Merge 4.14.72 into android-4.14-p
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / kernel / events / core.c
1 /*
2 * Performance events core code:
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
9 * For licensing details see kernel-base/COPYING
10 */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61 struct task_struct *p;
62 remote_function_f func;
63 void *info;
64 int ret;
65 };
66
67 static void remote_function(void *data)
68 {
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106 struct remote_function_call data = {
107 .p = p,
108 .func = func,
109 .info = info,
110 .ret = -EAGAIN,
111 };
112 int ret;
113
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
119
120 return ret;
121 }
122
123 /**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134 struct remote_function_call data = {
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
154 {
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162 {
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197 struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201 };
202
203 static int event_function(void *info)
204 {
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
207 struct perf_event_context *ctx = event->ctx;
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
210 int ret = 0;
211
212 WARN_ON_ONCE(!irqs_disabled());
213
214 perf_ctx_lock(cpuctx, task_ctx);
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
218 */
219 if (ctx->task) {
220 if (ctx->task != current) {
221 ret = -ESRCH;
222 goto unlock;
223 }
224
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240 }
241
242 efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244 perf_ctx_unlock(cpuctx, task_ctx);
245
246 return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251 struct perf_event_context *ctx = event->ctx;
252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
258
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
267
268 if (!task) {
269 cpu_function_call(event->cpu, event_function, &efs);
270 return;
271 }
272
273 if (task == TASK_TOMBSTONE)
274 return;
275
276 again:
277 if (!task_function_call(task, event_function, &efs))
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
289 }
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
295 raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342 unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
350
351 /*
352 * branch priv levels that need permission checks
353 */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
361 EVENT_TIME = 0x4,
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
400 * 3 - disallow all unpriv perf event use
401 */
402 #ifdef CONFIG_SECURITY_PERF_EVENTS_RESTRICT
403 int sysctl_perf_event_paranoid __read_mostly = 3;
404 #else
405 int sysctl_perf_event_paranoid __read_mostly = 2;
406 #endif
407
408 /* Minimum for 512 kiB + 1 user control page */
409 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
410
411 /*
412 * max perf event sample rate
413 */
414 #define DEFAULT_MAX_SAMPLE_RATE 100000
415 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
416 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
417
418 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
419
420 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
421 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
422
423 static int perf_sample_allowed_ns __read_mostly =
424 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
425
426 static void update_perf_cpu_limits(void)
427 {
428 u64 tmp = perf_sample_period_ns;
429
430 tmp *= sysctl_perf_cpu_time_max_percent;
431 tmp = div_u64(tmp, 100);
432 if (!tmp)
433 tmp = 1;
434
435 WRITE_ONCE(perf_sample_allowed_ns, tmp);
436 }
437
438 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
439
440 int perf_proc_update_handler(struct ctl_table *table, int write,
441 void __user *buffer, size_t *lenp,
442 loff_t *ppos)
443 {
444 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
445
446 if (ret || !write)
447 return ret;
448
449 /*
450 * If throttling is disabled don't allow the write:
451 */
452 if (sysctl_perf_cpu_time_max_percent == 100 ||
453 sysctl_perf_cpu_time_max_percent == 0)
454 return -EINVAL;
455
456 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
457 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
458 update_perf_cpu_limits();
459
460 return 0;
461 }
462
463 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
464
465 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
466 void __user *buffer, size_t *lenp,
467 loff_t *ppos)
468 {
469 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
470
471 if (ret || !write)
472 return ret;
473
474 if (sysctl_perf_cpu_time_max_percent == 100 ||
475 sysctl_perf_cpu_time_max_percent == 0) {
476 printk(KERN_WARNING
477 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
478 WRITE_ONCE(perf_sample_allowed_ns, 0);
479 } else {
480 update_perf_cpu_limits();
481 }
482
483 return 0;
484 }
485
486 /*
487 * perf samples are done in some very critical code paths (NMIs).
488 * If they take too much CPU time, the system can lock up and not
489 * get any real work done. This will drop the sample rate when
490 * we detect that events are taking too long.
491 */
492 #define NR_ACCUMULATED_SAMPLES 128
493 static DEFINE_PER_CPU(u64, running_sample_length);
494
495 static u64 __report_avg;
496 static u64 __report_allowed;
497
498 static void perf_duration_warn(struct irq_work *w)
499 {
500 printk_ratelimited(KERN_INFO
501 "perf: interrupt took too long (%lld > %lld), lowering "
502 "kernel.perf_event_max_sample_rate to %d\n",
503 __report_avg, __report_allowed,
504 sysctl_perf_event_sample_rate);
505 }
506
507 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
508
509 void perf_sample_event_took(u64 sample_len_ns)
510 {
511 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
512 u64 running_len;
513 u64 avg_len;
514 u32 max;
515
516 if (max_len == 0)
517 return;
518
519 /* Decay the counter by 1 average sample. */
520 running_len = __this_cpu_read(running_sample_length);
521 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
522 running_len += sample_len_ns;
523 __this_cpu_write(running_sample_length, running_len);
524
525 /*
526 * Note: this will be biased artifically low until we have
527 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
528 * from having to maintain a count.
529 */
530 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
531 if (avg_len <= max_len)
532 return;
533
534 __report_avg = avg_len;
535 __report_allowed = max_len;
536
537 /*
538 * Compute a throttle threshold 25% below the current duration.
539 */
540 avg_len += avg_len / 4;
541 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
542 if (avg_len < max)
543 max /= (u32)avg_len;
544 else
545 max = 1;
546
547 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
548 WRITE_ONCE(max_samples_per_tick, max);
549
550 sysctl_perf_event_sample_rate = max * HZ;
551 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
552
553 if (!irq_work_queue(&perf_duration_work)) {
554 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
555 "kernel.perf_event_max_sample_rate to %d\n",
556 __report_avg, __report_allowed,
557 sysctl_perf_event_sample_rate);
558 }
559 }
560
561 static atomic64_t perf_event_id;
562
563 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
564 enum event_type_t event_type);
565
566 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
567 enum event_type_t event_type,
568 struct task_struct *task);
569
570 static void update_context_time(struct perf_event_context *ctx);
571 static u64 perf_event_time(struct perf_event *event);
572
573 void __weak perf_event_print_debug(void) { }
574
575 extern __weak const char *perf_pmu_name(void)
576 {
577 return "pmu";
578 }
579
580 static inline u64 perf_clock(void)
581 {
582 return local_clock();
583 }
584
585 static inline u64 perf_event_clock(struct perf_event *event)
586 {
587 return event->clock();
588 }
589
590 #ifdef CONFIG_CGROUP_PERF
591
592 static inline bool
593 perf_cgroup_match(struct perf_event *event)
594 {
595 struct perf_event_context *ctx = event->ctx;
596 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
597
598 /* @event doesn't care about cgroup */
599 if (!event->cgrp)
600 return true;
601
602 /* wants specific cgroup scope but @cpuctx isn't associated with any */
603 if (!cpuctx->cgrp)
604 return false;
605
606 /*
607 * Cgroup scoping is recursive. An event enabled for a cgroup is
608 * also enabled for all its descendant cgroups. If @cpuctx's
609 * cgroup is a descendant of @event's (the test covers identity
610 * case), it's a match.
611 */
612 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
613 event->cgrp->css.cgroup);
614 }
615
616 static inline void perf_detach_cgroup(struct perf_event *event)
617 {
618 css_put(&event->cgrp->css);
619 event->cgrp = NULL;
620 }
621
622 static inline int is_cgroup_event(struct perf_event *event)
623 {
624 return event->cgrp != NULL;
625 }
626
627 static inline u64 perf_cgroup_event_time(struct perf_event *event)
628 {
629 struct perf_cgroup_info *t;
630
631 t = per_cpu_ptr(event->cgrp->info, event->cpu);
632 return t->time;
633 }
634
635 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
636 {
637 struct perf_cgroup_info *info;
638 u64 now;
639
640 now = perf_clock();
641
642 info = this_cpu_ptr(cgrp->info);
643
644 info->time += now - info->timestamp;
645 info->timestamp = now;
646 }
647
648 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
649 {
650 struct perf_cgroup *cgrp = cpuctx->cgrp;
651 struct cgroup_subsys_state *css;
652
653 if (cgrp) {
654 for (css = &cgrp->css; css; css = css->parent) {
655 cgrp = container_of(css, struct perf_cgroup, css);
656 __update_cgrp_time(cgrp);
657 }
658 }
659 }
660
661 static inline void update_cgrp_time_from_event(struct perf_event *event)
662 {
663 struct perf_cgroup *cgrp;
664
665 /*
666 * ensure we access cgroup data only when needed and
667 * when we know the cgroup is pinned (css_get)
668 */
669 if (!is_cgroup_event(event))
670 return;
671
672 cgrp = perf_cgroup_from_task(current, event->ctx);
673 /*
674 * Do not update time when cgroup is not active
675 */
676 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
677 __update_cgrp_time(event->cgrp);
678 }
679
680 static inline void
681 perf_cgroup_set_timestamp(struct task_struct *task,
682 struct perf_event_context *ctx)
683 {
684 struct perf_cgroup *cgrp;
685 struct perf_cgroup_info *info;
686 struct cgroup_subsys_state *css;
687
688 /*
689 * ctx->lock held by caller
690 * ensure we do not access cgroup data
691 * unless we have the cgroup pinned (css_get)
692 */
693 if (!task || !ctx->nr_cgroups)
694 return;
695
696 cgrp = perf_cgroup_from_task(task, ctx);
697
698 for (css = &cgrp->css; css; css = css->parent) {
699 cgrp = container_of(css, struct perf_cgroup, css);
700 info = this_cpu_ptr(cgrp->info);
701 info->timestamp = ctx->timestamp;
702 }
703 }
704
705 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
706
707 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
708 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
709
710 /*
711 * reschedule events based on the cgroup constraint of task.
712 *
713 * mode SWOUT : schedule out everything
714 * mode SWIN : schedule in based on cgroup for next
715 */
716 static void perf_cgroup_switch(struct task_struct *task, int mode)
717 {
718 struct perf_cpu_context *cpuctx;
719 struct list_head *list;
720 unsigned long flags;
721
722 /*
723 * Disable interrupts and preemption to avoid this CPU's
724 * cgrp_cpuctx_entry to change under us.
725 */
726 local_irq_save(flags);
727
728 list = this_cpu_ptr(&cgrp_cpuctx_list);
729 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
730 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
731
732 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
733 perf_pmu_disable(cpuctx->ctx.pmu);
734
735 if (mode & PERF_CGROUP_SWOUT) {
736 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
737 /*
738 * must not be done before ctxswout due
739 * to event_filter_match() in event_sched_out()
740 */
741 cpuctx->cgrp = NULL;
742 }
743
744 if (mode & PERF_CGROUP_SWIN) {
745 WARN_ON_ONCE(cpuctx->cgrp);
746 /*
747 * set cgrp before ctxsw in to allow
748 * event_filter_match() to not have to pass
749 * task around
750 * we pass the cpuctx->ctx to perf_cgroup_from_task()
751 * because cgorup events are only per-cpu
752 */
753 cpuctx->cgrp = perf_cgroup_from_task(task,
754 &cpuctx->ctx);
755 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
756 }
757 perf_pmu_enable(cpuctx->ctx.pmu);
758 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
759 }
760
761 local_irq_restore(flags);
762 }
763
764 static inline void perf_cgroup_sched_out(struct task_struct *task,
765 struct task_struct *next)
766 {
767 struct perf_cgroup *cgrp1;
768 struct perf_cgroup *cgrp2 = NULL;
769
770 rcu_read_lock();
771 /*
772 * we come here when we know perf_cgroup_events > 0
773 * we do not need to pass the ctx here because we know
774 * we are holding the rcu lock
775 */
776 cgrp1 = perf_cgroup_from_task(task, NULL);
777 cgrp2 = perf_cgroup_from_task(next, NULL);
778
779 /*
780 * only schedule out current cgroup events if we know
781 * that we are switching to a different cgroup. Otherwise,
782 * do no touch the cgroup events.
783 */
784 if (cgrp1 != cgrp2)
785 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
786
787 rcu_read_unlock();
788 }
789
790 static inline void perf_cgroup_sched_in(struct task_struct *prev,
791 struct task_struct *task)
792 {
793 struct perf_cgroup *cgrp1;
794 struct perf_cgroup *cgrp2 = NULL;
795
796 rcu_read_lock();
797 /*
798 * we come here when we know perf_cgroup_events > 0
799 * we do not need to pass the ctx here because we know
800 * we are holding the rcu lock
801 */
802 cgrp1 = perf_cgroup_from_task(task, NULL);
803 cgrp2 = perf_cgroup_from_task(prev, NULL);
804
805 /*
806 * only need to schedule in cgroup events if we are changing
807 * cgroup during ctxsw. Cgroup events were not scheduled
808 * out of ctxsw out if that was not the case.
809 */
810 if (cgrp1 != cgrp2)
811 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
812
813 rcu_read_unlock();
814 }
815
816 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
817 struct perf_event_attr *attr,
818 struct perf_event *group_leader)
819 {
820 struct perf_cgroup *cgrp;
821 struct cgroup_subsys_state *css;
822 struct fd f = fdget(fd);
823 int ret = 0;
824
825 if (!f.file)
826 return -EBADF;
827
828 css = css_tryget_online_from_dir(f.file->f_path.dentry,
829 &perf_event_cgrp_subsys);
830 if (IS_ERR(css)) {
831 ret = PTR_ERR(css);
832 goto out;
833 }
834
835 cgrp = container_of(css, struct perf_cgroup, css);
836 event->cgrp = cgrp;
837
838 /*
839 * all events in a group must monitor
840 * the same cgroup because a task belongs
841 * to only one perf cgroup at a time
842 */
843 if (group_leader && group_leader->cgrp != cgrp) {
844 perf_detach_cgroup(event);
845 ret = -EINVAL;
846 }
847 out:
848 fdput(f);
849 return ret;
850 }
851
852 static inline void
853 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
854 {
855 struct perf_cgroup_info *t;
856 t = per_cpu_ptr(event->cgrp->info, event->cpu);
857 event->shadow_ctx_time = now - t->timestamp;
858 }
859
860 static inline void
861 perf_cgroup_defer_enabled(struct perf_event *event)
862 {
863 /*
864 * when the current task's perf cgroup does not match
865 * the event's, we need to remember to call the
866 * perf_mark_enable() function the first time a task with
867 * a matching perf cgroup is scheduled in.
868 */
869 if (is_cgroup_event(event) && !perf_cgroup_match(event))
870 event->cgrp_defer_enabled = 1;
871 }
872
873 static inline void
874 perf_cgroup_mark_enabled(struct perf_event *event,
875 struct perf_event_context *ctx)
876 {
877 struct perf_event *sub;
878 u64 tstamp = perf_event_time(event);
879
880 if (!event->cgrp_defer_enabled)
881 return;
882
883 event->cgrp_defer_enabled = 0;
884
885 event->tstamp_enabled = tstamp - event->total_time_enabled;
886 list_for_each_entry(sub, &event->sibling_list, group_entry) {
887 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
888 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
889 sub->cgrp_defer_enabled = 0;
890 }
891 }
892 }
893
894 /*
895 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
896 * cleared when last cgroup event is removed.
897 */
898 static inline void
899 list_update_cgroup_event(struct perf_event *event,
900 struct perf_event_context *ctx, bool add)
901 {
902 struct perf_cpu_context *cpuctx;
903 struct list_head *cpuctx_entry;
904
905 if (!is_cgroup_event(event))
906 return;
907
908 /*
909 * Because cgroup events are always per-cpu events,
910 * this will always be called from the right CPU.
911 */
912 cpuctx = __get_cpu_context(ctx);
913
914 /*
915 * Since setting cpuctx->cgrp is conditional on the current @cgrp
916 * matching the event's cgroup, we must do this for every new event,
917 * because if the first would mismatch, the second would not try again
918 * and we would leave cpuctx->cgrp unset.
919 */
920 if (add && !cpuctx->cgrp) {
921 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
922
923 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
924 cpuctx->cgrp = cgrp;
925 }
926
927 if (add && ctx->nr_cgroups++)
928 return;
929 else if (!add && --ctx->nr_cgroups)
930 return;
931
932 /* no cgroup running */
933 if (!add)
934 cpuctx->cgrp = NULL;
935
936 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
937 if (add)
938 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
939 else
940 list_del(cpuctx_entry);
941 }
942
943 #else /* !CONFIG_CGROUP_PERF */
944
945 static inline bool
946 perf_cgroup_match(struct perf_event *event)
947 {
948 return true;
949 }
950
951 static inline void perf_detach_cgroup(struct perf_event *event)
952 {}
953
954 static inline int is_cgroup_event(struct perf_event *event)
955 {
956 return 0;
957 }
958
959 static inline void update_cgrp_time_from_event(struct perf_event *event)
960 {
961 }
962
963 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
964 {
965 }
966
967 static inline void perf_cgroup_sched_out(struct task_struct *task,
968 struct task_struct *next)
969 {
970 }
971
972 static inline void perf_cgroup_sched_in(struct task_struct *prev,
973 struct task_struct *task)
974 {
975 }
976
977 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
978 struct perf_event_attr *attr,
979 struct perf_event *group_leader)
980 {
981 return -EINVAL;
982 }
983
984 static inline void
985 perf_cgroup_set_timestamp(struct task_struct *task,
986 struct perf_event_context *ctx)
987 {
988 }
989
990 void
991 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
992 {
993 }
994
995 static inline void
996 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
997 {
998 }
999
1000 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1001 {
1002 return 0;
1003 }
1004
1005 static inline void
1006 perf_cgroup_defer_enabled(struct perf_event *event)
1007 {
1008 }
1009
1010 static inline void
1011 perf_cgroup_mark_enabled(struct perf_event *event,
1012 struct perf_event_context *ctx)
1013 {
1014 }
1015
1016 static inline void
1017 list_update_cgroup_event(struct perf_event *event,
1018 struct perf_event_context *ctx, bool add)
1019 {
1020 }
1021
1022 #endif
1023
1024 /*
1025 * set default to be dependent on timer tick just
1026 * like original code
1027 */
1028 #define PERF_CPU_HRTIMER (1000 / HZ)
1029 /*
1030 * function must be called with interrupts disabled
1031 */
1032 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1033 {
1034 struct perf_cpu_context *cpuctx;
1035 int rotations = 0;
1036
1037 WARN_ON(!irqs_disabled());
1038
1039 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1040 rotations = perf_rotate_context(cpuctx);
1041
1042 raw_spin_lock(&cpuctx->hrtimer_lock);
1043 if (rotations)
1044 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1045 else
1046 cpuctx->hrtimer_active = 0;
1047 raw_spin_unlock(&cpuctx->hrtimer_lock);
1048
1049 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1050 }
1051
1052 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1053 {
1054 struct hrtimer *timer = &cpuctx->hrtimer;
1055 struct pmu *pmu = cpuctx->ctx.pmu;
1056 u64 interval;
1057
1058 /* no multiplexing needed for SW PMU */
1059 if (pmu->task_ctx_nr == perf_sw_context)
1060 return;
1061
1062 /*
1063 * check default is sane, if not set then force to
1064 * default interval (1/tick)
1065 */
1066 interval = pmu->hrtimer_interval_ms;
1067 if (interval < 1)
1068 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1069
1070 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1071
1072 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1073 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1074 timer->function = perf_mux_hrtimer_handler;
1075 }
1076
1077 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1078 {
1079 struct hrtimer *timer = &cpuctx->hrtimer;
1080 struct pmu *pmu = cpuctx->ctx.pmu;
1081 unsigned long flags;
1082
1083 /* not for SW PMU */
1084 if (pmu->task_ctx_nr == perf_sw_context)
1085 return 0;
1086
1087 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1088 if (!cpuctx->hrtimer_active) {
1089 cpuctx->hrtimer_active = 1;
1090 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1091 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1092 }
1093 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1094
1095 return 0;
1096 }
1097
1098 void perf_pmu_disable(struct pmu *pmu)
1099 {
1100 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1101 if (!(*count)++)
1102 pmu->pmu_disable(pmu);
1103 }
1104
1105 void perf_pmu_enable(struct pmu *pmu)
1106 {
1107 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1108 if (!--(*count))
1109 pmu->pmu_enable(pmu);
1110 }
1111
1112 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1113
1114 /*
1115 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1116 * perf_event_task_tick() are fully serialized because they're strictly cpu
1117 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1118 * disabled, while perf_event_task_tick is called from IRQ context.
