drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/perf_event.h>
38 #include <linux/ftrace_event.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/cgroup.h>
42 #include <linux/compat.h>
43
44 #include "internal.h"
45
46 #include <asm/irq_regs.h>
47
48 struct remote_function_call {
49 struct task_struct *p;
50 int (*func)(void *info);
51 void *info;
52 int ret;
53 };
54
55 static void remote_function(void *data)
56 {
57 struct remote_function_call *tfc = data;
58 struct task_struct *p = tfc->p;
59
60 if (p) {
61 tfc->ret = -EAGAIN;
62 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
63 return;
64 }
65
66 tfc->ret = tfc->func(tfc->info);
67 }
68
69 /**
70 * task_function_call - call a function on the cpu on which a task runs
71 * @p: the task to evaluate
72 * @func: the function to be called
73 * @info: the function call argument
74 *
75 * Calls the function @func when the task is currently running. This might
76 * be on the current CPU, which just calls the function directly
77 *
78 * returns: @func return value, or
79 * -ESRCH - when the process isn't running
80 * -EAGAIN - when the process moved away
81 */
82 static int
83 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
84 {
85 struct remote_function_call data = {
86 .p = p,
87 .func = func,
88 .info = info,
89 .ret = -ESRCH, /* No such (running) process */
90 };
91
92 if (task_curr(p))
93 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
94
95 return data.ret;
96 }
97
98 /**
99 * cpu_function_call - call a function on the cpu
100 * @func: the function to be called
101 * @info: the function call argument
102 *
103 * Calls the function @func on the remote cpu.
104 *
105 * returns: @func return value or -ENXIO when the cpu is offline
106 */
107 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
108 {
109 struct remote_function_call data = {
110 .p = NULL,
111 .func = func,
112 .info = info,
113 .ret = -ENXIO, /* No such CPU */
114 };
115
116 smp_call_function_single(cpu, remote_function, &data, 1);
117
118 return data.ret;
119 }
120
121 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
122 PERF_FLAG_FD_OUTPUT |\
123 PERF_FLAG_PID_CGROUP)
124
125 /*
126 * branch priv levels that need permission checks
127 */
128 #define PERF_SAMPLE_BRANCH_PERM_PLM \
129 (PERF_SAMPLE_BRANCH_KERNEL |\
130 PERF_SAMPLE_BRANCH_HV)
131
132 enum event_type_t {
133 EVENT_FLEXIBLE = 0x1,
134 EVENT_PINNED = 0x2,
135 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
136 };
137
138 /*
139 * perf_sched_events : >0 events exist
140 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
141 */
142 struct static_key_deferred perf_sched_events __read_mostly;
143 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
144 static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
145
146 static atomic_t nr_mmap_events __read_mostly;
147 static atomic_t nr_comm_events __read_mostly;
148 static atomic_t nr_task_events __read_mostly;
149
150 static LIST_HEAD(pmus);
151 static DEFINE_MUTEX(pmus_lock);
152 static struct srcu_struct pmus_srcu;
153
154 /*
155 * perf event paranoia level:
156 * -1 - not paranoid at all
157 * 0 - disallow raw tracepoint access for unpriv
158 * 1 - disallow cpu events for unpriv
159 * 2 - disallow kernel profiling for unpriv
160 */
161 int sysctl_perf_event_paranoid __read_mostly = 1;
162
163 /* Minimum for 512 kiB + 1 user control page */
164 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
165
166 /*
167 * max perf event sample rate
168 */
169 #define DEFAULT_MAX_SAMPLE_RATE 100000
170 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
171 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
172
173 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
174
175 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
176 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
177
178 static atomic_t perf_sample_allowed_ns __read_mostly =
179 ATOMIC_INIT( DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100);
180
181 void update_perf_cpu_limits(void)
182 {
183 u64 tmp = perf_sample_period_ns;
184
185 tmp *= sysctl_perf_cpu_time_max_percent;
186 do_div(tmp, 100);
187 atomic_set(&perf_sample_allowed_ns, tmp);
188 }
189
190 int perf_proc_update_handler(struct ctl_table *table, int write,
191 void __user *buffer, size_t *lenp,
192 loff_t *ppos)
193 {
194 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
195
196 if (ret || !write)
197 return ret;
198
199 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
200 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
201 update_perf_cpu_limits();
202
203 return 0;
204 }
205
206 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
207
208 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
209 void __user *buffer, size_t *lenp,
210 loff_t *ppos)
211 {
212 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
213
214 if (ret || !write)
215 return ret;
216
217 update_perf_cpu_limits();
218
219 return 0;
220 }
221
222 /*
223 * perf samples are done in some very critical code paths (NMIs).
224 * If they take too much CPU time, the system can lock up and not
225 * get any real work done. This will drop the sample rate when
226 * we detect that events are taking too long.
227 */
228 #define NR_ACCUMULATED_SAMPLES 128
229 DEFINE_PER_CPU(u64, running_sample_length);
230
231 void perf_sample_event_took(u64 sample_len_ns)
232 {
233 u64 avg_local_sample_len;
234 u64 local_samples_len;
235
236 if (atomic_read(&perf_sample_allowed_ns) == 0)
237 return;
238
239 /* decay the counter by 1 average sample */
240 local_samples_len = __get_cpu_var(running_sample_length);
241 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
242 local_samples_len += sample_len_ns;
243 __get_cpu_var(running_sample_length) = local_samples_len;
244
245 /*
246 * note: this will be biased artifically low until we have
247 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
248 * from having to maintain a count.
249 */
250 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
251
252 if (avg_local_sample_len <= atomic_read(&perf_sample_allowed_ns))
253 return;
254
255 if (max_samples_per_tick <= 1)
256 return;
257
258 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
259 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
260 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
261
262 printk_ratelimited(KERN_WARNING
263 "perf samples too long (%lld > %d), lowering "
264 "kernel.perf_event_max_sample_rate to %d\n",
265 avg_local_sample_len,
266 atomic_read(&perf_sample_allowed_ns),
267 sysctl_perf_event_sample_rate);
268
269 update_perf_cpu_limits();
270 }
271
272 static atomic64_t perf_event_id;
273
274 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
275 enum event_type_t event_type);
276
277 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
278 enum event_type_t event_type,
279 struct task_struct *task);
280
281 static void update_context_time(struct perf_event_context *ctx);
282 static u64 perf_event_time(struct perf_event *event);
283
284 void __weak perf_event_print_debug(void) { }
285
286 extern __weak const char *perf_pmu_name(void)
287 {
288 return "pmu";
289 }
290
291 static inline u64 perf_clock(void)
292 {
293 return local_clock();
294 }
295
296 static inline struct perf_cpu_context *
297 __get_cpu_context(struct perf_event_context *ctx)
298 {
299 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
300 }
301
302 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
303 struct perf_event_context *ctx)
304 {
305 raw_spin_lock(&cpuctx->ctx.lock);
306 if (ctx)
307 raw_spin_lock(&ctx->lock);
308 }
309
310 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
311 struct perf_event_context *ctx)
312 {
313 if (ctx)
314 raw_spin_unlock(&ctx->lock);
315 raw_spin_unlock(&cpuctx->ctx.lock);
316 }
317
318 #ifdef CONFIG_CGROUP_PERF
319
320 /*
321 * perf_cgroup_info keeps track of time_enabled for a cgroup.
322 * This is a per-cpu dynamically allocated data structure.
323 */
324 struct perf_cgroup_info {
325 u64 time;
326 u64 timestamp;
327 };
328
329 struct perf_cgroup {
330 struct cgroup_subsys_state css;
331 struct perf_cgroup_info __percpu *info;
332 };
333
334 /*
335 * Must ensure cgroup is pinned (css_get) before calling
336 * this function. In other words, we cannot call this function
337 * if there is no cgroup event for the current CPU context.
338 */
339 static inline struct perf_cgroup *
340 perf_cgroup_from_task(struct task_struct *task)
341 {
342 return container_of(task_subsys_state(task, perf_subsys_id),
343 struct perf_cgroup, css);
344 }
345
346 static inline bool
347 perf_cgroup_match(struct perf_event *event)
348 {
349 struct perf_event_context *ctx = event->ctx;
350 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
351
352 /* @event doesn't care about cgroup */
353 if (!event->cgrp)
354 return true;
355
356 /* wants specific cgroup scope but @cpuctx isn't associated with any */
357 if (!cpuctx->cgrp)
358 return false;
359
360 /*
361 * Cgroup scoping is recursive. An event enabled for a cgroup is
362 * also enabled for all its descendant cgroups. If @cpuctx's
363 * cgroup is a descendant of @event's (the test covers identity
364 * case), it's a match.
365 */
366 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
367 event->cgrp->css.cgroup);
368 }
369
370 static inline bool perf_tryget_cgroup(struct perf_event *event)
371 {
372 return css_tryget(&event->cgrp->css);
373 }
374
375 static inline void perf_put_cgroup(struct perf_event *event)
376 {
377 css_put(&event->cgrp->css);
378 }
379
380 static inline void perf_detach_cgroup(struct perf_event *event)
381 {
382 perf_put_cgroup(event);
383 event->cgrp = NULL;
384 }
385
386 static inline int is_cgroup_event(struct perf_event *event)
387 {
388 return event->cgrp != NULL;
389 }
390
391 static inline u64 perf_cgroup_event_time(struct perf_event *event)
392 {
393 struct perf_cgroup_info *t;
394
395 t = per_cpu_ptr(event->cgrp->info, event->cpu);
396 return t->time;
397 }
398
399 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
400 {
401 struct perf_cgroup_info *info;
402 u64 now;
403
404 now = perf_clock();
405
406 info = this_cpu_ptr(cgrp->info);
407
408 info->time += now - info->timestamp;
409 info->timestamp = now;
410 }
411
412 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
413 {
414 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
415 if (cgrp_out)
416 __update_cgrp_time(cgrp_out);
417 }
418
419 static inline void update_cgrp_time_from_event(struct perf_event *event)
420 {
421 struct perf_cgroup *cgrp;
422
423 /*
424 * ensure we access cgroup data only when needed and
425 * when we know the cgroup is pinned (css_get)
426 */
427 if (!is_cgroup_event(event))
428 return;
429
430 cgrp = perf_cgroup_from_task(current);
431 /*
432 * Do not update time when cgroup is not active
433 */
434 if (cgrp == event->cgrp)
435 __update_cgrp_time(event->cgrp);
436 }
437
438 static inline void
439 perf_cgroup_set_timestamp(struct task_struct *task,
440 struct perf_event_context *ctx)
441 {
442 struct perf_cgroup *cgrp;
443 struct perf_cgroup_info *info;
444
445 /*
446 * ctx->lock held by caller
447 * ensure we do not access cgroup data
448 * unless we have the cgroup pinned (css_get)
449 */
450 if (!task || !ctx->nr_cgroups)
451 return;
452
453 cgrp = perf_cgroup_from_task(task);
454 info = this_cpu_ptr(cgrp->info);
455 info->timestamp = ctx->timestamp;
456 }
457
458 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
459 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
460
461 /*
462 * reschedule events based on the cgroup constraint of task.
463 *
464 * mode SWOUT : schedule out everything
465 * mode SWIN : schedule in based on cgroup for next
466 */
467 void perf_cgroup_switch(struct task_struct *task, int mode)
468 {
469 struct perf_cpu_context *cpuctx;
470 struct pmu *pmu;
471 unsigned long flags;
472
473 /*
474 * disable interrupts to avoid geting nr_cgroup
475 * changes via __perf_event_disable(). Also
476 * avoids preemption.
477 */
478 local_irq_save(flags);
479
480 /*
481 * we reschedule only in the presence of cgroup
482 * constrained events.
483 */
484 rcu_read_lock();
485
486 list_for_each_entry_rcu(pmu, &pmus, entry) {
487 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
488 if (cpuctx->unique_pmu != pmu)
489 continue; /* ensure we process each cpuctx once */
490
491 /*
492 * perf_cgroup_events says at least one
493 * context on this CPU has cgroup events.
494 *
495 * ctx->nr_cgroups reports the number of cgroup
496 * events for a context.
497 */
498 if (cpuctx->ctx.nr_cgroups > 0) {
499 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
500 perf_pmu_disable(cpuctx->ctx.pmu);
501
502 if (mode & PERF_CGROUP_SWOUT) {
503 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
504 /*
505 * must not be done before ctxswout due
506 * to event_filter_match() in event_sched_out()
507 */
508 cpuctx->cgrp = NULL;
509 }
510
511 if (mode & PERF_CGROUP_SWIN) {
512 WARN_ON_ONCE(cpuctx->cgrp);
513 /*
514 * set cgrp before ctxsw in to allow
515 * event_filter_match() to not have to pass
516 * task around
517 */
518 cpuctx->cgrp = perf_cgroup_from_task(task);
519 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
520 }
521 perf_pmu_enable(cpuctx->ctx.pmu);
522 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
523 }
524 }
525
526 rcu_read_unlock();
527
528 local_irq_restore(flags);
529 }
530
531 static inline void perf_cgroup_sched_out(struct task_struct *task,
532 struct task_struct *next)
533 {
534 struct perf_cgroup *cgrp1;
535 struct perf_cgroup *cgrp2 = NULL;
536
537 /*
538 * we come here when we know perf_cgroup_events > 0
539 */
540 cgrp1 = perf_cgroup_from_task(task);
541
542 /*
543 * next is NULL when called from perf_event_enable_on_exec()
544 * that will systematically cause a cgroup_switch()
545 */
546 if (next)
547 cgrp2 = perf_cgroup_from_task(next);
548
549 /*
550 * only schedule out current cgroup events if we know
551 * that we are switching to a different cgroup. Otherwise,
552 * do no touch the cgroup events.
553 */
554 if (cgrp1 != cgrp2)
555 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
556 }
557
558 static inline void perf_cgroup_sched_in(struct task_struct *prev,
559 struct task_struct *task)
560 {
561 struct perf_cgroup *cgrp1;
562 struct perf_cgroup *cgrp2 = NULL;
563
564 /*
565 * we come here when we know perf_cgroup_events > 0
566 */
567 cgrp1 = perf_cgroup_from_task(task);
568
569 /* prev can never be NULL */
570 cgrp2 = perf_cgroup_from_task(prev);
571
572 /*
573 * only need to schedule in cgroup events if we are changing
574 * cgroup during ctxsw. Cgroup events were not scheduled
575 * out of ctxsw out if that was not the case.
576 */
577 if (cgrp1 != cgrp2)
578 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
579 }
580
581 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
582 struct perf_event_attr *attr,
583 struct perf_event *group_leader)
584 {
585 struct perf_cgroup *cgrp;
586 struct cgroup_subsys_state *css;
587 struct fd f = fdget(fd);
588 int ret = 0;
589
590 if (!f.file)
591 return -EBADF;
592
593 css = cgroup_css_from_dir(f.file, perf_subsys_id);
594 if (IS_ERR(css)) {
595 ret = PTR_ERR(css);
596 goto out;
597 }
598
599 cgrp = container_of(css, struct perf_cgroup, css);
600 event->cgrp = cgrp;
601
602 /* must be done before we fput() the file */
603 if (!perf_tryget_cgroup(event)) {
604 event->cgrp = NULL;
605 ret = -ENOENT;
606 goto out;
607 }
608
609 /*
610 * all events in a group must monitor
611 * the same cgroup because a task belongs
612 * to only one perf cgroup at a time
613 */
614 if (group_leader && group_leader->cgrp != cgrp) {
615 perf_detach_cgroup(event);
616 ret = -EINVAL;
617 }
618 out:
619 fdput(f);
620 return ret;
621 }
622
623 static inline void
624 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
625 {
626 struct perf_cgroup_info *t;
627 t = per_cpu_ptr(event->cgrp->info, event->cpu);
628 event->shadow_ctx_time = now - t->timestamp;
629 }
630
631 static inline void
632 perf_cgroup_defer_enabled(struct perf_event *event)
633 {
634 /*
635 * when the current task's perf cgroup does not match
636 * the event's, we need to remember to call the
637 * perf_mark_enable() function the first time a task with
638 * a matching perf cgroup is scheduled in.
639 */
640 if (is_cgroup_event(event) && !perf_cgroup_match(event))
641 event->cgrp_defer_enabled = 1;
642 }
643
644 static inline void
645 perf_cgroup_mark_enabled(struct perf_event *event,
646 struct perf_event_context *ctx)
647 {
648 struct perf_event *sub;
649 u64 tstamp = perf_event_time(event);
650
651 if (!event->cgrp_defer_enabled)
652 return;
653
654 event->cgrp_defer_enabled = 0;
655
656 event->tstamp_enabled = tstamp - event->total_time_enabled;
657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
658 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
659 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
660 sub->cgrp_defer_enabled = 0;
661 }
662 }
663 }
664 #else /* !CONFIG_CGROUP_PERF */
665
666 static inline bool
667 perf_cgroup_match(struct perf_event *event)
668 {
669 return true;
670 }
671
672 static inline void perf_detach_cgroup(struct perf_event *event)
673 {}
674
675 static inline int is_cgroup_event(struct perf_event *event)
676 {
677 return 0;
678 }
679
680 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
681 {
682 return 0;
683 }
684
685 static inline void update_cgrp_time_from_event(struct perf_event *event)
686 {
687 }
688
689 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
690 {
691 }
692
693 static inline void perf_cgroup_sched_out(struct task_struct *task,
694 struct task_struct *next)
695 {
696 }
697
698 static inline void perf_cgroup_sched_in(struct task_struct *prev,
699 struct task_struct *task)
700 {
701 }
702
703 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
704 struct perf_event_attr *attr,
705 struct perf_event *group_leader)
706 {
707 return -EINVAL;
708 }
709
710 static inline void
711 perf_cgroup_set_timestamp(struct task_struct *task,
712 struct perf_event_context *ctx)
713 {
714 }
715
716 void
717 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
718 {
719 }
720
721 static inline void
722 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
723 {
724 }
725
726 static inline u64 perf_cgroup_event_time(struct perf_event *event)
727 {
728 return 0;
729 }
730
731 static inline void
732 perf_cgroup_defer_enabled(struct perf_event *event)
733 {
734 }
735
736 static inline void
737 perf_cgroup_mark_enabled(struct perf_event *event,
738 struct perf_event_context *ctx)
739 {
740 }
741 #endif
742
743 void perf_pmu_disable(struct pmu *pmu)
744 {
745 int *count = this_cpu_ptr(pmu->pmu_disable_count);
746 if (!(*count)++)
747 pmu->pmu_disable(pmu);
748 }
749
750 void perf_pmu_enable(struct pmu *pmu)
751 {
752 int *count = this_cpu_ptr(pmu->pmu_disable_count);
753 if (!--(*count))
754 pmu->pmu_enable(pmu);
755 }
756
757 static DEFINE_PER_CPU(struct list_head, rotation_list);
758
759 /*
760 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
761 * because they're strictly cpu affine and rotate_start is called with IRQs
762 * disabled, while rotate_context is called from IRQ context.
763 */
764 static void perf_pmu_rotate_start(struct pmu *pmu)
765 {
766 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
767 struct list_head *head = &__get_cpu_var(rotation_list);
768
769 WARN_ON(!irqs_disabled());
770
771 if (list_empty(&cpuctx->rotation_list)) {
772 int was_empty = list_empty(head);
773 list_add(&cpuctx->rotation_list, head);
774 if (was_empty)
775 tick_nohz_full_kick();
776 }
777 }
778
779 static void get_ctx(struct perf_event_context *ctx)
780 {
781 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
782 }
783
784 static void put_ctx(struct perf_event_context *ctx)
785 {
786 if (atomic_dec_and_test(&ctx->refcount)) {
787 if (ctx->parent_ctx)
788 put_ctx(ctx->parent_ctx);
789 if (ctx->task)
790 put_task_struct(ctx->task);
791 kfree_rcu(ctx, rcu_head);
792 }
793 }
794
795 static void unclone_ctx(struct perf_event_context *ctx)
796 {
797 if (ctx->parent_ctx) {
798 put_ctx(ctx->parent_ctx);
799 ctx->parent_ctx = NULL;
800 }
801 }
802
803 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
804 {
805 /*
806 * only top level events have the pid namespace they were created in
807 */
808 if (event->parent)
809 event = event->parent;
810
811 return task_tgid_nr_ns(p, event->ns);
812 }
813
814 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
815 {
816 /*
817 * only top level events have the pid namespace they were created in
818 */
819 if (event->parent)
820 event = event->parent;
821
822 return task_pid_nr_ns(p, event->ns);
823 }
824
825 /*
826 * If we inherit events we want to return the parent event id
827 * to userspace.
828 */
829 static u64 primary_event_id(struct perf_event *event)
830 {
831 u64 id = event->id;
832
833 if (event->parent)
834 id = event->parent->id;
835
836 return id;
837 }
838
839 /*
840 * Get the perf_event_context for a task and lock it.
841 * This has to cope with with the fact that until it is locked,
842 * the context could get moved to another task.
843 */
844 static struct perf_event_context *
845 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
846 {
847 struct perf_event_context *ctx;
848
849 retry:
850 /*
851 * One of the few rules of preemptible RCU is that one cannot do
852 * rcu_read_unlock() while holding a scheduler (or nested) lock when
853 * part of the read side critical section was preemptible -- see
854 * rcu_read_unlock_special().
855 *
856 * Since ctx->lock nests under rq->lock we must ensure the entire read
857 * side critical section is non-preemptible.
858 */
859 preempt_disable();
860 rcu_read_lock();
861 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
862 if (ctx) {
863 /*
864 * If this context is a clone of another, it might
865 * get swapped for another underneath us by
866 * perf_event_task_sched_out, though the
867 * rcu_read_lock() protects us from any context
868 * getting freed. Lock the context and check if it
869 * got swapped before we could get the lock, and retry
870 * if so. If we locked the right context, then it
871 * can't get swapped on us any more.
872 */
873 raw_spin_lock_irqsave(&ctx->lock, *flags);
874 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
875 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
876 rcu_read_unlock();
877 preempt_enable();
878 goto retry;
879 }
880
881 if (!atomic_inc_not_zero(&ctx->refcount)) {
882 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
883 ctx = NULL;
884 }
885 }
886 rcu_read_unlock();
887 preempt_enable();
888 return ctx;
889 }
890
891 /*
892 * Get the context for a task and increment its pin_count so it
893 * can't get swapped to another task. This also increments its
894 * reference count so that the context can't get freed.
895 */
896 static struct perf_event_context *
897 perf_pin_task_context(struct task_struct *task, int ctxn)
898 {
899 struct perf_event_context *ctx;
900 unsigned long flags;
901
902 ctx = perf_lock_task_context(task, ctxn, &flags);
903 if (ctx) {
904 ++ctx->pin_count;
905 raw_spin_unlock_irqrestore(&ctx->lock, flags);
906 }
907 return ctx;
908 }
909
910 static void perf_unpin_context(struct perf_event_context *ctx)
911 {
912 unsigned long flags;
913
914 raw_spin_lock_irqsave(&ctx->lock, flags);
915 --ctx->pin_count;
916 raw_spin_unlock_irqrestore(&ctx->lock, flags);
917 }
918
919 /*
920 * Update the record of the current time in a context.
921 */
922 static void update_context_time(struct perf_event_context *ctx)
923 {
924 u64 now = perf_clock();
925
926 ctx->time += now - ctx->timestamp;
927 ctx->timestamp = now;
928 }
929
930 static u64 perf_event_time(struct perf_event *event)
931 {
932 struct perf_event_context *ctx = event->ctx;
933
934 if (is_cgroup_event(event))
935 return perf_cgroup_event_time(event);
936
937 return ctx ? ctx->time : 0;
938 }
939
940 /*
941 * Update the total_time_enabled and total_time_running fields for a event.
942 * The caller of this function needs to hold the ctx->lock.
943 */
944 static void update_event_times(struct perf_event *event)
945 {
946 struct perf_event_context *ctx = event->ctx;
947 u64 run_end;
948
949 if (event->state < PERF_EVENT_STATE_INACTIVE ||
950 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
951 return;
952 /*
953 * in cgroup mode, time_enabled represents
954 * the time the event was enabled AND active
955 * tasks were in the monitored cgroup. This is
956 * independent of the activity of the context as
957 * there may be a mix of cgroup and non-cgroup events.
958 *
959 * That is why we treat cgroup events differently
960 * here.
961 */
962 if (is_cgroup_event(event))
963 run_end = perf_cgroup_event_time(event);
964 else if (ctx->is_active)
965 run_end = ctx->time;
966 else
967 run_end = event->tstamp_stopped;
968
969 event->total_time_enabled = run_end - event->tstamp_enabled;
970
971 if (event->state == PERF_EVENT_STATE_INACTIVE)
972 run_end = event->tstamp_stopped;
973 else
974 run_end = perf_event_time(event);
975
976 event->total_time_running = run_end - event->tstamp_running;
977
978 }
979
980 /*
981 * Update total_time_enabled and total_time_running for all events in a group.
982 */
983 static void update_group_times(struct perf_event *leader)
984 {
985 struct perf_event *event;
986
987 update_event_times(leader);
988 list_for_each_entry(event, &leader->sibling_list, group_entry)
989 update_event_times(event);
990 }
991
992 static struct list_head *
993 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
994 {
995 if (event->attr.pinned)
996 return &ctx->pinned_groups;
997 else
998 return &ctx->flexible_groups;
999 }
1000
1001 /*
1002 * Add a event from the lists for its context.
1003 * Must be called with ctx->mutex and ctx->lock held.
1004 */
1005 static void
1006 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1007 {
1008 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1009 event->attach_state |= PERF_ATTACH_CONTEXT;
1010
1011 /*
1012 * If we're a stand alone event or group leader, we go to the context
1013 * list, group events are kept attached to the group so that
1014 * perf_group_detach can, at all times, locate all siblings.
1015 */
1016 if (event->group_leader == event) {
1017 struct list_head *list;
1018
1019 if (is_software_event(event))
1020 event->group_flags |= PERF_GROUP_SOFTWARE;
1021
1022 list = ctx_group_list(event, ctx);
1023 list_add_tail(&event->group_entry, list);
1024 }
1025
1026 if (is_cgroup_event(event))
1027 ctx->nr_cgroups++;
1028
1029 if (has_branch_stack(event))
1030 ctx->nr_branch_stack++;
1031
1032 list_add_rcu(&event->event_entry, &ctx->event_list);
1033 if (!ctx->nr_events)
1034 perf_pmu_rotate_start(ctx->pmu);
1035 ctx->nr_events++;
1036 if (event->attr.inherit_stat)
1037 ctx->nr_stat++;
1038 }
1039
1040 /*
1041 * Initialize event state based on the perf_event_attr::disabled.
1042 */
1043 static inline void perf_event__state_init(struct perf_event *event)
1044 {
1045 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1046 PERF_EVENT_STATE_INACTIVE;
1047 }
1048
1049 /*
1050 * Called at perf_event creation and when events are attached/detached from a
1051 * group.
