
1553 recalc_sigpending(); /* see uprobe_deny_signal() */
1554 spin_unlock_irq(&current->sighand->siglock);
1555 }
1556
1557 /*
1558 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag. (and on
1559 * subsequent probe hits on the thread sets the state to UTASK_BP_HIT) and
1560 * allows the thread to return from interrupt.
1561 *
1562 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag and
1563 * also sets the state to UTASK_SSTEP_ACK and allows the thread to return from
1564 * interrupt.
1565 *
1566 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1567 * uprobe_notify_resume().
1568 */
1569 void uprobe_notify_resume(struct pt_regs *regs)
1570 {
1571 struct uprobe_task *utask;
1572
1573 utask = current->utask;
1574 if (!utask || utask->state == UTASK_BP_HIT)
1575 handle_swbp(regs);
1576 else
1577 handle_singlestep(utask, regs);
1578 }
1579
1580 /*
1581 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1582 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1583 */
1584 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1585 {
1586 struct uprobe_task *utask;
1587
1588 if (!current->mm || !atomic_read(&current->mm->uprobes_state.count))
1589 /* task is currently not uprobed */
1590 return 0;
1591
1592 utask = current->utask;
1593 if (utask)
1594 utask->state = UTASK_BP_HIT;
1595
1596 set_thread_flag(TIF_UPROBE);
1597
1598 return 1;
1599 }
1600
1601 /*
1602 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
1603 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
1604 */
1605 int uprobe_post_sstep_notifier(struct pt_regs *regs)
1606 {
1607 struct uprobe_task *utask = current->utask;
1608
1609 if (!current->mm || !utask || !utask->active_uprobe)
1610 /* task is currently not uprobed */
1611 return 0;
1612
1613 utask->state = UTASK_SSTEP_ACK;
1614 set_thread_flag(TIF_UPROBE);
1615 return 1;
1616 }
1617
1618 static struct notifier_block uprobe_exception_nb = {
1619 .notifier_call = arch_uprobe_exception_notify,
1620 .priority = INT_MAX-1, /* notified after kprobes, kgdb */
1621 };
1622
1623 static int __init init_uprobes(void)
1624 {
1625 int i;
1626
1627 for (i = 0; i < UPROBES_HASH_SZ; i++) {
1628 mutex_init(&uprobes_mutex[i]);
1629 mutex_init(&uprobes_mmap_mutex[i]);
1630 }
1631
1632 return register_die_notifier(&uprobe_exception_nb);
1633 }
1634 module_init(init_uprobes);
1635
1636 static void __exit exit_uprobes(void)
1637 {
1638 }
1639 module_exit(exit_uprobes);