1119 */
1120 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1121 {
1122 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1123
1124 WARN_ON(!irqs_disabled());
1125
1126 WARN_ON(!list_empty(&ctx->active_ctx_list));
1127
1128 list_add(&ctx->active_ctx_list, head);
1129 }
1130
1131 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1132 {
1133 WARN_ON(!irqs_disabled());
1134
1135 WARN_ON(list_empty(&ctx->active_ctx_list));
1136
1137 list_del_init(&ctx->active_ctx_list);
1138 }
1139
1140 static void get_ctx(struct perf_event_context *ctx)
1141 {
1142 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1143 }
1144
1145 static void free_ctx(struct rcu_head *head)
1146 {
1147 struct perf_event_context *ctx;
1148
1149 ctx = container_of(head, struct perf_event_context, rcu_head);
1150 kfree(ctx->task_ctx_data);
1151 kfree(ctx);
1152 }
1153
1154 static void put_ctx(struct perf_event_context *ctx)
1155 {
1156 if (atomic_dec_and_test(&ctx->refcount)) {
1157 if (ctx->parent_ctx)
1158 put_ctx(ctx->parent_ctx);
1159 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1160 put_task_struct(ctx->task);
1161 call_rcu(&ctx->rcu_head, free_ctx);
1162 }
1163 }
1164
1165 /*
1166 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1167 * perf_pmu_migrate_context() we need some magic.
1168 *
1169 * Those places that change perf_event::ctx will hold both
1170 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1171 *
1172 * Lock ordering is by mutex address. There are two other sites where
1173 * perf_event_context::mutex nests and those are:
1174 *
1175 * - perf_event_exit_task_context() [ child , 0 ]
1176 * perf_event_exit_event()
1177 * put_event() [ parent, 1 ]
1178 *
1179 * - perf_event_init_context() [ parent, 0 ]
1180 * inherit_task_group()
1181 * inherit_group()
1182 * inherit_event()
1183 * perf_event_alloc()
1184 * perf_init_event()
1185 * perf_try_init_event() [ child , 1 ]
1186 *
1187 * While it appears there is an obvious deadlock here -- the parent and child
1188 * nesting levels are inverted between the two. This is in fact safe because
1189 * life-time rules separate them. That is an exiting task cannot fork, and a
1190 * spawning task cannot (yet) exit.
1191 *
1192 * But remember that that these are parent<->child context relations, and
1193 * migration does not affect children, therefore these two orderings should not
1194 * interact.
1195 *
1196 * The change in perf_event::ctx does not affect children (as claimed above)
1197 * because the sys_perf_event_open() case will install a new event and break
1198 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1199 * concerned with cpuctx and that doesn't have children.
1200 *
1201 * The places that change perf_event::ctx will issue:
1202 *
1203 * perf_remove_from_context();
1204 * synchronize_rcu();
1205 * perf_install_in_context();
1206 *
1207 * to affect the change. The remove_from_context() + synchronize_rcu() should
1208 * quiesce the event, after which we can install it in the new location. This
1209 * means that only external vectors (perf_fops, prctl) can perturb the event
1210 * while in transit. Therefore all such accessors should also acquire
1211 * perf_event_context::mutex to serialize against this.
1212 *
1213 * However; because event->ctx can change while we're waiting to acquire
1214 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1215 * function.
1216 *
1217 * Lock order:
1218 * cred_guard_mutex
1219 * task_struct::perf_event_mutex
1220 * perf_event_context::mutex
1221 * perf_event::child_mutex;
1222 * perf_event_context::lock
1223 * perf_event::mmap_mutex
1224 * mmap_sem
1225 */
1226 static struct perf_event_context *
1227 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1228 {
1229 struct perf_event_context *ctx;
1230
1231 again:
1232 rcu_read_lock();
1233 ctx = ACCESS_ONCE(event->ctx);
1234 if (!atomic_inc_not_zero(&ctx->refcount)) {
1235 rcu_read_unlock();
1236 goto again;
1237 }
1238 rcu_read_unlock();
1239
1240 mutex_lock_nested(&ctx->mutex, nesting);
1241 if (event->ctx != ctx) {
1242 mutex_unlock(&ctx->mutex);
1243 put_ctx(ctx);
1244 goto again;
1245 }
1246
1247 return ctx;
1248 }
1249
1250 static inline struct perf_event_context *
1251 perf_event_ctx_lock(struct perf_event *event)
1252 {
1253 return perf_event_ctx_lock_nested(event, 0);
1254 }
1255
1256 static void perf_event_ctx_unlock(struct perf_event *event,
1257 struct perf_event_context *ctx)
1258 {
1259 mutex_unlock(&ctx->mutex);
1260 put_ctx(ctx);
1261 }
1262
1263 /*
1264 * This must be done under the ctx->lock, such as to serialize against
1265 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1266 * calling scheduler related locks and ctx->lock nests inside those.
1267 */
1268 static __must_check struct perf_event_context *
1269 unclone_ctx(struct perf_event_context *ctx)
1270 {
1271 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1272
1273 lockdep_assert_held(&ctx->lock);
1274
1275 if (parent_ctx)
1276 ctx->parent_ctx = NULL;
1277 ctx->generation++;
1278
1279 return parent_ctx;
1280 }
1281
1282 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1283 enum pid_type type)
1284 {
1285 u32 nr;
1286 /*
1287 * only top level events have the pid namespace they were created in
1288 */
1289 if (event->parent)
1290 event = event->parent;
1291
1292 nr = __task_pid_nr_ns(p, type, event->ns);
1293 /* avoid -1 if it is idle thread or runs in another ns */
1294 if (!nr && !pid_alive(p))
1295 nr = -1;
1296 return nr;
1297 }
1298
1299 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1300 {
1301 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1302 }
1303
1304 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1305 {
1306 return perf_event_pid_type(event, p, PIDTYPE_PID);
1307 }
1308
1309 /*
1310 * If we inherit events we want to return the parent event id
1311 * to userspace.
1312 */
1313 static u64 primary_event_id(struct perf_event *event)
1314 {
1315 u64 id = event->id;
1316
1317 if (event->parent)
1318 id = event->parent->id;
1319
1320 return id;
1321 }
1322
1323 /*
1324 * Get the perf_event_context for a task and lock it.
1325 *
1326 * This has to cope with with the fact that until it is locked,
1327 * the context could get moved to another task.
1328 */
1329 static struct perf_event_context *
1330 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1331 {
1332 struct perf_event_context *ctx;
1333
1334 retry:
1335 /*
1336 * One of the few rules of preemptible RCU is that one cannot do
1337 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1338 * part of the read side critical section was irqs-enabled -- see
1339 * rcu_read_unlock_special().
1340 *
1341 * Since ctx->lock nests under rq->lock we must ensure the entire read
1342 * side critical section has interrupts disabled.
1343 */
1344 local_irq_save(*flags);
1345 rcu_read_lock();
1346 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1347 if (ctx) {
1348 /*
1349 * If this context is a clone of another, it might
1350 * get swapped for another underneath us by
1351 * perf_event_task_sched_out, though the
1352 * rcu_read_lock() protects us from any context
1353 * getting freed. Lock the context and check if it
1354 * got swapped before we could get the lock, and retry
1355 * if so. If we locked the right context, then it
1356 * can't get swapped on us any more.
1357 */
1358 raw_spin_lock(&ctx->lock);
1359 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1360 raw_spin_unlock(&ctx->lock);
1361 rcu_read_unlock();
1362 local_irq_restore(*flags);
1363 goto retry;
1364 }
1365
1366 if (ctx->task == TASK_TOMBSTONE ||
1367 !atomic_inc_not_zero(&ctx->refcount)) {
1368 raw_spin_unlock(&ctx->lock);
1369 ctx = NULL;
1370 } else {
1371 WARN_ON_ONCE(ctx->task != task);
1372 }
1373 }
1374 rcu_read_unlock();
1375 if (!ctx)
1376 local_irq_restore(*flags);
1377 return ctx;
1378 }
1379
1380 /*
1381 * Get the context for a task and increment its pin_count so it
1382 * can't get swapped to another task. This also increments its
1383 * reference count so that the context can't get freed.
1384 */
1385 static struct perf_event_context *
1386 perf_pin_task_context(struct task_struct *task, int ctxn)
1387 {
1388 struct perf_event_context *ctx;
1389 unsigned long flags;
1390
1391 ctx = perf_lock_task_context(task, ctxn, &flags);
1392 if (ctx) {
1393 ++ctx->pin_count;
1394 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1395 }
1396 return ctx;
1397 }
1398
1399 static void perf_unpin_context(struct perf_event_context *ctx)
1400 {
1401 unsigned long flags;
1402
1403 raw_spin_lock_irqsave(&ctx->lock, flags);
1404 --ctx->pin_count;
1405 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1406 }
1407
1408 /*
1409 * Update the record of the current time in a context.
1410 */
1411 static void update_context_time(struct perf_event_context *ctx)
1412 {
1413 u64 now = perf_clock();
1414
1415 ctx->time += now - ctx->timestamp;
1416 ctx->timestamp = now;
1417 }
1418
1419 static u64 perf_event_time(struct perf_event *event)
1420 {
1421 struct perf_event_context *ctx = event->ctx;
1422
1423 if (is_cgroup_event(event))
1424 return perf_cgroup_event_time(event);
1425
1426 return ctx ? ctx->time : 0;
1427 }
1428
1429 /*
1430 * Update the total_time_enabled and total_time_running fields for a event.
1431 */
1432 static void update_event_times(struct perf_event *event)
1433 {
1434 struct perf_event_context *ctx = event->ctx;
1435 u64 run_end;
1436
1437 lockdep_assert_held(&ctx->lock);
1438
1439 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1440 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1441 return;
1442
1443 /*
1444 * in cgroup mode, time_enabled represents
1445 * the time the event was enabled AND active
1446 * tasks were in the monitored cgroup. This is
1447 * independent of the activity of the context as
1448 * there may be a mix of cgroup and non-cgroup events.
1449 *
1450 * That is why we treat cgroup events differently
1451 * here.
1452 */
1453 if (is_cgroup_event(event))
1454 run_end = perf_cgroup_event_time(event);
1455 else if (ctx->is_active)
1456 run_end = ctx->time;
1457 else
1458 run_end = event->tstamp_stopped;
1459
1460 event->total_time_enabled = run_end - event->tstamp_enabled;
1461
1462 if (event->state == PERF_EVENT_STATE_INACTIVE)
1463 run_end = event->tstamp_stopped;
1464 else
1465 run_end = perf_event_time(event);
1466
1467 event->total_time_running = run_end - event->tstamp_running;
1468
1469 }
1470
1471 /*
1472 * Update total_time_enabled and total_time_running for all events in a group.
1473 */
1474 static void update_group_times(struct perf_event *leader)
1475 {
1476 struct perf_event *event;
1477
1478 update_event_times(leader);
1479 list_for_each_entry(event, &leader->sibling_list, group_entry)
1480 update_event_times(event);
1481 }
1482
1483 static enum event_type_t get_event_type(struct perf_event *event)
1484 {
1485 struct perf_event_context *ctx = event->ctx;
1486 enum event_type_t event_type;
1487
1488 lockdep_assert_held(&ctx->lock);
1489
1490 /*
1491 * It's 'group type', really, because if our group leader is
1492 * pinned, so are we.
1493 */
1494 if (event->group_leader != event)
1495 event = event->group_leader;
1496
1497 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1498 if (!ctx->task)
1499 event_type |= EVENT_CPU;
1500
1501 return event_type;
1502 }
1503
1504 static struct list_head *
1505 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1506 {
1507 if (event->attr.pinned)
1508 return &ctx->pinned_groups;
1509 else
1510 return &ctx->flexible_groups;
1511 }
1512
1513 /*
1514 * Add a event from the lists for its context.
1515 * Must be called with ctx->mutex and ctx->lock held.
1516 */
1517 static void
1518 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1519 {
1520 lockdep_assert_held(&ctx->lock);
1521
1522 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1523 event->attach_state |= PERF_ATTACH_CONTEXT;
1524
1525 /*
1526 * If we're a stand alone event or group leader, we go to the context
1527 * list, group events are kept attached to the group so that
1528 * perf_group_detach can, at all times, locate all siblings.
1529 */
1530 if (event->group_leader == event) {
1531 struct list_head *list;
1532
1533 event->group_caps = event->event_caps;
1534
1535 list = ctx_group_list(event, ctx);
1536 list_add_tail(&event->group_entry, list);
1537 }
1538
1539 list_update_cgroup_event(event, ctx, true);
1540
1541 list_add_rcu(&event->event_entry, &ctx->event_list);
1542 ctx->nr_events++;
1543 if (event->attr.inherit_stat)
1544 ctx->nr_stat++;
1545
1546 ctx->generation++;
1547 }
1548
1549 /*
1550 * Initialize event state based on the perf_event_attr::disabled.
1551 */
1552 static inline void perf_event__state_init(struct perf_event *event)
1553 {
1554 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1555 PERF_EVENT_STATE_INACTIVE;
1556 }
1557
1558 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1559 {
1560 int entry = sizeof(u64); /* value */
1561 int size = 0;
1562 int nr = 1;
1563
1564 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1565 size += sizeof(u64);
1566
1567 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1568 size += sizeof(u64);
1569
1570 if (event->attr.read_format & PERF_FORMAT_ID)
1571 entry += sizeof(u64);
1572
1573 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1574 nr += nr_siblings;
1575 size += sizeof(u64);
1576 }
1577
1578 size += entry * nr;
1579 event->read_size = size;
1580 }
1581
1582 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1583 {
1584 struct perf_sample_data *data;
1585 u16 size = 0;
1586
1587 if (sample_type & PERF_SAMPLE_IP)
1588 size += sizeof(data->ip);
1589
1590 if (sample_type & PERF_SAMPLE_ADDR)
1591 size += sizeof(data->addr);
1592
1593 if (sample_type & PERF_SAMPLE_PERIOD)
1594 size += sizeof(data->period);
1595
1596 if (sample_type & PERF_SAMPLE_WEIGHT)
1597 size += sizeof(data->weight);
1598
1599 if (sample_type & PERF_SAMPLE_READ)
1600 size += event->read_size;
1601
1602 if (sample_type & PERF_SAMPLE_DATA_SRC)
1603 size += sizeof(data->data_src.val);
1604
1605 if (sample_type & PERF_SAMPLE_TRANSACTION)
1606 size += sizeof(data->txn);
1607
1608 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1609 size += sizeof(data->phys_addr);
1610
1611 event->header_size = size;
1612 }
1613
1614 /*
1615 * Called at perf_event creation and when events are attached/detached from a
1616 * group.
1617 */
1618 static void perf_event__header_size(struct perf_event *event)
1619 {
1620 __perf_event_read_size(event,
1621 event->group_leader->nr_siblings);
1622 __perf_event_header_size(event, event->attr.sample_type);
1623 }
1624
1625 static void perf_event__id_header_size(struct perf_event *event)
1626 {
1627 struct perf_sample_data *data;
1628 u64 sample_type = event->attr.sample_type;
1629 u16 size = 0;
1630
1631 if (sample_type & PERF_SAMPLE_TID)
1632 size += sizeof(data->tid_entry);
1633
1634 if (sample_type & PERF_SAMPLE_TIME)
1635 size += sizeof(data->time);
1636
1637 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1638 size += sizeof(data->id);
1639
1640 if (sample_type & PERF_SAMPLE_ID)
1641 size += sizeof(data->id);
1642
1643 if (sample_type & PERF_SAMPLE_STREAM_ID)
1644 size += sizeof(data->stream_id);
1645
1646 if (sample_type & PERF_SAMPLE_CPU)
1647 size += sizeof(data->cpu_entry);
1648
1649 event->id_header_size = size;
1650 }
1651
1652 static bool perf_event_validate_size(struct perf_event *event)
1653 {
1654 /*
1655 * The values computed here will be over-written when we actually
1656 * attach the event.
1657 */
1658 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1659 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1660 perf_event__id_header_size(event);
1661
1662 /*
1663 * Sum the lot; should not exceed the 64k limit we have on records.
1664 * Conservative limit to allow for callchains and other variable fields.
1665 */
1666 if (event->read_size + event->header_size +
1667 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1668 return false;
1669
1670 return true;
1671 }
1672
1673 static void perf_group_attach(struct perf_event *event)
1674 {
1675 struct perf_event *group_leader = event->group_leader, *pos;
1676
1677 lockdep_assert_held(&event->ctx->lock);
1678
1679 /*
1680 * We can have double attach due to group movement in perf_event_open.
1681 */
1682 if (event->attach_state & PERF_ATTACH_GROUP)
1683 return;
1684
1685 event->attach_state |= PERF_ATTACH_GROUP;
1686
1687 if (group_leader == event)
1688 return;
1689
1690 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1691
1692 group_leader->group_caps &= event->event_caps;
1693
1694 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1695 group_leader->nr_siblings++;
1696
1697 perf_event__header_size(group_leader);
1698
1699 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1700 perf_event__header_size(pos);
1701 }
1702
1703 /*
1704 * Remove a event from the lists for its context.
1705 * Must be called with ctx->mutex and ctx->lock held.
1706 */
1707 static void
1708 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1709 {
1710 WARN_ON_ONCE(event->ctx != ctx);
1711 lockdep_assert_held(&ctx->lock);
1712
1713 /*
1714 * We can have double detach due to exit/hot-unplug + close.
1715 */
1716 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1717 return;
1718
1719 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1720
1721 list_update_cgroup_event(event, ctx, false);
1722
1723 ctx->nr_events--;
1724 if (event->attr.inherit_stat)
1725 ctx->nr_stat--;
1726
1727 list_del_rcu(&event->event_entry);
1728
1729 if (event->group_leader == event)
1730 list_del_init(&event->group_entry);
1731
1732 update_group_times(event);
1733
1734 /*
1735 * If event was in error state, then keep it
1736 * that way, otherwise bogus counts will be
1737 * returned on read(). The only way to get out
1738 * of error state is by explicit re-enabling
1739 * of the event
1740 */
1741 if (event->state > PERF_EVENT_STATE_OFF)
1742 event->state = PERF_EVENT_STATE_OFF;
1743
1744 ctx->generation++;
1745 }
1746
1747 static void perf_group_detach(struct perf_event *event)
1748 {
1749 struct perf_event *sibling, *tmp;
1750 struct list_head *list = NULL;
1751
1752 lockdep_assert_held(&event->ctx->lock);
1753
1754 /*
1755 * We can have double detach due to exit/hot-unplug + close.
1756 */
1757 if (!(event->attach_state & PERF_ATTACH_GROUP))
1758 return;
1759
1760 event->attach_state &= ~PERF_ATTACH_GROUP;
1761
1762 /*
1763 * If this is a sibling, remove it from its group.
1764 */
1765 if (event->group_leader != event) {
1766 list_del_init(&event->group_entry);
1767 event->group_leader->nr_siblings--;
1768 goto out;
1769 }
1770
1771 if (!list_empty(&event->group_entry))
1772 list = &event->group_entry;
1773
1774 /*
1775 * If this was a group event with sibling events then
1776 * upgrade the siblings to singleton events by adding them
1777 * to whatever list we are on.