1052 */
1053 static void perf_event__read_size(struct perf_event *event)
1054 {
1055 int entry = sizeof(u64); /* value */
1056 int size = 0;
1057 int nr = 1;
1058
1059 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1060 size += sizeof(u64);
1061
1062 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1063 size += sizeof(u64);
1064
1065 if (event->attr.read_format & PERF_FORMAT_ID)
1066 entry += sizeof(u64);
1067
1068 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1069 nr += event->group_leader->nr_siblings;
1070 size += sizeof(u64);
1071 }
1072
1073 size += entry * nr;
1074 event->read_size = size;
1075 }
1076
1077 static void perf_event__header_size(struct perf_event *event)
1078 {
1079 struct perf_sample_data *data;
1080 u64 sample_type = event->attr.sample_type;
1081 u16 size = 0;
1082
1083 perf_event__read_size(event);
1084
1085 if (sample_type & PERF_SAMPLE_IP)
1086 size += sizeof(data->ip);
1087
1088 if (sample_type & PERF_SAMPLE_ADDR)
1089 size += sizeof(data->addr);
1090
1091 if (sample_type & PERF_SAMPLE_PERIOD)
1092 size += sizeof(data->period);
1093
1094 if (sample_type & PERF_SAMPLE_WEIGHT)
1095 size += sizeof(data->weight);
1096
1097 if (sample_type & PERF_SAMPLE_READ)
1098 size += event->read_size;
1099
1100 if (sample_type & PERF_SAMPLE_DATA_SRC)
1101 size += sizeof(data->data_src.val);
1102
1103 event->header_size = size;
1104 }
1105
1106 static void perf_event__id_header_size(struct perf_event *event)
1107 {
1108 struct perf_sample_data *data;
1109 u64 sample_type = event->attr.sample_type;
1110 u16 size = 0;
1111
1112 if (sample_type & PERF_SAMPLE_TID)
1113 size += sizeof(data->tid_entry);
1114
1115 if (sample_type & PERF_SAMPLE_TIME)
1116 size += sizeof(data->time);
1117
1118 if (sample_type & PERF_SAMPLE_ID)
1119 size += sizeof(data->id);
1120
1121 if (sample_type & PERF_SAMPLE_STREAM_ID)
1122 size += sizeof(data->stream_id);
1123
1124 if (sample_type & PERF_SAMPLE_CPU)
1125 size += sizeof(data->cpu_entry);
1126
1127 event->id_header_size = size;
1128 }
1129
1130 static void perf_group_attach(struct perf_event *event)
1131 {
1132 struct perf_event *group_leader = event->group_leader, *pos;
1133
1134 /*
1135 * We can have double attach due to group movement in perf_event_open.
1136 */
1137 if (event->attach_state & PERF_ATTACH_GROUP)
1138 return;
1139
1140 event->attach_state |= PERF_ATTACH_GROUP;
1141
1142 if (group_leader == event)
1143 return;
1144
1145 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1146 !is_software_event(event))
1147 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1148
1149 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1150 group_leader->nr_siblings++;
1151
1152 perf_event__header_size(group_leader);
1153
1154 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1155 perf_event__header_size(pos);
1156 }
1157
1158 /*
1159 * Remove a event from the lists for its context.
1160 * Must be called with ctx->mutex and ctx->lock held.
1161 */
1162 static void
1163 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1164 {
1165 struct perf_cpu_context *cpuctx;
1166 /*
1167 * We can have double detach due to exit/hot-unplug + close.
1168 */
1169 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1170 return;
1171
1172 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1173
1174 if (is_cgroup_event(event)) {
1175 ctx->nr_cgroups--;
1176 cpuctx = __get_cpu_context(ctx);
1177 /*
1178 * if there are no more cgroup events
1179 * then cler cgrp to avoid stale pointer
1180 * in update_cgrp_time_from_cpuctx()
1181 */
1182 if (!ctx->nr_cgroups)
1183 cpuctx->cgrp = NULL;
1184 }
1185
1186 if (has_branch_stack(event))
1187 ctx->nr_branch_stack--;
1188
1189 ctx->nr_events--;
1190 if (event->attr.inherit_stat)
1191 ctx->nr_stat--;
1192
1193 list_del_rcu(&event->event_entry);
1194
1195 if (event->group_leader == event)
1196 list_del_init(&event->group_entry);
1197
1198 update_group_times(event);
1199
1200 /*
1201 * If event was in error state, then keep it
1202 * that way, otherwise bogus counts will be
1203 * returned on read(). The only way to get out
1204 * of error state is by explicit re-enabling
1205 * of the event
1206 */
1207 if (event->state > PERF_EVENT_STATE_OFF)
1208 event->state = PERF_EVENT_STATE_OFF;
1209 }
1210
1211 static void perf_group_detach(struct perf_event *event)
1212 {
1213 struct perf_event *sibling, *tmp;
1214 struct list_head *list = NULL;
1215
1216 /*
1217 * We can have double detach due to exit/hot-unplug + close.
1218 */
1219 if (!(event->attach_state & PERF_ATTACH_GROUP))
1220 return;
1221
1222 event->attach_state &= ~PERF_ATTACH_GROUP;
1223
1224 /*
1225 * If this is a sibling, remove it from its group.
1226 */
1227 if (event->group_leader != event) {
1228 list_del_init(&event->group_entry);
1229 event->group_leader->nr_siblings--;
1230 goto out;
1231 }
1232
1233 if (!list_empty(&event->group_entry))
1234 list = &event->group_entry;
1235
1236 /*
1237 * If this was a group event with sibling events then
1238 * upgrade the siblings to singleton events by adding them
1239 * to whatever list we are on.
1240 * If this isn't on a list, make sure we still remove the sibling's
1241 * group_entry from this sibling_list; otherwise, when that sibling
1242 * is later deallocated, it will try to remove itself from this
1243 * sibling_list, which may well have been deallocated already,
1244 * resulting in a use-after-free.
1245 */
1246 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1247 if (list)
1248 list_move_tail(&sibling->group_entry, list);
1249 else
1250 list_del_init(&sibling->group_entry);
1251 sibling->group_leader = sibling;
1252
1253 /* Inherit group flags from the previous leader */
1254 sibling->group_flags = event->group_flags;
1255 }
1256
1257 out:
1258 perf_event__header_size(event->group_leader);
1259
1260 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1261 perf_event__header_size(tmp);
1262 }
1263
1264 static inline int
1265 event_filter_match(struct perf_event *event)
1266 {
1267 return (event->cpu == -1 || event->cpu == smp_processor_id())
1268 && perf_cgroup_match(event);
1269 }
1270
1271 static void
1272 event_sched_out(struct perf_event *event,
1273 struct perf_cpu_context *cpuctx,
1274 struct perf_event_context *ctx)
1275 {
1276 u64 tstamp = perf_event_time(event);
1277 u64 delta;
1278 /*
1279 * An event which could not be activated because of
1280 * filter mismatch still needs to have its timings
1281 * maintained, otherwise bogus information is return
1282 * via read() for time_enabled, time_running:
1283 */
1284 if (event->state == PERF_EVENT_STATE_INACTIVE
1285 && !event_filter_match(event)) {
1286 delta = tstamp - event->tstamp_stopped;
1287 event->tstamp_running += delta;
1288 event->tstamp_stopped = tstamp;
1289 }
1290
1291 if (event->state != PERF_EVENT_STATE_ACTIVE)
1292 return;
1293
1294 event->state = PERF_EVENT_STATE_INACTIVE;
1295 if (event->pending_disable) {
1296 event->pending_disable = 0;
1297 event->state = PERF_EVENT_STATE_OFF;
1298 }
1299 event->tstamp_stopped = tstamp;
1300 event->pmu->del(event, 0);
1301 event->oncpu = -1;
1302
1303 if (!is_software_event(event))
1304 cpuctx->active_oncpu--;
1305 ctx->nr_active--;
1306 if (event->attr.freq && event->attr.sample_freq)
1307 ctx->nr_freq--;
1308 if (event->attr.exclusive || !cpuctx->active_oncpu)
1309 cpuctx->exclusive = 0;
1310 }
1311
1312 static void
1313 group_sched_out(struct perf_event *group_event,
1314 struct perf_cpu_context *cpuctx,
1315 struct perf_event_context *ctx)
1316 {
1317 struct perf_event *event;
1318 int state = group_event->state;
1319
1320 event_sched_out(group_event, cpuctx, ctx);
1321
1322 /*
1323 * Schedule out siblings (if any):
1324 */
1325 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1326 event_sched_out(event, cpuctx, ctx);
1327
1328 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1329 cpuctx->exclusive = 0;
1330 }
1331
1332 struct remove_event {
1333 struct perf_event *event;
1334 bool detach_group;
1335 };
1336
1337 /*
1338 * Cross CPU call to remove a performance event
1339 *
1340 * We disable the event on the hardware level first. After that we
1341 * remove it from the context list.
1342 */
1343 static int __perf_remove_from_context(void *info)
1344 {
1345 struct remove_event *re = info;
1346 struct perf_event *event = re->event;
1347 struct perf_event_context *ctx = event->ctx;
1348 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1349
1350 raw_spin_lock(&ctx->lock);
1351 event_sched_out(event, cpuctx, ctx);
1352 if (re->detach_group)
1353 perf_group_detach(event);
1354 list_del_event(event, ctx);
1355 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1356 ctx->is_active = 0;
1357 cpuctx->task_ctx = NULL;
1358 }
1359 raw_spin_unlock(&ctx->lock);
1360
1361 return 0;
1362 }
1363
1364
1365 /*
1366 * Remove the event from a task's (or a CPU's) list of events.
1367 *
1368 * CPU events are removed with a smp call. For task events we only
1369 * call when the task is on a CPU.
1370 *
1371 * If event->ctx is a cloned context, callers must make sure that
1372 * every task struct that event->ctx->task could possibly point to
1373 * remains valid. This is OK when called from perf_release since
1374 * that only calls us on the top-level context, which can't be a clone.
1375 * When called from perf_event_exit_task, it's OK because the
1376 * context has been detached from its task.
1377 */
1378 static void perf_remove_from_context(struct perf_event *event, bool detach_group)
1379 {
1380 struct perf_event_context *ctx = event->ctx;
1381 struct task_struct *task = ctx->task;
1382 struct remove_event re = {
1383 .event = event,
1384 .detach_group = detach_group,
1385 };
1386
1387 lockdep_assert_held(&ctx->mutex);
1388
1389 if (!task) {
1390 /*
1391 * Per cpu events are removed via an smp call and
1392 * the removal is always successful.
1393 */
1394 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
1395 return;
1396 }
1397
1398 retry:
1399 if (!task_function_call(task, __perf_remove_from_context, &re))
1400 return;
1401
1402 raw_spin_lock_irq(&ctx->lock);
1403 /*
1404 * If we failed to find a running task, but find the context active now
1405 * that we've acquired the ctx->lock, retry.
1406 */
1407 if (ctx->is_active) {
1408 raw_spin_unlock_irq(&ctx->lock);
1409 /*
1410 * Reload the task pointer, it might have been changed by
1411 * a concurrent perf_event_context_sched_out().
1412 */
1413 task = ctx->task;
1414 goto retry;
1415 }
1416
1417 /*
1418 * Since the task isn't running, its safe to remove the event, us
1419 * holding the ctx->lock ensures the task won't get scheduled in.
1420 */
1421 if (detach_group)
1422 perf_group_detach(event);
1423 list_del_event(event, ctx);
1424 raw_spin_unlock_irq(&ctx->lock);
1425 }
1426
1427 /*
1428 * Cross CPU call to disable a performance event
1429 */
1430 int __perf_event_disable(void *info)
1431 {
1432 struct perf_event *event = info;
1433 struct perf_event_context *ctx = event->ctx;
1434 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1435
1436 /*
1437 * If this is a per-task event, need to check whether this
1438 * event's task is the current task on this cpu.
1439 *
1440 * Can trigger due to concurrent perf_event_context_sched_out()
1441 * flipping contexts around.
1442 */
1443 if (ctx->task && cpuctx->task_ctx != ctx)
1444 return -EINVAL;
1445
1446 raw_spin_lock(&ctx->lock);
1447
1448 /*
1449 * If the event is on, turn it off.
1450 * If it is in error state, leave it in error state.
1451 */
1452 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1453 update_context_time(ctx);
1454 update_cgrp_time_from_event(event);
1455 update_group_times(event);
1456 if (event == event->group_leader)
1457 group_sched_out(event, cpuctx, ctx);
1458 else
1459 event_sched_out(event, cpuctx, ctx);
1460 event->state = PERF_EVENT_STATE_OFF;
1461 }
1462
1463 raw_spin_unlock(&ctx->lock);
1464
1465 return 0;
1466 }
1467
1468 /*
1469 * Disable a event.
1470 *
1471 * If event->ctx is a cloned context, callers must make sure that
1472 * every task struct that event->ctx->task could possibly point to
1473 * remains valid. This condition is satisifed when called through
1474 * perf_event_for_each_child or perf_event_for_each because they
1475 * hold the top-level event's child_mutex, so any descendant that
1476 * goes to exit will block in sync_child_event.
1477 * When called from perf_pending_event it's OK because event->ctx
1478 * is the current context on this CPU and preemption is disabled,
1479 * hence we can't get into perf_event_task_sched_out for this context.
1480 */
1481 void perf_event_disable(struct perf_event *event)
1482 {
1483 struct perf_event_context *ctx = event->ctx;
1484 struct task_struct *task = ctx->task;
1485
1486 if (!task) {
1487 /*
1488 * Disable the event on the cpu that it's on
1489 */
1490 cpu_function_call(event->cpu, __perf_event_disable, event);
1491 return;
1492 }
1493
1494 retry:
1495 if (!task_function_call(task, __perf_event_disable, event))
1496 return;
1497
1498 raw_spin_lock_irq(&ctx->lock);
1499 /*
1500 * If the event is still active, we need to retry the cross-call.
1501 */
1502 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1503 raw_spin_unlock_irq(&ctx->lock);
1504 /*
1505 * Reload the task pointer, it might have been changed by
1506 * a concurrent perf_event_context_sched_out().
1507 */
1508 task = ctx->task;
1509 goto retry;
1510 }
1511
1512 /*
1513 * Since we have the lock this context can't be scheduled
1514 * in, so we can change the state safely.
1515 */
1516 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1517 update_group_times(event);
1518 event->state = PERF_EVENT_STATE_OFF;
1519 }
1520 raw_spin_unlock_irq(&ctx->lock);
1521 }
1522 EXPORT_SYMBOL_GPL(perf_event_disable);
1523
1524 static void perf_set_shadow_time(struct perf_event *event,
1525 struct perf_event_context *ctx,
1526 u64 tstamp)
1527 {
1528 /*
1529 * use the correct time source for the time snapshot
1530 *
1531 * We could get by without this by leveraging the
1532 * fact that to get to this function, the caller
1533 * has most likely already called update_context_time()
1534 * and update_cgrp_time_xx() and thus both timestamp
1535 * are identical (or very close). Given that tstamp is,
1536 * already adjusted for cgroup, we could say that:
1537 * tstamp - ctx->timestamp
1538 * is equivalent to
1539 * tstamp - cgrp->timestamp.
1540 *
1541 * Then, in perf_output_read(), the calculation would
1542 * work with no changes because:
1543 * - event is guaranteed scheduled in
1544 * - no scheduled out in between
1545 * - thus the timestamp would be the same
1546 *
1547 * But this is a bit hairy.
1548 *
1549 * So instead, we have an explicit cgroup call to remain
1550 * within the time time source all along. We believe it
1551 * is cleaner and simpler to understand.
1552 */
1553 if (is_cgroup_event(event))
1554 perf_cgroup_set_shadow_time(event, tstamp);
1555 else
1556 event->shadow_ctx_time = tstamp - ctx->timestamp;
1557 }
1558
1559 #define MAX_INTERRUPTS (~0ULL)
1560
1561 static void perf_log_throttle(struct perf_event *event, int enable);
1562
1563 static int
1564 event_sched_in(struct perf_event *event,
1565 struct perf_cpu_context *cpuctx,
1566 struct perf_event_context *ctx)
1567 {
1568 u64 tstamp = perf_event_time(event);
1569
1570 if (event->state <= PERF_EVENT_STATE_OFF)
1571 return 0;
1572
1573 event->state = PERF_EVENT_STATE_ACTIVE;
1574 event->oncpu = smp_processor_id();
1575
1576 /*
1577 * Unthrottle events, since we scheduled we might have missed several
1578 * ticks already, also for a heavily scheduling task there is little
1579 * guarantee it'll get a tick in a timely manner.
1580 */
1581 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1582 perf_log_throttle(event, 1);
1583 event->hw.interrupts = 0;
1584 }
1585
1586 /*
1587 * The new state must be visible before we turn it on in the hardware:
1588 */
1589 smp_wmb();
1590
1591 if (event->pmu->add(event, PERF_EF_START)) {
1592 event->state = PERF_EVENT_STATE_INACTIVE;
1593 event->oncpu = -1;
1594 return -EAGAIN;
1595 }
1596
1597 event->tstamp_running += tstamp - event->tstamp_stopped;
1598
1599 perf_set_shadow_time(event, ctx, tstamp);
1600
1601 if (!is_software_event(event))
1602 cpuctx->active_oncpu++;
1603 ctx->nr_active++;
1604 if (event->attr.freq && event->attr.sample_freq)
1605 ctx->nr_freq++;
1606
1607 if (event->attr.exclusive)
1608 cpuctx->exclusive = 1;
1609
1610 return 0;
1611 }
1612
1613 static int
1614 group_sched_in(struct perf_event *group_event,
1615 struct perf_cpu_context *cpuctx,
1616 struct perf_event_context *ctx)
1617 {
1618 struct perf_event *event, *partial_group = NULL;
1619 struct pmu *pmu = group_event->pmu;
1620 u64 now = ctx->time;
1621 bool simulate = false;
1622
1623 if (group_event->state == PERF_EVENT_STATE_OFF)
1624 return 0;
1625
1626 pmu->start_txn(pmu);
1627
1628 if (event_sched_in(group_event, cpuctx, ctx)) {
1629 pmu->cancel_txn(pmu);
1630 return -EAGAIN;
1631 }
1632
1633 /*
1634 * Schedule in siblings as one group (if any):
1635 */
1636 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1637 if (event_sched_in(event, cpuctx, ctx)) {
1638 partial_group = event;
1639 goto group_error;
1640 }
1641 }
1642
1643 if (!pmu->commit_txn(pmu))
1644 return 0;
1645
1646 group_error:
1647 /*
1648 * Groups can be scheduled in as one unit only, so undo any
1649 * partial group before returning:
1650 * The events up to the failed event are scheduled out normally,
1651 * tstamp_stopped will be updated.
1652 *
1653 * The failed events and the remaining siblings need to have
1654 * their timings updated as if they had gone thru event_sched_in()
1655 * and event_sched_out(). This is required to get consistent timings
1656 * across the group. This also takes care of the case where the group
1657 * could never be scheduled by ensuring tstamp_stopped is set to mark
1658 * the time the event was actually stopped, such that time delta
1659 * calculation in update_event_times() is correct.
1660 */
1661 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1662 if (event == partial_group)
1663 simulate = true;
1664
1665 if (simulate) {
1666 event->tstamp_running += now - event->tstamp_stopped;
1667 event->tstamp_stopped = now;
1668 } else {
1669 event_sched_out(event, cpuctx, ctx);
1670 }
1671 }
1672 event_sched_out(group_event, cpuctx, ctx);
1673
1674 pmu->cancel_txn(pmu);
1675
1676 return -EAGAIN;
1677 }
1678
1679 /*
1680 * Work out whether we can put this event group on the CPU now.
1681 */
1682 static int group_can_go_on(struct perf_event *event,
1683 struct perf_cpu_context *cpuctx,
1684 int can_add_hw)
1685 {
1686 /*
1687 * Groups consisting entirely of software events can always go on.
1688 */
1689 if (event->group_flags & PERF_GROUP_SOFTWARE)
1690 return 1;
1691 /*
1692 * If an exclusive group is already on, no other hardware
1693 * events can go on.
1694 */
1695 if (cpuctx->exclusive)
1696 return 0;
1697 /*
1698 * If this group is exclusive and there are already
1699 * events on the CPU, it can't go on.
1700 */
1701 if (event->attr.exclusive && cpuctx->active_oncpu)
1702 return 0;
1703 /*
1704 * Otherwise, try to add it if all previous groups were able
1705 * to go on.
1706 */
1707 return can_add_hw;
1708 }
1709
1710 static void add_event_to_ctx(struct perf_event *event,
1711 struct perf_event_context *ctx)
1712 {
1713 u64 tstamp = perf_event_time(event);
1714
1715 list_add_event(event, ctx);
1716 perf_group_attach(event);
1717 event->tstamp_enabled = tstamp;
1718 event->tstamp_running = tstamp;
1719 event->tstamp_stopped = tstamp;
1720 }
1721
1722 static void task_ctx_sched_out(struct perf_event_context *ctx);
1723 static void
1724 ctx_sched_in(struct perf_event_context *ctx,
1725 struct perf_cpu_context *cpuctx,
1726 enum event_type_t event_type,
1727 struct task_struct *task);
1728
1729 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1730 struct perf_event_context *ctx,
1731 struct task_struct *task)
1732 {
1733 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1734 if (ctx)
1735 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1736 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1737 if (ctx)
1738 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1739 }
1740
1741 /*
1742 * Cross CPU call to install and enable a performance event
1743 *
1744 * Must be called with ctx->mutex held
1745 */
1746 static int __perf_install_in_context(void *info)
1747 {
1748 struct perf_event *event = info;
1749 struct perf_event_context *ctx = event->ctx;
1750 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1751 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1752 struct task_struct *task = current;
1753
1754 perf_ctx_lock(cpuctx, task_ctx);
1755 perf_pmu_disable(cpuctx->ctx.pmu);
1756
1757 /*
1758 * If there was an active task_ctx schedule it out.
1759 */
1760 if (task_ctx)
1761 task_ctx_sched_out(task_ctx);
1762
1763 /*
1764 * If the context we're installing events in is not the
1765 * active task_ctx, flip them.
1766 */
1767 if (ctx->task && task_ctx != ctx) {
1768 if (task_ctx)
1769 raw_spin_unlock(&task_ctx->lock);
1770 raw_spin_lock(&ctx->lock);
1771 task_ctx = ctx;
1772 }
1773
1774 if (task_ctx) {
1775 cpuctx->task_ctx = task_ctx;
1776 task = task_ctx->task;
1777 }
1778
1779 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
1780
1781 update_context_time(ctx);
1782 /*
1783 * update cgrp time only if current cgrp
1784 * matches event->cgrp. Must be done before
1785 * calling add_event_to_ctx()
1786 */
1787 update_cgrp_time_from_event(event);
1788
1789 add_event_to_ctx(event, ctx);
1790
1791 /*
1792 * Schedule everything back in
1793 */
1794 perf_event_sched_in(cpuctx, task_ctx, task);
1795
1796 perf_pmu_enable(cpuctx->ctx.pmu);
1797 perf_ctx_unlock(cpuctx, task_ctx);
1798
1799 return 0;
1800 }
1801
1802 /*
1803 * Attach a performance event to a context
1804 *
1805 * First we add the event to the list with the hardware enable bit
1806 * in event->hw_config cleared.
1807 *
1808 * If the event is attached to a task which is on a CPU we use a smp
1809 * call to enable it in the task context. The task might have been
1810 * scheduled away, but we check this in the smp call again.
1811 */
1812 static void
1813 perf_install_in_context(struct perf_event_context *ctx,
1814 struct perf_event *event,
1815 int cpu)
1816 {
1817 struct task_struct *task = ctx->task;
1818
1819 lockdep_assert_held(&ctx->mutex);
1820
1821 event->ctx = ctx;
1822 if (event->cpu != -1)
1823 event->cpu = cpu;
1824
1825 if (!task) {
1826 /*
1827 * Per cpu events are installed via an smp call and
1828 * the install is always successful.
1829 */
1830 cpu_function_call(cpu, __perf_install_in_context, event);
1831 return;
1832 }
1833
1834 retry:
1835 if (!task_function_call(task, __perf_install_in_context, event))
1836 return;
1837
1838 raw_spin_lock_irq(&ctx->lock);
1839 /*
1840 * If we failed to find a running task, but find the context active now
1841 * that we've acquired the ctx->lock, retry.
1842 */
1843 if (ctx->is_active) {
1844 raw_spin_unlock_irq(&ctx->lock);
1845 /*
1846 * Reload the task pointer, it might have been changed by
1847 * a concurrent perf_event_context_sched_out().
1848 */
1849 task = ctx->task;
1850 goto retry;
1851 }
1852
1853 /*
1854 * Since the task isn't running, its safe to add the event, us holding
1855 * the ctx->lock ensures the task won't get scheduled in.
1856 */
1857 add_event_to_ctx(event, ctx);
1858 raw_spin_unlock_irq(&ctx->lock);
1859 }
1860
1861 /*
1862 * Put a event into inactive state and update time fields.
1863 * Enabling the leader of a group effectively enables all
1864 * the group members that aren't explicitly disabled, so we
1865 * have to update their ->tstamp_enabled also.
1866 * Note: this works for group members as well as group leaders
1867 * since the non-leader members' sibling_lists will be empty.
1868 */
1869 static void __perf_event_mark_enabled(struct perf_event *event)
1870 {
1871 struct perf_event *sub;
1872 u64 tstamp = perf_event_time(event);
1873
1874 event->state = PERF_EVENT_STATE_INACTIVE;
1875 event->tstamp_enabled = tstamp - event->total_time_enabled;
1876 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1877 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1878 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1879 }
1880 }
1881
1882 /*
1883 * Cross CPU call to enable a performance event
1884 */
1885 static int __perf_event_enable(void *info)
1886 {
1887 struct perf_event *event = info;
1888 struct perf_event_context *ctx = event->ctx;
1889 struct perf_event *leader = event->group_leader;
1890 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1891 int err;
1892
1893 /*
1894 * There's a time window between 'ctx->is_active' check
1895 * in perf_event_enable function and this place having:
1896 * - IRQs on
1897 * - ctx->lock unlocked
1898 *
1899 * where the task could be killed and 'ctx' deactivated
1900 * by perf_event_exit_task.
1901 */
1902 if (!ctx->is_active)
1903 return -EINVAL;
1904
1905 raw_spin_lock(&ctx->lock);
1906 update_context_time(ctx);
1907
1908 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1909 goto unlock;
1910
1911 /*
1912 * set current task's cgroup time reference point
1913 */
1914 perf_cgroup_set_timestamp(current, ctx);
1915
1916 __perf_event_mark_enabled(event);
1917
1918 if (!event_filter_match(event)) {
1919 if (is_cgroup_event(event))
1920 perf_cgroup_defer_enabled(event);
1921 goto unlock;
1922 }
1923
1924 /*
1925 * If the event is in a group and isn't the group leader,
1926 * then don't put it on unless the group is on.
1927 */
1928 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1929 goto unlock;
1930
1931 if (!group_can_go_on(event, cpuctx, 1)) {
1932 err = -EEXIST;
1933 } else {
1934 if (event == leader)
1935 err = group_sched_in(event, cpuctx, ctx);
1936 else
1937 err = event_sched_in(event, cpuctx, ctx);
1938 }
1939
1940 if (err) {
1941 /*
1942 * If this event can't go on and it's part of a
1943 * group, then the whole group has to come off.
1944 */
1945 if (leader != event)
1946 group_sched_out(leader, cpuctx, ctx);
1947 if (leader->attr.pinned) {
1948 update_group_times(leader);
1949 leader->state = PERF_EVENT_STATE_ERROR;
1950 }
1951 }
1952
1953 unlock:
1954 raw_spin_unlock(&ctx->lock);
1955
1956 return 0;
1957 }
1958
1959 /*
1960 * Enable a event.
1961 *
1962 * If event->ctx is a cloned context, callers must make sure that
1963 * every task struct that event->ctx->task could possibly point to
1964 * remains valid. This condition is satisfied when called through
1965 * perf_event_for_each_child or perf_event_for_each as described
1966 * for perf_event_disable.
1967 */
1968 void perf_event_enable(struct perf_event *event)
1969 {
1970 struct perf_event_context *ctx = event->ctx;
1971 struct task_struct *task = ctx->task;
1972
1973 if (!task) {
1974 /*
1975 * Enable the event on the cpu that it's on
1976 */
1977 cpu_function_call(event->cpu, __perf_event_enable, event);
1978 return;
1979 }
1980
1981 raw_spin_lock_irq(&ctx->lock);
1982 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1983 goto out;
1984
1985 /*
1986 * If the event is in error state, clear that first.
1987 * That way, if we see the event in error state below, we
1988 * know that it has gone back into error state, as distinct
1989 * from the task having been scheduled away before the
1990 * cross-call arrived.
1991 */
1992 if (event->state == PERF_EVENT_STATE_ERROR)
1993 event->state = PERF_EVENT_STATE_OFF;
1994
1995 retry:
1996 if (!ctx->is_active) {
1997 __perf_event_mark_enabled(event);
1998 goto out;
1999 }
2000
2001 raw_spin_unlock_irq(&ctx->lock);
2002
2003 if (!task_function_call(task, __perf_event_enable, event))
2004 return;
2005
2006 raw_spin_lock_irq(&ctx->lock);
2007
2008 /*
2009 * If the context is active and the event is still off,
2010 * we need to retry the cross-call.
2011 */
2012 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2013 /*
2014 * task could have been flipped by a concurrent
2015 * perf_event_context_sched_out()
2016 */
2017 task = ctx->task;
2018 goto retry;
2019 }
2020
2021 out:
2022 raw_spin_unlock_irq(&ctx->lock);
2023 }
2024 EXPORT_SYMBOL_GPL(perf_event_enable);
2025
2026 int perf_event_refresh(struct perf_event *event, int refresh)
2027 {
2028 /*
2029 * not supported on inherited events
2030 */
2031 if (event->attr.inherit || !is_sampling_event(event))
2032 return -EINVAL;
2033
2034 atomic_add(refresh, &event->event_limit);
2035 perf_event_enable(event);
2036
2037 return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(perf_event_refresh);
2040
2041 static void ctx_sched_out(struct perf_event_context *ctx,
2042 struct perf_cpu_context *cpuctx,
2043 enum event_type_t event_type)
2044 {
2045 struct perf_event *event;
2046 int is_active = ctx->is_active;
2047
2048 ctx->is_active &= ~event_type;
2049 if (likely(!ctx->nr_events))
2050 return;
2051
2052 update_context_time(ctx);
2053 update_cgrp_time_from_cpuctx(cpuctx);
2054 if (!ctx->nr_active)
2055 return;
2056
2057 perf_pmu_disable(ctx->pmu);
2058 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
2059 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2060 group_sched_out(event, cpuctx, ctx);
2061 }
2062
2063 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
2064 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2065 group_sched_out(event, cpuctx, ctx);
2066 }
2067 perf_pmu_enable(ctx->pmu);
2068 }
2069
2070 /*
2071 * Test whether two contexts are equivalent, i.e. whether they
2072 * have both been cloned from the same version of the same context
2073 * and they both have the same number of enabled events.
2074 * If the number of enabled events is the same, then the set
2075 * of enabled events should be the same, because these are both
2076 * inherited contexts, therefore we can't access individual events
2077 * in them directly with an fd; we can only enable/disable all
2078 * events via prctl, or enable/disable all events in a family
2079 * via ioctl, which will have the same effect on both contexts.
2080 */
2081 static int context_equiv(struct perf_event_context *ctx1,
2082 struct perf_event_context *ctx2)
2083 {
2084 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
2085 && ctx1->parent_gen == ctx2->parent_gen
2086 && !ctx1->pin_count && !ctx2->pin_count;
2087 }
2088
2089 static void __perf_event_sync_stat(struct perf_event *event,
2090 struct perf_event *next_event)
2091 {
2092 u64 value;
2093
2094 if (!event->attr.inherit_stat)
2095 return;
2096
2097 /*
2098 * Update the event value, we cannot use perf_event_read()
2099 * because we're in the middle of a context switch and have IRQs
2100 * disabled, which upsets smp_call_function_single(), however
2101 * we know the event must be on the current CPU, therefore we
2102 * don't need to use it.
2103 */
2104 switch (event->state) {
2105 case PERF_EVENT_STATE_ACTIVE:
2106 event->pmu->read(event);
2107 /* fall-through */
2108
2109 case PERF_EVENT_STATE_INACTIVE:
2110 update_event_times(event);
2111 break;
2112
2113 default:
2114 break;
2115 }
2116
2117 /*
2118 * In order to keep per-task stats reliable we need to flip the event
2119 * values when we flip the contexts.
2120 */
2121 value = local64_read(&next_event->count);
2122 value = local64_xchg(&event->count, value);
2123 local64_set(&next_event->count, value);
2124
2125 swap(event->total_time_enabled, next_event->total_time_enabled);
2126 swap(event->total_time_running, next_event->total_time_running);
2127
2128 /*
2129 * Since we swizzled the values, update the user visible data too.
2130 */
2131 perf_event_update_userpage(event);
2132 perf_event_update_userpage(next_event);
2133 }
2134
2135 static void perf_event_sync_stat(struct perf_event_context *ctx,
2136 struct perf_event_context *next_ctx)
2137 {
2138 struct perf_event *event, *next_event;
2139
2140 if (!ctx->nr_stat)
2141 return;
2142
2143 update_context_time(ctx);
2144
2145 event = list_first_entry(&ctx->event_list,
2146 struct perf_event, event_entry);
2147
2148 next_event = list_first_entry(&next_ctx->event_list,
2149 struct perf_event, event_entry);
2150
2151 while (&event->event_entry != &ctx->event_list &&
2152 &next_event->event_entry != &next_ctx->event_list) {
2153
2154 __perf_event_sync_stat(event, next_event);
2155
2156 event = list_next_entry(event, event_entry);
2157 next_event = list_next_entry(next_event, event_entry);
2158 }
2159 }
2160
2161 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2162 struct task_struct *next)
2163 {
2164 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2165 struct perf_event_context *next_ctx;
2166 struct perf_event_context *parent;
2167 struct perf_cpu_context *cpuctx;
2168 int do_switch = 1;
2169
2170 if (likely(!ctx))
2171 return;
2172
2173 cpuctx = __get_cpu_context(ctx);
2174 if (!cpuctx->task_ctx)
2175 return;
2176
2177 rcu_read_lock();
2178 parent = rcu_dereference(ctx->parent_ctx);
2179 next_ctx = next->perf_event_ctxp[ctxn];
2180 if (parent && next_ctx &&
2181 rcu_dereference(next_ctx->parent_ctx) == parent) {
2182 /*
2183 * Looks like the two contexts are clones, so we might be
2184 * able to optimize the context switch. We lock both
2185 * contexts and check that they are clones under the
2186 * lock (including re-checking that neither has been
2187 * uncloned in the meantime). It doesn't matter which
2188 * order we take the locks because no other cpu could
2189 * be trying to lock both of these tasks.
2190 */
2191 raw_spin_lock(&ctx->lock);
2192 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
2193 if (context_equiv(ctx, next_ctx)) {
2194 /*
2195 * XXX do we need a memory barrier of sorts
2196 * wrt to rcu_dereference() of perf_event_ctxp
2197 */
2198 task->perf_event_ctxp[ctxn] = next_ctx;
2199 next->perf_event_ctxp[ctxn] = ctx;
2200 ctx->task = next;
2201 next_ctx->task = task;
2202 do_switch = 0;
2203
2204 perf_event_sync_stat(ctx, next_ctx);
2205 }
2206 raw_spin_unlock(&next_ctx->lock);
2207 raw_spin_unlock(&ctx->lock);
2208 }
2209 rcu_read_unlock();
2210
2211 if (do_switch) {
2212 raw_spin_lock(&ctx->lock);
2213 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2214 cpuctx->task_ctx = NULL;
2215 raw_spin_unlock(&ctx->lock);
2216 }
2217 }
2218
2219 #define for_each_task_context_nr(ctxn) \
2220 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2221
2222 /*
2223 * Called from scheduler to remove the events of the current task,
2224 * with interrupts disabled.
2225 *
2226 * We stop each event and update the event value in event->count.
2227 *
2228 * This does not protect us against NMI, but disable()
2229 * sets the disabled bit in the control field of event _before_
2230 * accessing the event control register. If a NMI hits, then it will
2231 * not restart the event.
2232 */
2233 void __perf_event_task_sched_out(struct task_struct *task,
2234 struct task_struct *next)
2235 {
2236 int ctxn;
2237
2238 for_each_task_context_nr(ctxn)
2239 perf_event_context_sched_out(task, ctxn, next);
2240
2241 /*
2242 * if cgroup events exist on this CPU, then we need
2243 * to check if we have to switch out PMU state.
2244 * cgroup event are system-wide mode only
2245 */
2246 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2247 perf_cgroup_sched_out(task, next);
2248 }
2249
2250 static void task_ctx_sched_out(struct perf_event_context *ctx)
2251 {
2252 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2253
2254 if (!cpuctx->task_ctx)
2255 return;
2256
2257 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2258 return;
2259
2260 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2261 cpuctx->task_ctx = NULL;
2262 }
2263
2264 /*
2265 * Called with IRQs disabled
2266 */
2267 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2268 enum event_type_t event_type)
2269 {
2270 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
2271 }
2272
2273 static void
2274 ctx_pinned_sched_in(struct perf_event_context *ctx,
2275 struct perf_cpu_context *cpuctx)
2276 {
2277 struct perf_event *event;
2278
2279 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2280 if (event->state <= PERF_EVENT_STATE_OFF)
2281 continue;
2282 if (!event_filter_match(event))
2283 continue;
2284
2285 /* may need to reset tstamp_enabled */
2286 if (is_cgroup_event(event))
2287 perf_cgroup_mark_enabled(event, ctx);
2288
2289 if (group_can_go_on(event, cpuctx, 1))
2290 group_sched_in(event, cpuctx, ctx);
2291
2292 /*
2293 * If this pinned group hasn't been scheduled,
2294 * put it in error state.
2295 */
2296 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2297 update_group_times(event);
2298 event->state = PERF_EVENT_STATE_ERROR;
2299 }
2300 }
2301 }
2302
2303 static void
2304 ctx_flexible_sched_in(struct perf_event_context *ctx,
2305 struct perf_cpu_context *cpuctx)
2306 {
2307 struct perf_event *event;
2308 int can_add_hw = 1;
2309
2310 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2311 /* Ignore events in OFF or ERROR state */
2312 if (event->state <= PERF_EVENT_STATE_OFF)
2313 continue;
2314 /*
2315 * Listen to the 'cpu' scheduling filter constraint
2316 * of events:
2317 */
2318 if (!event_filter_match(event))
2319 continue;
2320
2321 /* may need to reset tstamp_enabled */
2322 if (is_cgroup_event(event))
2323 perf_cgroup_mark_enabled(event, ctx);
2324
2325 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2326 if (group_sched_in(event, cpuctx, ctx))
2327 can_add_hw = 0;
2328 }
2329 }
2330 }
2331
2332 static void
2333 ctx_sched_in(struct perf_event_context *ctx,
2334 struct perf_cpu_context *cpuctx,
2335 enum event_type_t event_type,
2336 struct task_struct *task)
2337 {
2338 u64 now;
2339 int is_active = ctx->is_active;
2340
2341 ctx->is_active |= event_type;
2342 if (likely(!ctx->nr_events))
2343 return;
2344
2345 now = perf_clock();
2346 ctx->timestamp = now;
2347 perf_cgroup_set_timestamp(task, ctx);
2348 /*
2349 * First go through the list and put on any pinned groups
2350 * in order to give them the best chance of going on.
2351 */
2352 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
2353 ctx_pinned_sched_in(ctx, cpuctx);
2354
2355 /* Then walk through the lower prio flexible groups */
2356 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
2357 ctx_flexible_sched_in(ctx, cpuctx);
2358 }
2359
2360 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2361 enum event_type_t event_type,
2362 struct task_struct *task)
2363 {
2364 struct perf_event_context *ctx = &cpuctx->ctx;
2365
2366 ctx_sched_in(ctx, cpuctx, event_type, task);
2367 }
2368
2369 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2370 struct task_struct *task)
2371 {
2372 struct perf_cpu_context *cpuctx;
2373
2374 cpuctx = __get_cpu_context(ctx);
2375 if (cpuctx->task_ctx == ctx)
2376 return;
2377
2378 perf_ctx_lock(cpuctx, ctx);
2379 perf_pmu_disable(ctx->pmu);
2380 /*
2381 * We want to keep the following priority order:
2382 * cpu pinned (that don't need to move), task pinned,
2383 * cpu flexible, task flexible.
2384 */
2385 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2386
2387 if (ctx->nr_events)
2388 cpuctx->task_ctx = ctx;
2389
2390 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2391
2392 perf_pmu_enable(ctx->pmu);
2393 perf_ctx_unlock(cpuctx, ctx);
2394
2395 /*
2396 * Since these rotations are per-cpu, we need to ensure the
2397 * cpu-context we got scheduled on is actually rotating.
2398 */
2399 perf_pmu_rotate_start(ctx->pmu);
2400 }
2401
2402 /*
2403 * When sampling the branck stack in system-wide, it may be necessary
2404 * to flush the stack on context switch. This happens when the branch
2405 * stack does not tag its entries with the pid of the current task.
2406 * Otherwise it becomes impossible to associate a branch entry with a
2407 * task. This ambiguity is more likely to appear when the branch stack
2408 * supports priv level filtering and the user sets it to monitor only
2409 * at the user level (which could be a useful measurement in system-wide
2410 * mode). In that case, the risk is high of having a branch stack with
2411 * branch from multiple tasks. Flushing may mean dropping the existing
2412 * entries or stashing them somewhere in the PMU specific code layer.
2413 *
2414 * This function provides the context switch callback to the lower code
2415 * layer. It is invoked ONLY when there is at least one system-wide context
2416 * with at least one active event using taken branch sampling.
2417 */
2418 static void perf_branch_stack_sched_in(struct task_struct *prev,
2419 struct task_struct *task)
2420 {
2421 struct perf_cpu_context *cpuctx;
2422 struct pmu *pmu;
2423 unsigned long flags;
2424
2425 /* no need to flush branch stack if not changing task */
2426 if (prev == task)
2427 return;
2428
2429 local_irq_save(flags);
2430
2431 rcu_read_lock();
2432
2433 list_for_each_entry_rcu(pmu, &pmus, entry) {
2434 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2435
2436 /*
2437 * check if the context has at least one
2438 * event using PERF_SAMPLE_BRANCH_STACK
2439 */
2440 if (cpuctx->ctx.nr_branch_stack > 0
2441 && pmu->flush_branch_stack) {
2442
2443 pmu = cpuctx->ctx.pmu;
2444
2445 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2446
2447 perf_pmu_disable(pmu);
2448
2449 pmu->flush_branch_stack();
2450
2451 perf_pmu_enable(pmu);
2452
2453 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2454 }
2455 }
2456
2457 rcu_read_unlock();
2458
2459 local_irq_restore(flags);
2460 }
2461
2462 /*
2463 * Called from scheduler to add the events of the current task
2464 * with interrupts disabled.
2465 *
2466 * We restore the event value and then enable it.
2467 *
2468 * This does not protect us against NMI, but enable()
2469 * sets the enabled bit in the control field of event _before_
2470 * accessing the event control register. If a NMI hits, then it will
2471 * keep the event running.
2472 */
2473 void __perf_event_task_sched_in(struct task_struct *prev,
2474 struct task_struct *task)
2475 {
2476 struct perf_event_context *ctx;
2477 int ctxn;
2478
2479 for_each_task_context_nr(ctxn) {
2480 ctx = task->perf_event_ctxp[ctxn];
2481 if (likely(!ctx))
2482 continue;
2483
2484 perf_event_context_sched_in(ctx, task);
2485 }
2486 /*
2487 * if cgroup events exist on this CPU, then we need
2488 * to check if we have to switch in PMU state.
2489 * cgroup event are system-wide mode only
2490 */
2491 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2492 perf_cgroup_sched_in(prev, task);
2493
2494 /* check for system-wide branch_stack events */
2495 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2496 perf_branch_stack_sched_in(prev, task);
2497 }
2498
2499 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2500 {
2501 u64 frequency = event->attr.sample_freq;
2502 u64 sec = NSEC_PER_SEC;
2503 u64 divisor, dividend;
2504
2505 int count_fls, nsec_fls, frequency_fls, sec_fls;
2506
2507 count_fls = fls64(count);
2508 nsec_fls = fls64(nsec);
2509 frequency_fls = fls64(frequency);
2510 sec_fls = 30;
2511
2512 /*
2513 * We got @count in @nsec, with a target of sample_freq HZ
2514 * the target period becomes:
2515 *
2516 * @count * 10^9
2517 * period = -------------------
2518 * @nsec * sample_freq
2519 *
2520 */
2521
2522 /*
2523 * Reduce accuracy by one bit such that @a and @b converge
2524 * to a similar magnitude.
2525 */
2526 #define REDUCE_FLS(a, b) \
2527 do { \
2528 if (a##_fls > b##_fls) { \
2529 a >>= 1; \
2530 a##_fls--; \
2531 } else { \
2532 b >>= 1; \
2533 b##_fls--; \
2534 } \
2535 } while (0)
2536
2537 /*
2538 * Reduce accuracy until either term fits in a u64, then proceed with
2539 * the other, so that finally we can do a u64/u64 division.
2540 */
2541 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2542 REDUCE_FLS(nsec, frequency);
2543 REDUCE_FLS(sec, count);
2544 }
2545
2546 if (count_fls + sec_fls > 64) {
2547 divisor = nsec * frequency;
2548
2549 while (count_fls + sec_fls > 64) {
2550 REDUCE_FLS(count, sec);
2551 divisor >>= 1;
2552 }
2553
2554 dividend = count * sec;
2555 } else {
2556 dividend = count * sec;
2557
2558 while (nsec_fls + frequency_fls > 64) {
2559 REDUCE_FLS(nsec, frequency);
2560 dividend >>= 1;
2561 }
2562
2563 divisor = nsec * frequency;
2564 }
2565
2566 if (!divisor)
2567 return dividend;
2568
2569 return div64_u64(dividend, divisor);
2570 }
2571
2572 static DEFINE_PER_CPU(int, perf_throttled_count);
2573 static DEFINE_PER_CPU(u64, perf_throttled_seq);
2574
2575 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
2576 {
2577 struct hw_perf_event *hwc = &event->hw;
2578 s64 period, sample_period;
2579 s64 delta;
2580
2581 period = perf_calculate_period(event, nsec, count);
2582
2583 delta = (s64)(period - hwc->sample_period);
2584 delta = (delta + 7) / 8; /* low pass filter */
2585
2586 sample_period = hwc->sample_period + delta;
2587
2588 if (!sample_period)
2589 sample_period = 1;
2590
2591 hwc->sample_period = sample_period;
2592
2593 if (local64_read(&hwc->period_left) > 8*sample_period) {
2594 if (disable)
2595 event->pmu->stop(event, PERF_EF_UPDATE);
2596
2597 local64_set(&hwc->period_left, 0);
2598
2599 if (disable)
2600 event->pmu->start(event, PERF_EF_RELOAD);
2601 }
2602 }
2603
2604 /*
2605 * combine freq adjustment with unthrottling to avoid two passes over the
2606 * events. At the same time, make sure, having freq events does not change
2607 * the rate of unthrottling as that would introduce bias.
2608 */
2609 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2610 int needs_unthr)
2611 {
2612 struct perf_event *event;
2613 struct hw_perf_event *hwc;
2614 u64 now, period = TICK_NSEC;
2615 s64 delta;
2616
2617 /*
2618 * only need to iterate over all events iff:
2619 * - context have events in frequency mode (needs freq adjust)
2620 * - there are events to unthrottle on this cpu
2621 */
2622 if (!(ctx->nr_freq || needs_unthr))
2623 return;
2624
2625 raw_spin_lock(&ctx->lock);
2626 perf_pmu_disable(ctx->pmu);
2627
2628 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2629 if (event->state != PERF_EVENT_STATE_ACTIVE)
2630 continue;
2631
2632 if (!event_filter_match(event))
2633 continue;
2634
2635 hwc = &event->hw;
2636
2637 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2638 hwc->interrupts = 0;
2639 perf_log_throttle(event, 1);
2640 event->pmu->start(event, 0);
2641 }
2642
2643 if (!event->attr.freq || !event->attr.sample_freq)
2644 continue;
2645
2646 /*
2647 * stop the event and update event->count
2648 */
2649 event->pmu->stop(event, PERF_EF_UPDATE);
2650
2651 now = local64_read(&event->count);
2652 delta = now - hwc->freq_count_stamp;
2653 hwc->freq_count_stamp = now;
2654
2655 /*
2656 * restart the event
2657 * reload only if value has changed
2658 * we have stopped the event so tell that
2659 * to perf_adjust_period() to avoid stopping it
2660 * twice.
2661 */
2662 if (delta > 0)
2663 perf_adjust_period(event, period, delta, false);
2664
2665 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
2666 }
2667
2668 perf_pmu_enable(ctx->pmu);
2669 raw_spin_unlock(&ctx->lock);
2670 }
2671
2672 /*
2673 * Round-robin a context's events:
2674 */
2675 static void rotate_ctx(struct perf_event_context *ctx)
2676 {
2677 /*
2678 * Rotate the first entry last of non-pinned groups. Rotation might be
2679 * disabled by the inheritance code.
2680 */
2681 if (!ctx->rotate_disable)
2682 list_rotate_left(&ctx->flexible_groups);
2683 }
2684
2685 /*
2686 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2687 * because they're strictly cpu affine and rotate_start is called with IRQs
2688 * disabled, while rotate_context is called from IRQ context.
2689 */
2690 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2691 {
2692 struct perf_event_context *ctx = NULL;
2693 int rotate = 0, remove = 1;
2694
2695 if (cpuctx->ctx.nr_events) {
2696 remove = 0;
2697 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2698 rotate = 1;
2699 }
2700
2701 ctx = cpuctx->task_ctx;
2702 if (ctx && ctx->nr_events) {
2703 remove = 0;
2704 if (ctx->nr_events != ctx->nr_active)
2705 rotate = 1;
2706 }
2707
2708 if (!rotate)
2709 goto done;
2710
2711 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2712 perf_pmu_disable(cpuctx->ctx.pmu);
2713
2714 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2715 if (ctx)
2716 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
2717
2718 rotate_ctx(&cpuctx->ctx);
2719 if (ctx)
2720 rotate_ctx(ctx);
2721
2722 perf_event_sched_in(cpuctx, ctx, current);
2723
2724 perf_pmu_enable(cpuctx->ctx.pmu);
2725 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2726 done:
2727 if (remove)
2728 list_del_init(&cpuctx->rotation_list);
2729 }
2730
2731 #ifdef CONFIG_NO_HZ_FULL
2732 bool perf_event_can_stop_tick(void)
2733 {
2734 if (list_empty(&__get_cpu_var(rotation_list)))
2735 return true;
2736 else
2737 return false;
2738 }
2739 #endif
2740
2741 void perf_event_task_tick(void)
2742 {
2743 struct list_head *head = &__get_cpu_var(rotation_list);
2744 struct perf_cpu_context *cpuctx, *tmp;
2745 struct perf_event_context *ctx;
2746 int throttled;
2747
2748 WARN_ON(!irqs_disabled());
2749
2750 __this_cpu_inc(perf_throttled_seq);
2751 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2752
2753 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2754 ctx = &cpuctx->ctx;
2755 perf_adjust_freq_unthr_context(ctx, throttled);
2756
2757 ctx = cpuctx->task_ctx;
2758 if (ctx)
2759 perf_adjust_freq_unthr_context(ctx, throttled);
2760
2761 if (cpuctx->jiffies_interval == 1 ||
2762 !(jiffies % cpuctx->jiffies_interval))
2763 perf_rotate_context(cpuctx);
2764 }
2765 }
2766
2767 static int event_enable_on_exec(struct perf_event *event,
2768 struct perf_event_context *ctx)
2769 {
2770 if (!event->attr.enable_on_exec)
2771 return 0;
2772
2773 event->attr.enable_on_exec = 0;
2774 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2775 return 0;
2776
2777 __perf_event_mark_enabled(event);
2778
2779 return 1;
2780 }
2781
2782 /*
2783 * Enable all of a task's events that have been marked enable-on-exec.
2784 * This expects task == current.
2785 */
2786 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2787 {
2788 struct perf_event *event;
2789 unsigned long flags;
2790 int enabled = 0;
2791 int ret;
2792
2793 local_irq_save(flags);
2794 if (!ctx || !ctx->nr_events)
2795 goto out;
2796
2797 /*
2798 * We must ctxsw out cgroup events to avoid conflict
2799 * when invoking perf_task_event_sched_in() later on
2800 * in this function. Otherwise we end up trying to
2801 * ctxswin cgroup events which are already scheduled
2802 * in.
2803 */
2804 perf_cgroup_sched_out(current, NULL);
2805
2806 raw_spin_lock(&ctx->lock);
2807 task_ctx_sched_out(ctx);
2808
2809 list_for_each_entry(event, &ctx->event_list, event_entry) {
2810 ret = event_enable_on_exec(event, ctx);
2811 if (ret)
2812 enabled = 1;
2813 }
2814
2815 /*
2816 * Unclone this context if we enabled any event.
2817 */
2818 if (enabled)
2819 unclone_ctx(ctx);
2820
2821 raw_spin_unlock(&ctx->lock);
2822
2823 /*
2824 * Also calls ctxswin for cgroup events, if any:
2825 */
2826 perf_event_context_sched_in(ctx, ctx->task);
2827 out:
2828 local_irq_restore(flags);
2829 }
2830
2831 /*
2832 * Cross CPU call to read the hardware event
2833 */
2834 static void __perf_event_read(void *info)
2835 {
2836 struct perf_event *event = info;
2837 struct perf_event_context *ctx = event->ctx;
2838 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2839
2840 /*
2841 * If this is a task context, we need to check whether it is
2842 * the current task context of this cpu. If not it has been
2843 * scheduled out before the smp call arrived. In that case
2844 * event->count would have been updated to a recent sample
2845 * when the event was scheduled out.
2846 */
2847 if (ctx->task && cpuctx->task_ctx != ctx)
2848 return;
2849
2850 raw_spin_lock(&ctx->lock);
2851 if (ctx->is_active) {
2852 update_context_time(ctx);
2853 update_cgrp_time_from_event(event);
2854 }
2855 update_event_times(event);
2856 if (event->state == PERF_EVENT_STATE_ACTIVE)
2857 event->pmu->read(event);
2858 raw_spin_unlock(&ctx->lock);
2859 }
2860
2861 static inline u64 perf_event_count(struct perf_event *event)
2862 {
2863 return local64_read(&event->count) + atomic64_read(&event->child_count);
2864 }
2865
2866 static u64 perf_event_read(struct perf_event *event)
2867 {
2868 /*
2869 * If event is enabled and currently active on a CPU, update the
2870 * value in the event structure:
2871 */
2872 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2873 smp_call_function_single(event->oncpu,
2874 __perf_event_read, event, 1);
2875 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2876 struct perf_event_context *ctx = event->ctx;
2877 unsigned long flags;
2878
2879 raw_spin_lock_irqsave(&ctx->lock, flags);
2880 /*
2881 * may read while context is not active
2882 * (e.g., thread is blocked), in that case
2883 * we cannot update context time
2884 */
2885 if (ctx->is_active) {
2886 update_context_time(ctx);
2887 update_cgrp_time_from_event(event);
2888 }
2889 update_event_times(event);
2890 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2891 }
2892
2893 return perf_event_count(event);
2894 }
2895
2896 /*
2897 * Initialize the perf_event context in a task_struct:
2898 */
2899 static void __perf_event_init_context(struct perf_event_context *ctx)
2900 {
2901 raw_spin_lock_init(&ctx->lock);
2902 mutex_init(&ctx->mutex);
2903 INIT_LIST_HEAD(&ctx->pinned_groups);
2904 INIT_LIST_HEAD(&ctx->flexible_groups);
2905 INIT_LIST_HEAD(&ctx->event_list);
2906 atomic_set(&ctx->refcount, 1);
2907 }
2908
2909 static struct perf_event_context *
2910 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2911 {
2912 struct perf_event_context *ctx;
2913
2914 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2915 if (!ctx)
2916 return NULL;
2917
2918 __perf_event_init_context(ctx);
2919 if (task) {
2920 ctx->task = task;
2921 get_task_struct(task);
2922 }
2923 ctx->pmu = pmu;
2924
2925 return ctx;
2926 }
2927
2928 static struct task_struct *
2929 find_lively_task_by_vpid(pid_t vpid)
2930 {
2931 struct task_struct *task;
2932 int err;
2933
2934 rcu_read_lock();
2935 if (!vpid)
2936 task = current;
2937 else
2938 task = find_task_by_vpid(vpid);
2939 if (task)
2940 get_task_struct(task);
2941 rcu_read_unlock();
2942
2943 if (!task)
2944 return ERR_PTR(-ESRCH);
2945
2946 /* Reuse ptrace permission checks for now. */
2947 err = -EACCES;
2948 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
2949 goto errout;
2950
2951 return task;
2952 errout:
2953 put_task_struct(task);
2954 return ERR_PTR(err);
2955
2956 }
2957
2958 /*
2959 * Returns a matching context with refcount and pincount.