1778 */
1779 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1780 if (list)
1781 list_move_tail(&sibling->group_entry, list);
1782 sibling->group_leader = sibling;
1783
1784 /* Inherit group flags from the previous leader */
1785 sibling->group_caps = event->group_caps;
1786
1787 WARN_ON_ONCE(sibling->ctx != event->ctx);
1788 }
1789
1790 out:
1791 perf_event__header_size(event->group_leader);
1792
1793 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1794 perf_event__header_size(tmp);
1795 }
1796
1797 static bool is_orphaned_event(struct perf_event *event)
1798 {
1799 return event->state == PERF_EVENT_STATE_DEAD;
1800 }
1801
1802 static inline int __pmu_filter_match(struct perf_event *event)
1803 {
1804 struct pmu *pmu = event->pmu;
1805 return pmu->filter_match ? pmu->filter_match(event) : 1;
1806 }
1807
1808 /*
1809 * Check whether we should attempt to schedule an event group based on
1810 * PMU-specific filtering. An event group can consist of HW and SW events,
1811 * potentially with a SW leader, so we must check all the filters, to
1812 * determine whether a group is schedulable:
1813 */
1814 static inline int pmu_filter_match(struct perf_event *event)
1815 {
1816 struct perf_event *child;
1817
1818 if (!__pmu_filter_match(event))
1819 return 0;
1820
1821 list_for_each_entry(child, &event->sibling_list, group_entry) {
1822 if (!__pmu_filter_match(child))
1823 return 0;
1824 }
1825
1826 return 1;
1827 }
1828
1829 static inline int
1830 event_filter_match(struct perf_event *event)
1831 {
1832 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1833 perf_cgroup_match(event) && pmu_filter_match(event);
1834 }
1835
1836 static void
1837 event_sched_out(struct perf_event *event,
1838 struct perf_cpu_context *cpuctx,
1839 struct perf_event_context *ctx)
1840 {
1841 u64 tstamp = perf_event_time(event);
1842 u64 delta;
1843
1844 WARN_ON_ONCE(event->ctx != ctx);
1845 lockdep_assert_held(&ctx->lock);
1846
1847 /*
1848 * An event which could not be activated because of
1849 * filter mismatch still needs to have its timings
1850 * maintained, otherwise bogus information is return
1851 * via read() for time_enabled, time_running:
1852 */
1853 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1854 !event_filter_match(event)) {
1855 delta = tstamp - event->tstamp_stopped;
1856 event->tstamp_running += delta;
1857 event->tstamp_stopped = tstamp;
1858 }
1859
1860 if (event->state != PERF_EVENT_STATE_ACTIVE)
1861 return;
1862
1863 perf_pmu_disable(event->pmu);
1864
1865 event->tstamp_stopped = tstamp;
1866 event->pmu->del(event, 0);
1867 event->oncpu = -1;
1868 event->state = PERF_EVENT_STATE_INACTIVE;
1869 if (event->pending_disable) {
1870 event->pending_disable = 0;
1871 event->state = PERF_EVENT_STATE_OFF;
1872 }
1873
1874 if (!is_software_event(event))
1875 cpuctx->active_oncpu--;
1876 if (!--ctx->nr_active)
1877 perf_event_ctx_deactivate(ctx);
1878 if (event->attr.freq && event->attr.sample_freq)
1879 ctx->nr_freq--;
1880 if (event->attr.exclusive || !cpuctx->active_oncpu)
1881 cpuctx->exclusive = 0;
1882
1883 perf_pmu_enable(event->pmu);
1884 }
1885
1886 static void
1887 group_sched_out(struct perf_event *group_event,
1888 struct perf_cpu_context *cpuctx,
1889 struct perf_event_context *ctx)
1890 {
1891 struct perf_event *event;
1892 int state = group_event->state;
1893
1894 perf_pmu_disable(ctx->pmu);
1895
1896 event_sched_out(group_event, cpuctx, ctx);
1897
1898 /*
1899 * Schedule out siblings (if any):
1900 */
1901 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1902 event_sched_out(event, cpuctx, ctx);
1903
1904 perf_pmu_enable(ctx->pmu);
1905
1906 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1907 cpuctx->exclusive = 0;
1908 }
1909
1910 #define DETACH_GROUP 0x01UL
1911
1912 /*
1913 * Cross CPU call to remove a performance event
1914 *
1915 * We disable the event on the hardware level first. After that we
1916 * remove it from the context list.
1917 */
1918 static void
1919 __perf_remove_from_context(struct perf_event *event,
1920 struct perf_cpu_context *cpuctx,
1921 struct perf_event_context *ctx,
1922 void *info)
1923 {
1924 unsigned long flags = (unsigned long)info;
1925
1926 event_sched_out(event, cpuctx, ctx);
1927 if (flags & DETACH_GROUP)
1928 perf_group_detach(event);
1929 list_del_event(event, ctx);
1930
1931 if (!ctx->nr_events && ctx->is_active) {
1932 ctx->is_active = 0;
1933 if (ctx->task) {
1934 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1935 cpuctx->task_ctx = NULL;
1936 }
1937 }
1938 }
1939
1940 /*
1941 * Remove the event from a task's (or a CPU's) list of events.
1942 *
1943 * If event->ctx is a cloned context, callers must make sure that
1944 * every task struct that event->ctx->task could possibly point to
1945 * remains valid. This is OK when called from perf_release since
1946 * that only calls us on the top-level context, which can't be a clone.
1947 * When called from perf_event_exit_task, it's OK because the
1948 * context has been detached from its task.
1949 */
1950 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1951 {
1952 struct perf_event_context *ctx = event->ctx;
1953
1954 lockdep_assert_held(&ctx->mutex);
1955
1956 event_function_call(event, __perf_remove_from_context, (void *)flags);
1957
1958 /*
1959 * The above event_function_call() can NO-OP when it hits
1960 * TASK_TOMBSTONE. In that case we must already have been detached
1961 * from the context (by perf_event_exit_event()) but the grouping
1962 * might still be in-tact.
1963 */
1964 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1965 if ((flags & DETACH_GROUP) &&
1966 (event->attach_state & PERF_ATTACH_GROUP)) {
1967 /*
1968 * Since in that case we cannot possibly be scheduled, simply
1969 * detach now.
1970 */
1971 raw_spin_lock_irq(&ctx->lock);
1972 perf_group_detach(event);
1973 raw_spin_unlock_irq(&ctx->lock);
1974 }
1975 }
1976
1977 /*
1978 * Cross CPU call to disable a performance event
1979 */
1980 static void __perf_event_disable(struct perf_event *event,
1981 struct perf_cpu_context *cpuctx,
1982 struct perf_event_context *ctx,
1983 void *info)
1984 {
1985 if (event->state < PERF_EVENT_STATE_INACTIVE)
1986 return;
1987
1988 update_context_time(ctx);
1989 update_cgrp_time_from_event(event);
1990 update_group_times(event);
1991 if (event == event->group_leader)
1992 group_sched_out(event, cpuctx, ctx);
1993 else
1994 event_sched_out(event, cpuctx, ctx);
1995 event->state = PERF_EVENT_STATE_OFF;
1996 }
1997
1998 /*
1999 * Disable a event.
2000 *
2001 * If event->ctx is a cloned context, callers must make sure that
2002 * every task struct that event->ctx->task could possibly point to
2003 * remains valid. This condition is satisifed when called through
2004 * perf_event_for_each_child or perf_event_for_each because they
2005 * hold the top-level event's child_mutex, so any descendant that
2006 * goes to exit will block in perf_event_exit_event().
2007 *
2008 * When called from perf_pending_event it's OK because event->ctx
2009 * is the current context on this CPU and preemption is disabled,
2010 * hence we can't get into perf_event_task_sched_out for this context.
2011 */
2012 static void _perf_event_disable(struct perf_event *event)
2013 {
2014 struct perf_event_context *ctx = event->ctx;
2015
2016 raw_spin_lock_irq(&ctx->lock);
2017 if (event->state <= PERF_EVENT_STATE_OFF) {
2018 raw_spin_unlock_irq(&ctx->lock);
2019 return;
2020 }
2021 raw_spin_unlock_irq(&ctx->lock);
2022
2023 event_function_call(event, __perf_event_disable, NULL);
2024 }
2025
2026 void perf_event_disable_local(struct perf_event *event)
2027 {
2028 event_function_local(event, __perf_event_disable, NULL);
2029 }
2030
2031 /*
2032 * Strictly speaking kernel users cannot create groups and therefore this
2033 * interface does not need the perf_event_ctx_lock() magic.
2034 */
2035 void perf_event_disable(struct perf_event *event)
2036 {
2037 struct perf_event_context *ctx;
2038
2039 ctx = perf_event_ctx_lock(event);
2040 _perf_event_disable(event);
2041 perf_event_ctx_unlock(event, ctx);
2042 }
2043 EXPORT_SYMBOL_GPL(perf_event_disable);
2044
2045 void perf_event_disable_inatomic(struct perf_event *event)
2046 {
2047 event->pending_disable = 1;
2048 irq_work_queue(&event->pending);
2049 }
2050
2051 static void perf_set_shadow_time(struct perf_event *event,
2052 struct perf_event_context *ctx,
2053 u64 tstamp)
2054 {
2055 /*
2056 * use the correct time source for the time snapshot
2057 *
2058 * We could get by without this by leveraging the
2059 * fact that to get to this function, the caller
2060 * has most likely already called update_context_time()
2061 * and update_cgrp_time_xx() and thus both timestamp
2062 * are identical (or very close). Given that tstamp is,
2063 * already adjusted for cgroup, we could say that:
2064 * tstamp - ctx->timestamp
2065 * is equivalent to
2066 * tstamp - cgrp->timestamp.
2067 *
2068 * Then, in perf_output_read(), the calculation would
2069 * work with no changes because:
2070 * - event is guaranteed scheduled in
2071 * - no scheduled out in between
2072 * - thus the timestamp would be the same
2073 *
2074 * But this is a bit hairy.
2075 *
2076 * So instead, we have an explicit cgroup call to remain
2077 * within the time time source all along. We believe it
2078 * is cleaner and simpler to understand.
2079 */
2080 if (is_cgroup_event(event))
2081 perf_cgroup_set_shadow_time(event, tstamp);
2082 else
2083 event->shadow_ctx_time = tstamp - ctx->timestamp;
2084 }
2085
2086 #define MAX_INTERRUPTS (~0ULL)
2087
2088 static void perf_log_throttle(struct perf_event *event, int enable);
2089 static void perf_log_itrace_start(struct perf_event *event);
2090
2091 static int
2092 event_sched_in(struct perf_event *event,
2093 struct perf_cpu_context *cpuctx,
2094 struct perf_event_context *ctx)
2095 {
2096 u64 tstamp = perf_event_time(event);
2097 int ret = 0;
2098
2099 lockdep_assert_held(&ctx->lock);
2100
2101 if (event->state <= PERF_EVENT_STATE_OFF)
2102 return 0;
2103
2104 WRITE_ONCE(event->oncpu, smp_processor_id());
2105 /*
2106 * Order event::oncpu write to happen before the ACTIVE state
2107 * is visible.
2108 */
2109 smp_wmb();
2110 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2111
2112 /*
2113 * Unthrottle events, since we scheduled we might have missed several
2114 * ticks already, also for a heavily scheduling task there is little
2115 * guarantee it'll get a tick in a timely manner.
2116 */
2117 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2118 perf_log_throttle(event, 1);
2119 event->hw.interrupts = 0;
2120 }
2121
2122 /*
2123 * The new state must be visible before we turn it on in the hardware:
2124 */
2125 smp_wmb();
2126
2127 perf_pmu_disable(event->pmu);
2128
2129 perf_set_shadow_time(event, ctx, tstamp);
2130
2131 perf_log_itrace_start(event);
2132
2133 if (event->pmu->add(event, PERF_EF_START)) {
2134 event->state = PERF_EVENT_STATE_INACTIVE;
2135 event->oncpu = -1;
2136 ret = -EAGAIN;
2137 goto out;
2138 }
2139
2140 event->tstamp_running += tstamp - event->tstamp_stopped;
2141
2142 if (!is_software_event(event))
2143 cpuctx->active_oncpu++;
2144 if (!ctx->nr_active++)
2145 perf_event_ctx_activate(ctx);
2146 if (event->attr.freq && event->attr.sample_freq)
2147 ctx->nr_freq++;
2148
2149 if (event->attr.exclusive)
2150 cpuctx->exclusive = 1;
2151
2152 out:
2153 perf_pmu_enable(event->pmu);
2154
2155 return ret;
2156 }
2157
2158 static int
2159 group_sched_in(struct perf_event *group_event,
2160 struct perf_cpu_context *cpuctx,
2161 struct perf_event_context *ctx)
2162 {
2163 struct perf_event *event, *partial_group = NULL;
2164 struct pmu *pmu = ctx->pmu;
2165 u64 now = ctx->time;
2166 bool simulate = false;
2167
2168 if (group_event->state == PERF_EVENT_STATE_OFF)
2169 return 0;
2170
2171 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2172
2173 if (event_sched_in(group_event, cpuctx, ctx)) {
2174 pmu->cancel_txn(pmu);
2175 perf_mux_hrtimer_restart(cpuctx);
2176 return -EAGAIN;
2177 }
2178
2179 /*
2180 * Schedule in siblings as one group (if any):
2181 */
2182 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2183 if (event_sched_in(event, cpuctx, ctx)) {
2184 partial_group = event;
2185 goto group_error;
2186 }
2187 }
2188
2189 if (!pmu->commit_txn(pmu))
2190 return 0;
2191
2192 group_error:
2193 /*
2194 * Groups can be scheduled in as one unit only, so undo any
2195 * partial group before returning:
2196 * The events up to the failed event are scheduled out normally,
2197 * tstamp_stopped will be updated.
2198 *
2199 * The failed events and the remaining siblings need to have
2200 * their timings updated as if they had gone thru event_sched_in()
2201 * and event_sched_out(). This is required to get consistent timings
2202 * across the group. This also takes care of the case where the group
2203 * could never be scheduled by ensuring tstamp_stopped is set to mark
2204 * the time the event was actually stopped, such that time delta
2205 * calculation in update_event_times() is correct.
2206 */
2207 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2208 if (event == partial_group)
2209 simulate = true;
2210
2211 if (simulate) {
2212 event->tstamp_running += now - event->tstamp_stopped;
2213 event->tstamp_stopped = now;
2214 } else {
2215 event_sched_out(event, cpuctx, ctx);
2216 }
2217 }
2218 event_sched_out(group_event, cpuctx, ctx);
2219
2220 pmu->cancel_txn(pmu);
2221
2222 perf_mux_hrtimer_restart(cpuctx);
2223
2224 return -EAGAIN;
2225 }
2226
2227 /*
2228 * Work out whether we can put this event group on the CPU now.
2229 */
2230 static int group_can_go_on(struct perf_event *event,
2231 struct perf_cpu_context *cpuctx,
2232 int can_add_hw)
2233 {
2234 /*
2235 * Groups consisting entirely of software events can always go on.
2236 */
2237 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2238 return 1;
2239 /*
2240 * If an exclusive group is already on, no other hardware
2241 * events can go on.
2242 */
2243 if (cpuctx->exclusive)
2244 return 0;
2245 /*
2246 * If this group is exclusive and there are already
2247 * events on the CPU, it can't go on.
2248 */
2249 if (event->attr.exclusive && cpuctx->active_oncpu)
2250 return 0;
2251 /*
2252 * Otherwise, try to add it if all previous groups were able
2253 * to go on.
2254 */
2255 return can_add_hw;
2256 }
2257
2258 /*
2259 * Complement to update_event_times(). This computes the tstamp_* values to
2260 * continue 'enabled' state from @now, and effectively discards the time
2261 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2262 * just switched (context) time base).
2263 *
2264 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2265 * cannot have been scheduled in yet. And going into INACTIVE state means
2266 * '@event->tstamp_stopped = @now'.
2267 *
2268 * Thus given the rules of update_event_times():
2269 *
2270 * total_time_enabled = tstamp_stopped - tstamp_enabled
2271 * total_time_running = tstamp_stopped - tstamp_running
2272 *
2273 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2274 * tstamp_* values.
2275 */
2276 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2277 {
2278 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2279
2280 event->tstamp_stopped = now;
2281 event->tstamp_enabled = now - event->total_time_enabled;
2282 event->tstamp_running = now - event->total_time_running;
2283 }
2284
2285 static void add_event_to_ctx(struct perf_event *event,
2286 struct perf_event_context *ctx)
2287 {
2288 u64 tstamp = perf_event_time(event);
2289
2290 list_add_event(event, ctx);
2291 perf_group_attach(event);
2292 /*
2293 * We can be called with event->state == STATE_OFF when we create with
2294 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2295 */
2296 if (event->state == PERF_EVENT_STATE_INACTIVE)
2297 __perf_event_enable_time(event, tstamp);
2298 }
2299
2300 static void ctx_sched_out(struct perf_event_context *ctx,
2301 struct perf_cpu_context *cpuctx,
2302 enum event_type_t event_type);
2303 static void
2304 ctx_sched_in(struct perf_event_context *ctx,
2305 struct perf_cpu_context *cpuctx,
2306 enum event_type_t event_type,
2307 struct task_struct *task);
2308
2309 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2310 struct perf_event_context *ctx,
2311 enum event_type_t event_type)
2312 {
2313 if (!cpuctx->task_ctx)
2314 return;
2315
2316 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2317 return;
2318
2319 ctx_sched_out(ctx, cpuctx, event_type);
2320 }
2321
2322 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2323 struct perf_event_context *ctx,
2324 struct task_struct *task)
2325 {
2326 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2327 if (ctx)
2328 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2329 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2330 if (ctx)
2331 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2332 }
2333
2334 /*
2335 * We want to maintain the following priority of scheduling:
2336 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2337 * - task pinned (EVENT_PINNED)
2338 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2339 * - task flexible (EVENT_FLEXIBLE).
2340 *
2341 * In order to avoid unscheduling and scheduling back in everything every
2342 * time an event is added, only do it for the groups of equal priority and
2343 * below.
2344 *
2345 * This can be called after a batch operation on task events, in which case
2346 * event_type is a bit mask of the types of events involved. For CPU events,
2347 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2348 */
2349 static void ctx_resched(struct perf_cpu_context *cpuctx,
2350 struct perf_event_context *task_ctx,
2351 enum event_type_t event_type)
2352 {
2353 enum event_type_t ctx_event_type;
2354 bool cpu_event = !!(event_type & EVENT_CPU);
2355
2356 /*
2357 * If pinned groups are involved, flexible groups also need to be
2358 * scheduled out.
2359 */
2360 if (event_type & EVENT_PINNED)
2361 event_type |= EVENT_FLEXIBLE;
2362
2363 ctx_event_type = event_type & EVENT_ALL;
2364
2365 perf_pmu_disable(cpuctx->ctx.pmu);
2366 if (task_ctx)
2367 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2368
2369 /*
2370 * Decide which cpu ctx groups to schedule out based on the types
2371 * of events that caused rescheduling:
2372 * - EVENT_CPU: schedule out corresponding groups;
2373 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2374 * - otherwise, do nothing more.
2375 */
2376 if (cpu_event)
2377 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2378 else if (ctx_event_type & EVENT_PINNED)
2379 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2380
2381 perf_event_sched_in(cpuctx, task_ctx, current);
2382 perf_pmu_enable(cpuctx->ctx.pmu);
2383 }
2384
2385 /*
2386 * Cross CPU call to install and enable a performance event
2387 *
2388 * Very similar to remote_function() + event_function() but cannot assume that
2389 * things like ctx->is_active and cpuctx->task_ctx are set.
2390 */
2391 static int __perf_install_in_context(void *info)
2392 {
2393 struct perf_event *event = info;
2394 struct perf_event_context *ctx = event->ctx;
2395 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2396 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2397 bool reprogram = true;
2398 int ret = 0;
2399
2400 raw_spin_lock(&cpuctx->ctx.lock);
2401 if (ctx->task) {
2402 raw_spin_lock(&ctx->lock);
2403 task_ctx = ctx;
2404
2405 reprogram = (ctx->task == current);
2406
2407 /*
2408 * If the task is running, it must be running on this CPU,
2409 * otherwise we cannot reprogram things.