2960 */
2961 static struct perf_event_context *
2962 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2963 {
2964 struct perf_event_context *ctx;
2965 struct perf_cpu_context *cpuctx;
2966 unsigned long flags;
2967 int ctxn, err;
2968
2969 if (!task) {
2970 /* Must be root to operate on a CPU event: */
2971 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2972 return ERR_PTR(-EACCES);
2973
2974 /*
2975 * We could be clever and allow to attach a event to an
2976 * offline CPU and activate it when the CPU comes up, but
2977 * that's for later.
2978 */
2979 if (!cpu_online(cpu))
2980 return ERR_PTR(-ENODEV);
2981
2982 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2983 ctx = &cpuctx->ctx;
2984 get_ctx(ctx);
2985 ++ctx->pin_count;
2986
2987 return ctx;
2988 }
2989
2990 err = -EINVAL;
2991 ctxn = pmu->task_ctx_nr;
2992 if (ctxn < 0)
2993 goto errout;
2994
2995 retry:
2996 ctx = perf_lock_task_context(task, ctxn, &flags);
2997 if (ctx) {
2998 unclone_ctx(ctx);
2999 ++ctx->pin_count;
3000 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3001 } else {
3002 ctx = alloc_perf_context(pmu, task);
3003 err = -ENOMEM;
3004 if (!ctx)
3005 goto errout;
3006
3007 err = 0;
3008 mutex_lock(&task->perf_event_mutex);
3009 /*
3010 * If it has already passed perf_event_exit_task().
3011 * we must see PF_EXITING, it takes this mutex too.
3012 */
3013 if (task->flags & PF_EXITING)
3014 err = -ESRCH;
3015 else if (task->perf_event_ctxp[ctxn])
3016 err = -EAGAIN;
3017 else {
3018 get_ctx(ctx);
3019 ++ctx->pin_count;
3020 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3021 }
3022 mutex_unlock(&task->perf_event_mutex);
3023
3024 if (unlikely(err)) {
3025 put_ctx(ctx);
3026
3027 if (err == -EAGAIN)
3028 goto retry;
3029 goto errout;
3030 }
3031 }
3032
3033 return ctx;
3034
3035 errout:
3036 return ERR_PTR(err);
3037 }
3038
3039 static void perf_event_free_filter(struct perf_event *event);
3040
3041 static void free_event_rcu(struct rcu_head *head)
3042 {
3043 struct perf_event *event;
3044
3045 event = container_of(head, struct perf_event, rcu_head);
3046 if (event->ns)
3047 put_pid_ns(event->ns);
3048 perf_event_free_filter(event);
3049 kfree(event);
3050 }
3051
3052 static void ring_buffer_put(struct ring_buffer *rb);
3053 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
3054
3055 static void free_event(struct perf_event *event)
3056 {
3057 irq_work_sync(&event->pending);
3058
3059 if (!event->parent) {
3060 if (event->attach_state & PERF_ATTACH_TASK)
3061 static_key_slow_dec_deferred(&perf_sched_events);
3062 if (event->attr.mmap || event->attr.mmap_data)
3063 atomic_dec(&nr_mmap_events);
3064 if (event->attr.comm)
3065 atomic_dec(&nr_comm_events);
3066 if (event->attr.task)
3067 atomic_dec(&nr_task_events);
3068 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3069 put_callchain_buffers();
3070 if (is_cgroup_event(event)) {
3071 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
3072 static_key_slow_dec_deferred(&perf_sched_events);
3073 }
3074
3075 if (has_branch_stack(event)) {
3076 static_key_slow_dec_deferred(&perf_sched_events);
3077 /* is system-wide event */
3078 if (!(event->attach_state & PERF_ATTACH_TASK)) {
3079 atomic_dec(&per_cpu(perf_branch_stack_events,
3080 event->cpu));
3081 }
3082 }
3083 }
3084
3085 if (event->rb) {
3086 struct ring_buffer *rb;
3087
3088 /*
3089 * Can happen when we close an event with re-directed output.
3090 *
3091 * Since we have a 0 refcount, perf_mmap_close() will skip
3092 * over us; possibly making our ring_buffer_put() the last.
3093 */
3094 mutex_lock(&event->mmap_mutex);
3095 rb = event->rb;
3096 if (rb) {
3097 rcu_assign_pointer(event->rb, NULL);
3098 ring_buffer_detach(event, rb);
3099 ring_buffer_put(rb); /* could be last */
3100 }
3101 mutex_unlock(&event->mmap_mutex);
3102 }
3103
3104 if (is_cgroup_event(event))
3105 perf_detach_cgroup(event);
3106
3107 if (event->destroy)
3108 event->destroy(event);
3109
3110 if (event->ctx)
3111 put_ctx(event->ctx);
3112
3113 call_rcu(&event->rcu_head, free_event_rcu);
3114 }
3115
3116 int perf_event_release_kernel(struct perf_event *event)
3117 {
3118 struct perf_event_context *ctx = event->ctx;
3119
3120 WARN_ON_ONCE(ctx->parent_ctx);
3121 /*
3122 * There are two ways this annotation is useful:
3123 *
3124 * 1) there is a lock recursion from perf_event_exit_task
3125 * see the comment there.
3126 *
3127 * 2) there is a lock-inversion with mmap_sem through
3128 * perf_event_read_group(), which takes faults while
3129 * holding ctx->mutex, however this is called after
3130 * the last filedesc died, so there is no possibility
3131 * to trigger the AB-BA case.
3132 */
3133 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
3134 perf_remove_from_context(event, true);
3135 mutex_unlock(&ctx->mutex);
3136
3137 free_event(event);
3138
3139 return 0;
3140 }
3141 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3142
3143 /*
3144 * Called when the last reference to the file is gone.
3145 */
3146 static void put_event(struct perf_event *event)
3147 {
3148 struct task_struct *owner;
3149
3150 if (!atomic_long_dec_and_test(&event->refcount))
3151 return;
3152
3153 rcu_read_lock();
3154 owner = ACCESS_ONCE(event->owner);
3155 /*
3156 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3157 * !owner it means the list deletion is complete and we can indeed
3158 * free this event, otherwise we need to serialize on
3159 * owner->perf_event_mutex.
3160 */
3161 smp_read_barrier_depends();
3162 if (owner) {
3163 /*
3164 * Since delayed_put_task_struct() also drops the last
3165 * task reference we can safely take a new reference
3166 * while holding the rcu_read_lock().
3167 */
3168 get_task_struct(owner);
3169 }
3170 rcu_read_unlock();
3171
3172 if (owner) {
3173 mutex_lock(&owner->perf_event_mutex);
3174 /*
3175 * We have to re-check the event->owner field, if it is cleared
3176 * we raced with perf_event_exit_task(), acquiring the mutex
3177 * ensured they're done, and we can proceed with freeing the
3178 * event.
3179 */
3180 if (event->owner)
3181 list_del_init(&event->owner_entry);
3182 mutex_unlock(&owner->perf_event_mutex);
3183 put_task_struct(owner);
3184 }
3185
3186 perf_event_release_kernel(event);
3187 }
3188
3189 static int perf_release(struct inode *inode, struct file *file)
3190 {
3191 put_event(file->private_data);
3192 return 0;
3193 }
3194
3195 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3196 {
3197 struct perf_event *child;
3198 u64 total = 0;
3199
3200 *enabled = 0;
3201 *running = 0;
3202
3203 mutex_lock(&event->child_mutex);
3204 total += perf_event_read(event);
3205 *enabled += event->total_time_enabled +
3206 atomic64_read(&event->child_total_time_enabled);
3207 *running += event->total_time_running +
3208 atomic64_read(&event->child_total_time_running);
3209
3210 list_for_each_entry(child, &event->child_list, child_list) {
3211 total += perf_event_read(child);
3212 *enabled += child->total_time_enabled;
3213 *running += child->total_time_running;
3214 }
3215 mutex_unlock(&event->child_mutex);
3216
3217 return total;
3218 }
3219 EXPORT_SYMBOL_GPL(perf_event_read_value);
3220
3221 static int perf_event_read_group(struct perf_event *event,
3222 u64 read_format, char __user *buf)
3223 {
3224 struct perf_event *leader = event->group_leader, *sub;
3225 int n = 0, size = 0, ret = -EFAULT;
3226 struct perf_event_context *ctx = leader->ctx;
3227 u64 values[5];
3228 u64 count, enabled, running;
3229
3230 mutex_lock(&ctx->mutex);
3231 count = perf_event_read_value(leader, &enabled, &running);
3232
3233 values[n++] = 1 + leader->nr_siblings;
3234 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3235 values[n++] = enabled;
3236 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3237 values[n++] = running;
3238 values[n++] = count;
3239 if (read_format & PERF_FORMAT_ID)
3240 values[n++] = primary_event_id(leader);
3241
3242 size = n * sizeof(u64);
3243
3244 if (copy_to_user(buf, values, size))
3245 goto unlock;
3246
3247 ret = size;
3248
3249 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3250 n = 0;
3251
3252 values[n++] = perf_event_read_value(sub, &enabled, &running);
3253 if (read_format & PERF_FORMAT_ID)
3254 values[n++] = primary_event_id(sub);
3255
3256 size = n * sizeof(u64);
3257
3258 if (copy_to_user(buf + ret, values, size)) {
3259 ret = -EFAULT;
3260 goto unlock;
3261 }
3262
3263 ret += size;
3264 }
3265 unlock:
3266 mutex_unlock(&ctx->mutex);
3267
3268 return ret;
3269 }
3270
3271 static int perf_event_read_one(struct perf_event *event,
3272 u64 read_format, char __user *buf)
3273 {
3274 u64 enabled, running;
3275 u64 values[4];
3276 int n = 0;
3277
3278 values[n++] = perf_event_read_value(event, &enabled, &running);
3279 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3280 values[n++] = enabled;
3281 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3282 values[n++] = running;
3283 if (read_format & PERF_FORMAT_ID)
3284 values[n++] = primary_event_id(event);
3285
3286 if (copy_to_user(buf, values, n * sizeof(u64)))
3287 return -EFAULT;
3288
3289 return n * sizeof(u64);
3290 }
3291
3292 /*
3293 * Read the performance event - simple non blocking version for now
3294 */
3295 static ssize_t
3296 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3297 {
3298 u64 read_format = event->attr.read_format;
3299 int ret;
3300
3301 /*
3302 * Return end-of-file for a read on a event that is in
3303 * error state (i.e. because it was pinned but it couldn't be
3304 * scheduled on to the CPU at some point).
3305 */
3306 if (event->state == PERF_EVENT_STATE_ERROR)
3307 return 0;
3308
3309 if (count < event->read_size)
3310 return -ENOSPC;
3311
3312 WARN_ON_ONCE(event->ctx->parent_ctx);
3313 if (read_format & PERF_FORMAT_GROUP)
3314 ret = perf_event_read_group(event, read_format, buf);
3315 else
3316 ret = perf_event_read_one(event, read_format, buf);
3317
3318 return ret;
3319 }
3320
3321 static ssize_t
3322 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3323 {
3324 struct perf_event *event = file->private_data;
3325
3326 return perf_read_hw(event, buf, count);
3327 }
3328
3329 static unsigned int perf_poll(struct file *file, poll_table *wait)
3330 {
3331 struct perf_event *event = file->private_data;
3332 struct ring_buffer *rb;
3333 unsigned int events = POLL_HUP;
3334
3335 /*
3336 * Pin the event->rb by taking event->mmap_mutex; otherwise
3337 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
3338 */
3339 mutex_lock(&event->mmap_mutex);
3340 rb = event->rb;
3341 if (rb)
3342 events = atomic_xchg(&rb->poll, 0);
3343 mutex_unlock(&event->mmap_mutex);
3344
3345 poll_wait(file, &event->waitq, wait);
3346
3347 return events;
3348 }
3349
3350 static void perf_event_reset(struct perf_event *event)
3351 {
3352 (void)perf_event_read(event);
3353 local64_set(&event->count, 0);
3354 perf_event_update_userpage(event);
3355 }
3356
3357 /*
3358 * Holding the top-level event's child_mutex means that any
3359 * descendant process that has inherited this event will block
3360 * in sync_child_event if it goes to exit, thus satisfying the
3361 * task existence requirements of perf_event_enable/disable.
3362 */
3363 static void perf_event_for_each_child(struct perf_event *event,
3364 void (*func)(struct perf_event *))
3365 {
3366 struct perf_event *child;
3367
3368 WARN_ON_ONCE(event->ctx->parent_ctx);
3369 mutex_lock(&event->child_mutex);
3370 func(event);
3371 list_for_each_entry(child, &event->child_list, child_list)
3372 func(child);
3373 mutex_unlock(&event->child_mutex);
3374 }
3375
3376 static void perf_event_for_each(struct perf_event *event,
3377 void (*func)(struct perf_event *))
3378 {
3379 struct perf_event_context *ctx = event->ctx;
3380 struct perf_event *sibling;
3381
3382 WARN_ON_ONCE(ctx->parent_ctx);
3383 mutex_lock(&ctx->mutex);
3384 event = event->group_leader;
3385
3386 perf_event_for_each_child(event, func);
3387 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3388 perf_event_for_each_child(sibling, func);
3389 mutex_unlock(&ctx->mutex);
3390 }
3391
3392 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3393 {
3394 struct perf_event_context *ctx = event->ctx;
3395 int ret = 0;
3396 u64 value;
3397
3398 if (!is_sampling_event(event))
3399 return -EINVAL;
3400
3401 if (copy_from_user(&value, arg, sizeof(value)))
3402 return -EFAULT;
3403
3404 if (!value)
3405 return -EINVAL;
3406
3407 raw_spin_lock_irq(&ctx->lock);
3408 if (event->attr.freq) {
3409 if (value > sysctl_perf_event_sample_rate) {
3410 ret = -EINVAL;
3411 goto unlock;
3412 }
3413
3414 event->attr.sample_freq = value;
3415 } else {
3416 event->attr.sample_period = value;
3417 event->hw.sample_period = value;
3418 }
3419 unlock:
3420 raw_spin_unlock_irq(&ctx->lock);
3421
3422 return ret;
3423 }
3424
3425 static const struct file_operations perf_fops;
3426
3427 static inline int perf_fget_light(int fd, struct fd *p)
3428 {
3429 struct fd f = fdget(fd);
3430 if (!f.file)
3431 return -EBADF;
3432
3433 if (f.file->f_op != &perf_fops) {
3434 fdput(f);
3435 return -EBADF;
3436 }
3437 *p = f;
3438 return 0;
3439 }
3440
3441 static int perf_event_set_output(struct perf_event *event,
3442 struct perf_event *output_event);
3443 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3444
3445 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3446 {
3447 struct perf_event *event = file->private_data;
3448 void (*func)(struct perf_event *);
3449 u32 flags = arg;
3450
3451 switch (cmd) {
3452 case PERF_EVENT_IOC_ENABLE:
3453 func = perf_event_enable;
3454 break;
3455 case PERF_EVENT_IOC_DISABLE:
3456 func = perf_event_disable;
3457 break;
3458 case PERF_EVENT_IOC_RESET:
3459 func = perf_event_reset;
3460 break;
3461
3462 case PERF_EVENT_IOC_REFRESH:
3463 return perf_event_refresh(event, arg);
3464
3465 case PERF_EVENT_IOC_PERIOD:
3466 return perf_event_period(event, (u64 __user *)arg);
3467
3468 case PERF_EVENT_IOC_SET_OUTPUT:
3469 {
3470 int ret;
3471 if (arg != -1) {
3472 struct perf_event *output_event;
3473 struct fd output;
3474 ret = perf_fget_light(arg, &output);
3475 if (ret)
3476 return ret;
3477 output_event = output.file->private_data;
3478 ret = perf_event_set_output(event, output_event);
3479 fdput(output);
3480 } else {
3481 ret = perf_event_set_output(event, NULL);
3482 }
3483 return ret;
3484 }
3485
3486 case PERF_EVENT_IOC_SET_FILTER:
3487 return perf_event_set_filter(event, (void __user *)arg);
3488
3489 default:
3490 return -ENOTTY;
3491 }
3492
3493 if (flags & PERF_IOC_FLAG_GROUP)
3494 perf_event_for_each(event, func);
3495 else
3496 perf_event_for_each_child(event, func);
3497
3498 return 0;
3499 }
3500
3501 #ifdef CONFIG_COMPAT
3502 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
3503 unsigned long arg)
3504 {
3505 switch (_IOC_NR(cmd)) {
3506 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
3507 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
3508 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
3509 cmd &= ~IOCSIZE_MASK;
3510 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
3511 }
3512 break;
3513 }
3514 return perf_ioctl(file, cmd, arg);
3515 }
3516 #else
3517 # define perf_compat_ioctl NULL
3518 #endif
3519
3520 int perf_event_task_enable(void)
3521 {
3522 struct perf_event *event;
3523
3524 mutex_lock(&current->perf_event_mutex);
3525 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3526 perf_event_for_each_child(event, perf_event_enable);
3527 mutex_unlock(&current->perf_event_mutex);
3528
3529 return 0;
3530 }
3531
3532 int perf_event_task_disable(void)
3533 {
3534 struct perf_event *event;
3535
3536 mutex_lock(&current->perf_event_mutex);
3537 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3538 perf_event_for_each_child(event, perf_event_disable);
3539 mutex_unlock(&current->perf_event_mutex);
3540
3541 return 0;
3542 }
3543
3544 static int perf_event_index(struct perf_event *event)
3545 {
3546 if (event->hw.state & PERF_HES_STOPPED)
3547 return 0;
3548
3549 if (event->state != PERF_EVENT_STATE_ACTIVE)
3550 return 0;
3551
3552 return event->pmu->event_idx(event);
3553 }
3554
3555 static void calc_timer_values(struct perf_event *event,
3556 u64 *now,
3557 u64 *enabled,
3558 u64 *running)
3559 {
3560 u64 ctx_time;
3561
3562 *now = perf_clock();
3563 ctx_time = event->shadow_ctx_time + *now;
3564 *enabled = ctx_time - event->tstamp_enabled;
3565 *running = ctx_time - event->tstamp_running;
3566 }
3567
3568 void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
3569 {
3570 }
3571
3572 /*
3573 * Callers need to ensure there can be no nesting of this function, otherwise
3574 * the seqlock logic goes bad. We can not serialize this because the arch
3575 * code calls this from NMI context.
3576 */
3577 void perf_event_update_userpage(struct perf_event *event)
3578 {
3579 struct perf_event_mmap_page *userpg;
3580 struct ring_buffer *rb;
3581 u64 enabled, running, now;
3582
3583 rcu_read_lock();
3584 /*
3585 * compute total_time_enabled, total_time_running
3586 * based on snapshot values taken when the event
3587 * was last scheduled in.
3588 *
3589 * we cannot simply called update_context_time()
3590 * because of locking issue as we can be called in
3591 * NMI context
3592 */
3593 calc_timer_values(event, &now, &enabled, &running);
3594 rb = rcu_dereference(event->rb);
3595 if (!rb)
3596 goto unlock;
3597
3598 userpg = rb->user_page;
3599
3600 /*
3601 * Disable preemption so as to not let the corresponding user-space
3602 * spin too long if we get preempted.
3603 */
3604 preempt_disable();
3605 ++userpg->lock;
3606 barrier();
3607 userpg->index = perf_event_index(event);
3608 userpg->offset = perf_event_count(event);
3609 if (userpg->index)
3610 userpg->offset -= local64_read(&event->hw.prev_count);
3611
3612 userpg->time_enabled = enabled +
3613 atomic64_read(&event->child_total_time_enabled);
3614
3615 userpg->time_running = running +
3616 atomic64_read(&event->child_total_time_running);
3617
3618 arch_perf_update_userpage(userpg, now);
3619
3620 barrier();
3621 ++userpg->lock;
3622 preempt_enable();
3623 unlock:
3624 rcu_read_unlock();
3625 }
3626
3627 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3628 {
3629 struct perf_event *event = vma->vm_file->private_data;
3630 struct ring_buffer *rb;
3631 int ret = VM_FAULT_SIGBUS;
3632
3633 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3634 if (vmf->pgoff == 0)
3635 ret = 0;
3636 return ret;
3637 }
3638
3639 rcu_read_lock();
3640 rb = rcu_dereference(event->rb);
3641 if (!rb)
3642 goto unlock;
3643
3644 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3645 goto unlock;
3646
3647 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
3648 if (!vmf->page)
3649 goto unlock;
3650
3651 get_page(vmf->page);
3652 vmf->page->mapping = vma->vm_file->f_mapping;
3653 vmf->page->index = vmf->pgoff;
3654
3655 ret = 0;
3656 unlock:
3657 rcu_read_unlock();
3658
3659 return ret;
3660 }
3661
3662 static void ring_buffer_attach(struct perf_event *event,
3663 struct ring_buffer *rb)
3664 {
3665 unsigned long flags;
3666
3667 if (!list_empty(&event->rb_entry))
3668 return;
3669
3670 spin_lock_irqsave(&rb->event_lock, flags);
3671 if (list_empty(&event->rb_entry))
3672 list_add(&event->rb_entry, &rb->event_list);
3673 spin_unlock_irqrestore(&rb->event_lock, flags);
3674 }
3675
3676 static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
3677 {
3678 unsigned long flags;
3679
3680 if (list_empty(&event->rb_entry))
3681 return;
3682
3683 spin_lock_irqsave(&rb->event_lock, flags);
3684 list_del_init(&event->rb_entry);
3685 wake_up_all(&event->waitq);
3686 spin_unlock_irqrestore(&rb->event_lock, flags);
3687 }
3688
3689 static void ring_buffer_wakeup(struct perf_event *event)
3690 {
3691 struct ring_buffer *rb;
3692
3693 rcu_read_lock();
3694 rb = rcu_dereference(event->rb);
3695 if (rb) {
3696 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
3697 wake_up_all(&event->waitq);
3698 }
3699 rcu_read_unlock();
3700 }
3701
3702 static void rb_free_rcu(struct rcu_head *rcu_head)
3703 {
3704 struct ring_buffer *rb;
3705
3706 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3707 rb_free(rb);
3708 }
3709
3710 static struct ring_buffer *ring_buffer_get(struct perf_event *event)
3711 {
3712 struct ring_buffer *rb;
3713
3714 rcu_read_lock();
3715 rb = rcu_dereference(event->rb);
3716 if (rb) {
3717 if (!atomic_inc_not_zero(&rb->refcount))
3718 rb = NULL;
3719 }
3720 rcu_read_unlock();
3721
3722 return rb;
3723 }
3724
3725 static void ring_buffer_put(struct ring_buffer *rb)
3726 {
3727 if (!atomic_dec_and_test(&rb->refcount))
3728 return;
3729
3730 WARN_ON_ONCE(!list_empty(&rb->event_list));
3731
3732 call_rcu(&rb->rcu_head, rb_free_rcu);
3733 }
3734
3735 static void perf_mmap_open(struct vm_area_struct *vma)
3736 {
3737 struct perf_event *event = vma->vm_file->private_data;
3738
3739 atomic_inc(&event->mmap_count);
3740 atomic_inc(&event->rb->mmap_count);
3741 }
3742
3743 /*
3744 * A buffer can be mmap()ed multiple times; either directly through the same
3745 * event, or through other events by use of perf_event_set_output().
3746 *
3747 * In order to undo the VM accounting done by perf_mmap() we need to destroy
3748 * the buffer here, where we still have a VM context. This means we need
3749 * to detach all events redirecting to us.
3750 */
3751 static void perf_mmap_close(struct vm_area_struct *vma)
3752 {
3753 struct perf_event *event = vma->vm_file->private_data;
3754
3755 struct ring_buffer *rb = event->rb;
3756 struct user_struct *mmap_user = rb->mmap_user;
3757 int mmap_locked = rb->mmap_locked;
3758 unsigned long size = perf_data_size(rb);
3759
3760 atomic_dec(&rb->mmap_count);
3761
3762 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
3763 return;
3764
3765 /* Detach current event from the buffer. */
3766 rcu_assign_pointer(event->rb, NULL);
3767 ring_buffer_detach(event, rb);
3768 mutex_unlock(&event->mmap_mutex);
3769
3770 /* If there's still other mmap()s of this buffer, we're done. */
3771 if (atomic_read(&rb->mmap_count)) {
3772 ring_buffer_put(rb); /* can't be last */
3773 return;
3774 }
3775
3776 /*
3777 * No other mmap()s, detach from all other events that might redirect
3778 * into the now unreachable buffer. Somewhat complicated by the
3779 * fact that rb::event_lock otherwise nests inside mmap_mutex.
3780 */
3781 again:
3782 rcu_read_lock();
3783 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
3784 if (!atomic_long_inc_not_zero(&event->refcount)) {
3785 /*
3786 * This event is en-route to free_event() which will
3787 * detach it and remove it from the list.
3788 */
3789 continue;
3790 }
3791 rcu_read_unlock();
3792
3793 mutex_lock(&event->mmap_mutex);
3794 /*
3795 * Check we didn't race with perf_event_set_output() which can
3796 * swizzle the rb from under us while we were waiting to
3797 * acquire mmap_mutex.
3798 *
3799 * If we find a different rb; ignore this event, a next
3800 * iteration will no longer find it on the list. We have to
3801 * still restart the iteration to make sure we're not now
3802 * iterating the wrong list.
3803 */
3804 if (event->rb == rb) {
3805 rcu_assign_pointer(event->rb, NULL);
3806 ring_buffer_detach(event, rb);
3807 ring_buffer_put(rb); /* can't be last, we still have one */
3808 }
3809 mutex_unlock(&event->mmap_mutex);
3810 put_event(event);
3811
3812 /*
3813 * Restart the iteration; either we're on the wrong list or
3814 * destroyed its integrity by doing a deletion.
3815 */
3816 goto again;
3817 }
3818 rcu_read_unlock();
3819
3820 /*
3821 * It could be there's still a few 0-ref events on the list; they'll
3822 * get cleaned up by free_event() -- they'll also still have their
3823 * ref on the rb and will free it whenever they are done with it.
3824 *
3825 * Aside from that, this buffer is 'fully' detached and unmapped,
3826 * undo the VM accounting.
3827 */
3828
3829 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
3830 vma->vm_mm->pinned_vm -= mmap_locked;
3831 free_uid(mmap_user);
3832
3833 ring_buffer_put(rb); /* could be last */
3834 }
3835
3836 static const struct vm_operations_struct perf_mmap_vmops = {
3837 .open = perf_mmap_open,
3838 .close = perf_mmap_close,
3839 .fault = perf_mmap_fault,
3840 .page_mkwrite = perf_mmap_fault,
3841 };
3842
3843 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3844 {
3845 struct perf_event *event = file->private_data;
3846 unsigned long user_locked, user_lock_limit;
3847 struct user_struct *user = current_user();
3848 unsigned long locked, lock_limit;
3849 struct ring_buffer *rb;
3850 unsigned long vma_size;
3851 unsigned long nr_pages;
3852 long user_extra, extra;
3853 int ret = 0, flags = 0;
3854
3855 /*
3856 * Don't allow mmap() of inherited per-task counters. This would
3857 * create a performance issue due to all children writing to the
3858 * same rb.
3859 */
3860 if (event->cpu == -1 && event->attr.inherit)
3861 return -EINVAL;
3862
3863 if (!(vma->vm_flags & VM_SHARED))
3864 return -EINVAL;
3865
3866 vma_size = vma->vm_end - vma->vm_start;
3867 nr_pages = (vma_size / PAGE_SIZE) - 1;
3868
3869 /*
3870 * If we have rb pages ensure they're a power-of-two number, so we
3871 * can do bitmasks instead of modulo.