2410 *
2411 * If its not running, we don't care, ctx->lock will
2412 * serialize against it becoming runnable.
2413 */
2414 if (task_curr(ctx->task) && !reprogram) {
2415 ret = -ESRCH;
2416 goto unlock;
2417 }
2418
2419 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2420 } else if (task_ctx) {
2421 raw_spin_lock(&task_ctx->lock);
2422 }
2423
2424 #ifdef CONFIG_CGROUP_PERF
2425 if (is_cgroup_event(event)) {
2426 /*
2427 * If the current cgroup doesn't match the event's
2428 * cgroup, we should not try to schedule it.
2429 */
2430 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2431 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2432 event->cgrp->css.cgroup);
2433 }
2434 #endif
2435
2436 if (reprogram) {
2437 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2438 add_event_to_ctx(event, ctx);
2439 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2440 } else {
2441 add_event_to_ctx(event, ctx);
2442 }
2443
2444 unlock:
2445 perf_ctx_unlock(cpuctx, task_ctx);
2446
2447 return ret;
2448 }
2449
2450 /*
2451 * Attach a performance event to a context.
2452 *
2453 * Very similar to event_function_call, see comment there.
2454 */
2455 static void
2456 perf_install_in_context(struct perf_event_context *ctx,
2457 struct perf_event *event,
2458 int cpu)
2459 {
2460 struct task_struct *task = READ_ONCE(ctx->task);
2461
2462 lockdep_assert_held(&ctx->mutex);
2463
2464 if (event->cpu != -1)
2465 event->cpu = cpu;
2466
2467 /*
2468 * Ensures that if we can observe event->ctx, both the event and ctx
2469 * will be 'complete'. See perf_iterate_sb_cpu().
2470 */
2471 smp_store_release(&event->ctx, ctx);
2472
2473 if (!task) {
2474 cpu_function_call(cpu, __perf_install_in_context, event);
2475 return;
2476 }
2477
2478 /*
2479 * Should not happen, we validate the ctx is still alive before calling.
2480 */
2481 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2482 return;
2483
2484 /*
2485 * Installing events is tricky because we cannot rely on ctx->is_active
2486 * to be set in case this is the nr_events 0 -> 1 transition.
2487 *
2488 * Instead we use task_curr(), which tells us if the task is running.
2489 * However, since we use task_curr() outside of rq::lock, we can race
2490 * against the actual state. This means the result can be wrong.
2491 *
2492 * If we get a false positive, we retry, this is harmless.
2493 *
2494 * If we get a false negative, things are complicated. If we are after
2495 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2496 * value must be correct. If we're before, it doesn't matter since
2497 * perf_event_context_sched_in() will program the counter.
2498 *
2499 * However, this hinges on the remote context switch having observed
2500 * our task->perf_event_ctxp[] store, such that it will in fact take
2501 * ctx::lock in perf_event_context_sched_in().
2502 *
2503 * We do this by task_function_call(), if the IPI fails to hit the task
2504 * we know any future context switch of task must see the
2505 * perf_event_ctpx[] store.
2506 */
2507
2508 /*
2509 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2510 * task_cpu() load, such that if the IPI then does not find the task
2511 * running, a future context switch of that task must observe the
2512 * store.
2513 */
2514 smp_mb();
2515 again:
2516 if (!task_function_call(task, __perf_install_in_context, event))
2517 return;
2518
2519 raw_spin_lock_irq(&ctx->lock);
2520 task = ctx->task;
2521 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2522 /*
2523 * Cannot happen because we already checked above (which also
2524 * cannot happen), and we hold ctx->mutex, which serializes us
2525 * against perf_event_exit_task_context().
2526 */
2527 raw_spin_unlock_irq(&ctx->lock);
2528 return;
2529 }
2530 /*
2531 * If the task is not running, ctx->lock will avoid it becoming so,
2532 * thus we can safely install the event.
2533 */
2534 if (task_curr(task)) {
2535 raw_spin_unlock_irq(&ctx->lock);
2536 goto again;
2537 }
2538 add_event_to_ctx(event, ctx);
2539 raw_spin_unlock_irq(&ctx->lock);
2540 }
2541
2542 /*
2543 * Put a event into inactive state and update time fields.
2544 * Enabling the leader of a group effectively enables all
2545 * the group members that aren't explicitly disabled, so we
2546 * have to update their ->tstamp_enabled also.
2547 * Note: this works for group members as well as group leaders
2548 * since the non-leader members' sibling_lists will be empty.
2549 */
2550 static void __perf_event_mark_enabled(struct perf_event *event)
2551 {
2552 struct perf_event *sub;
2553 u64 tstamp = perf_event_time(event);
2554
2555 event->state = PERF_EVENT_STATE_INACTIVE;
2556 __perf_event_enable_time(event, tstamp);
2557 list_for_each_entry(sub, &event->sibling_list, group_entry) {
2558 /* XXX should not be > INACTIVE if event isn't */
2559 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2560 __perf_event_enable_time(sub, tstamp);
2561 }
2562 }
2563
2564 /*
2565 * Cross CPU call to enable a performance event
2566 */
2567 static void __perf_event_enable(struct perf_event *event,
2568 struct perf_cpu_context *cpuctx,
2569 struct perf_event_context *ctx,
2570 void *info)
2571 {
2572 struct perf_event *leader = event->group_leader;
2573 struct perf_event_context *task_ctx;
2574
2575 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2576 event->state <= PERF_EVENT_STATE_ERROR)
2577 return;
2578
2579 if (ctx->is_active)
2580 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2581
2582 __perf_event_mark_enabled(event);
2583
2584 if (!ctx->is_active)
2585 return;
2586
2587 if (!event_filter_match(event)) {
2588 if (is_cgroup_event(event))
2589 perf_cgroup_defer_enabled(event);
2590 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2591 return;
2592 }
2593
2594 /*
2595 * If the event is in a group and isn't the group leader,
2596 * then don't put it on unless the group is on.
2597 */
2598 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2599 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2600 return;
2601 }
2602
2603 task_ctx = cpuctx->task_ctx;
2604 if (ctx->task)
2605 WARN_ON_ONCE(task_ctx != ctx);
2606
2607 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2608 }
2609
2610 /*
2611 * Enable a event.
2612 *
2613 * If event->ctx is a cloned context, callers must make sure that
2614 * every task struct that event->ctx->task could possibly point to
2615 * remains valid. This condition is satisfied when called through
2616 * perf_event_for_each_child or perf_event_for_each as described
2617 * for perf_event_disable.
2618 */
2619 static void _perf_event_enable(struct perf_event *event)
2620 {
2621 struct perf_event_context *ctx = event->ctx;
2622
2623 raw_spin_lock_irq(&ctx->lock);
2624 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2625 event->state < PERF_EVENT_STATE_ERROR) {
2626 raw_spin_unlock_irq(&ctx->lock);
2627 return;
2628 }
2629
2630 /*
2631 * If the event is in error state, clear that first.
2632 *
2633 * That way, if we see the event in error state below, we know that it
2634 * has gone back into error state, as distinct from the task having
2635 * been scheduled away before the cross-call arrived.
2636 */
2637 if (event->state == PERF_EVENT_STATE_ERROR)
2638 event->state = PERF_EVENT_STATE_OFF;
2639 raw_spin_unlock_irq(&ctx->lock);
2640
2641 event_function_call(event, __perf_event_enable, NULL);
2642 }
2643
2644 /*
2645 * See perf_event_disable();
2646 */
2647 void perf_event_enable(struct perf_event *event)
2648 {
2649 struct perf_event_context *ctx;
2650
2651 ctx = perf_event_ctx_lock(event);
2652 _perf_event_enable(event);
2653 perf_event_ctx_unlock(event, ctx);
2654 }
2655 EXPORT_SYMBOL_GPL(perf_event_enable);
2656
2657 struct stop_event_data {
2658 struct perf_event *event;
2659 unsigned int restart;
2660 };
2661
2662 static int __perf_event_stop(void *info)
2663 {
2664 struct stop_event_data *sd = info;
2665 struct perf_event *event = sd->event;
2666
2667 /* if it's already INACTIVE, do nothing */
2668 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2669 return 0;
2670
2671 /* matches smp_wmb() in event_sched_in() */
2672 smp_rmb();
2673
2674 /*
2675 * There is a window with interrupts enabled before we get here,
2676 * so we need to check again lest we try to stop another CPU's event.
2677 */
2678 if (READ_ONCE(event->oncpu) != smp_processor_id())
2679 return -EAGAIN;
2680
2681 event->pmu->stop(event, PERF_EF_UPDATE);
2682
2683 /*
2684 * May race with the actual stop (through perf_pmu_output_stop()),
2685 * but it is only used for events with AUX ring buffer, and such
2686 * events will refuse to restart because of rb::aux_mmap_count==0,
2687 * see comments in perf_aux_output_begin().
2688 *
2689 * Since this is happening on a event-local CPU, no trace is lost
2690 * while restarting.
2691 */
2692 if (sd->restart)
2693 event->pmu->start(event, 0);
2694
2695 return 0;
2696 }
2697
2698 static int perf_event_stop(struct perf_event *event, int restart)
2699 {
2700 struct stop_event_data sd = {
2701 .event = event,
2702 .restart = restart,
2703 };
2704 int ret = 0;
2705
2706 do {
2707 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2708 return 0;
2709
2710 /* matches smp_wmb() in event_sched_in() */
2711 smp_rmb();
2712
2713 /*
2714 * We only want to restart ACTIVE events, so if the event goes
2715 * inactive here (event->oncpu==-1), there's nothing more to do;
2716 * fall through with ret==-ENXIO.
2717 */
2718 ret = cpu_function_call(READ_ONCE(event->oncpu),
2719 __perf_event_stop, &sd);
2720 } while (ret == -EAGAIN);
2721
2722 return ret;
2723 }
2724
2725 /*
2726 * In order to contain the amount of racy and tricky in the address filter
2727 * configuration management, it is a two part process:
2728 *
2729 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2730 * we update the addresses of corresponding vmas in
2731 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2732 * (p2) when an event is scheduled in (pmu::add), it calls
2733 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2734 * if the generation has changed since the previous call.
2735 *
2736 * If (p1) happens while the event is active, we restart it to force (p2).
2737 *
2738 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2739 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2740 * ioctl;
2741 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2742 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2743 * for reading;
2744 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2745 * of exec.
2746 */
2747 void perf_event_addr_filters_sync(struct perf_event *event)
2748 {
2749 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2750
2751 if (!has_addr_filter(event))
2752 return;
2753
2754 raw_spin_lock(&ifh->lock);
2755 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2756 event->pmu->addr_filters_sync(event);
2757 event->hw.addr_filters_gen = event->addr_filters_gen;
2758 }
2759 raw_spin_unlock(&ifh->lock);
2760 }
2761 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2762
2763 static int _perf_event_refresh(struct perf_event *event, int refresh)
2764 {
2765 /*
2766 * not supported on inherited events
2767 */
2768 if (event->attr.inherit || !is_sampling_event(event))
2769 return -EINVAL;
2770
2771 atomic_add(refresh, &event->event_limit);
2772 _perf_event_enable(event);
2773
2774 return 0;
2775 }
2776
2777 /*
2778 * See perf_event_disable()
2779 */
2780 int perf_event_refresh(struct perf_event *event, int refresh)
2781 {
2782 struct perf_event_context *ctx;
2783 int ret;
2784
2785 ctx = perf_event_ctx_lock(event);
2786 ret = _perf_event_refresh(event, refresh);
2787 perf_event_ctx_unlock(event, ctx);
2788
2789 return ret;
2790 }
2791 EXPORT_SYMBOL_GPL(perf_event_refresh);
2792
2793 static void ctx_sched_out(struct perf_event_context *ctx,
2794 struct perf_cpu_context *cpuctx,
2795 enum event_type_t event_type)
2796 {
2797 int is_active = ctx->is_active;
2798 struct perf_event *event;
2799
2800 lockdep_assert_held(&ctx->lock);
2801
2802 if (likely(!ctx->nr_events)) {
2803 /*
2804 * See __perf_remove_from_context().
2805 */
2806 WARN_ON_ONCE(ctx->is_active);
2807 if (ctx->task)
2808 WARN_ON_ONCE(cpuctx->task_ctx);
2809 return;
2810 }
2811
2812 ctx->is_active &= ~event_type;
2813 if (!(ctx->is_active & EVENT_ALL))
2814 ctx->is_active = 0;
2815
2816 if (ctx->task) {
2817 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2818 if (!ctx->is_active)
2819 cpuctx->task_ctx = NULL;
2820 }
2821
2822 /*
2823 * Always update time if it was set; not only when it changes.
2824 * Otherwise we can 'forget' to update time for any but the last
2825 * context we sched out. For example:
2826 *
2827 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2828 * ctx_sched_out(.event_type = EVENT_PINNED)
2829 *
2830 * would only update time for the pinned events.
2831 */
2832 if (is_active & EVENT_TIME) {
2833 /* update (and stop) ctx time */
2834 update_context_time(ctx);
2835 update_cgrp_time_from_cpuctx(cpuctx);
2836 }
2837
2838 is_active ^= ctx->is_active; /* changed bits */
2839
2840 if (!ctx->nr_active || !(is_active & EVENT_ALL))
2841 return;
2842
2843 perf_pmu_disable(ctx->pmu);
2844 if (is_active & EVENT_PINNED) {
2845 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2846 group_sched_out(event, cpuctx, ctx);
2847 }
2848
2849 if (is_active & EVENT_FLEXIBLE) {
2850 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2851 group_sched_out(event, cpuctx, ctx);
2852 }
2853 perf_pmu_enable(ctx->pmu);
2854 }
2855
2856 /*
2857 * Test whether two contexts are equivalent, i.e. whether they have both been
2858 * cloned from the same version of the same context.
2859 *
2860 * Equivalence is measured using a generation number in the context that is
2861 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2862 * and list_del_event().
2863 */
2864 static int context_equiv(struct perf_event_context *ctx1,
2865 struct perf_event_context *ctx2)
2866 {
2867 lockdep_assert_held(&ctx1->lock);
2868 lockdep_assert_held(&ctx2->lock);
2869
2870 /* Pinning disables the swap optimization */
2871 if (ctx1->pin_count || ctx2->pin_count)
2872 return 0;
2873
2874 /* If ctx1 is the parent of ctx2 */
2875 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2876 return 1;
2877
2878 /* If ctx2 is the parent of ctx1 */
2879 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2880 return 1;
2881
2882 /*
2883 * If ctx1 and ctx2 have the same parent; we flatten the parent
2884 * hierarchy, see perf_event_init_context().
2885 */
2886 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2887 ctx1->parent_gen == ctx2->parent_gen)
2888 return 1;
2889
2890 /* Unmatched */
2891 return 0;
2892 }
2893
2894 static void __perf_event_sync_stat(struct perf_event *event,
2895 struct perf_event *next_event)
2896 {
2897 u64 value;
2898
2899 if (!event->attr.inherit_stat)
2900 return;
2901
2902 /*
2903 * Update the event value, we cannot use perf_event_read()
2904 * because we're in the middle of a context switch and have IRQs
2905 * disabled, which upsets smp_call_function_single(), however
2906 * we know the event must be on the current CPU, therefore we
2907 * don't need to use it.
2908 */
2909 switch (event->state) {
2910 case PERF_EVENT_STATE_ACTIVE:
2911 event->pmu->read(event);
2912 /* fall-through */
2913
2914 case PERF_EVENT_STATE_INACTIVE:
2915 update_event_times(event);
2916 break;
2917
2918 default:
2919 break;
2920 }
2921
2922 /*
2923 * In order to keep per-task stats reliable we need to flip the event
2924 * values when we flip the contexts.
2925 */
2926 value = local64_read(&next_event->count);
2927 value = local64_xchg(&event->count, value);
2928 local64_set(&next_event->count, value);
2929
2930 swap(event->total_time_enabled, next_event->total_time_enabled);
2931 swap(event->total_time_running, next_event->total_time_running);
2932
2933 /*
2934 * Since we swizzled the values, update the user visible data too.
2935 */
2936 perf_event_update_userpage(event);
2937 perf_event_update_userpage(next_event);
2938 }
2939
2940 static void perf_event_sync_stat(struct perf_event_context *ctx,
2941 struct perf_event_context *next_ctx)
2942 {
2943 struct perf_event *event, *next_event;
2944
2945 if (!ctx->nr_stat)
2946 return;
2947
2948 update_context_time(ctx);
2949
2950 event = list_first_entry(&ctx->event_list,
2951 struct perf_event, event_entry);
2952
2953 next_event = list_first_entry(&next_ctx->event_list,
2954 struct perf_event, event_entry);
2955
2956 while (&event->event_entry != &ctx->event_list &&
2957 &next_event->event_entry != &next_ctx->event_list) {
2958
2959 __perf_event_sync_stat(event, next_event);
2960
2961 event = list_next_entry(event, event_entry);
2962 next_event = list_next_entry(next_event, event_entry);
2963 }
2964 }
2965
2966 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2967 struct task_struct *next)
2968 {
2969 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2970 struct perf_event_context *next_ctx;
2971 struct perf_event_context *parent, *next_parent;
2972 struct perf_cpu_context *cpuctx;
2973 int do_switch = 1;
2974
2975 if (likely(!ctx))
2976 return;
2977
2978 cpuctx = __get_cpu_context(ctx);
2979 if (!cpuctx->task_ctx)
2980 return;
2981
2982 rcu_read_lock();
2983 next_ctx = next->perf_event_ctxp[ctxn];
2984 if (!next_ctx)
2985 goto unlock;
2986
2987 parent = rcu_dereference(ctx->parent_ctx);
2988 next_parent = rcu_dereference(next_ctx->parent_ctx);
2989
2990 /* If neither context have a parent context; they cannot be clones. */
2991 if (!parent && !next_parent)
2992 goto unlock;
2993
2994 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2995 /*
2996 * Looks like the two contexts are clones, so we might be
2997 * able to optimize the context switch. We lock both
2998 * contexts and check that they are clones under the
2999 * lock (including re-checking that neither has been
3000 * uncloned in the meantime). It doesn't matter which
3001 * order we take the locks because no other cpu could
3002 * be trying to lock both of these tasks.
3003 */
3004 raw_spin_lock(&ctx->lock);
3005 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3006 if (context_equiv(ctx, next_ctx)) {
3007 WRITE_ONCE(ctx->task, next);
3008 WRITE_ONCE(next_ctx->task, task);
3009
3010 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3011
3012 /*
3013 * RCU_INIT_POINTER here is safe because we've not
3014 * modified the ctx and the above modification of
3015 * ctx->task and ctx->task_ctx_data are immaterial
3016 * since those values are always verified under
3017 * ctx->lock which we're now holding.
3018 */
3019 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3020 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3021
3022 do_switch = 0;
3023
3024 perf_event_sync_stat(ctx, next_ctx);
3025 }
3026 raw_spin_unlock(&next_ctx->lock);
3027 raw_spin_unlock(&ctx->lock);
3028 }
3029 unlock:
3030 rcu_read_unlock();
3031
3032 if (do_switch) {
3033 raw_spin_lock(&ctx->lock);
3034 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3035 raw_spin_unlock(&ctx->lock);
3036 }
3037 }
3038
3039 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3040
3041 void perf_sched_cb_dec(struct pmu *pmu)
3042 {
3043 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3044
3045 this_cpu_dec(perf_sched_cb_usages);
3046
3047 if (!--cpuctx->sched_cb_usage)
3048 list_del(&cpuctx->sched_cb_entry);
3049 }
3050
3051
3052 void perf_sched_cb_inc(struct pmu *pmu)
3053 {
3054 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3055
3056 if (!cpuctx->sched_cb_usage++)
3057 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3058
3059 this_cpu_inc(perf_sched_cb_usages);
3060 }
3061
3062 /*
3063 * This function provides the context switch callback to the lower code
3064 * layer. It is invoked ONLY when the context switch callback is enabled.
3065 *
3066 * This callback is relevant even to per-cpu events; for example multi event
3067 * PEBS requires this to provide PID/TID information. This requires we flush
3068 * all queued PEBS records before we context switch to a new task.
3069 */
3070 static void perf_pmu_sched_task(struct task_struct *prev,
3071 struct task_struct *next,
3072 bool sched_in)
3073 {
3074 struct perf_cpu_context *cpuctx;
3075 struct pmu *pmu;
3076
3077 if (prev == next)
3078 return;
3079
3080 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3081 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3082
3083 if (WARN_ON_ONCE(!pmu->sched_task))
3084 continue;
3085
3086 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3087 perf_pmu_disable(pmu);
3088
3089 pmu->sched_task(cpuctx->task_ctx, sched_in);
3090
3091 perf_pmu_enable(pmu);
3092 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3093 }
3094 }
3095
3096 static void perf_event_switch(struct task_struct *task,
3097 struct task_struct *next_prev, bool sched_in);
3098
3099 #define for_each_task_context_nr(ctxn) \
3100 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3101
3102 /*
3103 * Called from scheduler to remove the events of the current task,
3104 * with interrupts disabled.
3105 *
3106 * We stop each event and update the event value in event->count.
3107 *
3108 * This does not protect us against NMI, but disable()
3109 * sets the disabled bit in the control field of event _before_
3110 * accessing the event control register. If a NMI hits, then it will
3111 * not restart the event.
3112 */
3113 void __perf_event_task_sched_out(struct task_struct *task,
3114 struct task_struct *next)
3115 {
3116 int ctxn;
3117
3118 if (__this_cpu_read(perf_sched_cb_usages))
3119 perf_pmu_sched_task(task, next, false);
3120
3121 if (atomic_read(&nr_switch_events))
3122 perf_event_switch(task, next, false);
3123
3124 for_each_task_context_nr(ctxn)
3125 perf_event_context_sched_out(task, ctxn, next);
3126
3127 /*
3128 * if cgroup events exist on this CPU, then we need
3129 * to check if we have to switch out PMU state.
3130 * cgroup event are system-wide mode only
3131 */
3132 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3133 perf_cgroup_sched_out(task, next);
3134 }
3135
3136 /*
3137 * Called with IRQs disabled
3138 */
3139 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3140 enum event_type_t event_type)
3141 {
3142 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3143 }
3144
3145 static void
3146 ctx_pinned_sched_in(struct perf_event_context *ctx,
3147 struct perf_cpu_context *cpuctx)
3148 {
3149 struct perf_event *event;
3150
3151 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3152 if (event->state <= PERF_EVENT_STATE_OFF)
3153 continue;
3154 if (!event_filter_match(event))
3155 continue;
3156
3157 /* may need to reset tstamp_enabled */
3158 if (is_cgroup_event(event))
3159 perf_cgroup_mark_enabled(event, ctx);
3160
3161 if (group_can_go_on(event, cpuctx, 1))
3162 group_sched_in(event, cpuctx, ctx);
3163
3164 /*
3165 * If this pinned group hasn't been scheduled,
3166 * put it in error state.
3167 */
3168 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3169 update_group_times(event);
3170 event->state = PERF_EVENT_STATE_ERROR;
3171 }
3172 }
3173 }
3174
3175 static void
3176 ctx_flexible_sched_in(struct perf_event_context *ctx,
3177 struct perf_cpu_context *cpuctx)
3178 {
3179 struct perf_event *event;
3180 int can_add_hw = 1;
3181
3182 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3183 /* Ignore events in OFF or ERROR state */
3184 if (event->state <= PERF_EVENT_STATE_OFF)
3185 continue;
3186 /*
3187 * Listen to the 'cpu' scheduling filter constraint
3188 * of events:
3189 */
3190 if (!event_filter_match(event))
3191 continue;
3192
3193 /* may need to reset tstamp_enabled */
3194 if (is_cgroup_event(event))
3195 perf_cgroup_mark_enabled(event, ctx);
3196
3197 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3198 if (group_sched_in(event, cpuctx, ctx))
3199 can_add_hw = 0;
3200 }
3201 }
3202 }
3203
3204 static void
3205 ctx_sched_in(struct perf_event_context *ctx,
3206 struct perf_cpu_context *cpuctx,
3207 enum event_type_t event_type,
3208 struct task_struct *task)
3209 {
3210 int is_active = ctx->is_active;
3211 u64 now;
3212
3213 lockdep_assert_held(&ctx->lock);
3214
3215 if (likely(!ctx->nr_events))
3216 return;
3217
3218 ctx->is_active |= (event_type | EVENT_TIME);
3219 if (ctx->task) {
3220 if (!is_active)
3221 cpuctx->task_ctx = ctx;
3222 else
3223 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3224 }
3225
3226 is_active ^= ctx->is_active; /* changed bits */
3227
3228 if (is_active & EVENT_TIME) {
3229 /* start ctx time */
3230 now = perf_clock();
3231 ctx->timestamp = now;
3232 perf_cgroup_set_timestamp(task, ctx);
3233 }
3234
3235 /*
3236 * First go through the list and put on any pinned groups
3237 * in order to give them the best chance of going on.
3238 */
3239 if (is_active & EVENT_PINNED)
3240 ctx_pinned_sched_in(ctx, cpuctx);
3241
3242 /* Then walk through the lower prio flexible groups */
3243 if (is_active & EVENT_FLEXIBLE)
3244 ctx_flexible_sched_in(ctx, cpuctx);
3245 }
3246
3247 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3248 enum event_type_t event_type,
3249 struct task_struct *task)
3250 {
3251 struct perf_event_context *ctx = &cpuctx->ctx;
3252
3253 ctx_sched_in(ctx, cpuctx, event_type, task);
3254 }
3255
3256 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3257 struct task_struct *task)
3258 {
3259 struct perf_cpu_context *cpuctx;
3260
3261 cpuctx = __get_cpu_context(ctx);
3262 if (cpuctx->task_ctx == ctx)
3263 return;
3264
3265 perf_ctx_lock(cpuctx, ctx);
3266 /*
3267 * We must check ctx->nr_events while holding ctx->lock, such
3268 * that we serialize against perf_install_in_context().
3269 */
3270 if (!ctx->nr_events)
3271 goto unlock;
3272
3273 perf_pmu_disable(ctx->pmu);
3274 /*
3275 * We want to keep the following priority order:
3276 * cpu pinned (that don't need to move), task pinned,
3277 * cpu flexible, task flexible.
3278 *
3279 * However, if task's ctx is not carrying any pinned
3280 * events, no need to flip the cpuctx's events around.
3281 */
3282 if (!list_empty(&ctx->pinned_groups))
3283 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3284 perf_event_sched_in(cpuctx, ctx, task);
3285 perf_pmu_enable(ctx->pmu);
3286
3287 unlock:
3288 perf_ctx_unlock(cpuctx, ctx);
3289 }
3290
3291 /*
3292 * Called from scheduler to add the events of the current task
3293 * with interrupts disabled.
3294 *
3295 * We restore the event value and then enable it.
3296 *
3297 * This does not protect us against NMI, but enable()
3298 * sets the enabled bit in the control field of event _before_
3299 * accessing the event control register. If a NMI hits, then it will
3300 * keep the event running.
3301 */
3302 void __perf_event_task_sched_in(struct task_struct *prev,
3303 struct task_struct *task)
3304 {
3305 struct perf_event_context *ctx;
3306 int ctxn;
3307
3308 /*
3309 * If cgroup events exist on this CPU, then we need to check if we have
3310 * to switch in PMU state; cgroup event are system-wide mode only.
3311 *
3312 * Since cgroup events are CPU events, we must schedule these in before
3313 * we schedule in the task events.
3314 */
3315 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3316 perf_cgroup_sched_in(prev, task);
3317
3318 for_each_task_context_nr(ctxn) {
3319 ctx = task->perf_event_ctxp[ctxn];
3320 if (likely(!ctx))
3321 continue;
3322
3323 perf_event_context_sched_in(ctx, task);
3324 }
3325
3326 if (atomic_read(&nr_switch_events))
3327 perf_event_switch(task, prev, true);
3328
3329 if (__this_cpu_read(perf_sched_cb_usages))
3330 perf_pmu_sched_task(prev, task, true);
3331 }
3332
3333 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3334 {
3335 u64 frequency = event->attr.sample_freq;
3336 u64 sec = NSEC_PER_SEC;
3337 u64 divisor, dividend;
3338
3339 int count_fls, nsec_fls, frequency_fls, sec_fls;
3340
3341 count_fls = fls64(count);
3342 nsec_fls = fls64(nsec);
3343 frequency_fls = fls64(frequency);
3344 sec_fls = 30;
3345
3346 /*
3347 * We got @count in @nsec, with a target of sample_freq HZ
3348 * the target period becomes:
3349 *
3350 * @count * 10^9
3351 * period = -------------------
3352 * @nsec * sample_freq
3353 *
3354 */
3355
3356 /*
3357 * Reduce accuracy by one bit such that @a and @b converge
3358 * to a similar magnitude.
3359 */
3360 #define REDUCE_FLS(a, b) \
3361 do { \
3362 if (a##_fls > b##_fls) { \
3363 a >>= 1; \
3364 a##_fls--; \
3365 } else { \
3366 b >>= 1; \
3367 b##_fls--; \
3368 } \
3369 } while (0)
3370
3371 /*
3372 * Reduce accuracy until either term fits in a u64, then proceed with
3373 * the other, so that finally we can do a u64/u64 division.
3374 */
3375 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3376 REDUCE_FLS(nsec, frequency);
3377 REDUCE_FLS(sec, count);
3378 }
3379
3380 if (count_fls + sec_fls > 64) {
3381 divisor = nsec * frequency;
3382
3383 while (count_fls + sec_fls > 64) {
3384 REDUCE_FLS(count, sec);
3385 divisor >>= 1;
3386 }
3387
3388 dividend = count * sec;
3389 } else {
3390 dividend = count * sec;
3391
3392 while (nsec_fls + frequency_fls > 64) {
3393 REDUCE_FLS(nsec, frequency);
3394 dividend >>= 1;
3395 }
3396
3397 divisor = nsec * frequency;
3398 }
3399
3400 if (!divisor)
3401 return dividend;
3402
3403 return div64_u64(dividend, divisor);
3404 }
3405
3406 static DEFINE_PER_CPU(int, perf_throttled_count);
3407 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3408
3409 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3410 {
3411 struct hw_perf_event *hwc = &event->hw;
3412 s64 period, sample_period;
3413 s64 delta;
3414
3415 period = perf_calculate_period(event, nsec, count);
3416
3417 delta = (s64)(period - hwc->sample_period);
3418 delta = (delta + 7) / 8; /* low pass filter */
3419
3420 sample_period = hwc->sample_period + delta;
3421
3422 if (!sample_period)
3423 sample_period = 1;
3424
3425 hwc->sample_period = sample_period;
3426
3427 if (local64_read(&hwc->period_left) > 8*sample_period) {
3428 if (disable)
3429 event->pmu->stop(event, PERF_EF_UPDATE);
3430
3431 local64_set(&hwc->period_left, 0);
3432
3433 if (disable)
3434 event->pmu->start(event, PERF_EF_RELOAD);
3435 }
3436 }
3437
3438 /*
3439 * combine freq adjustment with unthrottling to avoid two passes over the
3440 * events. At the same time, make sure, having freq events does not change
3441 * the rate of unthrottling as that would introduce bias.
3442 */
3443 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3444 int needs_unthr)
3445 {
3446 struct perf_event *event;
3447 struct hw_perf_event *hwc;
3448 u64 now, period = TICK_NSEC;
3449 s64 delta;
3450
3451 /*
3452 * only need to iterate over all events iff:
3453 * - context have events in frequency mode (needs freq adjust)
3454 * - there are events to unthrottle on this cpu
3455 */
3456 if (!(ctx->nr_freq || needs_unthr))
3457 return;
3458
3459 raw_spin_lock(&ctx->lock);
3460 perf_pmu_disable(ctx->pmu);
3461
3462 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3463 if (event->state != PERF_EVENT_STATE_ACTIVE)
3464 continue;
3465
3466 if (!event_filter_match(event))
3467 continue;
3468
3469 perf_pmu_disable(event->pmu);
3470
3471 hwc = &event->hw;
3472
3473 if (hwc->interrupts == MAX_INTERRUPTS) {
3474 hwc->interrupts = 0;
3475 perf_log_throttle(event, 1);
3476 event->pmu->start(event, 0);
3477 }
3478
3479 if (!event->attr.freq || !event->attr.sample_freq)
3480 goto next;
3481
3482 /*
3483 * stop the event and update event->count
3484 */
3485 event->pmu->stop(event, PERF_EF_UPDATE);
3486
3487 now = local64_read(&event->count);
3488 delta = now - hwc->freq_count_stamp;
3489 hwc->freq_count_stamp = now;
3490
3491 /*
3492 * restart the event
3493 * reload only if value has changed
3494 * we have stopped the event so tell that
3495 * to perf_adjust_period() to avoid stopping it
3496 * twice.
3497 */
3498 if (delta > 0)
3499 perf_adjust_period(event, period, delta, false);
3500
3501 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3502 next:
3503 perf_pmu_enable(event->pmu);
3504 }
3505
3506 perf_pmu_enable(ctx->pmu);
3507 raw_spin_unlock(&ctx->lock);
3508 }
3509
3510 /*
3511 * Round-robin a context's events:
3512 */
3513 static void rotate_ctx(struct perf_event_context *ctx)
3514 {
3515 /*
3516 * Rotate the first entry last of non-pinned groups. Rotation might be
3517 * disabled by the inheritance code.
3518 */
3519 if (!ctx->rotate_disable)
3520 list_rotate_left(&ctx->flexible_groups);
3521 }
3522
3523 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3524 {
3525 struct perf_event_context *ctx = NULL;
3526 int rotate = 0;
3527
3528 if (cpuctx->ctx.nr_events) {
3529 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3530 rotate = 1;
3531 }
3532
3533 ctx = cpuctx->task_ctx;
3534 if (ctx && ctx->nr_events) {
3535 if (ctx->nr_events != ctx->nr_active)
3536 rotate = 1;
3537 }
3538
3539 if (!rotate)
3540 goto done;
3541
3542 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3543 perf_pmu_disable(cpuctx->ctx.pmu);
3544
3545 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3546 if (ctx)
3547 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3548
3549 rotate_ctx(&cpuctx->ctx);
3550 if (ctx)
3551 rotate_ctx(ctx);
3552
3553 perf_event_sched_in(cpuctx, ctx, current);
3554
3555 perf_pmu_enable(cpuctx->ctx.pmu);
3556 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3557 done:
3558
3559 return rotate;
3560 }
3561
3562 void perf_event_task_tick(void)
3563 {
3564 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3565 struct perf_event_context *ctx, *tmp;
3566 int throttled;
3567
3568 WARN_ON(!irqs_disabled());
3569
3570 __this_cpu_inc(perf_throttled_seq);
3571 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3572 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3573
3574 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3575 perf_adjust_freq_unthr_context(ctx, throttled);
3576 }
3577
3578 static int event_enable_on_exec(struct perf_event *event,
3579 struct perf_event_context *ctx)
3580 {
3581 if (!event->attr.enable_on_exec)
3582 return 0;
3583
3584 event->attr.enable_on_exec = 0;
3585 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3586 return 0;
3587
3588 __perf_event_mark_enabled(event);
3589
3590 return 1;
3591 }
3592
3593 /*
3594 * Enable all of a task's events that have been marked enable-on-exec.
3595 * This expects task == current.
3596 */
3597 static void perf_event_enable_on_exec(int ctxn)
3598 {
3599 struct perf_event_context *ctx, *clone_ctx = NULL;
3600 enum event_type_t event_type = 0;
3601 struct perf_cpu_context *cpuctx;
3602 struct perf_event *event;
3603 unsigned long flags;
3604 int enabled = 0;
3605
3606 local_irq_save(flags);
3607 ctx = current->perf_event_ctxp[ctxn];
3608 if (!ctx || !ctx->nr_events)
3609 goto out;
3610
3611 cpuctx = __get_cpu_context(ctx);
3612 perf_ctx_lock(cpuctx, ctx);
3613 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3614 list_for_each_entry(event, &ctx->event_list, event_entry) {
3615 enabled |= event_enable_on_exec(event, ctx);
3616 event_type |= get_event_type(event);
3617 }
3618
3619 /*
3620 * Unclone and reschedule this context if we enabled any event.
3621 */
3622 if (enabled) {
3623 clone_ctx = unclone_ctx(ctx);
3624 ctx_resched(cpuctx, ctx, event_type);
3625 } else {
3626 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3627 }
3628 perf_ctx_unlock(cpuctx, ctx);
3629
3630 out:
3631 local_irq_restore(flags);
3632
3633 if (clone_ctx)
3634 put_ctx(clone_ctx);
3635 }
3636
3637 struct perf_read_data {
3638 struct perf_event *event;
3639 bool group;
3640 int ret;
3641 };
3642
3643 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3644 {
3645 u16 local_pkg, event_pkg;
3646
3647 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3648 int local_cpu = smp_processor_id();
3649
3650 event_pkg = topology_physical_package_id(event_cpu);
3651 local_pkg = topology_physical_package_id(local_cpu);
3652
3653 if (event_pkg == local_pkg)
3654 return local_cpu;
3655 }
3656
3657 return event_cpu;
3658 }
3659
3660 /*
3661 * Cross CPU call to read the hardware event
3662 */
3663 static void __perf_event_read(void *info)
3664 {
3665 struct perf_read_data *data = info;
3666 struct perf_event *sub, *event = data->event;
3667 struct perf_event_context *ctx = event->ctx;
3668 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3669 struct pmu *pmu = event->pmu;
3670
3671 /*
3672 * If this is a task context, we need to check whether it is
3673 * the current task context of this cpu. If not it has been
3674 * scheduled out before the smp call arrived. In that case
3675 * event->count would have been updated to a recent sample
3676 * when the event was scheduled out.
3677 */
3678 if (ctx->task && cpuctx->task_ctx != ctx)
3679 return;
3680
3681 raw_spin_lock(&ctx->lock);
3682 if (ctx->is_active) {
3683 update_context_time(ctx);
3684 update_cgrp_time_from_event(event);
3685 }
3686
3687 update_event_times(event);
3688 if (event->state != PERF_EVENT_STATE_ACTIVE)
3689 goto unlock;
3690
3691 if (!data->group) {
3692 pmu->read(event);
3693 data->ret = 0;
3694 goto unlock;
3695 }
3696
3697 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3698
3699 pmu->read(event);
3700
3701 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3702 update_event_times(sub);
3703 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3704 /*
3705 * Use sibling's PMU rather than @event's since
3706 * sibling could be on different (eg: software) PMU.
3707 */
3708 sub->pmu->read(sub);
3709 }
3710 }
3711
3712 data->ret = pmu->commit_txn(pmu);
3713
3714 unlock:
3715 raw_spin_unlock(&ctx->lock);
3716 }
3717
3718 static inline u64 perf_event_count(struct perf_event *event)
3719 {
3720 return local64_read(&event->count) + atomic64_read(&event->child_count);
3721 }
3722
3723 /*
3724 * NMI-safe method to read a local event, that is an event that
3725 * is:
3726 * - either for the current task, or for this CPU
3727 * - does not have inherit set, for inherited task events
3728 * will not be local and we cannot read them atomically
3729 * - must not have a pmu::count method
3730 */
3731 int perf_event_read_local(struct perf_event *event, u64 *value)
3732 {
3733 unsigned long flags;
3734 int ret = 0;
3735
3736 /*
3737 * Disabling interrupts avoids all counter scheduling (context
3738 * switches, timer based rotation and IPIs).
3739 */
3740 local_irq_save(flags);
3741
3742 /*
3743 * It must not be an event with inherit set, we cannot read
3744 * all child counters from atomic context.