3872 */
3873 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3874 return -EINVAL;
3875
3876 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3877 return -EINVAL;
3878
3879 if (vma->vm_pgoff != 0)
3880 return -EINVAL;
3881
3882 WARN_ON_ONCE(event->ctx->parent_ctx);
3883 again:
3884 mutex_lock(&event->mmap_mutex);
3885 if (event->rb) {
3886 if (event->rb->nr_pages != nr_pages) {
3887 ret = -EINVAL;
3888 goto unlock;
3889 }
3890
3891 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
3892 /*
3893 * Raced against perf_mmap_close() through
3894 * perf_event_set_output(). Try again, hope for better
3895 * luck.
3896 */
3897 mutex_unlock(&event->mmap_mutex);
3898 goto again;
3899 }
3900
3901 goto unlock;
3902 }
3903
3904 user_extra = nr_pages + 1;
3905 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3906
3907 /*
3908 * Increase the limit linearly with more CPUs:
3909 */
3910 user_lock_limit *= num_online_cpus();
3911
3912 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3913
3914 extra = 0;
3915 if (user_locked > user_lock_limit)
3916 extra = user_locked - user_lock_limit;
3917
3918 lock_limit = rlimit(RLIMIT_MEMLOCK);
3919 lock_limit >>= PAGE_SHIFT;
3920 locked = vma->vm_mm->pinned_vm + extra;
3921
3922 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3923 !capable(CAP_IPC_LOCK)) {
3924 ret = -EPERM;
3925 goto unlock;
3926 }
3927
3928 WARN_ON(event->rb);
3929
3930 if (vma->vm_flags & VM_WRITE)
3931 flags |= RING_BUFFER_WRITABLE;
3932
3933 rb = rb_alloc(nr_pages,
3934 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3935 event->cpu, flags);
3936
3937 if (!rb) {
3938 ret = -ENOMEM;
3939 goto unlock;
3940 }
3941
3942 atomic_set(&rb->mmap_count, 1);
3943 rb->mmap_locked = extra;
3944 rb->mmap_user = get_current_user();
3945
3946 atomic_long_add(user_extra, &user->locked_vm);
3947 vma->vm_mm->pinned_vm += extra;
3948
3949 ring_buffer_attach(event, rb);
3950 rcu_assign_pointer(event->rb, rb);
3951
3952 perf_event_update_userpage(event);
3953
3954 unlock:
3955 if (!ret)
3956 atomic_inc(&event->mmap_count);
3957 mutex_unlock(&event->mmap_mutex);
3958
3959 /*
3960 * Since pinned accounting is per vm we cannot allow fork() to copy our
3961 * vma.
3962 */
3963 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
3964 vma->vm_ops = &perf_mmap_vmops;
3965
3966 return ret;
3967 }
3968
3969 static int perf_fasync(int fd, struct file *filp, int on)
3970 {
3971 struct inode *inode = file_inode(filp);
3972 struct perf_event *event = filp->private_data;
3973 int retval;
3974
3975 mutex_lock(&inode->i_mutex);
3976 retval = fasync_helper(fd, filp, on, &event->fasync);
3977 mutex_unlock(&inode->i_mutex);
3978
3979 if (retval < 0)
3980 return retval;
3981
3982 return 0;
3983 }
3984
3985 static const struct file_operations perf_fops = {
3986 .llseek = no_llseek,
3987 .release = perf_release,
3988 .read = perf_read,
3989 .poll = perf_poll,
3990 .unlocked_ioctl = perf_ioctl,
3991 .compat_ioctl = perf_compat_ioctl,
3992 .mmap = perf_mmap,
3993 .fasync = perf_fasync,
3994 };
3995
3996 /*
3997 * Perf event wakeup
3998 *
3999 * If there's data, ensure we set the poll() state and publish everything
4000 * to user-space before waking everybody up.
4001 */
4002
4003 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4004 {
4005 /* only the parent has fasync state */
4006 if (event->parent)
4007 event = event->parent;
4008 return &event->fasync;
4009 }
4010
4011 void perf_event_wakeup(struct perf_event *event)
4012 {
4013 ring_buffer_wakeup(event);
4014
4015 if (event->pending_kill) {
4016 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
4017 event->pending_kill = 0;
4018 }
4019 }
4020
4021 static void perf_pending_event(struct irq_work *entry)
4022 {
4023 struct perf_event *event = container_of(entry,
4024 struct perf_event, pending);
4025 int rctx;
4026
4027 rctx = perf_swevent_get_recursion_context();
4028 /*
4029 * If we 'fail' here, that's OK, it means recursion is already disabled
4030 * and we won't recurse 'further'.
4031 */
4032
4033 if (event->pending_disable) {
4034 event->pending_disable = 0;
4035 __perf_event_disable(event);
4036 }
4037
4038 if (event->pending_wakeup) {
4039 event->pending_wakeup = 0;
4040 perf_event_wakeup(event);
4041 }
4042
4043 if (rctx >= 0)
4044 perf_swevent_put_recursion_context(rctx);
4045 }
4046
4047 /*
4048 * We assume there is only KVM supporting the callbacks.
4049 * Later on, we might change it to a list if there is
4050 * another virtualization implementation supporting the callbacks.
4051 */
4052 struct perf_guest_info_callbacks *perf_guest_cbs;
4053
4054 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4055 {
4056 perf_guest_cbs = cbs;
4057 return 0;
4058 }
4059 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4060
4061 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4062 {
4063 perf_guest_cbs = NULL;
4064 return 0;
4065 }
4066 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4067
4068 static void
4069 perf_output_sample_regs(struct perf_output_handle *handle,
4070 struct pt_regs *regs, u64 mask)
4071 {
4072 int bit;
4073
4074 for_each_set_bit(bit, (const unsigned long *) &mask,
4075 sizeof(mask) * BITS_PER_BYTE) {
4076 u64 val;
4077
4078 val = perf_reg_value(regs, bit);
4079 perf_output_put(handle, val);
4080 }
4081 }
4082
4083 static void perf_sample_regs_user(struct perf_regs_user *regs_user,
4084 struct pt_regs *regs)
4085 {
4086 if (!user_mode(regs)) {
4087 if (current->mm)
4088 regs = task_pt_regs(current);
4089 else
4090 regs = NULL;
4091 }
4092
4093 if (regs) {
4094 regs_user->regs = regs;
4095 regs_user->abi = perf_reg_abi(current);
4096 }
4097 }
4098
4099 /*
4100 * Get remaining task size from user stack pointer.
4101 *
4102 * It'd be better to take stack vma map and limit this more
4103 * precisly, but there's no way to get it safely under interrupt,
4104 * so using TASK_SIZE as limit.
4105 */
4106 static u64 perf_ustack_task_size(struct pt_regs *regs)
4107 {
4108 unsigned long addr = perf_user_stack_pointer(regs);
4109
4110 if (!addr || addr >= TASK_SIZE)
4111 return 0;
4112
4113 return TASK_SIZE - addr;
4114 }
4115
4116 static u16
4117 perf_sample_ustack_size(u16 stack_size, u16 header_size,
4118 struct pt_regs *regs)
4119 {
4120 u64 task_size;
4121
4122 /* No regs, no stack pointer, no dump. */
4123 if (!regs)
4124 return 0;
4125
4126 /*
4127 * Check if we fit in with the requested stack size into the:
4128 * - TASK_SIZE
4129 * If we don't, we limit the size to the TASK_SIZE.
4130 *
4131 * - remaining sample size
4132 * If we don't, we customize the stack size to
4133 * fit in to the remaining sample size.
4134 */
4135
4136 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
4137 stack_size = min(stack_size, (u16) task_size);
4138
4139 /* Current header size plus static size and dynamic size. */
4140 header_size += 2 * sizeof(u64);
4141
4142 /* Do we fit in with the current stack dump size? */
4143 if ((u16) (header_size + stack_size) < header_size) {
4144 /*
4145 * If we overflow the maximum size for the sample,
4146 * we customize the stack dump size to fit in.
4147 */
4148 stack_size = USHRT_MAX - header_size - sizeof(u64);
4149 stack_size = round_up(stack_size, sizeof(u64));
4150 }
4151
4152 return stack_size;
4153 }
4154
4155 static void
4156 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4157 struct pt_regs *regs)
4158 {
4159 /* Case of a kernel thread, nothing to dump */
4160 if (!regs) {
4161 u64 size = 0;
4162 perf_output_put(handle, size);
4163 } else {
4164 unsigned long sp;
4165 unsigned int rem;
4166 u64 dyn_size;
4167
4168 /*
4169 * We dump:
4170 * static size
4171 * - the size requested by user or the best one we can fit
4172 * in to the sample max size
4173 * data
4174 * - user stack dump data
4175 * dynamic size
4176 * - the actual dumped size
4177 */
4178
4179 /* Static size. */
4180 perf_output_put(handle, dump_size);
4181
4182 /* Data. */
4183 sp = perf_user_stack_pointer(regs);
4184 rem = __output_copy_user(handle, (void *) sp, dump_size);
4185 dyn_size = dump_size - rem;
4186
4187 perf_output_skip(handle, rem);
4188
4189 /* Dynamic size. */
4190 perf_output_put(handle, dyn_size);
4191 }
4192 }
4193
4194 static void __perf_event_header__init_id(struct perf_event_header *header,
4195 struct perf_sample_data *data,
4196 struct perf_event *event)
4197 {
4198 u64 sample_type = event->attr.sample_type;
4199
4200 data->type = sample_type;
4201 header->size += event->id_header_size;
4202
4203 if (sample_type & PERF_SAMPLE_TID) {
4204 /* namespace issues */
4205 data->tid_entry.pid = perf_event_pid(event, current);
4206 data->tid_entry.tid = perf_event_tid(event, current);
4207 }
4208
4209 if (sample_type & PERF_SAMPLE_TIME)
4210 data->time = perf_clock();
4211
4212 if (sample_type & PERF_SAMPLE_ID)
4213 data->id = primary_event_id(event);
4214
4215 if (sample_type & PERF_SAMPLE_STREAM_ID)
4216 data->stream_id = event->id;
4217
4218 if (sample_type & PERF_SAMPLE_CPU) {
4219 data->cpu_entry.cpu = raw_smp_processor_id();
4220 data->cpu_entry.reserved = 0;
4221 }
4222 }
4223
4224 void perf_event_header__init_id(struct perf_event_header *header,
4225 struct perf_sample_data *data,
4226 struct perf_event *event)
4227 {
4228 if (event->attr.sample_id_all)
4229 __perf_event_header__init_id(header, data, event);
4230 }
4231
4232 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4233 struct perf_sample_data *data)
4234 {
4235 u64 sample_type = data->type;
4236
4237 if (sample_type & PERF_SAMPLE_TID)
4238 perf_output_put(handle, data->tid_entry);
4239
4240 if (sample_type & PERF_SAMPLE_TIME)
4241 perf_output_put(handle, data->time);
4242
4243 if (sample_type & PERF_SAMPLE_ID)
4244 perf_output_put(handle, data->id);
4245
4246 if (sample_type & PERF_SAMPLE_STREAM_ID)
4247 perf_output_put(handle, data->stream_id);
4248
4249 if (sample_type & PERF_SAMPLE_CPU)
4250 perf_output_put(handle, data->cpu_entry);
4251 }
4252
4253 void perf_event__output_id_sample(struct perf_event *event,
4254 struct perf_output_handle *handle,
4255 struct perf_sample_data *sample)
4256 {
4257 if (event->attr.sample_id_all)
4258 __perf_event__output_id_sample(handle, sample);
4259 }
4260
4261 static void perf_output_read_one(struct perf_output_handle *handle,
4262 struct perf_event *event,
4263 u64 enabled, u64 running)
4264 {
4265 u64 read_format = event->attr.read_format;
4266 u64 values[4];
4267 int n = 0;
4268
4269 values[n++] = perf_event_count(event);
4270 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4271 values[n++] = enabled +
4272 atomic64_read(&event->child_total_time_enabled);
4273 }
4274 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4275 values[n++] = running +
4276 atomic64_read(&event->child_total_time_running);
4277 }
4278 if (read_format & PERF_FORMAT_ID)
4279 values[n++] = primary_event_id(event);
4280
4281 __output_copy(handle, values, n * sizeof(u64));
4282 }
4283
4284 /*
4285 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4286 */
4287 static void perf_output_read_group(struct perf_output_handle *handle,
4288 struct perf_event *event,
4289 u64 enabled, u64 running)
4290 {
4291 struct perf_event *leader = event->group_leader, *sub;
4292 u64 read_format = event->attr.read_format;
4293 u64 values[5];
4294 int n = 0;
4295
4296 values[n++] = 1 + leader->nr_siblings;
4297
4298 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4299 values[n++] = enabled;
4300
4301 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4302 values[n++] = running;
4303
4304 if (leader != event)
4305 leader->pmu->read(leader);
4306
4307 values[n++] = perf_event_count(leader);
4308 if (read_format & PERF_FORMAT_ID)
4309 values[n++] = primary_event_id(leader);
4310
4311 __output_copy(handle, values, n * sizeof(u64));
4312
4313 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4314 n = 0;
4315
4316 if (sub != event)
4317 sub->pmu->read(sub);
4318
4319 values[n++] = perf_event_count(sub);
4320 if (read_format & PERF_FORMAT_ID)
4321 values[n++] = primary_event_id(sub);
4322
4323 __output_copy(handle, values, n * sizeof(u64));
4324 }
4325 }
4326
4327 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4328 PERF_FORMAT_TOTAL_TIME_RUNNING)
4329
4330 static void perf_output_read(struct perf_output_handle *handle,
4331 struct perf_event *event)
4332 {
4333 u64 enabled = 0, running = 0, now;
4334 u64 read_format = event->attr.read_format;
4335
4336 /*
4337 * compute total_time_enabled, total_time_running
4338 * based on snapshot values taken when the event
4339 * was last scheduled in.
4340 *
4341 * we cannot simply called update_context_time()
4342 * because of locking issue as we are called in
4343 * NMI context
4344 */
4345 if (read_format & PERF_FORMAT_TOTAL_TIMES)
4346 calc_timer_values(event, &now, &enabled, &running);
4347
4348 if (event->attr.read_format & PERF_FORMAT_GROUP)
4349 perf_output_read_group(handle, event, enabled, running);
4350 else
4351 perf_output_read_one(handle, event, enabled, running);
4352 }
4353
4354 void perf_output_sample(struct perf_output_handle *handle,
4355 struct perf_event_header *header,
4356 struct perf_sample_data *data,
4357 struct perf_event *event)
4358 {
4359 u64 sample_type = data->type;
4360
4361 perf_output_put(handle, *header);
4362
4363 if (sample_type & PERF_SAMPLE_IP)
4364 perf_output_put(handle, data->ip);
4365
4366 if (sample_type & PERF_SAMPLE_TID)
4367 perf_output_put(handle, data->tid_entry);
4368
4369 if (sample_type & PERF_SAMPLE_TIME)
4370 perf_output_put(handle, data->time);
4371
4372 if (sample_type & PERF_SAMPLE_ADDR)
4373 perf_output_put(handle, data->addr);
4374
4375 if (sample_type & PERF_SAMPLE_ID)
4376 perf_output_put(handle, data->id);
4377
4378 if (sample_type & PERF_SAMPLE_STREAM_ID)
4379 perf_output_put(handle, data->stream_id);
4380
4381 if (sample_type & PERF_SAMPLE_CPU)
4382 perf_output_put(handle, data->cpu_entry);
4383
4384 if (sample_type & PERF_SAMPLE_PERIOD)
4385 perf_output_put(handle, data->period);
4386
4387 if (sample_type & PERF_SAMPLE_READ)
4388 perf_output_read(handle, event);
4389
4390 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4391 if (data->callchain) {
4392 int size = 1;
4393
4394 if (data->callchain)
4395 size += data->callchain->nr;
4396
4397 size *= sizeof(u64);
4398
4399 __output_copy(handle, data->callchain, size);
4400 } else {
4401 u64 nr = 0;
4402 perf_output_put(handle, nr);
4403 }
4404 }
4405
4406 if (sample_type & PERF_SAMPLE_RAW) {
4407 if (data->raw) {
4408 perf_output_put(handle, data->raw->size);
4409 __output_copy(handle, data->raw->data,
4410 data->raw->size);
4411 } else {
4412 struct {
4413 u32 size;
4414 u32 data;
4415 } raw = {
4416 .size = sizeof(u32),
4417 .data = 0,
4418 };
4419 perf_output_put(handle, raw);
4420 }
4421 }
4422
4423 if (!event->attr.watermark) {
4424 int wakeup_events = event->attr.wakeup_events;
4425
4426 if (wakeup_events) {
4427 struct ring_buffer *rb = handle->rb;
4428 int events = local_inc_return(&rb->events);
4429
4430 if (events >= wakeup_events) {
4431 local_sub(wakeup_events, &rb->events);
4432 local_inc(&rb->wakeup);
4433 }
4434 }
4435 }
4436
4437 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4438 if (data->br_stack) {
4439 size_t size;
4440
4441 size = data->br_stack->nr
4442 * sizeof(struct perf_branch_entry);
4443
4444 perf_output_put(handle, data->br_stack->nr);
4445 perf_output_copy(handle, data->br_stack->entries, size);
4446 } else {
4447 /*
4448 * we always store at least the value of nr
4449 */
4450 u64 nr = 0;
4451 perf_output_put(handle, nr);
4452 }
4453 }
4454
4455 if (sample_type & PERF_SAMPLE_REGS_USER) {
4456 u64 abi = data->regs_user.abi;
4457
4458 /*
4459 * If there are no regs to dump, notice it through
4460 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4461 */
4462 perf_output_put(handle, abi);
4463
4464 if (abi) {
4465 u64 mask = event->attr.sample_regs_user;
4466 perf_output_sample_regs(handle,
4467 data->regs_user.regs,
4468 mask);
4469 }
4470 }
4471
4472 if (sample_type & PERF_SAMPLE_STACK_USER)
4473 perf_output_sample_ustack(handle,
4474 data->stack_user_size,
4475 data->regs_user.regs);
4476
4477 if (sample_type & PERF_SAMPLE_WEIGHT)
4478 perf_output_put(handle, data->weight);
4479
4480 if (sample_type & PERF_SAMPLE_DATA_SRC)
4481 perf_output_put(handle, data->data_src.val);
4482 }
4483
4484 void perf_prepare_sample(struct perf_event_header *header,
4485 struct perf_sample_data *data,
4486 struct perf_event *event,
4487 struct pt_regs *regs)
4488 {
4489 u64 sample_type = event->attr.sample_type;
4490
4491 header->type = PERF_RECORD_SAMPLE;
4492 header->size = sizeof(*header) + event->header_size;
4493
4494 header->misc = 0;
4495 header->misc |= perf_misc_flags(regs);
4496
4497 __perf_event_header__init_id(header, data, event);
4498
4499 if (sample_type & PERF_SAMPLE_IP)
4500 data->ip = perf_instruction_pointer(regs);
4501
4502 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4503 int size = 1;
4504
4505 data->callchain = perf_callchain(event, regs);
4506
4507 if (data->callchain)
4508 size += data->callchain->nr;
4509
4510 header->size += size * sizeof(u64);
4511 }
4512
4513 if (sample_type & PERF_SAMPLE_RAW) {
4514 int size = sizeof(u32);
4515
4516 if (data->raw)
4517 size += data->raw->size;
4518 else
4519 size += sizeof(u32);
4520
4521 WARN_ON_ONCE(size & (sizeof(u64)-1));
4522 header->size += size;
4523 }
4524
4525 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4526 int size = sizeof(u64); /* nr */
4527 if (data->br_stack) {
4528 size += data->br_stack->nr
4529 * sizeof(struct perf_branch_entry);
4530 }
4531 header->size += size;
4532 }
4533
4534 if (sample_type & PERF_SAMPLE_REGS_USER) {
4535 /* regs dump ABI info */
4536 int size = sizeof(u64);
4537
4538 perf_sample_regs_user(&data->regs_user, regs);
4539
4540 if (data->regs_user.regs) {
4541 u64 mask = event->attr.sample_regs_user;
4542 size += hweight64(mask) * sizeof(u64);
4543 }
4544
4545 header->size += size;
4546 }
4547
4548 if (sample_type & PERF_SAMPLE_STACK_USER) {
4549 /*
4550 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4551 * processed as the last one or have additional check added
4552 * in case new sample type is added, because we could eat
4553 * up the rest of the sample size.
4554 */
4555 struct perf_regs_user *uregs = &data->regs_user;
4556 u16 stack_size = event->attr.sample_stack_user;
4557 u16 size = sizeof(u64);
4558
4559 if (!uregs->abi)
4560 perf_sample_regs_user(uregs, regs);
4561
4562 stack_size = perf_sample_ustack_size(stack_size, header->size,
4563 uregs->regs);
4564
4565 /*
4566 * If there is something to dump, add space for the dump
4567 * itself and for the field that tells the dynamic size,
4568 * which is how many have been actually dumped.
4569 */
4570 if (stack_size)
4571 size += sizeof(u64) + stack_size;
4572
4573 data->stack_user_size = stack_size;
4574 header->size += size;
4575 }
4576 }
4577
4578 static void perf_event_output(struct perf_event *event,
4579 struct perf_sample_data *data,
4580 struct pt_regs *regs)
4581 {
4582 struct perf_output_handle handle;
4583 struct perf_event_header header;
4584
4585 /* protect the callchain buffers */
4586 rcu_read_lock();
4587
4588 perf_prepare_sample(&header, data, event, regs);
4589
4590 if (perf_output_begin(&handle, event, header.size))
4591 goto exit;
4592
4593 perf_output_sample(&handle, &header, data, event);
4594
4595 perf_output_end(&handle);
4596
4597 exit:
4598 rcu_read_unlock();
4599 }
4600
4601 /*
4602 * read event_id
4603 */
4604
4605 struct perf_read_event {
4606 struct perf_event_header header;
4607
4608 u32 pid;
4609 u32 tid;
4610 };
4611
4612 static void
4613 perf_event_read_event(struct perf_event *event,
4614 struct task_struct *task)
4615 {
4616 struct perf_output_handle handle;
4617 struct perf_sample_data sample;
4618 struct perf_read_event read_event = {
4619 .header = {
4620 .type = PERF_RECORD_READ,
4621 .misc = 0,
4622 .size = sizeof(read_event) + event->read_size,
4623 },
4624 .pid = perf_event_pid(event, task),
4625 .tid = perf_event_tid(event, task),
4626 };
4627 int ret;
4628
4629 perf_event_header__init_id(&read_event.header, &sample, event);
4630 ret = perf_output_begin(&handle, event, read_event.header.size);
4631 if (ret)
4632 return;
4633
4634 perf_output_put(&handle, read_event);
4635 perf_output_read(&handle, event);
4636 perf_event__output_id_sample(event, &handle, &sample);
4637
4638 perf_output_end(&handle);
4639 }
4640
4641 typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4642 typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4643
4644 static void
4645 perf_event_aux_ctx(struct perf_event_context *ctx,
4646 perf_event_aux_match_cb match,
4647 perf_event_aux_output_cb output,
4648 void *data)
4649 {
4650 struct perf_event *event;
4651
4652 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4653 if (event->state < PERF_EVENT_STATE_INACTIVE)
4654 continue;
4655 if (!event_filter_match(event))
4656 continue;
4657 if (match(event, data))
4658 output(event, data);
4659 }
4660 }
4661
4662 static void
4663 perf_event_aux(perf_event_aux_match_cb match,
4664 perf_event_aux_output_cb output,
4665 void *data,
4666 struct perf_event_context *task_ctx)
4667 {
4668 struct perf_cpu_context *cpuctx;
4669 struct perf_event_context *ctx;
4670 struct pmu *pmu;
4671 int ctxn;
4672
4673 rcu_read_lock();
4674 list_for_each_entry_rcu(pmu, &pmus, entry) {
4675 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4676 if (cpuctx->unique_pmu != pmu)
4677 goto next;
4678 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4679 if (task_ctx)
4680 goto next;
4681 ctxn = pmu->task_ctx_nr;
4682 if (ctxn < 0)
4683 goto next;
4684 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4685 if (ctx)
4686 perf_event_aux_ctx(ctx, match, output, data);
4687 next:
4688 put_cpu_ptr(pmu->pmu_cpu_context);
4689 }
4690
4691 if (task_ctx) {
4692 preempt_disable();
4693 perf_event_aux_ctx(task_ctx, match, output, data);
4694 preempt_enable();
4695 }
4696 rcu_read_unlock();
4697 }
4698
4699 /*
4700 * task tracking -- fork/exit
4701 *
4702 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4703 */
4704
4705 struct perf_task_event {
4706 struct task_struct *task;
4707 struct perf_event_context *task_ctx;
4708
4709 struct {
4710 struct perf_event_header header;
4711
4712 u32 pid;
4713 u32 ppid;
4714 u32 tid;
4715 u32 ptid;
4716 u64 time;
4717 } event_id;
4718 };
4719
4720 static void perf_event_task_output(struct perf_event *event,
4721 void *data)
4722 {
4723 struct perf_task_event *task_event = data;
4724 struct perf_output_handle handle;
4725 struct perf_sample_data sample;
4726 struct task_struct *task = task_event->task;
4727 int ret, size = task_event->event_id.header.size;
4728
4729 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4730
4731 ret = perf_output_begin(&handle, event,
4732 task_event->event_id.header.size);
4733 if (ret)
4734 goto out;
4735
4736 task_event->event_id.pid = perf_event_pid(event, task);
4737 task_event->event_id.ppid = perf_event_pid(event, current);
4738
4739 task_event->event_id.tid = perf_event_tid(event, task);
4740 task_event->event_id.ptid = perf_event_tid(event, current);
4741
4742 perf_output_put(&handle, task_event->event_id);
4743
4744 perf_event__output_id_sample(event, &handle, &sample);
4745
4746 perf_output_end(&handle);
4747 out:
4748 task_event->event_id.header.size = size;
4749 }
4750
4751 static int perf_event_task_match(struct perf_event *event,
4752 void *data __maybe_unused)
4753 {
4754 return event->attr.comm || event->attr.mmap ||
4755 event->attr.mmap_data || event->attr.task;
4756 }
4757
4758 static void perf_event_task(struct task_struct *task,
4759 struct perf_event_context *task_ctx,
4760 int new)
4761 {
4762 struct perf_task_event task_event;
4763
4764 if (!atomic_read(&nr_comm_events) &&
4765 !atomic_read(&nr_mmap_events) &&
4766 !atomic_read(&nr_task_events))
4767 return;
4768
4769 task_event = (struct perf_task_event){
4770 .task = task,
4771 .task_ctx = task_ctx,
4772 .event_id = {
4773 .header = {
4774 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4775 .misc = 0,
4776 .size = sizeof(task_event.event_id),
4777 },
4778 /* .pid */
4779 /* .ppid */
4780 /* .tid */
4781 /* .ptid */
4782 .time = perf_clock(),
4783 },
4784 };
4785
4786 perf_event_aux(perf_event_task_match,
4787 perf_event_task_output,
4788 &task_event,
4789 task_ctx);
4790 }
4791
4792 void perf_event_fork(struct task_struct *task)
4793 {
4794 perf_event_task(task, NULL, 1);
4795 }
4796
4797 /*
4798 * comm tracking
4799 */
4800
4801 struct perf_comm_event {
4802 struct task_struct *task;
4803 char *comm;
4804 int comm_size;
4805
4806 struct {
4807 struct perf_event_header header;
4808
4809 u32 pid;
4810 u32 tid;
4811 } event_id;
4812 };
4813
4814 static void perf_event_comm_output(struct perf_event *event,
4815 void *data)
4816 {
4817 struct perf_comm_event *comm_event = data;
4818 struct perf_output_handle handle;
4819 struct perf_sample_data sample;
4820 int size = comm_event->event_id.header.size;
4821 int ret;
4822
4823 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4824 ret = perf_output_begin(&handle, event,
4825 comm_event->event_id.header.size);
4826
4827 if (ret)
4828 goto out;
4829
4830 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4831 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4832
4833 perf_output_put(&handle, comm_event->event_id);
4834 __output_copy(&handle, comm_event->comm,
4835 comm_event->comm_size);
4836
4837 perf_event__output_id_sample(event, &handle, &sample);
4838
4839 perf_output_end(&handle);
4840 out:
4841 comm_event->event_id.header.size = size;
4842 }
4843
4844 static int perf_event_comm_match(struct perf_event *event,
4845 void *data __maybe_unused)
4846 {
4847 return event->attr.comm;
4848 }
4849
4850 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4851 {
4852 char comm[TASK_COMM_LEN];
4853 unsigned int size;
4854
4855 memset(comm, 0, sizeof(comm));
4856 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4857 size = ALIGN(strlen(comm)+1, sizeof(u64));
4858
4859 comm_event->comm = comm;
4860 comm_event->comm_size = size;
4861
4862 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4863
4864 perf_event_aux(perf_event_comm_match,
4865 perf_event_comm_output,
4866 comm_event,
4867 NULL);
4868 }
4869
4870 void perf_event_comm(struct task_struct *task)
4871 {
4872 struct perf_comm_event comm_event;
4873 struct perf_event_context *ctx;
4874 int ctxn;
4875
4876 rcu_read_lock();
4877 for_each_task_context_nr(ctxn) {
4878 ctx = task->perf_event_ctxp[ctxn];
4879 if (!ctx)
4880 continue;
4881
4882 perf_event_enable_on_exec(ctx);
4883 }
4884 rcu_read_unlock();
4885
4886 if (!atomic_read(&nr_comm_events))
4887 return;
4888
4889 comm_event = (struct perf_comm_event){
4890 .task = task,
4891 /* .comm */
4892 /* .comm_size */
4893 .event_id = {
4894 .header = {
4895 .type = PERF_RECORD_COMM,
4896 .misc = 0,
4897 /* .size */
4898 },
4899 /* .pid */
4900 /* .tid */
4901 },
4902 };
4903
4904 perf_event_comm_event(&comm_event);
4905 }
4906
4907 /*
4908 * mmap tracking
4909 */
4910
4911 struct perf_mmap_event {
4912 struct vm_area_struct *vma;
4913
4914 const char *file_name;
4915 int file_size;
4916
4917 struct {
4918 struct perf_event_header header;
4919
4920 u32 pid;
4921 u32 tid;
4922 u64 start;
4923 u64 len;
4924 u64 pgoff;
4925 } event_id;
4926 };
4927
4928 static void perf_event_mmap_output(struct perf_event *event,
4929 void *data)
4930 {
4931 struct perf_mmap_event *mmap_event = data;
4932 struct perf_output_handle handle;
4933 struct perf_sample_data sample;
4934 int size = mmap_event->event_id.header.size;
4935 int ret;
4936
4937 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4938 ret = perf_output_begin(&handle, event,
4939 mmap_event->event_id.header.size);
4940 if (ret)
4941 goto out;
4942
4943 mmap_event->event_id.pid = perf_event_pid(event, current);
4944 mmap_event->event_id.tid = perf_event_tid(event, current);
4945
4946 perf_output_put(&handle, mmap_event->event_id);
4947 __output_copy(&handle, mmap_event->file_name,
4948 mmap_event->file_size);
4949
4950 perf_event__output_id_sample(event, &handle, &sample);
4951
4952 perf_output_end(&handle);
4953 out:
4954 mmap_event->event_id.header.size = size;
4955 }
4956
4957 static int perf_event_mmap_match(struct perf_event *event,
4958 void *data)
4959 {
4960 struct perf_mmap_event *mmap_event = data;
4961 struct vm_area_struct *vma = mmap_event->vma;
4962 int executable = vma->vm_flags & VM_EXEC;
4963
4964 return (!executable && event->attr.mmap_data) ||
4965 (executable && event->attr.mmap);
4966 }
4967
4968 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4969 {
4970 struct vm_area_struct *vma = mmap_event->vma;
4971 struct file *file = vma->vm_file;
4972 unsigned int size;
4973 char tmp[16];
4974 char *buf = NULL;
4975 const char *name;
4976
4977 memset(tmp, 0, sizeof(tmp));
4978
4979 if (file) {
4980 /*
4981 * d_path works from the end of the rb backwards, so we
4982 * need to add enough zero bytes after the string to handle
4983 * the 64bit alignment we do later.