3745 */
3746 if (event->attr.inherit) {
3747 ret = -EOPNOTSUPP;
3748 goto out;
3749 }
3750
3751 /* If this is a per-task event, it must be for current */
3752 if ((event->attach_state & PERF_ATTACH_TASK) &&
3753 event->hw.target != current) {
3754 ret = -EINVAL;
3755 goto out;
3756 }
3757
3758 /* If this is a per-CPU event, it must be for this CPU */
3759 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3760 event->cpu != smp_processor_id()) {
3761 ret = -EINVAL;
3762 goto out;
3763 }
3764
3765 /*
3766 * If the event is currently on this CPU, its either a per-task event,
3767 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3768 * oncpu == -1).
3769 */
3770 if (event->oncpu == smp_processor_id())
3771 event->pmu->read(event);
3772
3773 *value = local64_read(&event->count);
3774 out:
3775 local_irq_restore(flags);
3776
3777 return ret;
3778 }
3779
3780 static int perf_event_read(struct perf_event *event, bool group)
3781 {
3782 int event_cpu, ret = 0;
3783
3784 /*
3785 * If event is enabled and currently active on a CPU, update the
3786 * value in the event structure:
3787 */
3788 if (event->state == PERF_EVENT_STATE_ACTIVE) {
3789 struct perf_read_data data = {
3790 .event = event,
3791 .group = group,
3792 .ret = 0,
3793 };
3794
3795 event_cpu = READ_ONCE(event->oncpu);
3796 if ((unsigned)event_cpu >= nr_cpu_ids)
3797 return 0;
3798
3799 preempt_disable();
3800 event_cpu = __perf_event_read_cpu(event, event_cpu);
3801
3802 /*
3803 * Purposely ignore the smp_call_function_single() return
3804 * value.
3805 *
3806 * If event_cpu isn't a valid CPU it means the event got
3807 * scheduled out and that will have updated the event count.
3808 *
3809 * Therefore, either way, we'll have an up-to-date event count
3810 * after this.
3811 */
3812 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3813 preempt_enable();
3814 ret = data.ret;
3815 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3816 struct perf_event_context *ctx = event->ctx;
3817 unsigned long flags;
3818
3819 raw_spin_lock_irqsave(&ctx->lock, flags);
3820 /*
3821 * may read while context is not active
3822 * (e.g., thread is blocked), in that case
3823 * we cannot update context time
3824 */
3825 if (ctx->is_active) {
3826 update_context_time(ctx);
3827 update_cgrp_time_from_event(event);
3828 }
3829 if (group)
3830 update_group_times(event);
3831 else
3832 update_event_times(event);
3833 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3834 }
3835
3836 return ret;
3837 }
3838
3839 /*
3840 * Initialize the perf_event context in a task_struct:
3841 */
3842 static void __perf_event_init_context(struct perf_event_context *ctx)
3843 {
3844 raw_spin_lock_init(&ctx->lock);
3845 mutex_init(&ctx->mutex);
3846 INIT_LIST_HEAD(&ctx->active_ctx_list);
3847 INIT_LIST_HEAD(&ctx->pinned_groups);
3848 INIT_LIST_HEAD(&ctx->flexible_groups);
3849 INIT_LIST_HEAD(&ctx->event_list);
3850 atomic_set(&ctx->refcount, 1);
3851 }
3852
3853 static struct perf_event_context *
3854 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3855 {
3856 struct perf_event_context *ctx;
3857
3858 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3859 if (!ctx)
3860 return NULL;
3861
3862 __perf_event_init_context(ctx);
3863 if (task) {
3864 ctx->task = task;
3865 get_task_struct(task);
3866 }
3867 ctx->pmu = pmu;
3868
3869 return ctx;
3870 }
3871
3872 static struct task_struct *
3873 find_lively_task_by_vpid(pid_t vpid)
3874 {
3875 struct task_struct *task;
3876
3877 rcu_read_lock();
3878 if (!vpid)
3879 task = current;
3880 else
3881 task = find_task_by_vpid(vpid);
3882 if (task)
3883 get_task_struct(task);
3884 rcu_read_unlock();
3885
3886 if (!task)
3887 return ERR_PTR(-ESRCH);
3888
3889 return task;
3890 }
3891
3892 /*
3893 * Returns a matching context with refcount and pincount.
3894 */
3895 static struct perf_event_context *
3896 find_get_context(struct pmu *pmu, struct task_struct *task,
3897 struct perf_event *event)
3898 {
3899 struct perf_event_context *ctx, *clone_ctx = NULL;
3900 struct perf_cpu_context *cpuctx;
3901 void *task_ctx_data = NULL;
3902 unsigned long flags;
3903 int ctxn, err;
3904 int cpu = event->cpu;
3905
3906 if (!task) {
3907 /* Must be root to operate on a CPU event: */
3908 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3909 return ERR_PTR(-EACCES);
3910
3911 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3912 ctx = &cpuctx->ctx;
3913 get_ctx(ctx);
3914 ++ctx->pin_count;
3915
3916 return ctx;
3917 }
3918
3919 err = -EINVAL;
3920 ctxn = pmu->task_ctx_nr;
3921 if (ctxn < 0)
3922 goto errout;
3923
3924 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3925 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3926 if (!task_ctx_data) {
3927 err = -ENOMEM;
3928 goto errout;
3929 }
3930 }
3931
3932 retry:
3933 ctx = perf_lock_task_context(task, ctxn, &flags);
3934 if (ctx) {
3935 clone_ctx = unclone_ctx(ctx);
3936 ++ctx->pin_count;
3937
3938 if (task_ctx_data && !ctx->task_ctx_data) {
3939 ctx->task_ctx_data = task_ctx_data;
3940 task_ctx_data = NULL;
3941 }
3942 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3943
3944 if (clone_ctx)
3945 put_ctx(clone_ctx);
3946 } else {
3947 ctx = alloc_perf_context(pmu, task);
3948 err = -ENOMEM;
3949 if (!ctx)
3950 goto errout;
3951
3952 if (task_ctx_data) {
3953 ctx->task_ctx_data = task_ctx_data;
3954 task_ctx_data = NULL;
3955 }
3956
3957 err = 0;
3958 mutex_lock(&task->perf_event_mutex);
3959 /*
3960 * If it has already passed perf_event_exit_task().
3961 * we must see PF_EXITING, it takes this mutex too.
3962 */
3963 if (task->flags & PF_EXITING)
3964 err = -ESRCH;
3965 else if (task->perf_event_ctxp[ctxn])
3966 err = -EAGAIN;
3967 else {
3968 get_ctx(ctx);
3969 ++ctx->pin_count;
3970 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3971 }
3972 mutex_unlock(&task->perf_event_mutex);
3973
3974 if (unlikely(err)) {
3975 put_ctx(ctx);
3976
3977 if (err == -EAGAIN)
3978 goto retry;
3979 goto errout;
3980 }
3981 }
3982
3983 kfree(task_ctx_data);
3984 return ctx;
3985
3986 errout:
3987 kfree(task_ctx_data);
3988 return ERR_PTR(err);
3989 }
3990
3991 static void perf_event_free_filter(struct perf_event *event);
3992 static void perf_event_free_bpf_prog(struct perf_event *event);
3993
3994 static void free_event_rcu(struct rcu_head *head)
3995 {
3996 struct perf_event *event;
3997
3998 event = container_of(head, struct perf_event, rcu_head);
3999 if (event->ns)
4000 put_pid_ns(event->ns);
4001 perf_event_free_filter(event);
4002 kfree(event);
4003 }
4004
4005 static void ring_buffer_attach(struct perf_event *event,
4006 struct ring_buffer *rb);
4007
4008 static void detach_sb_event(struct perf_event *event)
4009 {
4010 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4011
4012 raw_spin_lock(&pel->lock);
4013 list_del_rcu(&event->sb_list);
4014 raw_spin_unlock(&pel->lock);
4015 }
4016
4017 static bool is_sb_event(struct perf_event *event)
4018 {
4019 struct perf_event_attr *attr = &event->attr;
4020
4021 if (event->parent)
4022 return false;
4023
4024 if (event->attach_state & PERF_ATTACH_TASK)
4025 return false;
4026
4027 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4028 attr->comm || attr->comm_exec ||
4029 attr->task ||
4030 attr->context_switch)
4031 return true;
4032 return false;
4033 }
4034
4035 static void unaccount_pmu_sb_event(struct perf_event *event)
4036 {
4037 if (is_sb_event(event))
4038 detach_sb_event(event);
4039 }
4040
4041 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4042 {
4043 if (event->parent)
4044 return;
4045
4046 if (is_cgroup_event(event))
4047 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4048 }
4049
4050 #ifdef CONFIG_NO_HZ_FULL
4051 static DEFINE_SPINLOCK(nr_freq_lock);
4052 #endif
4053
4054 static void unaccount_freq_event_nohz(void)
4055 {
4056 #ifdef CONFIG_NO_HZ_FULL
4057 spin_lock(&nr_freq_lock);
4058 if (atomic_dec_and_test(&nr_freq_events))
4059 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4060 spin_unlock(&nr_freq_lock);
4061 #endif
4062 }
4063
4064 static void unaccount_freq_event(void)
4065 {
4066 if (tick_nohz_full_enabled())
4067 unaccount_freq_event_nohz();
4068 else
4069 atomic_dec(&nr_freq_events);
4070 }
4071
4072 static void unaccount_event(struct perf_event *event)
4073 {
4074 bool dec = false;
4075
4076 if (event->parent)
4077 return;
4078
4079 if (event->attach_state & PERF_ATTACH_TASK)
4080 dec = true;
4081 if (event->attr.mmap || event->attr.mmap_data)
4082 atomic_dec(&nr_mmap_events);
4083 if (event->attr.comm)
4084 atomic_dec(&nr_comm_events);
4085 if (event->attr.namespaces)
4086 atomic_dec(&nr_namespaces_events);
4087 if (event->attr.task)
4088 atomic_dec(&nr_task_events);
4089 if (event->attr.freq)
4090 unaccount_freq_event();
4091 if (event->attr.context_switch) {
4092 dec = true;
4093 atomic_dec(&nr_switch_events);
4094 }
4095 if (is_cgroup_event(event))
4096 dec = true;
4097 if (has_branch_stack(event))
4098 dec = true;
4099
4100 if (dec) {
4101 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4102 schedule_delayed_work(&perf_sched_work, HZ);
4103 }
4104
4105 unaccount_event_cpu(event, event->cpu);
4106
4107 unaccount_pmu_sb_event(event);
4108 }
4109
4110 static void perf_sched_delayed(struct work_struct *work)
4111 {
4112 mutex_lock(&perf_sched_mutex);
4113 if (atomic_dec_and_test(&perf_sched_count))
4114 static_branch_disable(&perf_sched_events);
4115 mutex_unlock(&perf_sched_mutex);
4116 }
4117
4118 /*
4119 * The following implement mutual exclusion of events on "exclusive" pmus
4120 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4121 * at a time, so we disallow creating events that might conflict, namely:
4122 *
4123 * 1) cpu-wide events in the presence of per-task events,
4124 * 2) per-task events in the presence of cpu-wide events,
4125 * 3) two matching events on the same context.
4126 *
4127 * The former two cases are handled in the allocation path (perf_event_alloc(),
4128 * _free_event()), the latter -- before the first perf_install_in_context().
4129 */
4130 static int exclusive_event_init(struct perf_event *event)
4131 {
4132 struct pmu *pmu = event->pmu;
4133
4134 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4135 return 0;
4136
4137 /*
4138 * Prevent co-existence of per-task and cpu-wide events on the
4139 * same exclusive pmu.
4140 *
4141 * Negative pmu::exclusive_cnt means there are cpu-wide
4142 * events on this "exclusive" pmu, positive means there are
4143 * per-task events.
4144 *
4145 * Since this is called in perf_event_alloc() path, event::ctx
4146 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4147 * to mean "per-task event", because unlike other attach states it
4148 * never gets cleared.
4149 */
4150 if (event->attach_state & PERF_ATTACH_TASK) {
4151 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4152 return -EBUSY;
4153 } else {
4154 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4155 return -EBUSY;
4156 }
4157
4158 return 0;
4159 }
4160
4161 static void exclusive_event_destroy(struct perf_event *event)
4162 {
4163 struct pmu *pmu = event->pmu;
4164
4165 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4166 return;
4167
4168 /* see comment in exclusive_event_init() */
4169 if (event->attach_state & PERF_ATTACH_TASK)
4170 atomic_dec(&pmu->exclusive_cnt);
4171 else
4172 atomic_inc(&pmu->exclusive_cnt);
4173 }
4174
4175 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4176 {
4177 if ((e1->pmu == e2->pmu) &&
4178 (e1->cpu == e2->cpu ||
4179 e1->cpu == -1 ||
4180 e2->cpu == -1))
4181 return true;
4182 return false;
4183 }
4184
4185 /* Called under the same ctx::mutex as perf_install_in_context() */
4186 static bool exclusive_event_installable(struct perf_event *event,
4187 struct perf_event_context *ctx)
4188 {
4189 struct perf_event *iter_event;
4190 struct pmu *pmu = event->pmu;
4191
4192 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4193 return true;
4194
4195 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4196 if (exclusive_event_match(iter_event, event))
4197 return false;
4198 }
4199
4200 return true;
4201 }
4202
4203 static void perf_addr_filters_splice(struct perf_event *event,
4204 struct list_head *head);
4205
4206 static void _free_event(struct perf_event *event)
4207 {
4208 irq_work_sync(&event->pending);
4209
4210 unaccount_event(event);
4211
4212 if (event->rb) {
4213 /*
4214 * Can happen when we close an event with re-directed output.
4215 *
4216 * Since we have a 0 refcount, perf_mmap_close() will skip
4217 * over us; possibly making our ring_buffer_put() the last.
4218 */
4219 mutex_lock(&event->mmap_mutex);
4220 ring_buffer_attach(event, NULL);
4221 mutex_unlock(&event->mmap_mutex);
4222 }
4223
4224 if (is_cgroup_event(event))
4225 perf_detach_cgroup(event);
4226
4227 if (!event->parent) {
4228 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4229 put_callchain_buffers();
4230 }
4231
4232 perf_event_free_bpf_prog(event);
4233 perf_addr_filters_splice(event, NULL);
4234 kfree(event->addr_filters_offs);
4235
4236 if (event->destroy)
4237 event->destroy(event);
4238
4239 if (event->ctx)
4240 put_ctx(event->ctx);
4241
4242 if (event->hw.target)
4243 put_task_struct(event->hw.target);
4244
4245 exclusive_event_destroy(event);
4246 module_put(event->pmu->module);
4247
4248 call_rcu(&event->rcu_head, free_event_rcu);
4249 }
4250
4251 /*
4252 * Used to free events which have a known refcount of 1, such as in error paths
4253 * where the event isn't exposed yet and inherited events.
4254 */
4255 static void free_event(struct perf_event *event)
4256 {
4257 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4258 "unexpected event refcount: %ld; ptr=%p\n",
4259 atomic_long_read(&event->refcount), event)) {
4260 /* leak to avoid use-after-free */
4261 return;
4262 }
4263
4264 _free_event(event);
4265 }
4266
4267 /*
4268 * Remove user event from the owner task.
4269 */
4270 static void perf_remove_from_owner(struct perf_event *event)
4271 {
4272 struct task_struct *owner;
4273
4274 rcu_read_lock();
4275 /*
4276 * Matches the smp_store_release() in perf_event_exit_task(). If we
4277 * observe !owner it means the list deletion is complete and we can
4278 * indeed free this event, otherwise we need to serialize on
4279 * owner->perf_event_mutex.
4280 */
4281 owner = READ_ONCE(event->owner);
4282 if (owner) {
4283 /*
4284 * Since delayed_put_task_struct() also drops the last
4285 * task reference we can safely take a new reference
4286 * while holding the rcu_read_lock().
4287 */
4288 get_task_struct(owner);
4289 }
4290 rcu_read_unlock();
4291
4292 if (owner) {
4293 /*
4294 * If we're here through perf_event_exit_task() we're already
4295 * holding ctx->mutex which would be an inversion wrt. the
4296 * normal lock order.
4297 *
4298 * However we can safely take this lock because its the child
4299 * ctx->mutex.
4300 */
4301 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4302
4303 /*
4304 * We have to re-check the event->owner field, if it is cleared
4305 * we raced with perf_event_exit_task(), acquiring the mutex
4306 * ensured they're done, and we can proceed with freeing the
4307 * event.
4308 */
4309 if (event->owner) {
4310 list_del_init(&event->owner_entry);
4311 smp_store_release(&event->owner, NULL);
4312 }
4313 mutex_unlock(&owner->perf_event_mutex);
4314 put_task_struct(owner);
4315 }
4316 }
4317
4318 static void put_event(struct perf_event *event)
4319 {
4320 if (!atomic_long_dec_and_test(&event->refcount))
4321 return;
4322
4323 _free_event(event);
4324 }
4325
4326 /*
4327 * Kill an event dead; while event:refcount will preserve the event
4328 * object, it will not preserve its functionality. Once the last 'user'
4329 * gives up the object, we'll destroy the thing.
4330 */
4331 int perf_event_release_kernel(struct perf_event *event)
4332 {
4333 struct perf_event_context *ctx = event->ctx;
4334 struct perf_event *child, *tmp;
4335
4336 /*
4337 * If we got here through err_file: fput(event_file); we will not have
4338 * attached to a context yet.
4339 */
4340 if (!ctx) {
4341 WARN_ON_ONCE(event->attach_state &
4342 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4343 goto no_ctx;
4344 }
4345
4346 if (!is_kernel_event(event))
4347 perf_remove_from_owner(event);
4348
4349 ctx = perf_event_ctx_lock(event);
4350 WARN_ON_ONCE(ctx->parent_ctx);
4351 perf_remove_from_context(event, DETACH_GROUP);
4352
4353 raw_spin_lock_irq(&ctx->lock);
4354 /*
4355 * Mark this event as STATE_DEAD, there is no external reference to it
4356 * anymore.
4357 *
4358 * Anybody acquiring event->child_mutex after the below loop _must_
4359 * also see this, most importantly inherit_event() which will avoid
4360 * placing more children on the list.
4361 *
4362 * Thus this guarantees that we will in fact observe and kill _ALL_
4363 * child events.
4364 */
4365 event->state = PERF_EVENT_STATE_DEAD;
4366 raw_spin_unlock_irq(&ctx->lock);
4367
4368 perf_event_ctx_unlock(event, ctx);
4369
4370 again:
4371 mutex_lock(&event->child_mutex);
4372 list_for_each_entry(child, &event->child_list, child_list) {
4373
4374 /*
4375 * Cannot change, child events are not migrated, see the
4376 * comment with perf_event_ctx_lock_nested().
4377 */
4378 ctx = READ_ONCE(child->ctx);
4379 /*
4380 * Since child_mutex nests inside ctx::mutex, we must jump
4381 * through hoops. We start by grabbing a reference on the ctx.
4382 *
4383 * Since the event cannot get freed while we hold the
4384 * child_mutex, the context must also exist and have a !0
4385 * reference count.
4386 */
4387 get_ctx(ctx);
4388
4389 /*
4390 * Now that we have a ctx ref, we can drop child_mutex, and
4391 * acquire ctx::mutex without fear of it going away. Then we
4392 * can re-acquire child_mutex.
4393 */
4394 mutex_unlock(&event->child_mutex);
4395 mutex_lock(&ctx->mutex);
4396 mutex_lock(&event->child_mutex);
4397
4398 /*
4399 * Now that we hold ctx::mutex and child_mutex, revalidate our
4400 * state, if child is still the first entry, it didn't get freed
4401 * and we can continue doing so.
4402 */
4403 tmp = list_first_entry_or_null(&event->child_list,
4404 struct perf_event, child_list);
4405 if (tmp == child) {
4406 perf_remove_from_context(child, DETACH_GROUP);
4407 list_del(&child->child_list);
4408 free_event(child);
4409 /*
4410 * This matches the refcount bump in inherit_event();
4411 * this can't be the last reference.