4984 */
4985 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4986 if (!buf) {
4987 name = strncpy(tmp, "//enomem", sizeof(tmp));
4988 goto got_name;
4989 }
4990 name = d_path(&file->f_path, buf, PATH_MAX);
4991 if (IS_ERR(name)) {
4992 name = strncpy(tmp, "//toolong", sizeof(tmp));
4993 goto got_name;
4994 }
4995 } else {
4996 if (arch_vma_name(mmap_event->vma)) {
4997 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4998 sizeof(tmp) - 1);
4999 tmp[sizeof(tmp) - 1] = '\0';
5000 goto got_name;
5001 }
5002
5003 if (!vma->vm_mm) {
5004 name = strncpy(tmp, "[vdso]", sizeof(tmp));
5005 goto got_name;
5006 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
5007 vma->vm_end >= vma->vm_mm->brk) {
5008 name = strncpy(tmp, "[heap]", sizeof(tmp));
5009 goto got_name;
5010 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
5011 vma->vm_end >= vma->vm_mm->start_stack) {
5012 name = strncpy(tmp, "[stack]", sizeof(tmp));
5013 goto got_name;
5014 }
5015
5016 name = strncpy(tmp, "//anon", sizeof(tmp));
5017 goto got_name;
5018 }
5019
5020 got_name:
5021 size = ALIGN(strlen(name)+1, sizeof(u64));
5022
5023 mmap_event->file_name = name;
5024 mmap_event->file_size = size;
5025
5026 if (!(vma->vm_flags & VM_EXEC))
5027 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
5028
5029 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
5030
5031 perf_event_aux(perf_event_mmap_match,
5032 perf_event_mmap_output,
5033 mmap_event,
5034 NULL);
5035
5036 kfree(buf);
5037 }
5038
5039 void perf_event_mmap(struct vm_area_struct *vma)
5040 {
5041 struct perf_mmap_event mmap_event;
5042
5043 if (!atomic_read(&nr_mmap_events))
5044 return;
5045
5046 mmap_event = (struct perf_mmap_event){
5047 .vma = vma,
5048 /* .file_name */
5049 /* .file_size */
5050 .event_id = {
5051 .header = {
5052 .type = PERF_RECORD_MMAP,
5053 .misc = PERF_RECORD_MISC_USER,
5054 /* .size */
5055 },
5056 /* .pid */
5057 /* .tid */
5058 .start = vma->vm_start,
5059 .len = vma->vm_end - vma->vm_start,
5060 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
5061 },
5062 };
5063
5064 perf_event_mmap_event(&mmap_event);
5065 }
5066
5067 /*
5068 * IRQ throttle logging
5069 */
5070
5071 static void perf_log_throttle(struct perf_event *event, int enable)
5072 {
5073 struct perf_output_handle handle;
5074 struct perf_sample_data sample;
5075 int ret;
5076
5077 struct {
5078 struct perf_event_header header;
5079 u64 time;
5080 u64 id;
5081 u64 stream_id;
5082 } throttle_event = {
5083 .header = {
5084 .type = PERF_RECORD_THROTTLE,
5085 .misc = 0,
5086 .size = sizeof(throttle_event),
5087 },
5088 .time = perf_clock(),
5089 .id = primary_event_id(event),
5090 .stream_id = event->id,
5091 };
5092
5093 if (enable)
5094 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
5095
5096 perf_event_header__init_id(&throttle_event.header, &sample, event);
5097
5098 ret = perf_output_begin(&handle, event,
5099 throttle_event.header.size);
5100 if (ret)
5101 return;
5102
5103 perf_output_put(&handle, throttle_event);
5104 perf_event__output_id_sample(event, &handle, &sample);
5105 perf_output_end(&handle);
5106 }
5107
5108 /*
5109 * Generic event overflow handling, sampling.
5110 */
5111
5112 static int __perf_event_overflow(struct perf_event *event,
5113 int throttle, struct perf_sample_data *data,
5114 struct pt_regs *regs)
5115 {
5116 int events = atomic_read(&event->event_limit);
5117 struct hw_perf_event *hwc = &event->hw;
5118 u64 seq;
5119 int ret = 0;
5120
5121 /*
5122 * Non-sampling counters might still use the PMI to fold short
5123 * hardware counters, ignore those.
5124 */
5125 if (unlikely(!is_sampling_event(event)))
5126 return 0;
5127
5128 seq = __this_cpu_read(perf_throttled_seq);
5129 if (seq != hwc->interrupts_seq) {
5130 hwc->interrupts_seq = seq;
5131 hwc->interrupts = 1;
5132 } else {
5133 hwc->interrupts++;
5134 if (unlikely(throttle
5135 && hwc->interrupts >= max_samples_per_tick)) {
5136 __this_cpu_inc(perf_throttled_count);
5137 hwc->interrupts = MAX_INTERRUPTS;
5138 perf_log_throttle(event, 0);
5139 ret = 1;
5140 }
5141 }
5142
5143 if (event->attr.freq) {
5144 u64 now = perf_clock();
5145 s64 delta = now - hwc->freq_time_stamp;
5146
5147 hwc->freq_time_stamp = now;
5148
5149 if (delta > 0 && delta < 2*TICK_NSEC)
5150 perf_adjust_period(event, delta, hwc->last_period, true);
5151 }
5152
5153 /*
5154 * XXX event_limit might not quite work as expected on inherited
5155 * events
5156 */
5157
5158 event->pending_kill = POLL_IN;
5159 if (events && atomic_dec_and_test(&event->event_limit)) {
5160 ret = 1;
5161 event->pending_kill = POLL_HUP;
5162 event->pending_disable = 1;
5163 irq_work_queue(&event->pending);
5164 }
5165
5166 if (event->overflow_handler)
5167 event->overflow_handler(event, data, regs);
5168 else
5169 perf_event_output(event, data, regs);
5170
5171 if (*perf_event_fasync(event) && event->pending_kill) {
5172 event->pending_wakeup = 1;
5173 irq_work_queue(&event->pending);
5174 }
5175
5176 return ret;
5177 }
5178
5179 int perf_event_overflow(struct perf_event *event,
5180 struct perf_sample_data *data,
5181 struct pt_regs *regs)
5182 {
5183 return __perf_event_overflow(event, 1, data, regs);
5184 }
5185
5186 /*
5187 * Generic software event infrastructure
5188 */
5189
5190 struct swevent_htable {
5191 struct swevent_hlist *swevent_hlist;
5192 struct mutex hlist_mutex;
5193 int hlist_refcount;
5194
5195 /* Recursion avoidance in each contexts */
5196 int recursion[PERF_NR_CONTEXTS];
5197 };
5198
5199 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5200
5201 /*
5202 * We directly increment event->count and keep a second value in
5203 * event->hw.period_left to count intervals. This period event
5204 * is kept in the range [-sample_period, 0] so that we can use the
5205 * sign as trigger.
5206 */
5207
5208 static u64 perf_swevent_set_period(struct perf_event *event)
5209 {
5210 struct hw_perf_event *hwc = &event->hw;
5211 u64 period = hwc->last_period;
5212 u64 nr, offset;
5213 s64 old, val;
5214
5215 hwc->last_period = hwc->sample_period;
5216
5217 again:
5218 old = val = local64_read(&hwc->period_left);
5219 if (val < 0)
5220 return 0;
5221
5222 nr = div64_u64(period + val, period);
5223 offset = nr * period;
5224 val -= offset;
5225 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5226 goto again;
5227
5228 return nr;
5229 }
5230
5231 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5232 struct perf_sample_data *data,
5233 struct pt_regs *regs)
5234 {
5235 struct hw_perf_event *hwc = &event->hw;
5236 int throttle = 0;
5237
5238 if (!overflow)
5239 overflow = perf_swevent_set_period(event);
5240
5241 if (hwc->interrupts == MAX_INTERRUPTS)
5242 return;
5243
5244 for (; overflow; overflow--) {
5245 if (__perf_event_overflow(event, throttle,
5246 data, regs)) {
5247 /*
5248 * We inhibit the overflow from happening when
5249 * hwc->interrupts == MAX_INTERRUPTS.
5250 */
5251 break;
5252 }
5253 throttle = 1;
5254 }
5255 }
5256
5257 static void perf_swevent_event(struct perf_event *event, u64 nr,
5258 struct perf_sample_data *data,
5259 struct pt_regs *regs)
5260 {
5261 struct hw_perf_event *hwc = &event->hw;
5262
5263 local64_add(nr, &event->count);
5264
5265 if (!regs)
5266 return;
5267
5268 if (!is_sampling_event(event))
5269 return;
5270
5271 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5272 data->period = nr;
5273 return perf_swevent_overflow(event, 1, data, regs);
5274 } else
5275 data->period = event->hw.last_period;
5276
5277 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5278 return perf_swevent_overflow(event, 1, data, regs);
5279
5280 if (local64_add_negative(nr, &hwc->period_left))
5281 return;
5282
5283 perf_swevent_overflow(event, 0, data, regs);
5284 }
5285
5286 static int perf_exclude_event(struct perf_event *event,
5287 struct pt_regs *regs)
5288 {
5289 if (event->hw.state & PERF_HES_STOPPED)
5290 return 1;
5291
5292 if (regs) {
5293 if (event->attr.exclude_user && user_mode(regs))
5294 return 1;
5295
5296 if (event->attr.exclude_kernel && !user_mode(regs))
5297 return 1;
5298 }
5299
5300 return 0;
5301 }
5302
5303 static int perf_swevent_match(struct perf_event *event,
5304 enum perf_type_id type,
5305 u32 event_id,
5306 struct perf_sample_data *data,
5307 struct pt_regs *regs)
5308 {
5309 if (event->attr.type != type)
5310 return 0;
5311
5312 if (event->attr.config != event_id)
5313 return 0;
5314
5315 if (perf_exclude_event(event, regs))
5316 return 0;
5317
5318 return 1;
5319 }
5320
5321 static inline u64 swevent_hash(u64 type, u32 event_id)
5322 {
5323 u64 val = event_id | (type << 32);
5324
5325 return hash_64(val, SWEVENT_HLIST_BITS);
5326 }
5327
5328 static inline struct hlist_head *
5329 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5330 {
5331 u64 hash = swevent_hash(type, event_id);
5332
5333 return &hlist->heads[hash];
5334 }
5335
5336 /* For the read side: events when they trigger */
5337 static inline struct hlist_head *
5338 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5339 {
5340 struct swevent_hlist *hlist;
5341
5342 hlist = rcu_dereference(swhash->swevent_hlist);
5343 if (!hlist)
5344 return NULL;
5345
5346 return __find_swevent_head(hlist, type, event_id);
5347 }
5348
5349 /* For the event head insertion and removal in the hlist */
5350 static inline struct hlist_head *
5351 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5352 {
5353 struct swevent_hlist *hlist;
5354 u32 event_id = event->attr.config;
5355 u64 type = event->attr.type;
5356
5357 /*
5358 * Event scheduling is always serialized against hlist allocation
5359 * and release. Which makes the protected version suitable here.
5360 * The context lock guarantees that.
5361 */
5362 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5363 lockdep_is_held(&event->ctx->lock));
5364 if (!hlist)
5365 return NULL;
5366
5367 return __find_swevent_head(hlist, type, event_id);
5368 }
5369
5370 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5371 u64 nr,
5372 struct perf_sample_data *data,
5373 struct pt_regs *regs)
5374 {
5375 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5376 struct perf_event *event;
5377 struct hlist_head *head;
5378
5379 rcu_read_lock();
5380 head = find_swevent_head_rcu(swhash, type, event_id);
5381 if (!head)
5382 goto end;
5383
5384 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5385 if (perf_swevent_match(event, type, event_id, data, regs))
5386 perf_swevent_event(event, nr, data, regs);
5387 }
5388 end:
5389 rcu_read_unlock();
5390 }
5391
5392 int perf_swevent_get_recursion_context(void)
5393 {
5394 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5395
5396 return get_recursion_context(swhash->recursion);
5397 }
5398 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5399
5400 inline void perf_swevent_put_recursion_context(int rctx)
5401 {
5402 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5403
5404 put_recursion_context(swhash->recursion, rctx);
5405 }
5406
5407 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
5408 {
5409 struct perf_sample_data data;
5410 int rctx;
5411
5412 preempt_disable_notrace();
5413 rctx = perf_swevent_get_recursion_context();
5414 if (rctx < 0)
5415 return;
5416
5417 perf_sample_data_init(&data, addr, 0);
5418
5419 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
5420
5421 perf_swevent_put_recursion_context(rctx);
5422 preempt_enable_notrace();
5423 }
5424
5425 static void perf_swevent_read(struct perf_event *event)
5426 {
5427 }
5428
5429 static int perf_swevent_add(struct perf_event *event, int flags)
5430 {
5431 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5432 struct hw_perf_event *hwc = &event->hw;
5433 struct hlist_head *head;
5434
5435 if (is_sampling_event(event)) {
5436 hwc->last_period = hwc->sample_period;
5437 perf_swevent_set_period(event);
5438 }
5439
5440 hwc->state = !(flags & PERF_EF_START);
5441
5442 head = find_swevent_head(swhash, event);
5443 if (WARN_ON_ONCE(!head))
5444 return -EINVAL;
5445
5446 hlist_add_head_rcu(&event->hlist_entry, head);
5447
5448 return 0;
5449 }
5450
5451 static void perf_swevent_del(struct perf_event *event, int flags)
5452 {
5453 hlist_del_rcu(&event->hlist_entry);
5454 }
5455
5456 static void perf_swevent_start(struct perf_event *event, int flags)
5457 {
5458 event->hw.state = 0;
5459 }
5460
5461 static void perf_swevent_stop(struct perf_event *event, int flags)
5462 {
5463 event->hw.state = PERF_HES_STOPPED;
5464 }
5465
5466 /* Deref the hlist from the update side */
5467 static inline struct swevent_hlist *
5468 swevent_hlist_deref(struct swevent_htable *swhash)
5469 {
5470 return rcu_dereference_protected(swhash->swevent_hlist,
5471 lockdep_is_held(&swhash->hlist_mutex));
5472 }
5473
5474 static void swevent_hlist_release(struct swevent_htable *swhash)
5475 {
5476 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5477
5478 if (!hlist)
5479 return;
5480
5481 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5482 kfree_rcu(hlist, rcu_head);
5483 }
5484
5485 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5486 {
5487 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5488
5489 mutex_lock(&swhash->hlist_mutex);
5490
5491 if (!--swhash->hlist_refcount)
5492 swevent_hlist_release(swhash);
5493
5494 mutex_unlock(&swhash->hlist_mutex);
5495 }
5496
5497 static void swevent_hlist_put(struct perf_event *event)
5498 {
5499 int cpu;
5500
5501 if (event->cpu != -1) {
5502 swevent_hlist_put_cpu(event, event->cpu);
5503 return;
5504 }
5505
5506 for_each_possible_cpu(cpu)
5507 swevent_hlist_put_cpu(event, cpu);
5508 }
5509
5510 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5511 {
5512 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5513 int err = 0;
5514
5515 mutex_lock(&swhash->hlist_mutex);
5516 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5517 struct swevent_hlist *hlist;
5518
5519 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5520 if (!hlist) {
5521 err = -ENOMEM;
5522 goto exit;
5523 }
5524 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5525 }
5526 swhash->hlist_refcount++;
5527 exit:
5528 mutex_unlock(&swhash->hlist_mutex);
5529
5530 return err;
5531 }
5532
5533 static int swevent_hlist_get(struct perf_event *event)
5534 {
5535 int err;
5536 int cpu, failed_cpu;
5537
5538 if (event->cpu != -1)
5539 return swevent_hlist_get_cpu(event, event->cpu);
5540
5541 get_online_cpus();
5542 for_each_possible_cpu(cpu) {
5543 err = swevent_hlist_get_cpu(event, cpu);
5544 if (err) {
5545 failed_cpu = cpu;
5546 goto fail;
5547 }
5548 }
5549 put_online_cpus();
5550
5551 return 0;
5552 fail:
5553 for_each_possible_cpu(cpu) {
5554 if (cpu == failed_cpu)
5555 break;
5556 swevent_hlist_put_cpu(event, cpu);
5557 }
5558
5559 put_online_cpus();
5560 return err;
5561 }
5562
5563 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
5564
5565 static void sw_perf_event_destroy(struct perf_event *event)
5566 {
5567 u64 event_id = event->attr.config;
5568
5569 WARN_ON(event->parent);
5570
5571 static_key_slow_dec(&perf_swevent_enabled[event_id]);
5572 swevent_hlist_put(event);
5573 }
5574
5575 static int perf_swevent_init(struct perf_event *event)
5576 {
5577 u64 event_id = event->attr.config;
5578
5579 if (event->attr.type != PERF_TYPE_SOFTWARE)
5580 return -ENOENT;
5581
5582 /*
5583 * no branch sampling for software events
5584 */
5585 if (has_branch_stack(event))
5586 return -EOPNOTSUPP;
5587
5588 switch (event_id) {
5589 case PERF_COUNT_SW_CPU_CLOCK:
5590 case PERF_COUNT_SW_TASK_CLOCK:
5591 return -ENOENT;
5592
5593 default:
5594 break;
5595 }
5596
5597 if (event_id >= PERF_COUNT_SW_MAX)
5598 return -ENOENT;
5599
5600 if (!event->parent) {
5601 int err;
5602
5603 err = swevent_hlist_get(event);
5604 if (err)
5605 return err;
5606
5607 static_key_slow_inc(&perf_swevent_enabled[event_id]);
5608 event->destroy = sw_perf_event_destroy;
5609 }
5610
5611 return 0;
5612 }
5613
5614 static int perf_swevent_event_idx(struct perf_event *event)
5615 {
5616 return 0;
5617 }
5618
5619 static struct pmu perf_swevent = {
5620 .task_ctx_nr = perf_sw_context,
5621
5622 .event_init = perf_swevent_init,
5623 .add = perf_swevent_add,
5624 .del = perf_swevent_del,
5625 .start = perf_swevent_start,
5626 .stop = perf_swevent_stop,
5627 .read = perf_swevent_read,
5628
5629 .event_idx = perf_swevent_event_idx,
5630 };
5631
5632 #ifdef CONFIG_EVENT_TRACING
5633
5634 static int perf_tp_filter_match(struct perf_event *event,
5635 struct perf_sample_data *data)
5636 {
5637 void *record = data->raw->data;
5638
5639 /* only top level events have filters set */
5640 if (event->parent)
5641 event = event->parent;
5642
5643 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5644 return 1;
5645 return 0;
5646 }
5647
5648 static int perf_tp_event_match(struct perf_event *event,
5649 struct perf_sample_data *data,
5650 struct pt_regs *regs)
5651 {
5652 if (event->hw.state & PERF_HES_STOPPED)
5653 return 0;
5654 /*
5655 * All tracepoints are from kernel-space.
5656 */
5657 if (event->attr.exclude_kernel)
5658 return 0;
5659
5660 if (!perf_tp_filter_match(event, data))
5661 return 0;
5662
5663 return 1;
5664 }
5665
5666 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5667 struct pt_regs *regs, struct hlist_head *head, int rctx,
5668 struct task_struct *task)
5669 {
5670 struct perf_sample_data data;
5671 struct perf_event *event;
5672
5673 struct perf_raw_record raw = {
5674 .size = entry_size,
5675 .data = record,
5676 };
5677
5678 perf_sample_data_init(&data, addr, 0);
5679 data.raw = &raw;
5680
5681 hlist_for_each_entry_rcu(event, head, hlist_entry) {
5682 if (perf_tp_event_match(event, &data, regs))
5683 perf_swevent_event(event, count, &data, regs);
5684 }
5685
5686 /*
5687 * If we got specified a target task, also iterate its context and
5688 * deliver this event there too.
5689 */
5690 if (task && task != current) {
5691 struct perf_event_context *ctx;
5692 struct trace_entry *entry = record;
5693
5694 rcu_read_lock();
5695 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5696 if (!ctx)
5697 goto unlock;
5698
5699 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5700 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5701 continue;
5702 if (event->attr.config != entry->type)
5703 continue;
5704 if (perf_tp_event_match(event, &data, regs))
5705 perf_swevent_event(event, count, &data, regs);
5706 }
5707 unlock:
5708 rcu_read_unlock();
5709 }
5710
5711 perf_swevent_put_recursion_context(rctx);
5712 }
5713 EXPORT_SYMBOL_GPL(perf_tp_event);
5714
5715 static void tp_perf_event_destroy(struct perf_event *event)
5716 {
5717 perf_trace_destroy(event);
5718 }
5719
5720 static int perf_tp_event_init(struct perf_event *event)
5721 {
5722 int err;
5723
5724 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5725 return -ENOENT;
5726
5727 /*
5728 * no branch sampling for tracepoint events
5729 */
5730 if (has_branch_stack(event))
5731 return -EOPNOTSUPP;
5732
5733 err = perf_trace_init(event);
5734 if (err)
5735 return err;
5736
5737 event->destroy = tp_perf_event_destroy;
5738
5739 return 0;
5740 }
5741
5742 static struct pmu perf_tracepoint = {
5743 .task_ctx_nr = perf_sw_context,
5744
5745 .event_init = perf_tp_event_init,
5746 .add = perf_trace_add,
5747 .del = perf_trace_del,
5748 .start = perf_swevent_start,
5749 .stop = perf_swevent_stop,
5750 .read = perf_swevent_read,
5751
5752 .event_idx = perf_swevent_event_idx,
5753 };
5754
5755 static inline void perf_tp_register(void)
5756 {
5757 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5758 }
5759
5760 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5761 {
5762 char *filter_str;
5763 int ret;
5764
5765 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5766 return -EINVAL;
5767
5768 filter_str = strndup_user(arg, PAGE_SIZE);
5769 if (IS_ERR(filter_str))
5770 return PTR_ERR(filter_str);
5771
5772 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5773
5774 kfree(filter_str);
5775 return ret;
5776 }
5777
5778 static void perf_event_free_filter(struct perf_event *event)
5779 {
5780 ftrace_profile_free_filter(event);
5781 }
5782
5783 #else
5784
5785 static inline void perf_tp_register(void)
5786 {
5787 }
5788
5789 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5790 {
5791 return -ENOENT;
5792 }
5793
5794 static void perf_event_free_filter(struct perf_event *event)
5795 {
5796 }
5797
5798 #endif /* CONFIG_EVENT_TRACING */
5799
5800 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5801 void perf_bp_event(struct perf_event *bp, void *data)
5802 {
5803 struct perf_sample_data sample;
5804 struct pt_regs *regs = data;
5805
5806 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
5807
5808 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5809 perf_swevent_event(bp, 1, &sample, regs);
5810 }
5811 #endif
5812
5813 /*
5814 * hrtimer based swevent callback
5815 */
5816
5817 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5818 {
5819 enum hrtimer_restart ret = HRTIMER_RESTART;
5820 struct perf_sample_data data;
5821 struct pt_regs *regs;
5822 struct perf_event *event;
5823 u64 period;
5824
5825 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5826
5827 if (event->state != PERF_EVENT_STATE_ACTIVE)
5828 return HRTIMER_NORESTART;
5829
5830 event->pmu->read(event);
5831
5832 perf_sample_data_init(&data, 0, event->hw.last_period);
5833 regs = get_irq_regs();
5834
5835 if (regs && !perf_exclude_event(event, regs)) {
5836 if (!(event->attr.exclude_idle && is_idle_task(current)))
5837 if (__perf_event_overflow(event, 1, &data, regs))
5838 ret = HRTIMER_NORESTART;
5839 }
5840
5841 period = max_t(u64, 10000, event->hw.sample_period);
5842 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5843
5844 return ret;
5845 }
5846
5847 static void perf_swevent_start_hrtimer(struct perf_event *event)
5848 {
5849 struct hw_perf_event *hwc = &event->hw;
5850 s64 period;
5851
5852 if (!is_sampling_event(event))
5853 return;
5854
5855 period = local64_read(&hwc->period_left);
5856 if (period) {
5857 if (period < 0)
5858 period = 10000;
5859
5860 local64_set(&hwc->period_left, 0);
5861 } else {
5862 period = max_t(u64, 10000, hwc->sample_period);
5863 }
5864 __hrtimer_start_range_ns(&hwc->hrtimer,
5865 ns_to_ktime(period), 0,
5866 HRTIMER_MODE_REL_PINNED, 0);
5867 }
5868
5869 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5870 {
5871 struct hw_perf_event *hwc = &event->hw;
5872
5873 if (is_sampling_event(event)) {
5874 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5875 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5876
5877 hrtimer_cancel(&hwc->hrtimer);
5878 }
5879 }
5880
5881 static void perf_swevent_init_hrtimer(struct perf_event *event)
5882 {
5883 struct hw_perf_event *hwc = &event->hw;
5884
5885 if (!is_sampling_event(event))
5886 return;
5887
5888 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5889 hwc->hrtimer.function = perf_swevent_hrtimer;
5890
5891 /*
5892 * Since hrtimers have a fixed rate, we can do a static freq->period
5893 * mapping and avoid the whole period adjust feedback stuff.