4412 */
4413 put_event(event);
4414 }
4415
4416 mutex_unlock(&event->child_mutex);
4417 mutex_unlock(&ctx->mutex);
4418 put_ctx(ctx);
4419 goto again;
4420 }
4421 mutex_unlock(&event->child_mutex);
4422
4423 no_ctx:
4424 put_event(event); /* Must be the 'last' reference */
4425 return 0;
4426 }
4427 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4428
4429 /*
4430 * Called when the last reference to the file is gone.
4431 */
4432 static int perf_release(struct inode *inode, struct file *file)
4433 {
4434 perf_event_release_kernel(file->private_data);
4435 return 0;
4436 }
4437
4438 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4439 {
4440 struct perf_event *child;
4441 u64 total = 0;
4442
4443 *enabled = 0;
4444 *running = 0;
4445
4446 mutex_lock(&event->child_mutex);
4447
4448 (void)perf_event_read(event, false);
4449 total += perf_event_count(event);
4450
4451 *enabled += event->total_time_enabled +
4452 atomic64_read(&event->child_total_time_enabled);
4453 *running += event->total_time_running +
4454 atomic64_read(&event->child_total_time_running);
4455
4456 list_for_each_entry(child, &event->child_list, child_list) {
4457 (void)perf_event_read(child, false);
4458 total += perf_event_count(child);
4459 *enabled += child->total_time_enabled;
4460 *running += child->total_time_running;
4461 }
4462 mutex_unlock(&event->child_mutex);
4463
4464 return total;
4465 }
4466 EXPORT_SYMBOL_GPL(perf_event_read_value);
4467
4468 static int __perf_read_group_add(struct perf_event *leader,
4469 u64 read_format, u64 *values)
4470 {
4471 struct perf_event_context *ctx = leader->ctx;
4472 struct perf_event *sub;
4473 unsigned long flags;
4474 int n = 1; /* skip @nr */
4475 int ret;
4476
4477 ret = perf_event_read(leader, true);
4478 if (ret)
4479 return ret;
4480
4481 raw_spin_lock_irqsave(&ctx->lock, flags);
4482
4483 /*
4484 * Since we co-schedule groups, {enabled,running} times of siblings
4485 * will be identical to those of the leader, so we only publish one
4486 * set.
4487 */
4488 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4489 values[n++] += leader->total_time_enabled +
4490 atomic64_read(&leader->child_total_time_enabled);
4491 }
4492
4493 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4494 values[n++] += leader->total_time_running +
4495 atomic64_read(&leader->child_total_time_running);
4496 }
4497
4498 /*
4499 * Write {count,id} tuples for every sibling.
4500 */
4501 values[n++] += perf_event_count(leader);
4502 if (read_format & PERF_FORMAT_ID)
4503 values[n++] = primary_event_id(leader);
4504
4505 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4506 values[n++] += perf_event_count(sub);
4507 if (read_format & PERF_FORMAT_ID)
4508 values[n++] = primary_event_id(sub);
4509 }
4510
4511 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4512 return 0;
4513 }
4514
4515 static int perf_read_group(struct perf_event *event,
4516 u64 read_format, char __user *buf)
4517 {
4518 struct perf_event *leader = event->group_leader, *child;
4519 struct perf_event_context *ctx = leader->ctx;
4520 int ret;
4521 u64 *values;
4522
4523 lockdep_assert_held(&ctx->mutex);
4524
4525 values = kzalloc(event->read_size, GFP_KERNEL);
4526 if (!values)
4527 return -ENOMEM;
4528
4529 values[0] = 1 + leader->nr_siblings;
4530
4531 /*
4532 * By locking the child_mutex of the leader we effectively
4533 * lock the child list of all siblings.. XXX explain how.
4534 */
4535 mutex_lock(&leader->child_mutex);
4536
4537 ret = __perf_read_group_add(leader, read_format, values);
4538 if (ret)
4539 goto unlock;
4540
4541 list_for_each_entry(child, &leader->child_list, child_list) {
4542 ret = __perf_read_group_add(child, read_format, values);
4543 if (ret)
4544 goto unlock;
4545 }
4546
4547 mutex_unlock(&leader->child_mutex);
4548
4549 ret = event->read_size;
4550 if (copy_to_user(buf, values, event->read_size))
4551 ret = -EFAULT;
4552 goto out;
4553
4554 unlock:
4555 mutex_unlock(&leader->child_mutex);
4556 out:
4557 kfree(values);
4558 return ret;
4559 }
4560
4561 static int perf_read_one(struct perf_event *event,
4562 u64 read_format, char __user *buf)
4563 {
4564 u64 enabled, running;
4565 u64 values[4];
4566 int n = 0;
4567
4568 values[n++] = perf_event_read_value(event, &enabled, &running);
4569 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4570 values[n++] = enabled;
4571 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4572 values[n++] = running;
4573 if (read_format & PERF_FORMAT_ID)
4574 values[n++] = primary_event_id(event);
4575
4576 if (copy_to_user(buf, values, n * sizeof(u64)))
4577 return -EFAULT;
4578
4579 return n * sizeof(u64);
4580 }
4581
4582 static bool is_event_hup(struct perf_event *event)
4583 {
4584 bool no_children;
4585
4586 if (event->state > PERF_EVENT_STATE_EXIT)
4587 return false;
4588
4589 mutex_lock(&event->child_mutex);
4590 no_children = list_empty(&event->child_list);
4591 mutex_unlock(&event->child_mutex);
4592 return no_children;
4593 }
4594
4595 /*
4596 * Read the performance event - simple non blocking version for now
4597 */
4598 static ssize_t
4599 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4600 {
4601 u64 read_format = event->attr.read_format;
4602 int ret;
4603
4604 /*
4605 * Return end-of-file for a read on a event that is in
4606 * error state (i.e. because it was pinned but it couldn't be
4607 * scheduled on to the CPU at some point).
4608 */
4609 if (event->state == PERF_EVENT_STATE_ERROR)
4610 return 0;
4611
4612 if (count < event->read_size)
4613 return -ENOSPC;
4614
4615 WARN_ON_ONCE(event->ctx->parent_ctx);
4616 if (read_format & PERF_FORMAT_GROUP)
4617 ret = perf_read_group(event, read_format, buf);
4618 else
4619 ret = perf_read_one(event, read_format, buf);
4620
4621 return ret;
4622 }
4623
4624 static ssize_t
4625 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4626 {
4627 struct perf_event *event = file->private_data;
4628 struct perf_event_context *ctx;
4629 int ret;
4630
4631 ctx = perf_event_ctx_lock(event);
4632 ret = __perf_read(event, buf, count);
4633 perf_event_ctx_unlock(event, ctx);
4634
4635 return ret;
4636 }
4637
4638 static unsigned int perf_poll(struct file *file, poll_table *wait)
4639 {
4640 struct perf_event *event = file->private_data;
4641 struct ring_buffer *rb;
4642 unsigned int events = POLLHUP;
4643
4644 poll_wait(file, &event->waitq, wait);
4645
4646 if (is_event_hup(event))
4647 return events;
4648
4649 /*
4650 * Pin the event->rb by taking event->mmap_mutex; otherwise
4651 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4652 */
4653 mutex_lock(&event->mmap_mutex);
4654 rb = event->rb;
4655 if (rb)
4656 events = atomic_xchg(&rb->poll, 0);
4657 mutex_unlock(&event->mmap_mutex);
4658 return events;
4659 }
4660
4661 static void _perf_event_reset(struct perf_event *event)
4662 {
4663 (void)perf_event_read(event, false);
4664 local64_set(&event->count, 0);
4665 perf_event_update_userpage(event);
4666 }
4667
4668 /*
4669 * Holding the top-level event's child_mutex means that any
4670 * descendant process that has inherited this event will block
4671 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4672 * task existence requirements of perf_event_enable/disable.
4673 */
4674 static void perf_event_for_each_child(struct perf_event *event,
4675 void (*func)(struct perf_event *))
4676 {
4677 struct perf_event *child;
4678
4679 WARN_ON_ONCE(event->ctx->parent_ctx);
4680
4681 mutex_lock(&event->child_mutex);
4682 func(event);
4683 list_for_each_entry(child, &event->child_list, child_list)
4684 func(child);
4685 mutex_unlock(&event->child_mutex);
4686 }
4687
4688 static void perf_event_for_each(struct perf_event *event,
4689 void (*func)(struct perf_event *))
4690 {
4691 struct perf_event_context *ctx = event->ctx;
4692 struct perf_event *sibling;
4693
4694 lockdep_assert_held(&ctx->mutex);
4695
4696 event = event->group_leader;
4697
4698 perf_event_for_each_child(event, func);
4699 list_for_each_entry(sibling, &event->sibling_list, group_entry)
4700 perf_event_for_each_child(sibling, func);
4701 }
4702
4703 static void __perf_event_period(struct perf_event *event,
4704 struct perf_cpu_context *cpuctx,
4705 struct perf_event_context *ctx,
4706 void *info)
4707 {
4708 u64 value = *((u64 *)info);
4709 bool active;
4710
4711 if (event->attr.freq) {
4712 event->attr.sample_freq = value;
4713 } else {
4714 event->attr.sample_period = value;
4715 event->hw.sample_period = value;
4716 }
4717
4718 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4719 if (active) {
4720 perf_pmu_disable(ctx->pmu);
4721 /*
4722 * We could be throttled; unthrottle now to avoid the tick
4723 * trying to unthrottle while we already re-started the event.
4724 */
4725 if (event->hw.interrupts == MAX_INTERRUPTS) {
4726 event->hw.interrupts = 0;
4727 perf_log_throttle(event, 1);
4728 }
4729 event->pmu->stop(event, PERF_EF_UPDATE);
4730 }
4731
4732 local64_set(&event->hw.period_left, 0);
4733
4734 if (active) {
4735 event->pmu->start(event, PERF_EF_RELOAD);
4736 perf_pmu_enable(ctx->pmu);
4737 }
4738 }
4739
4740 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4741 {
4742 u64 value;
4743
4744 if (!is_sampling_event(event))
4745 return -EINVAL;
4746
4747 if (copy_from_user(&value, arg, sizeof(value)))
4748 return -EFAULT;
4749
4750 if (!value)
4751 return -EINVAL;
4752
4753 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4754 return -EINVAL;
4755
4756 event_function_call(event, __perf_event_period, &value);
4757
4758 return 0;
4759 }
4760
4761 static const struct file_operations perf_fops;
4762
4763 static inline int perf_fget_light(int fd, struct fd *p)
4764 {
4765 struct fd f = fdget(fd);
4766 if (!f.file)
4767 return -EBADF;
4768
4769 if (f.file->f_op != &perf_fops) {
4770 fdput(f);
4771 return -EBADF;
4772 }
4773 *p = f;
4774 return 0;
4775 }
4776
4777 static int perf_event_set_output(struct perf_event *event,
4778 struct perf_event *output_event);
4779 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4780 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4781
4782 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4783 {
4784 void (*func)(struct perf_event *);
4785 u32 flags = arg;
4786
4787 switch (cmd) {
4788 case PERF_EVENT_IOC_ENABLE:
4789 func = _perf_event_enable;
4790 break;
4791 case PERF_EVENT_IOC_DISABLE:
4792 func = _perf_event_disable;
4793 break;
4794 case PERF_EVENT_IOC_RESET:
4795 func = _perf_event_reset;
4796 break;
4797
4798 case PERF_EVENT_IOC_REFRESH:
4799 return _perf_event_refresh(event, arg);
4800
4801 case PERF_EVENT_IOC_PERIOD:
4802 return perf_event_period(event, (u64 __user *)arg);
4803
4804 case PERF_EVENT_IOC_ID:
4805 {
4806 u64 id = primary_event_id(event);
4807
4808 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4809 return -EFAULT;
4810 return 0;
4811 }
4812
4813 case PERF_EVENT_IOC_SET_OUTPUT:
4814 {
4815 int ret;
4816 if (arg != -1) {
4817 struct perf_event *output_event;
4818 struct fd output;
4819 ret = perf_fget_light(arg, &output);
4820 if (ret)
4821 return ret;
4822 output_event = output.file->private_data;
4823 ret = perf_event_set_output(event, output_event);
4824 fdput(output);
4825 } else {
4826 ret = perf_event_set_output(event, NULL);
4827 }
4828 return ret;
4829 }
4830
4831 case PERF_EVENT_IOC_SET_FILTER:
4832 return perf_event_set_filter(event, (void __user *)arg);
4833
4834 case PERF_EVENT_IOC_SET_BPF:
4835 return perf_event_set_bpf_prog(event, arg);
4836
4837 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4838 struct ring_buffer *rb;
4839
4840 rcu_read_lock();
4841 rb = rcu_dereference(event->rb);
4842 if (!rb || !rb->nr_pages) {
4843 rcu_read_unlock();
4844 return -EINVAL;
4845 }
4846 rb_toggle_paused(rb, !!arg);
4847 rcu_read_unlock();
4848 return 0;
4849 }
4850 default:
4851 return -ENOTTY;
4852 }
4853
4854 if (flags & PERF_IOC_FLAG_GROUP)
4855 perf_event_for_each(event, func);
4856 else
4857 perf_event_for_each_child(event, func);
4858
4859 return 0;
4860 }
4861
4862 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4863 {
4864 struct perf_event *event = file->private_data;
4865 struct perf_event_context *ctx;
4866 long ret;
4867
4868 ctx = perf_event_ctx_lock(event);
4869 ret = _perf_ioctl(event, cmd, arg);
4870 perf_event_ctx_unlock(event, ctx);
4871
4872 return ret;
4873 }
4874
4875 #ifdef CONFIG_COMPAT
4876 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4877 unsigned long arg)
4878 {
4879 switch (_IOC_NR(cmd)) {
4880 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4881 case _IOC_NR(PERF_EVENT_IOC_ID):
4882 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4883 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4884 cmd &= ~IOCSIZE_MASK;
4885 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4886 }
4887 break;
4888 }
4889 return perf_ioctl(file, cmd, arg);
4890 }
4891 #else
4892 # define perf_compat_ioctl NULL
4893 #endif
4894
4895 int perf_event_task_enable(void)
4896 {
4897 struct perf_event_context *ctx;
4898 struct perf_event *event;
4899
4900 mutex_lock(&current->perf_event_mutex);
4901 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4902 ctx = perf_event_ctx_lock(event);
4903 perf_event_for_each_child(event, _perf_event_enable);
4904 perf_event_ctx_unlock(event, ctx);
4905 }
4906 mutex_unlock(&current->perf_event_mutex);
4907
4908 return 0;
4909 }
4910
4911 int perf_event_task_disable(void)
4912 {
4913 struct perf_event_context *ctx;
4914 struct perf_event *event;
4915
4916 mutex_lock(&current->perf_event_mutex);
4917 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4918 ctx = perf_event_ctx_lock(event);
4919 perf_event_for_each_child(event, _perf_event_disable);
4920 perf_event_ctx_unlock(event, ctx);
4921 }
4922 mutex_unlock(&current->perf_event_mutex);
4923
4924 return 0;
4925 }
4926
4927 static int perf_event_index(struct perf_event *event)
4928 {
4929 if (event->hw.state & PERF_HES_STOPPED)
4930 return 0;
4931
4932 if (event->state != PERF_EVENT_STATE_ACTIVE)
4933 return 0;
4934
4935 return event->pmu->event_idx(event);
4936 }
4937
4938 static void calc_timer_values(struct perf_event *event,
4939 u64 *now,
4940 u64 *enabled,
4941 u64 *running)
4942 {
4943 u64 ctx_time;
4944
4945 *now = perf_clock();
4946 ctx_time = event->shadow_ctx_time + *now;
4947 *enabled = ctx_time - event->tstamp_enabled;
4948 *running = ctx_time - event->tstamp_running;
4949 }
4950
4951 static void perf_event_init_userpage(struct perf_event *event)
4952 {
4953 struct perf_event_mmap_page *userpg;
4954 struct ring_buffer *rb;
4955
4956 rcu_read_lock();
4957 rb = rcu_dereference(event->rb);
4958 if (!rb)
4959 goto unlock;
4960
4961 userpg = rb->user_page;
4962
4963 /* Allow new userspace to detect that bit 0 is deprecated */
4964 userpg->cap_bit0_is_deprecated = 1;
4965 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4966 userpg->data_offset = PAGE_SIZE;
4967 userpg->data_size = perf_data_size(rb);
4968
4969 unlock:
4970 rcu_read_unlock();
4971 }
4972
4973 void __weak arch_perf_update_userpage(
4974 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4975 {
4976 }
4977
4978 /*
4979 * Callers need to ensure there can be no nesting of this function, otherwise
4980 * the seqlock logic goes bad. We can not serialize this because the arch
4981 * code calls this from NMI context.
4982 */
4983 void perf_event_update_userpage(struct perf_event *event)
4984 {
4985 struct perf_event_mmap_page *userpg;
4986 struct ring_buffer *rb;
4987 u64 enabled, running, now;
4988
4989 rcu_read_lock();
4990 rb = rcu_dereference(event->rb);
4991 if (!rb)
4992 goto unlock;
4993
4994 /*
4995 * compute total_time_enabled, total_time_running
4996 * based on snapshot values taken when the event
4997 * was last scheduled in.
4998 *
4999 * we cannot simply called update_context_time()
5000 * because of locking issue as we can be called in
5001 * NMI context
5002 */
5003 calc_timer_values(event, &now, &enabled, &running);
5004
5005 userpg = rb->user_page;
5006 /*
5007 * Disable preemption so as to not let the corresponding user-space
5008 * spin too long if we get preempted.
5009 */
5010 preempt_disable();
5011 ++userpg->lock;
5012 barrier();
5013 userpg->index = perf_event_index(event);
5014 userpg->offset = perf_event_count(event);
5015 if (userpg->index)
5016 userpg->offset -= local64_read(&event->hw.prev_count);
5017
5018 userpg->time_enabled = enabled +
5019 atomic64_read(&event->child_total_time_enabled);
5020
5021 userpg->time_running = running +
5022 atomic64_read(&event->child_total_time_running);
5023
5024 arch_perf_update_userpage(event, userpg, now);
5025
5026 barrier();
5027 ++userpg->lock;
5028 preempt_enable();
5029 unlock:
5030 rcu_read_unlock();
5031 }
5032
5033 static int perf_mmap_fault(struct vm_fault *vmf)
5034 {
5035 struct perf_event *event = vmf->vma->vm_file->private_data;
5036 struct ring_buffer *rb;
5037 int ret = VM_FAULT_SIGBUS;
5038
5039 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5040 if (vmf->pgoff == 0)
5041 ret = 0;
5042 return ret;
5043 }
5044
5045 rcu_read_lock();
5046 rb = rcu_dereference(event->rb);
5047 if (!rb)
5048 goto unlock;
5049
5050 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5051 goto unlock;
5052
5053 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5054 if (!vmf->page)
5055 goto unlock;
5056
5057 get_page(vmf->page);
5058 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5059 vmf->page->index = vmf->pgoff;
5060
5061 ret = 0;
5062 unlock:
5063 rcu_read_unlock();
5064
5065 return ret;
5066 }
5067
5068 static void ring_buffer_attach(struct perf_event *event,
5069 struct ring_buffer *rb)
5070 {
5071 struct ring_buffer *old_rb = NULL;
5072 unsigned long flags;
5073
5074 if (event->rb) {
5075 /*
5076 * Should be impossible, we set this when removing
5077 * event->rb_entry and wait/clear when adding event->rb_entry.