5894 */
5895 if (event->attr.freq) {
5896 long freq = event->attr.sample_freq;
5897
5898 event->attr.sample_period = NSEC_PER_SEC / freq;
5899 hwc->sample_period = event->attr.sample_period;
5900 local64_set(&hwc->period_left, hwc->sample_period);
5901 hwc->last_period = hwc->sample_period;
5902 event->attr.freq = 0;
5903 }
5904 }
5905
5906 /*
5907 * Software event: cpu wall time clock
5908 */
5909
5910 static void cpu_clock_event_update(struct perf_event *event)
5911 {
5912 s64 prev;
5913 u64 now;
5914
5915 now = local_clock();
5916 prev = local64_xchg(&event->hw.prev_count, now);
5917 local64_add(now - prev, &event->count);
5918 }
5919
5920 static void cpu_clock_event_start(struct perf_event *event, int flags)
5921 {
5922 local64_set(&event->hw.prev_count, local_clock());
5923 perf_swevent_start_hrtimer(event);
5924 }
5925
5926 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5927 {
5928 perf_swevent_cancel_hrtimer(event);
5929 cpu_clock_event_update(event);
5930 }
5931
5932 static int cpu_clock_event_add(struct perf_event *event, int flags)
5933 {
5934 if (flags & PERF_EF_START)
5935 cpu_clock_event_start(event, flags);
5936
5937 return 0;
5938 }
5939
5940 static void cpu_clock_event_del(struct perf_event *event, int flags)
5941 {
5942 cpu_clock_event_stop(event, flags);
5943 }
5944
5945 static void cpu_clock_event_read(struct perf_event *event)
5946 {
5947 cpu_clock_event_update(event);
5948 }
5949
5950 static int cpu_clock_event_init(struct perf_event *event)
5951 {
5952 if (event->attr.type != PERF_TYPE_SOFTWARE)
5953 return -ENOENT;
5954
5955 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5956 return -ENOENT;
5957
5958 /*
5959 * no branch sampling for software events
5960 */
5961 if (has_branch_stack(event))
5962 return -EOPNOTSUPP;
5963
5964 perf_swevent_init_hrtimer(event);
5965
5966 return 0;
5967 }
5968
5969 static struct pmu perf_cpu_clock = {
5970 .task_ctx_nr = perf_sw_context,
5971
5972 .event_init = cpu_clock_event_init,
5973 .add = cpu_clock_event_add,
5974 .del = cpu_clock_event_del,
5975 .start = cpu_clock_event_start,
5976 .stop = cpu_clock_event_stop,
5977 .read = cpu_clock_event_read,
5978
5979 .event_idx = perf_swevent_event_idx,
5980 };
5981
5982 /*
5983 * Software event: task time clock
5984 */
5985
5986 static void task_clock_event_update(struct perf_event *event, u64 now)
5987 {
5988 u64 prev;
5989 s64 delta;
5990
5991 prev = local64_xchg(&event->hw.prev_count, now);
5992 delta = now - prev;
5993 local64_add(delta, &event->count);
5994 }
5995
5996 static void task_clock_event_start(struct perf_event *event, int flags)
5997 {
5998 local64_set(&event->hw.prev_count, event->ctx->time);
5999 perf_swevent_start_hrtimer(event);
6000 }
6001
6002 static void task_clock_event_stop(struct perf_event *event, int flags)
6003 {
6004 perf_swevent_cancel_hrtimer(event);
6005 task_clock_event_update(event, event->ctx->time);
6006 }
6007
6008 static int task_clock_event_add(struct perf_event *event, int flags)
6009 {
6010 if (flags & PERF_EF_START)
6011 task_clock_event_start(event, flags);
6012
6013 return 0;
6014 }
6015
6016 static void task_clock_event_del(struct perf_event *event, int flags)
6017 {
6018 task_clock_event_stop(event, PERF_EF_UPDATE);
6019 }
6020
6021 static void task_clock_event_read(struct perf_event *event)
6022 {
6023 u64 now = perf_clock();
6024 u64 delta = now - event->ctx->timestamp;
6025 u64 time = event->ctx->time + delta;
6026
6027 task_clock_event_update(event, time);
6028 }
6029
6030 static int task_clock_event_init(struct perf_event *event)
6031 {
6032 if (event->attr.type != PERF_TYPE_SOFTWARE)
6033 return -ENOENT;
6034
6035 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
6036 return -ENOENT;
6037
6038 /*
6039 * no branch sampling for software events
6040 */
6041 if (has_branch_stack(event))
6042 return -EOPNOTSUPP;
6043
6044 perf_swevent_init_hrtimer(event);
6045
6046 return 0;
6047 }
6048
6049 static struct pmu perf_task_clock = {
6050 .task_ctx_nr = perf_sw_context,
6051
6052 .event_init = task_clock_event_init,
6053 .add = task_clock_event_add,
6054 .del = task_clock_event_del,
6055 .start = task_clock_event_start,
6056 .stop = task_clock_event_stop,
6057 .read = task_clock_event_read,
6058
6059 .event_idx = perf_swevent_event_idx,
6060 };
6061
6062 static void perf_pmu_nop_void(struct pmu *pmu)
6063 {
6064 }
6065
6066 static int perf_pmu_nop_int(struct pmu *pmu)
6067 {
6068 return 0;
6069 }
6070
6071 static void perf_pmu_start_txn(struct pmu *pmu)
6072 {
6073 perf_pmu_disable(pmu);
6074 }
6075
6076 static int perf_pmu_commit_txn(struct pmu *pmu)
6077 {
6078 perf_pmu_enable(pmu);
6079 return 0;
6080 }
6081
6082 static void perf_pmu_cancel_txn(struct pmu *pmu)
6083 {
6084 perf_pmu_enable(pmu);
6085 }
6086
6087 static int perf_event_idx_default(struct perf_event *event)
6088 {
6089 return event->hw.idx + 1;
6090 }
6091
6092 /*
6093 * Ensures all contexts with the same task_ctx_nr have the same
6094 * pmu_cpu_context too.
6095 */
6096 static void *find_pmu_context(int ctxn)
6097 {
6098 struct pmu *pmu;
6099
6100 if (ctxn < 0)
6101 return NULL;
6102
6103 list_for_each_entry(pmu, &pmus, entry) {
6104 if (pmu->task_ctx_nr == ctxn)
6105 return pmu->pmu_cpu_context;
6106 }
6107
6108 return NULL;
6109 }
6110
6111 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
6112 {
6113 int cpu;
6114
6115 for_each_possible_cpu(cpu) {
6116 struct perf_cpu_context *cpuctx;
6117
6118 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6119
6120 if (cpuctx->unique_pmu == old_pmu)
6121 cpuctx->unique_pmu = pmu;
6122 }
6123 }
6124
6125 static void free_pmu_context(struct pmu *pmu)
6126 {
6127 struct pmu *i;
6128
6129 mutex_lock(&pmus_lock);
6130 /*
6131 * Like a real lame refcount.
6132 */
6133 list_for_each_entry(i, &pmus, entry) {
6134 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
6135 update_pmu_context(i, pmu);
6136 goto out;
6137 }
6138 }
6139
6140 free_percpu(pmu->pmu_cpu_context);
6141 out:
6142 mutex_unlock(&pmus_lock);
6143 }
6144 static struct idr pmu_idr;
6145
6146 static ssize_t
6147 type_show(struct device *dev, struct device_attribute *attr, char *page)
6148 {
6149 struct pmu *pmu = dev_get_drvdata(dev);
6150
6151 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6152 }
6153
6154 static struct device_attribute pmu_dev_attrs[] = {
6155 __ATTR_RO(type),
6156 __ATTR_NULL,
6157 };
6158
6159 static int pmu_bus_running;
6160 static struct bus_type pmu_bus = {
6161 .name = "event_source",
6162 .dev_attrs = pmu_dev_attrs,
6163 };
6164
6165 static void pmu_dev_release(struct device *dev)
6166 {
6167 kfree(dev);
6168 }
6169
6170 static int pmu_dev_alloc(struct pmu *pmu)
6171 {
6172 int ret = -ENOMEM;
6173
6174 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6175 if (!pmu->dev)
6176 goto out;
6177
6178 pmu->dev->groups = pmu->attr_groups;
6179 device_initialize(pmu->dev);
6180 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6181 if (ret)
6182 goto free_dev;
6183
6184 dev_set_drvdata(pmu->dev, pmu);
6185 pmu->dev->bus = &pmu_bus;
6186 pmu->dev->release = pmu_dev_release;
6187 ret = device_add(pmu->dev);
6188 if (ret)
6189 goto free_dev;
6190
6191 out:
6192 return ret;
6193
6194 free_dev:
6195 put_device(pmu->dev);
6196 goto out;
6197 }
6198
6199 static struct lock_class_key cpuctx_mutex;
6200 static struct lock_class_key cpuctx_lock;
6201
6202 int perf_pmu_register(struct pmu *pmu, char *name, int type)
6203 {
6204 int cpu, ret;
6205
6206 mutex_lock(&pmus_lock);
6207 ret = -ENOMEM;
6208 pmu->pmu_disable_count = alloc_percpu(int);
6209 if (!pmu->pmu_disable_count)
6210 goto unlock;
6211
6212 pmu->type = -1;
6213 if (!name)
6214 goto skip_type;
6215 pmu->name = name;
6216
6217 if (type < 0) {
6218 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6219 if (type < 0) {
6220 ret = type;
6221 goto free_pdc;
6222 }
6223 }
6224 pmu->type = type;
6225
6226 if (pmu_bus_running) {
6227 ret = pmu_dev_alloc(pmu);
6228 if (ret)
6229 goto free_idr;
6230 }
6231
6232 skip_type:
6233 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6234 if (pmu->pmu_cpu_context)
6235 goto got_cpu_context;
6236
6237 ret = -ENOMEM;
6238 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6239 if (!pmu->pmu_cpu_context)
6240 goto free_dev;
6241
6242 for_each_possible_cpu(cpu) {
6243 struct perf_cpu_context *cpuctx;
6244
6245 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6246 __perf_event_init_context(&cpuctx->ctx);
6247 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6248 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
6249 cpuctx->ctx.pmu = pmu;
6250 cpuctx->jiffies_interval = 1;
6251 INIT_LIST_HEAD(&cpuctx->rotation_list);
6252 cpuctx->unique_pmu = pmu;
6253 }
6254
6255 got_cpu_context:
6256 if (!pmu->start_txn) {
6257 if (pmu->pmu_enable) {
6258 /*
6259 * If we have pmu_enable/pmu_disable calls, install
6260 * transaction stubs that use that to try and batch
6261 * hardware accesses.
6262 */
6263 pmu->start_txn = perf_pmu_start_txn;
6264 pmu->commit_txn = perf_pmu_commit_txn;
6265 pmu->cancel_txn = perf_pmu_cancel_txn;
6266 } else {
6267 pmu->start_txn = perf_pmu_nop_void;
6268 pmu->commit_txn = perf_pmu_nop_int;
6269 pmu->cancel_txn = perf_pmu_nop_void;
6270 }
6271 }
6272
6273 if (!pmu->pmu_enable) {
6274 pmu->pmu_enable = perf_pmu_nop_void;
6275 pmu->pmu_disable = perf_pmu_nop_void;
6276 }
6277
6278 if (!pmu->event_idx)
6279 pmu->event_idx = perf_event_idx_default;
6280
6281 list_add_rcu(&pmu->entry, &pmus);
6282 ret = 0;
6283 unlock:
6284 mutex_unlock(&pmus_lock);
6285
6286 return ret;
6287
6288 free_dev:
6289 device_del(pmu->dev);
6290 put_device(pmu->dev);
6291
6292 free_idr:
6293 if (pmu->type >= PERF_TYPE_MAX)
6294 idr_remove(&pmu_idr, pmu->type);
6295
6296 free_pdc:
6297 free_percpu(pmu->pmu_disable_count);
6298 goto unlock;
6299 }
6300
6301 void perf_pmu_unregister(struct pmu *pmu)
6302 {
6303 mutex_lock(&pmus_lock);
6304 list_del_rcu(&pmu->entry);
6305 mutex_unlock(&pmus_lock);
6306
6307 /*
6308 * We dereference the pmu list under both SRCU and regular RCU, so
6309 * synchronize against both of those.
6310 */
6311 synchronize_srcu(&pmus_srcu);
6312 synchronize_rcu();
6313
6314 free_percpu(pmu->pmu_disable_count);
6315 if (pmu->type >= PERF_TYPE_MAX)
6316 idr_remove(&pmu_idr, pmu->type);
6317 device_del(pmu->dev);
6318 put_device(pmu->dev);
6319 free_pmu_context(pmu);
6320 }
6321
6322 struct pmu *perf_init_event(struct perf_event *event)
6323 {
6324 struct pmu *pmu = NULL;
6325 int idx;
6326 int ret;
6327
6328 idx = srcu_read_lock(&pmus_srcu);
6329
6330 rcu_read_lock();
6331 pmu = idr_find(&pmu_idr, event->attr.type);
6332 rcu_read_unlock();
6333 if (pmu) {
6334 event->pmu = pmu;
6335 ret = pmu->event_init(event);
6336 if (ret)
6337 pmu = ERR_PTR(ret);
6338 goto unlock;
6339 }
6340
6341 list_for_each_entry_rcu(pmu, &pmus, entry) {
6342 event->pmu = pmu;
6343 ret = pmu->event_init(event);
6344 if (!ret)
6345 goto unlock;
6346
6347 if (ret != -ENOENT) {
6348 pmu = ERR_PTR(ret);
6349 goto unlock;
6350 }
6351 }
6352 pmu = ERR_PTR(-ENOENT);
6353 unlock:
6354 srcu_read_unlock(&pmus_srcu, idx);
6355
6356 return pmu;
6357 }
6358
6359 /*
6360 * Allocate and initialize a event structure
6361 */
6362 static struct perf_event *
6363 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6364 struct task_struct *task,
6365 struct perf_event *group_leader,
6366 struct perf_event *parent_event,
6367 perf_overflow_handler_t overflow_handler,
6368 void *context)
6369 {
6370 struct pmu *pmu;
6371 struct perf_event *event;
6372 struct hw_perf_event *hwc;
6373 long err;
6374
6375 if ((unsigned)cpu >= nr_cpu_ids) {
6376 if (!task || cpu != -1)
6377 return ERR_PTR(-EINVAL);
6378 }
6379
6380 event = kzalloc(sizeof(*event), GFP_KERNEL);
6381 if (!event)
6382 return ERR_PTR(-ENOMEM);
6383
6384 /*
6385 * Single events are their own group leaders, with an
6386 * empty sibling list:
6387 */
6388 if (!group_leader)
6389 group_leader = event;
6390
6391 mutex_init(&event->child_mutex);
6392 INIT_LIST_HEAD(&event->child_list);
6393
6394 INIT_LIST_HEAD(&event->group_entry);
6395 INIT_LIST_HEAD(&event->event_entry);
6396 INIT_LIST_HEAD(&event->sibling_list);
6397 INIT_LIST_HEAD(&event->rb_entry);
6398
6399 init_waitqueue_head(&event->waitq);
6400 init_irq_work(&event->pending, perf_pending_event);
6401
6402 mutex_init(&event->mmap_mutex);
6403
6404 atomic_long_set(&event->refcount, 1);
6405 event->cpu = cpu;
6406 event->attr = *attr;
6407 event->group_leader = group_leader;
6408 event->pmu = NULL;
6409 event->oncpu = -1;
6410
6411 event->parent = parent_event;
6412
6413 event->ns = get_pid_ns(task_active_pid_ns(current));
6414 event->id = atomic64_inc_return(&perf_event_id);
6415
6416 event->state = PERF_EVENT_STATE_INACTIVE;
6417
6418 if (task) {
6419 event->attach_state = PERF_ATTACH_TASK;
6420
6421 if (attr->type == PERF_TYPE_TRACEPOINT)
6422 event->hw.tp_target = task;
6423 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6424 /*
6425 * hw_breakpoint is a bit difficult here..
6426 */
6427 else if (attr->type == PERF_TYPE_BREAKPOINT)
6428 event->hw.bp_target = task;
6429 #endif
6430 }
6431
6432 if (!overflow_handler && parent_event) {
6433 overflow_handler = parent_event->overflow_handler;
6434 context = parent_event->overflow_handler_context;
6435 }
6436
6437 event->overflow_handler = overflow_handler;
6438 event->overflow_handler_context = context;
6439
6440 perf_event__state_init(event);
6441
6442 pmu = NULL;
6443
6444 hwc = &event->hw;
6445 hwc->sample_period = attr->sample_period;
6446 if (attr->freq && attr->sample_freq)
6447 hwc->sample_period = 1;
6448 hwc->last_period = hwc->sample_period;
6449
6450 local64_set(&hwc->period_left, hwc->sample_period);
6451
6452 /*
6453 * we currently do not support PERF_FORMAT_GROUP on inherited events
6454 */
6455 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6456 goto done;
6457
6458 pmu = perf_init_event(event);
6459
6460 done:
6461 err = 0;
6462 if (!pmu)
6463 err = -EINVAL;
6464 else if (IS_ERR(pmu))
6465 err = PTR_ERR(pmu);
6466
6467 if (err) {
6468 if (event->ns)
6469 put_pid_ns(event->ns);
6470 kfree(event);
6471 return ERR_PTR(err);
6472 }
6473
6474 if (!event->parent) {
6475 if (event->attach_state & PERF_ATTACH_TASK)
6476 static_key_slow_inc(&perf_sched_events.key);
6477 if (event->attr.mmap || event->attr.mmap_data)
6478 atomic_inc(&nr_mmap_events);
6479 if (event->attr.comm)
6480 atomic_inc(&nr_comm_events);
6481 if (event->attr.task)
6482 atomic_inc(&nr_task_events);
6483 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6484 err = get_callchain_buffers();
6485 if (err) {
6486 free_event(event);
6487 return ERR_PTR(err);
6488 }
6489 }
6490 if (has_branch_stack(event)) {
6491 static_key_slow_inc(&perf_sched_events.key);
6492 if (!(event->attach_state & PERF_ATTACH_TASK))
6493 atomic_inc(&per_cpu(perf_branch_stack_events,
6494 event->cpu));
6495 }
6496 }
6497
6498 return event;
6499 }
6500
6501 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6502 struct perf_event_attr *attr)
6503 {
6504 u32 size;
6505 int ret;
6506
6507 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6508 return -EFAULT;
6509
6510 /*
6511 * zero the full structure, so that a short copy will be nice.
6512 */
6513 memset(attr, 0, sizeof(*attr));
6514
6515 ret = get_user(size, &uattr->size);
6516 if (ret)
6517 return ret;
6518
6519 if (size > PAGE_SIZE) /* silly large */
6520 goto err_size;
6521
6522 if (!size) /* abi compat */
6523 size = PERF_ATTR_SIZE_VER0;
6524
6525 if (size < PERF_ATTR_SIZE_VER0)
6526 goto err_size;
6527
6528 /*
6529 * If we're handed a bigger struct than we know of,
6530 * ensure all the unknown bits are 0 - i.e. new
6531 * user-space does not rely on any kernel feature
6532 * extensions we dont know about yet.
6533 */
6534 if (size > sizeof(*attr)) {
6535 unsigned char __user *addr;
6536 unsigned char __user *end;
6537 unsigned char val;
6538
6539 addr = (void __user *)uattr + sizeof(*attr);
6540 end = (void __user *)uattr + size;
6541
6542 for (; addr < end; addr++) {
6543 ret = get_user(val, addr);
6544 if (ret)
6545 return ret;
6546 if (val)
6547 goto err_size;
6548 }
6549 size = sizeof(*attr);
6550 }
6551
6552 ret = copy_from_user(attr, uattr, size);
6553 if (ret)
6554 return -EFAULT;
6555
6556 if (attr->__reserved_1)
6557 return -EINVAL;
6558
6559 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6560 return -EINVAL;
6561
6562 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6563 return -EINVAL;
6564
6565 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6566 u64 mask = attr->branch_sample_type;
6567
6568 /* only using defined bits */
6569 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6570 return -EINVAL;
6571
6572 /* at least one branch bit must be set */
6573 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6574 return -EINVAL;
6575
6576 /* kernel level capture: check permissions */
6577 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6578 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6579 return -EACCES;
6580
6581 /* propagate priv level, when not set for branch */
6582 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6583
6584 /* exclude_kernel checked on syscall entry */
6585 if (!attr->exclude_kernel)
6586 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6587
6588 if (!attr->exclude_user)
6589 mask |= PERF_SAMPLE_BRANCH_USER;
6590
6591 if (!attr->exclude_hv)
6592 mask |= PERF_SAMPLE_BRANCH_HV;
6593 /*
6594 * adjust user setting (for HW filter setup)
6595 */
6596 attr->branch_sample_type = mask;
6597 }
6598 }
6599
6600 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
6601 ret = perf_reg_validate(attr->sample_regs_user);
6602 if (ret)
6603 return ret;
6604 }
6605
6606 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6607 if (!arch_perf_have_user_stack_dump())
6608 return -ENOSYS;
6609
6610 /*
6611 * We have __u32 type for the size, but so far
6612 * we can only use __u16 as maximum due to the
6613 * __u16 sample size limit.
6614 */
6615 if (attr->sample_stack_user >= USHRT_MAX)
6616 ret = -EINVAL;
6617 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6618 ret = -EINVAL;
6619 }
6620
6621 out:
6622 return ret;
6623
6624 err_size:
6625 put_user(sizeof(*attr), &uattr->size);
6626 ret = -E2BIG;
6627 goto out;
6628 }
6629
6630 static int
6631 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6632 {
6633 struct ring_buffer *rb = NULL, *old_rb = NULL;
6634 int ret = -EINVAL;
6635
6636 if (!output_event)
6637 goto set;
6638
6639 /* don't allow circular references */
6640 if (event == output_event)
6641 goto out;
6642
6643 /*
6644 * Don't allow cross-cpu buffers
6645 */
6646 if (output_event->cpu != event->cpu)
6647 goto out;
6648
6649 /*
6650 * If its not a per-cpu rb, it must be the same task.
6651 */
6652 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6653 goto out;
6654
6655 set:
6656 mutex_lock(&event->mmap_mutex);
6657 /* Can't redirect output if we've got an active mmap() */
6658 if (atomic_read(&event->mmap_count))
6659 goto unlock;
6660
6661 old_rb = event->rb;
6662
6663 if (output_event) {
6664 /* get the rb we want to redirect to */
6665 rb = ring_buffer_get(output_event);
6666 if (!rb)
6667 goto unlock;
6668 }
6669
6670 if (old_rb)
6671 ring_buffer_detach(event, old_rb);
6672
6673 if (rb)
6674 ring_buffer_attach(event, rb);
6675
6676 rcu_assign_pointer(event->rb, rb);
6677
6678 if (old_rb) {
6679 ring_buffer_put(old_rb);
6680 /*
6681 * Since we detached before setting the new rb, so that we
6682 * could attach the new rb, we could have missed a wakeup.
6683 * Provide it now.
6684 */
6685 wake_up_all(&event->waitq);
6686 }
6687
6688 ret = 0;
6689 unlock:
6690 mutex_unlock(&event->mmap_mutex);
6691
6692 out:
6693 return ret;
6694 }
6695
6696 /**
6697 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6698 *
6699 * @attr_uptr: event_id type attributes for monitoring/sampling
6700 * @pid: target pid
6701 * @cpu: target cpu
6702 * @group_fd: group leader event fd
6703 */
6704 SYSCALL_DEFINE5(perf_event_open,
6705 struct perf_event_attr __user *, attr_uptr,
6706 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6707 {
6708 struct perf_event *group_leader = NULL, *output_event = NULL;
6709 struct perf_event *event, *sibling;
6710 struct perf_event_attr attr;
6711 struct perf_event_context *ctx;
6712 struct file *event_file = NULL;
6713 struct fd group = {NULL, 0};
6714 struct task_struct *task = NULL;
6715 struct pmu *pmu;
6716 int event_fd;
6717 int move_group = 0;
6718 int err;
6719
6720 /* for future expandability... */
6721 if (flags & ~PERF_FLAG_ALL)
6722 return -EINVAL;
6723
6724 err = perf_copy_attr(attr_uptr, &attr);
6725 if (err)
6726 return err;
6727
6728 if (!attr.exclude_kernel) {
6729 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6730 return -EACCES;
6731 }
6732
6733 if (attr.freq) {
6734 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6735 return -EINVAL;
6736 } else {
6737 if (attr.sample_period & (1ULL << 63))
6738 return -EINVAL;
6739 }
6740
6741 /*
6742 * In cgroup mode, the pid argument is used to pass the fd
6743 * opened to the cgroup directory in cgroupfs. The cpu argument
6744 * designates the cpu on which to monitor threads from that
6745 * cgroup.
6746 */
6747 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6748 return -EINVAL;
6749
6750 event_fd = get_unused_fd();
6751 if (event_fd < 0)
6752 return event_fd;
6753
6754 if (group_fd != -1) {
6755 err = perf_fget_light(group_fd, &group);
6756 if (err)
6757 goto err_fd;
6758 group_leader = group.file->private_data;
6759 if (flags & PERF_FLAG_FD_OUTPUT)
6760 output_event = group_leader;
6761 if (flags & PERF_FLAG_FD_NO_GROUP)
6762 group_leader = NULL;
6763 }
6764
6765 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6766 task = find_lively_task_by_vpid(pid);
6767 if (IS_ERR(task)) {
6768 err = PTR_ERR(task);
6769 goto err_group_fd;
6770 }
6771 }
6772
6773 get_online_cpus();
6774
6775 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6776 NULL, NULL);
6777 if (IS_ERR(event)) {
6778 err = PTR_ERR(event);
6779 goto err_task;
6780 }
6781
6782 if (flags & PERF_FLAG_PID_CGROUP) {
6783 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6784 if (err)
6785 goto err_alloc;
6786 /*
6787 * one more event:
6788 * - that has cgroup constraint on event->cpu
6789 * - that may need work on context switch
6790 */
6791 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6792 static_key_slow_inc(&perf_sched_events.key);
6793 }
6794
6795 /*
6796 * Special case software events and allow them to be part of
6797 * any hardware group.
6798 */
6799 pmu = event->pmu;
6800
6801 if (group_leader &&
6802 (is_software_event(event) != is_software_event(group_leader))) {
6803 if (is_software_event(event)) {
6804 /*
6805 * If event and group_leader are not both a software
6806 * event, and event is, then group leader is not.
6807 *
6808 * Allow the addition of software events to !software
6809 * groups, this is safe because software events never
6810 * fail to schedule.
6811 */
6812 pmu = group_leader->pmu;
6813 } else if (is_software_event(group_leader) &&
6814 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6815 /*
6816 * In case the group is a pure software group, and we
6817 * try to add a hardware event, move the whole group to
6818 * the hardware context.
6819 */
6820 move_group = 1;
6821 }
6822 }
6823
6824 /*
6825 * Get the target context (task or percpu):
6826 */
6827 ctx = find_get_context(pmu, task, event->cpu);
6828 if (IS_ERR(ctx)) {
6829 err = PTR_ERR(ctx);
6830 goto err_alloc;
6831 }
6832
6833 if (task) {
6834 put_task_struct(task);
6835 task = NULL;
6836 }
6837
6838 /*
6839 * Look up the group leader (we will attach this event to it):
6840 */
6841 if (group_leader) {
6842 err = -EINVAL;
6843
6844 /*
6845 * Do not allow a recursive hierarchy (this new sibling
6846 * becoming part of another group-sibling):
6847 */
6848 if (group_leader->group_leader != group_leader)
6849 goto err_context;
6850 /*
6851 * Do not allow to attach to a group in a different
6852 * task or CPU context:
6853 */
6854 if (move_group) {
6855 /*
6856 * Make sure we're both on the same task, or both
6857 * per-cpu events.
6858 */
6859 if (group_leader->ctx->task != ctx->task)
6860 goto err_context;
6861
6862 /*
6863 * Make sure we're both events for the same CPU;
6864 * grouping events for different CPUs is broken; since
6865 * you can never concurrently schedule them anyhow.
6866 */
6867 if (group_leader->cpu != event->cpu)
6868 goto err_context;
6869 } else {
6870 if (group_leader->ctx != ctx)
6871 goto err_context;
6872 }
6873
6874 /*
6875 * Only a group leader can be exclusive or pinned
6876 */
6877 if (attr.exclusive || attr.pinned)
6878 goto err_context;
6879 }
6880
6881 if (output_event) {
6882 err = perf_event_set_output(event, output_event);
6883 if (err)
6884 goto err_context;
6885 }
6886
6887 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6888 if (IS_ERR(event_file)) {
6889 err = PTR_ERR(event_file);
6890 goto err_context;
6891 }
6892
6893 if (move_group) {
6894 struct perf_event_context *gctx = group_leader->ctx;
6895
6896 mutex_lock(&gctx->mutex);
6897 perf_remove_from_context(group_leader, false);
6898
6899 /*
6900 * Removing from the context ends up with disabled
6901 * event. What we want here is event in the initial
6902 * startup state, ready to be add into new context.
6903 */
6904 perf_event__state_init(group_leader);
6905 list_for_each_entry(sibling, &group_leader->sibling_list,
6906 group_entry) {
6907 perf_remove_from_context(sibling, false);
6908 perf_event__state_init(sibling);
6909 put_ctx(gctx);
6910 }
6911 mutex_unlock(&gctx->mutex);
6912 put_ctx(gctx);
6913 }
6914
6915 WARN_ON_ONCE(ctx->parent_ctx);
6916 mutex_lock(&ctx->mutex);
6917
6918 if (move_group) {
6919 synchronize_rcu();
6920 perf_install_in_context(ctx, group_leader, group_leader->cpu);
6921 get_ctx(ctx);
6922 list_for_each_entry(sibling, &group_leader->sibling_list,
6923 group_entry) {
6924 perf_install_in_context(ctx, sibling, sibling->cpu);
6925 get_ctx(ctx);
6926 }
6927 }
6928
6929 perf_install_in_context(ctx, event, event->cpu);
6930 ++ctx->generation;
6931 perf_unpin_context(ctx);
6932 mutex_unlock(&ctx->mutex);
6933
6934 put_online_cpus();
6935
6936 event->owner = current;
6937
6938 mutex_lock(&current->perf_event_mutex);
6939 list_add_tail(&event->owner_entry, &current->perf_event_list);
6940 mutex_unlock(&current->perf_event_mutex);
6941
6942 /*
6943 * Precalculate sample_data sizes
6944 */
6945 perf_event__header_size(event);
6946 perf_event__id_header_size(event);
6947
6948 /*
6949 * Drop the reference on the group_event after placing the
6950 * new event on the sibling_list. This ensures destruction
6951 * of the group leader will find the pointer to itself in
6952 * perf_group_detach().
6953 */
6954 fdput(group);
6955 fd_install(event_fd, event_file);
6956 return event_fd;
6957
6958 err_context:
6959 perf_unpin_context(ctx);
6960 put_ctx(ctx);
6961 err_alloc:
6962 free_event(event);
6963 err_task:
6964 put_online_cpus();
6965 if (task)
6966 put_task_struct(task);
6967 err_group_fd:
6968 fdput(group);
6969 err_fd:
6970 put_unused_fd(event_fd);
6971 return err;
6972 }
6973
6974 /**
6975 * perf_event_create_kernel_counter
6976 *
6977 * @attr: attributes of the counter to create
6978 * @cpu: cpu in which the counter is bound
6979 * @task: task to profile (NULL for percpu)
6980 */
6981 struct perf_event *
6982 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6983 struct task_struct *task,
6984 perf_overflow_handler_t overflow_handler,
6985 void *context)
6986 {
6987 struct perf_event_context *ctx;
6988 struct perf_event *event;
6989 int err;
6990
6991 /*
6992 * Get the target context (task or percpu):
6993 */
6994
6995 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6996 overflow_handler, context);
6997 if (IS_ERR(event)) {
6998 err = PTR_ERR(event);
6999 goto err;
7000 }
7001
7002 ctx = find_get_context(event->pmu, task, cpu);
7003 if (IS_ERR(ctx)) {
7004 err = PTR_ERR(ctx);
7005 goto err_free;
7006 }
7007
7008 WARN_ON_ONCE(ctx->parent_ctx);
7009 mutex_lock(&ctx->mutex);
7010 perf_install_in_context(ctx, event, cpu);
7011 ++ctx->generation;
7012 perf_unpin_context(ctx);
7013 mutex_unlock(&ctx->mutex);
7014
7015 return event;
7016
7017 err_free:
7018 free_event(event);
7019 err:
7020 return ERR_PTR(err);
7021 }
7022 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
7023
7024 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
7025 {
7026 struct perf_event_context *src_ctx;
7027 struct perf_event_context *dst_ctx;
7028 struct perf_event *event, *tmp;
7029 LIST_HEAD(events);
7030
7031 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
7032 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
7033
7034 mutex_lock(&src_ctx->mutex);
7035 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
7036 event_entry) {
7037 perf_remove_from_context(event, false);
7038 put_ctx(src_ctx);
7039 list_add(&event->event_entry, &events);
7040 }
7041 mutex_unlock(&src_ctx->mutex);
7042
7043 synchronize_rcu();
7044
7045 mutex_lock(&dst_ctx->mutex);
7046 list_for_each_entry_safe(event, tmp, &events, event_entry) {
7047 list_del(&event->event_entry);
7048 if (event->state >= PERF_EVENT_STATE_OFF)
7049 event->state = PERF_EVENT_STATE_INACTIVE;
7050 perf_install_in_context(dst_ctx, event, dst_cpu);
7051 get_ctx(dst_ctx);
7052 }
7053 mutex_unlock(&dst_ctx->mutex);
7054 }
7055 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
7056
7057 static void sync_child_event(struct perf_event *child_event,
7058 struct task_struct *child)
7059 {
7060 struct perf_event *parent_event = child_event->parent;
7061 u64 child_val;
7062
7063 if (child_event->attr.inherit_stat)
7064 perf_event_read_event(child_event, child);
7065
7066 child_val = perf_event_count(child_event);
7067
7068 /*
7069 * Add back the child's count to the parent's count:
7070 */
7071 atomic64_add(child_val, &parent_event->child_count);
7072 atomic64_add(child_event->total_time_enabled,
7073 &parent_event->child_total_time_enabled);
7074 atomic64_add(child_event->total_time_running,
7075 &parent_event->child_total_time_running);
7076
7077 /*
7078 * Remove this event from the parent's list
7079 */
7080 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7081 mutex_lock(&parent_event->child_mutex);
7082 list_del_init(&child_event->child_list);
7083 mutex_unlock(&parent_event->child_mutex);
7084
7085 /*
7086 * Release the parent event, if this was the last
7087 * reference to it.
7088 */
7089 put_event(parent_event);
7090 }
7091
7092 static void
7093 __perf_event_exit_task(struct perf_event *child_event,
7094 struct perf_event_context *child_ctx,
7095 struct task_struct *child)
7096 {
7097 perf_remove_from_context(child_event, !!child_event->parent);
7098
7099 /*
7100 * It can happen that the parent exits first, and has events
7101 * that are still around due to the child reference. These
7102 * events need to be zapped.
7103 */
7104 if (child_event->parent) {
7105 sync_child_event(child_event, child);
7106 free_event(child_event);
7107 }
7108 }
7109
7110 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
7111 {
7112 struct perf_event *child_event, *tmp;
7113 struct perf_event_context *child_ctx;
7114 unsigned long flags;
7115
7116 if (likely(!child->perf_event_ctxp[ctxn])) {
7117 perf_event_task(child, NULL, 0);
7118 return;
7119 }
7120
7121 local_irq_save(flags);
7122 /*
7123 * We can't reschedule here because interrupts are disabled,
7124 * and either child is current or it is a task that can't be
7125 * scheduled, so we are now safe from rescheduling changing
7126 * our context.
7127 */
7128 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
7129
7130 /*
7131 * Take the context lock here so that if find_get_context is
7132 * reading child->perf_event_ctxp, we wait until it has
7133 * incremented the context's refcount before we do put_ctx below.
7134 */
7135 raw_spin_lock(&child_ctx->lock);
7136 task_ctx_sched_out(child_ctx);
7137 child->perf_event_ctxp[ctxn] = NULL;
7138 /*
7139 * If this context is a clone; unclone it so it can't get
7140 * swapped to another process while we're removing all
7141 * the events from it.
7142 */
7143 unclone_ctx(child_ctx);
7144 update_context_time(child_ctx);
7145 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7146
7147 /*
7148 * Report the task dead after unscheduling the events so that we
7149 * won't get any samples after PERF_RECORD_EXIT. We can however still
7150 * get a few PERF_RECORD_READ events.
7151 */
7152 perf_event_task(child, child_ctx, 0);
7153
7154 /*
7155 * We can recurse on the same lock type through:
7156 *
7157 * __perf_event_exit_task()
7158 * sync_child_event()
7159 * put_event()
7160 * mutex_lock(&ctx->mutex)
7161 *
7162 * But since its the parent context it won't be the same instance.
7163 */
7164 mutex_lock(&child_ctx->mutex);
7165
7166 again:
7167 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
7168 group_entry)
7169 __perf_event_exit_task(child_event, child_ctx, child);
7170
7171 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
7172 group_entry)
7173 __perf_event_exit_task(child_event, child_ctx, child);
7174
7175 /*
7176 * If the last event was a group event, it will have appended all
7177 * its siblings to the list, but we obtained 'tmp' before that which
7178 * will still point to the list head terminating the iteration.
7179 */
7180 if (!list_empty(&child_ctx->pinned_groups) ||
7181 !list_empty(&child_ctx->flexible_groups))
7182 goto again;
7183
7184 mutex_unlock(&child_ctx->mutex);
7185
7186 put_ctx(child_ctx);
7187 }
7188
7189 /*
7190 * When a child task exits, feed back event values to parent events.
7191 */
7192 void perf_event_exit_task(struct task_struct *child)
7193 {
7194 struct perf_event *event, *tmp;
7195 int ctxn;
7196
7197 mutex_lock(&child->perf_event_mutex);
7198 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7199 owner_entry) {
7200 list_del_init(&event->owner_entry);
7201
7202 /*
7203 * Ensure the list deletion is visible before we clear
7204 * the owner, closes a race against perf_release() where
7205 * we need to serialize on the owner->perf_event_mutex.
7206 */
7207 smp_wmb();
7208 event->owner = NULL;
7209 }
7210 mutex_unlock(&child->perf_event_mutex);
7211
7212 for_each_task_context_nr(ctxn)
7213 perf_event_exit_task_context(child, ctxn);
7214 }
7215
7216 static void perf_free_event(struct perf_event *event,
7217 struct perf_event_context *ctx)
7218 {
7219 struct perf_event *parent = event->parent;
7220
7221 if (WARN_ON_ONCE(!parent))
7222 return;
7223
7224 mutex_lock(&parent->child_mutex);
7225 list_del_init(&event->child_list);
7226 mutex_unlock(&parent->child_mutex);
7227
7228 put_event(parent);
7229
7230 perf_group_detach(event);
7231 list_del_event(event, ctx);
7232 free_event(event);
7233 }
7234
7235 /*
7236 * free an unexposed, unused context as created by inheritance by
7237 * perf_event_init_task below, used by fork() in case of fail.
7238 */
7239 void perf_event_free_task(struct task_struct *task)
7240 {
7241 struct perf_event_context *ctx;
7242 struct perf_event *event, *tmp;
7243 int ctxn;
7244
7245 for_each_task_context_nr(ctxn) {
7246 ctx = task->perf_event_ctxp[ctxn];
7247 if (!ctx)
7248 continue;
7249
7250 mutex_lock(&ctx->mutex);
7251 again:
7252 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7253 group_entry)
7254 perf_free_event(event, ctx);
7255
7256 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7257 group_entry)
7258 perf_free_event(event, ctx);
7259
7260 if (!list_empty(&ctx->pinned_groups) ||
7261 !list_empty(&ctx->flexible_groups))
7262 goto again;
7263
7264 mutex_unlock(&ctx->mutex);
7265
7266 put_ctx(ctx);
7267 }
7268 }
7269
7270 void perf_event_delayed_put(struct task_struct *task)
7271 {
7272 int ctxn;
7273
7274 for_each_task_context_nr(ctxn)
7275 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7276 }
7277
7278 /*
7279 * inherit a event from parent task to child task:
7280 */
7281 static struct perf_event *
7282 inherit_event(struct perf_event *parent_event,
7283 struct task_struct *parent,
7284 struct perf_event_context *parent_ctx,
7285 struct task_struct *child,
7286 struct perf_event *group_leader,
7287 struct perf_event_context *child_ctx)
7288 {
7289 struct perf_event *child_event;
7290 unsigned long flags;
7291
7292 /*
7293 * Instead of creating recursive hierarchies of events,
7294 * we link inherited events back to the original parent,
7295 * which has a filp for sure, which we use as the reference
7296 * count:
7297 */
7298 if (parent_event->parent)
7299 parent_event = parent_event->parent;
7300
7301 child_event = perf_event_alloc(&parent_event->attr,
7302 parent_event->cpu,
7303 child,
7304 group_leader, parent_event,
7305 NULL, NULL);
7306 if (IS_ERR(child_event))
7307 return child_event;
7308
7309 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7310 free_event(child_event);
7311 return NULL;
7312 }
7313
7314 get_ctx(child_ctx);
7315
7316 /*
7317 * Make the child state follow the state of the parent event,
7318 * not its attr.disabled bit. We hold the parent's mutex,
7319 * so we won't race with perf_event_{en, dis}able_family.
7320 */
7321 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7322 child_event->state = PERF_EVENT_STATE_INACTIVE;
7323 else
7324 child_event->state = PERF_EVENT_STATE_OFF;
7325
7326 if (parent_event->attr.freq) {
7327 u64 sample_period = parent_event->hw.sample_period;
7328 struct hw_perf_event *hwc = &child_event->hw;
7329
7330 hwc->sample_period = sample_period;
7331 hwc->last_period = sample_period;
7332
7333 local64_set(&hwc->period_left, sample_period);
7334 }
7335
7336 child_event->ctx = child_ctx;
7337 child_event->overflow_handler = parent_event->overflow_handler;
7338 child_event->overflow_handler_context
7339 = parent_event->overflow_handler_context;
7340
7341 /*
7342 * Precalculate sample_data sizes
7343 */
7344 perf_event__header_size(child_event);
7345 perf_event__id_header_size(child_event);
7346
7347 /*
7348 * Link it up in the child's context:
7349 */
7350 raw_spin_lock_irqsave(&child_ctx->lock, flags);
7351 add_event_to_ctx(child_event, child_ctx);
7352 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
7353
7354 /*
7355 * Link this into the parent event's child list
7356 */
7357 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7358 mutex_lock(&parent_event->child_mutex);
7359 list_add_tail(&child_event->child_list, &parent_event->child_list);
7360 mutex_unlock(&parent_event->child_mutex);
7361
7362 return child_event;
7363 }
7364
7365 static int inherit_group(struct perf_event *parent_event,
7366 struct task_struct *parent,
7367 struct perf_event_context *parent_ctx,
7368 struct task_struct *child,
7369 struct perf_event_context *child_ctx)
7370 {
7371 struct perf_event *leader;
7372 struct perf_event *sub;
7373 struct perf_event *child_ctr;
7374
7375 leader = inherit_event(parent_event, parent, parent_ctx,
7376 child, NULL, child_ctx);
7377 if (IS_ERR(leader))
7378 return PTR_ERR(leader);
7379 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7380 child_ctr = inherit_event(sub, parent, parent_ctx,
7381 child, leader, child_ctx);
7382 if (IS_ERR(child_ctr))
7383 return PTR_ERR(child_ctr);
7384 }
7385 return 0;
7386 }
7387
7388 static int
7389 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7390 struct perf_event_context *parent_ctx,
7391 struct task_struct *child, int ctxn,
7392 int *inherited_all)
7393 {
7394 int ret;
7395 struct perf_event_context *child_ctx;
7396
7397 if (!event->attr.inherit) {
7398 *inherited_all = 0;
7399 return 0;
7400 }
7401
7402 child_ctx = child->perf_event_ctxp[ctxn];
7403 if (!child_ctx) {
7404 /*
7405 * This is executed from the parent task context, so
7406 * inherit events that have been marked for cloning.
7407 * First allocate and initialize a context for the
7408 * child.
7409 */
7410
7411 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
7412 if (!child_ctx)
7413 return -ENOMEM;
7414
7415 child->perf_event_ctxp[ctxn] = child_ctx;
7416 }
7417
7418 ret = inherit_group(event, parent, parent_ctx,
7419 child, child_ctx);
7420
7421 if (ret)
7422 *inherited_all = 0;
7423
7424 return ret;
7425 }
7426
7427 /*
7428 * Initialize the perf_event context in task_struct
7429 */
7430 int perf_event_init_context(struct task_struct *child, int ctxn)
7431 {
7432 struct perf_event_context *child_ctx, *parent_ctx;
7433 struct perf_event_context *cloned_ctx;
7434 struct perf_event *event;
7435 struct task_struct *parent = current;
7436 int inherited_all = 1;
7437 unsigned long flags;
7438 int ret = 0;
7439
7440 if (likely(!parent->perf_event_ctxp[ctxn]))
7441 return 0;
7442
7443 /*
7444 * If the parent's context is a clone, pin it so it won't get
7445 * swapped under us.
7446 */
7447 parent_ctx = perf_pin_task_context(parent, ctxn);
7448
7449 /*
7450 * No need to check if parent_ctx != NULL here; since we saw
7451 * it non-NULL earlier, the only reason for it to become NULL
7452 * is if we exit, and since we're currently in the middle of
7453 * a fork we can't be exiting at the same time.
7454 */
7455
7456 /*
7457 * Lock the parent list. No need to lock the child - not PID
7458 * hashed yet and not running, so nobody can access it.
7459 */
7460 mutex_lock(&parent_ctx->mutex);
7461
7462 /*
7463 * We dont have to disable NMIs - we are only looking at
7464 * the list, not manipulating it:
7465 */
7466 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7467 ret = inherit_task_group(event, parent, parent_ctx,
7468 child, ctxn, &inherited_all);
7469 if (ret)
7470 goto out_unlock;
7471 }
7472
7473 /*
7474 * We can't hold ctx->lock when iterating the ->flexible_group list due
7475 * to allocations, but we need to prevent rotation because
7476 * rotate_ctx() will change the list from interrupt context.
7477 */
7478 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7479 parent_ctx->rotate_disable = 1;
7480 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7481
7482 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7483 ret = inherit_task_group(event, parent, parent_ctx,
7484 child, ctxn, &inherited_all);
7485 if (ret)
7486 goto out_unlock;
7487 }
7488
7489 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7490 parent_ctx->rotate_disable = 0;
7491
7492 child_ctx = child->perf_event_ctxp[ctxn];
7493
7494 if (child_ctx && inherited_all) {
7495 /*
7496 * Mark the child context as a clone of the parent
7497 * context, or of whatever the parent is a clone of.
7498 *
7499 * Note that if the parent is a clone, the holding of
7500 * parent_ctx->lock avoids it from being uncloned.
7501 */
7502 cloned_ctx = parent_ctx->parent_ctx;
7503 if (cloned_ctx) {
7504 child_ctx->parent_ctx = cloned_ctx;
7505 child_ctx->parent_gen = parent_ctx->parent_gen;
7506 } else {
7507 child_ctx->parent_ctx = parent_ctx;
7508 child_ctx->parent_gen = parent_ctx->generation;
7509 }
7510 get_ctx(child_ctx->parent_ctx);
7511 }
7512
7513 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7514 out_unlock:
7515 mutex_unlock(&parent_ctx->mutex);
7516
7517 perf_unpin_context(parent_ctx);
7518 put_ctx(parent_ctx);
7519
7520 return ret;
7521 }
7522
7523 /*
7524 * Initialize the perf_event context in task_struct
7525 */
7526 int perf_event_init_task(struct task_struct *child)
7527 {
7528 int ctxn, ret;
7529
7530 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7531 mutex_init(&child->perf_event_mutex);
7532 INIT_LIST_HEAD(&child->perf_event_list);
7533
7534 for_each_task_context_nr(ctxn) {
7535 ret = perf_event_init_context(child, ctxn);
7536 if (ret) {
7537 perf_event_free_task(child);
7538 return ret;
7539 }
7540 }
7541
7542 return 0;
7543 }
7544
7545 static void __init perf_event_init_all_cpus(void)
7546 {
7547 struct swevent_htable *swhash;
7548 int cpu;
7549
7550 for_each_possible_cpu(cpu) {
7551 swhash = &per_cpu(swevent_htable, cpu);
7552 mutex_init(&swhash->hlist_mutex);
7553 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7554 }
7555 }
7556
7557 static void __cpuinit perf_event_init_cpu(int cpu)
7558 {
7559 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7560
7561 mutex_lock(&swhash->hlist_mutex);
7562 if (swhash->hlist_refcount > 0) {
7563 struct swevent_hlist *hlist;
7564
7565 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7566 WARN_ON(!hlist);
7567 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7568 }
7569 mutex_unlock(&swhash->hlist_mutex);
7570 }
7571
7572 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7573 static void perf_pmu_rotate_stop(struct pmu *pmu)
7574 {
7575 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7576
7577 WARN_ON(!irqs_disabled());
7578
7579 list_del_init(&cpuctx->rotation_list);
7580 }
7581
7582 static void __perf_event_exit_context(void *__info)
7583 {
7584 struct remove_event re = { .detach_group = false };
7585 struct perf_event_context *ctx = __info;
7586
7587 perf_pmu_rotate_stop(ctx->pmu);
7588
7589 rcu_read_lock();
7590 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
7591 __perf_remove_from_context(&re);
7592 rcu_read_unlock();
7593 }
7594
7595 static void perf_event_exit_cpu_context(int cpu)
7596 {
7597 struct perf_event_context *ctx;
7598 struct pmu *pmu;
7599 int idx;
7600
7601 idx = srcu_read_lock(&pmus_srcu);
7602 list_for_each_entry_rcu(pmu, &pmus, entry) {
7603 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7604
7605 mutex_lock(&ctx->mutex);
7606 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7607 mutex_unlock(&ctx->mutex);
7608 }
7609 srcu_read_unlock(&pmus_srcu, idx);
7610 }
7611
7612 static void perf_event_exit_cpu(int cpu)
7613 {
7614 perf_event_exit_cpu_context(cpu);
7615 }
7616 #else
7617 static inline void perf_event_exit_cpu(int cpu) { }
7618 #endif
7619
7620 static int
7621 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7622 {
7623 int cpu;
7624
7625 for_each_online_cpu(cpu)
7626 perf_event_exit_cpu(cpu);
7627
7628 return NOTIFY_OK;
7629 }
7630
7631 /*
7632 * Run the perf reboot notifier at the very last possible moment so that
7633 * the generic watchdog code runs as long as possible.
7634 */
7635 static struct notifier_block perf_reboot_notifier = {
7636 .notifier_call = perf_reboot,
7637 .priority = INT_MIN,
7638 };
7639
7640 static int __cpuinit
7641 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7642 {
7643 unsigned int cpu = (long)hcpu;
7644
7645 switch (action & ~CPU_TASKS_FROZEN) {
7646
7647 case CPU_UP_PREPARE:
7648 case CPU_DOWN_FAILED:
7649 perf_event_init_cpu(cpu);
7650 break;
7651
7652 case CPU_UP_CANCELED:
7653 case CPU_DOWN_PREPARE:
7654 perf_event_exit_cpu(cpu);
7655 break;
7656
7657 default:
7658 break;
7659 }
7660
7661 return NOTIFY_OK;
7662 }
7663
7664 void __init perf_event_init(void)
7665 {
7666 int ret;
7667
7668 idr_init(&pmu_idr);
7669
7670 perf_event_init_all_cpus();
7671 init_srcu_struct(&pmus_srcu);
7672 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7673 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7674 perf_pmu_register(&perf_task_clock, NULL, -1);
7675 perf_tp_register();
7676 perf_cpu_notifier(perf_cpu_notify);
7677 register_reboot_notifier(&perf_reboot_notifier);
7678
7679 ret = init_hw_breakpoint();
7680 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7681
7682 /* do not patch jump label more than once per second */
7683 jump_label_rate_limit(&perf_sched_events, HZ);
7684
7685 /*
7686 * Build time assertion that we keep the data_head at the intended
7687 * location. IOW, validation we got the __reserved[] size right.
7688 */
7689 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7690 != 1024);
7691 }
7692
7693 static int __init perf_event_sysfs_init(void)
7694 {
7695 struct pmu *pmu;
7696 int ret;
7697
7698 mutex_lock(&pmus_lock);
7699
7700 ret = bus_register(&pmu_bus);
7701 if (ret)
7702 goto unlock;
7703
7704 list_for_each_entry(pmu, &pmus, entry) {
7705 if (!pmu->name || pmu->type < 0)
7706 continue;
7707
7708 ret = pmu_dev_alloc(pmu);
7709 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7710 }
7711 pmu_bus_running = 1;
7712 ret = 0;
7713
7714 unlock:
7715 mutex_unlock(&pmus_lock);
7716
7717 return ret;
7718 }
7719 device_initcall(perf_event_sysfs_init);
7720
7721 #ifdef CONFIG_CGROUP_PERF
7722 static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
7723 {
7724 struct perf_cgroup *jc;
7725
7726 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7727 if (!jc)
7728 return ERR_PTR(-ENOMEM);
7729
7730 jc->info = alloc_percpu(struct perf_cgroup_info);
7731 if (!jc->info) {
7732 kfree(jc);
7733 return ERR_PTR(-ENOMEM);
7734 }
7735
7736 return &jc->css;
7737 }
7738
7739 static void perf_cgroup_css_free(struct cgroup *cont)
7740 {
7741 struct perf_cgroup *jc;
7742 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7743 struct perf_cgroup, css);
7744 free_percpu(jc->info);
7745 kfree(jc);
7746 }
7747
7748 static int __perf_cgroup_move(void *info)
7749 {
7750 struct task_struct *task = info;
7751 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7752 return 0;
7753 }
7754
7755 static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
7756 {
7757 struct task_struct *task;
7758
7759 cgroup_taskset_for_each(task, cgrp, tset)
7760 task_function_call(task, __perf_cgroup_move, task);
7761 }
7762
7763 static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7764 struct task_struct *task)
7765 {
7766 /*
7767 * cgroup_exit() is called in the copy_process() failure path.
7768 * Ignore this case since the task hasn't ran yet, this avoids
7769 * trying to poke a half freed task state from generic code.
7770 */
7771 if (!(task->flags & PF_EXITING))
7772 return;
7773
7774 task_function_call(task, __perf_cgroup_move, task);
7775 }
7776
7777 struct cgroup_subsys perf_subsys = {
7778 .name = "perf_event",
7779 .subsys_id = perf_subsys_id,
7780 .css_alloc = perf_cgroup_css_alloc,
7781 .css_free = perf_cgroup_css_free,
7782 .exit = perf_cgroup_exit,
7783 .attach = perf_cgroup_attach,
7784 };
7785 #endif /* CONFIG_CGROUP_PERF */