5078 */
5079 WARN_ON_ONCE(event->rcu_pending);
5080
5081 old_rb = event->rb;
5082 spin_lock_irqsave(&old_rb->event_lock, flags);
5083 list_del_rcu(&event->rb_entry);
5084 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5085
5086 event->rcu_batches = get_state_synchronize_rcu();
5087 event->rcu_pending = 1;
5088 }
5089
5090 if (rb) {
5091 if (event->rcu_pending) {
5092 cond_synchronize_rcu(event->rcu_batches);
5093 event->rcu_pending = 0;
5094 }
5095
5096 spin_lock_irqsave(&rb->event_lock, flags);
5097 list_add_rcu(&event->rb_entry, &rb->event_list);
5098 spin_unlock_irqrestore(&rb->event_lock, flags);
5099 }
5100
5101 /*
5102 * Avoid racing with perf_mmap_close(AUX): stop the event
5103 * before swizzling the event::rb pointer; if it's getting
5104 * unmapped, its aux_mmap_count will be 0 and it won't
5105 * restart. See the comment in __perf_pmu_output_stop().
5106 *
5107 * Data will inevitably be lost when set_output is done in
5108 * mid-air, but then again, whoever does it like this is
5109 * not in for the data anyway.
5110 */
5111 if (has_aux(event))
5112 perf_event_stop(event, 0);
5113
5114 rcu_assign_pointer(event->rb, rb);
5115
5116 if (old_rb) {
5117 ring_buffer_put(old_rb);
5118 /*
5119 * Since we detached before setting the new rb, so that we
5120 * could attach the new rb, we could have missed a wakeup.
5121 * Provide it now.
5122 */
5123 wake_up_all(&event->waitq);
5124 }
5125 }
5126
5127 static void ring_buffer_wakeup(struct perf_event *event)
5128 {
5129 struct ring_buffer *rb;
5130
5131 rcu_read_lock();
5132 rb = rcu_dereference(event->rb);
5133 if (rb) {
5134 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5135 wake_up_all(&event->waitq);
5136 }
5137 rcu_read_unlock();
5138 }
5139
5140 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5141 {
5142 struct ring_buffer *rb;
5143
5144 rcu_read_lock();
5145 rb = rcu_dereference(event->rb);
5146 if (rb) {
5147 if (!atomic_inc_not_zero(&rb->refcount))
5148 rb = NULL;
5149 }
5150 rcu_read_unlock();
5151
5152 return rb;
5153 }
5154
5155 void ring_buffer_put(struct ring_buffer *rb)
5156 {
5157 if (!atomic_dec_and_test(&rb->refcount))
5158 return;
5159
5160 WARN_ON_ONCE(!list_empty(&rb->event_list));
5161
5162 call_rcu(&rb->rcu_head, rb_free_rcu);
5163 }
5164
5165 static void perf_mmap_open(struct vm_area_struct *vma)
5166 {
5167 struct perf_event *event = vma->vm_file->private_data;
5168
5169 atomic_inc(&event->mmap_count);
5170 atomic_inc(&event->rb->mmap_count);
5171
5172 if (vma->vm_pgoff)
5173 atomic_inc(&event->rb->aux_mmap_count);
5174
5175 if (event->pmu->event_mapped)
5176 event->pmu->event_mapped(event, vma->vm_mm);
5177 }
5178
5179 static void perf_pmu_output_stop(struct perf_event *event);
5180
5181 /*
5182 * A buffer can be mmap()ed multiple times; either directly through the same
5183 * event, or through other events by use of perf_event_set_output().
5184 *
5185 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5186 * the buffer here, where we still have a VM context. This means we need
5187 * to detach all events redirecting to us.
5188 */
5189 static void perf_mmap_close(struct vm_area_struct *vma)
5190 {
5191 struct perf_event *event = vma->vm_file->private_data;
5192
5193 struct ring_buffer *rb = ring_buffer_get(event);
5194 struct user_struct *mmap_user = rb->mmap_user;
5195 int mmap_locked = rb->mmap_locked;
5196 unsigned long size = perf_data_size(rb);
5197
5198 if (event->pmu->event_unmapped)
5199 event->pmu->event_unmapped(event, vma->vm_mm);
5200
5201 /*
5202 * rb->aux_mmap_count will always drop before rb->mmap_count and
5203 * event->mmap_count, so it is ok to use event->mmap_mutex to
5204 * serialize with perf_mmap here.
5205 */
5206 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5207 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5208 /*
5209 * Stop all AUX events that are writing to this buffer,
5210 * so that we can free its AUX pages and corresponding PMU
5211 * data. Note that after rb::aux_mmap_count dropped to zero,
5212 * they won't start any more (see perf_aux_output_begin()).
5213 */
5214 perf_pmu_output_stop(event);
5215
5216 /* now it's safe to free the pages */
5217 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5218 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5219
5220 /* this has to be the last one */
5221 rb_free_aux(rb);
5222 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5223
5224 mutex_unlock(&event->mmap_mutex);
5225 }
5226
5227 atomic_dec(&rb->mmap_count);
5228
5229 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5230 goto out_put;
5231
5232 ring_buffer_attach(event, NULL);
5233 mutex_unlock(&event->mmap_mutex);
5234
5235 /* If there's still other mmap()s of this buffer, we're done. */
5236 if (atomic_read(&rb->mmap_count))
5237 goto out_put;
5238
5239 /*
5240 * No other mmap()s, detach from all other events that might redirect
5241 * into the now unreachable buffer. Somewhat complicated by the
5242 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5243 */
5244 again:
5245 rcu_read_lock();
5246 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5247 if (!atomic_long_inc_not_zero(&event->refcount)) {
5248 /*
5249 * This event is en-route to free_event() which will
5250 * detach it and remove it from the list.
5251 */
5252 continue;
5253 }
5254 rcu_read_unlock();
5255
5256 mutex_lock(&event->mmap_mutex);
5257 /*
5258 * Check we didn't race with perf_event_set_output() which can
5259 * swizzle the rb from under us while we were waiting to
5260 * acquire mmap_mutex.
5261 *
5262 * If we find a different rb; ignore this event, a next
5263 * iteration will no longer find it on the list. We have to
5264 * still restart the iteration to make sure we're not now
5265 * iterating the wrong list.
5266 */
5267 if (event->rb == rb)
5268 ring_buffer_attach(event, NULL);
5269
5270 mutex_unlock(&event->mmap_mutex);
5271 put_event(event);
5272
5273 /*
5274 * Restart the iteration; either we're on the wrong list or
5275 * destroyed its integrity by doing a deletion.
5276 */
5277 goto again;
5278 }
5279 rcu_read_unlock();
5280
5281 /*
5282 * It could be there's still a few 0-ref events on the list; they'll
5283 * get cleaned up by free_event() -- they'll also still have their
5284 * ref on the rb and will free it whenever they are done with it.
5285 *
5286 * Aside from that, this buffer is 'fully' detached and unmapped,
5287 * undo the VM accounting.
5288 */
5289
5290 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5291 vma->vm_mm->pinned_vm -= mmap_locked;
5292 free_uid(mmap_user);
5293
5294 out_put:
5295 ring_buffer_put(rb); /* could be last */
5296 }
5297
5298 static const struct vm_operations_struct perf_mmap_vmops = {
5299 .open = perf_mmap_open,
5300 .close = perf_mmap_close, /* non mergable */
5301 .fault = perf_mmap_fault,
5302 .page_mkwrite = perf_mmap_fault,
5303 };
5304
5305 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5306 {
5307 struct perf_event *event = file->private_data;
5308 unsigned long user_locked, user_lock_limit;
5309 struct user_struct *user = current_user();
5310 unsigned long locked, lock_limit;
5311 struct ring_buffer *rb = NULL;
5312 unsigned long vma_size;
5313 unsigned long nr_pages;
5314 long user_extra = 0, extra = 0;
5315 int ret = 0, flags = 0;
5316
5317 /*
5318 * Don't allow mmap() of inherited per-task counters. This would
5319 * create a performance issue due to all children writing to the
5320 * same rb.
5321 */
5322 if (event->cpu == -1 && event->attr.inherit)
5323 return -EINVAL;
5324
5325 if (!(vma->vm_flags & VM_SHARED))
5326 return -EINVAL;
5327
5328 vma_size = vma->vm_end - vma->vm_start;
5329
5330 if (vma->vm_pgoff == 0) {
5331 nr_pages = (vma_size / PAGE_SIZE) - 1;
5332 } else {
5333 /*
5334 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5335 * mapped, all subsequent mappings should have the same size
5336 * and offset. Must be above the normal perf buffer.
5337 */
5338 u64 aux_offset, aux_size;
5339
5340 if (!event->rb)
5341 return -EINVAL;
5342
5343 nr_pages = vma_size / PAGE_SIZE;
5344
5345 mutex_lock(&event->mmap_mutex);
5346 ret = -EINVAL;
5347
5348 rb = event->rb;
5349 if (!rb)
5350 goto aux_unlock;
5351
5352 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5353 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5354
5355 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5356 goto aux_unlock;
5357
5358 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5359 goto aux_unlock;
5360
5361 /* already mapped with a different offset */
5362 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5363 goto aux_unlock;
5364
5365 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5366 goto aux_unlock;
5367
5368 /* already mapped with a different size */
5369 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5370 goto aux_unlock;
5371
5372 if (!is_power_of_2(nr_pages))
5373 goto aux_unlock;
5374
5375 if (!atomic_inc_not_zero(&rb->mmap_count))
5376 goto aux_unlock;
5377
5378 if (rb_has_aux(rb)) {
5379 atomic_inc(&rb->aux_mmap_count);
5380 ret = 0;
5381 goto unlock;
5382 }
5383
5384 atomic_set(&rb->aux_mmap_count, 1);
5385 user_extra = nr_pages;
5386
5387 goto accounting;
5388 }
5389
5390 /*
5391 * If we have rb pages ensure they're a power-of-two number, so we
5392 * can do bitmasks instead of modulo.
5393 */
5394 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5395 return -EINVAL;
5396
5397 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5398 return -EINVAL;
5399
5400 WARN_ON_ONCE(event->ctx->parent_ctx);
5401 again:
5402 mutex_lock(&event->mmap_mutex);
5403 if (event->rb) {
5404 if (event->rb->nr_pages != nr_pages) {
5405 ret = -EINVAL;
5406 goto unlock;
5407 }
5408
5409 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5410 /*
5411 * Raced against perf_mmap_close() through
5412 * perf_event_set_output(). Try again, hope for better
5413 * luck.
5414 */
5415 mutex_unlock(&event->mmap_mutex);
5416 goto again;
5417 }
5418
5419 goto unlock;
5420 }
5421
5422 user_extra = nr_pages + 1;
5423
5424 accounting:
5425 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5426
5427 /*
5428 * Increase the limit linearly with more CPUs:
5429 */
5430 user_lock_limit *= num_online_cpus();
5431
5432 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5433
5434 if (user_locked > user_lock_limit)
5435 extra = user_locked - user_lock_limit;
5436
5437 lock_limit = rlimit(RLIMIT_MEMLOCK);
5438 lock_limit >>= PAGE_SHIFT;
5439 locked = vma->vm_mm->pinned_vm + extra;
5440
5441 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5442 !capable(CAP_IPC_LOCK)) {
5443 ret = -EPERM;
5444 goto unlock;
5445 }
5446
5447 WARN_ON(!rb && event->rb);
5448
5449 if (vma->vm_flags & VM_WRITE)
5450 flags |= RING_BUFFER_WRITABLE;
5451
5452 if (!rb) {
5453 rb = rb_alloc(nr_pages,
5454 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5455 event->cpu, flags);
5456
5457 if (!rb) {
5458 ret = -ENOMEM;
5459 goto unlock;
5460 }
5461
5462 atomic_set(&rb->mmap_count, 1);
5463 rb->mmap_user = get_current_user();
5464 rb->mmap_locked = extra;
5465
5466 ring_buffer_attach(event, rb);
5467
5468 perf_event_init_userpage(event);
5469 perf_event_update_userpage(event);
5470 } else {
5471 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5472 event->attr.aux_watermark, flags);
5473 if (!ret)
5474 rb->aux_mmap_locked = extra;
5475 }
5476
5477 unlock:
5478 if (!ret) {
5479 atomic_long_add(user_extra, &user->locked_vm);
5480 vma->vm_mm->pinned_vm += extra;
5481
5482 atomic_inc(&event->mmap_count);
5483 } else if (rb) {
5484 atomic_dec(&rb->mmap_count);
5485 }
5486 aux_unlock:
5487 mutex_unlock(&event->mmap_mutex);
5488
5489 /*
5490 * Since pinned accounting is per vm we cannot allow fork() to copy our
5491 * vma.
5492 */
5493 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5494 vma->vm_ops = &perf_mmap_vmops;
5495
5496 if (event->pmu->event_mapped)
5497 event->pmu->event_mapped(event, vma->vm_mm);
5498
5499 return ret;
5500 }
5501
5502 static int perf_fasync(int fd, struct file *filp, int on)
5503 {
5504 struct inode *inode = file_inode(filp);
5505 struct perf_event *event = filp->private_data;
5506 int retval;
5507
5508 inode_lock(inode);
5509 retval = fasync_helper(fd, filp, on, &event->fasync);
5510 inode_unlock(inode);
5511
5512 if (retval < 0)
5513 return retval;
5514
5515 return 0;
5516 }
5517
5518 static const struct file_operations perf_fops = {
5519 .llseek = no_llseek,
5520 .release = perf_release,
5521 .read = perf_read,
5522 .poll = perf_poll,
5523 .unlocked_ioctl = perf_ioctl,
5524 .compat_ioctl = perf_compat_ioctl,
5525 .mmap = perf_mmap,
5526 .fasync = perf_fasync,
5527 };
5528
5529 /*
5530 * Perf event wakeup
5531 *
5532 * If there's data, ensure we set the poll() state and publish everything
5533 * to user-space before waking everybody up.
5534 */
5535
5536 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5537 {
5538 /* only the parent has fasync state */
5539 if (event->parent)
5540 event = event->parent;
5541 return &event->fasync;
5542 }
5543
5544 void perf_event_wakeup(struct perf_event *event)
5545 {
5546 ring_buffer_wakeup(event);
5547
5548 if (event->pending_kill) {
5549 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5550 event->pending_kill = 0;
5551 }
5552 }
5553
5554 static void perf_pending_event(struct irq_work *entry)
5555 {
5556 struct perf_event *event = container_of(entry,
5557 struct perf_event, pending);
5558 int rctx;
5559
5560 rctx = perf_swevent_get_recursion_context();
5561 /*
5562 * If we 'fail' here, that's OK, it means recursion is already disabled
5563 * and we won't recurse 'further'.
5564 */
5565
5566 if (event->pending_disable) {
5567 event->pending_disable = 0;
5568 perf_event_disable_local(event);
5569 }
5570
5571 if (event->pending_wakeup) {
5572 event->pending_wakeup = 0;
5573 perf_event_wakeup(event);
5574 }
5575
5576 if (rctx >= 0)
5577 perf_swevent_put_recursion_context(rctx);
5578 }
5579
5580 /*
5581 * We assume there is only KVM supporting the callbacks.
5582 * Later on, we might change it to a list if there is
5583 * another virtualization implementation supporting the callbacks.
5584 */
5585 struct perf_guest_info_callbacks *perf_guest_cbs;
5586
5587 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5588 {
5589 perf_guest_cbs = cbs;
5590 return 0;
5591 }
5592 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5593
5594 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5595 {
5596 perf_guest_cbs = NULL;
5597 return 0;
5598 }
5599 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5600
5601 static void
5602 perf_output_sample_regs(struct perf_output_handle *handle,
5603 struct pt_regs *regs, u64 mask)
5604 {
5605 int bit;
5606 DECLARE_BITMAP(_mask, 64);
5607
5608 bitmap_from_u64(_mask, mask);
5609 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5610 u64 val;
5611
5612 val = perf_reg_value(regs, bit);
5613 perf_output_put(handle, val);
5614 }
5615 }
5616
5617 static void perf_sample_regs_user(struct perf_regs *regs_user,
5618 struct pt_regs *regs,
5619 struct pt_regs *regs_user_copy)
5620 {
5621 if (user_mode(regs)) {
5622 regs_user->abi = perf_reg_abi(current);
5623 regs_user->regs = regs;
5624 } else if (current->mm) {
5625 perf_get_regs_user(regs_user, regs, regs_user_copy);
5626 } else {
5627 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5628 regs_user->regs = NULL;
5629 }
5630 }
5631
5632 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5633 struct pt_regs *regs)
5634 {
5635 regs_intr->regs = regs;
5636 regs_intr->abi = perf_reg_abi(current);
5637 }
5638
5639
5640 /*
5641 * Get remaining task size from user stack pointer.
5642 *
5643 * It'd be better to take stack vma map and limit this more
5644 * precisly, but there's no way to get it safely under interrupt,
5645 * so using TASK_SIZE as limit.
5646 */
5647 static u64 perf_ustack_task_size(struct pt_regs *regs)
5648 {
5649 unsigned long addr = perf_user_stack_pointer(regs);
5650
5651 if (!addr || addr >= TASK_SIZE)
5652 return 0;
5653
5654 return TASK_SIZE - addr;
5655 }
5656
5657 static u16
5658 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5659 struct pt_regs *regs)
5660 {
5661 u64 task_size;
5662
5663 /* No regs, no stack pointer, no dump. */
5664 if (!regs)
5665 return 0;
5666
5667 /*
5668 * Check if we fit in with the requested stack size into the:
5669 * - TASK_SIZE
5670 * If we don't, we limit the size to the TASK_SIZE.
5671 *
5672 * - remaining sample size
5673 * If we don't, we customize the stack size to
5674 * fit in to the remaining sample size.
5675 */
5676
5677 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5678 stack_size = min(stack_size, (u16) task_size);
5679
5680 /* Current header size plus static size and dynamic size. */
5681 header_size += 2 * sizeof(u64);
5682
5683 /* Do we fit in with the current stack dump size? */
5684 if ((u16) (header_size + stack_size) < header_size) {
5685 /*
5686 * If we overflow the maximum size for the sample,
5687 * we customize the stack dump size to fit in.
5688 */
5689 stack_size = USHRT_MAX - header_size - sizeof(u64);
5690 stack_size = round_up(stack_size, sizeof(u64));
5691 }
5692
5693 return stack_size;
5694 }
5695
5696 static void
5697 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5698 struct pt_regs *regs)
5699 {
5700 /* Case of a kernel thread, nothing to dump */
5701 if (!regs) {
5702 u64 size = 0;
5703 perf_output_put(handle, size);
5704 } else {
5705 unsigned long sp;
5706 unsigned int rem;
5707 u64 dyn_size;
5708 mm_segment_t fs;
5709
5710 /*
5711 * We dump:
5712 * static size
5713 * - the size requested by user or the best one we can fit
5714 * in to the sample max size
5715 * data
5716 * - user stack dump data
5717 * dynamic size
5718 * - the actual dumped size
5719 */
5720
5721 /* Static size. */
5722 perf_output_put(handle, dump_size);
5723
5724 /* Data. */
5725 sp = perf_user_stack_pointer(regs);
5726 fs = get_fs();
5727 set_fs(USER_DS);
5728 rem = __output_copy_user(handle, (void *) sp, dump_size);
5729 set_fs(fs);
5730 dyn_size = dump_size - rem;
5731
5732 perf_output_skip(handle, rem);
5733
5734 /* Dynamic size. */
5735 perf_output_put(handle, dyn_size);
5736 }
5737 }
5738
5739 static void __perf_event_header__init_id(struct perf_event_header *header,
5740 struct perf_sample_data *data,
5741 struct perf_event *event)
5742 {
5743 u64 sample_type = event->attr.sample_type;
5744
5745 data->type = sample_type;
5746 header->size += event->id_header_size;
5747
5748 if (sample_type & PERF_SAMPLE_TID) {
5749 /* namespace issues */
5750 data->tid_entry.pid = perf_event_pid(event, current);
5751 data->tid_entry.tid = perf_event_tid(event, current);
5752 }
5753
5754 if (sample_type & PERF_SAMPLE_TIME)
5755 data->time = perf_event_clock(event);
5756
5757 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5758 data->id = primary_event_id(event);
5759
5760 if (sample_type & PERF_SAMPLE_STREAM_ID)
5761 data->stream_id = event->id;
5762
5763 if (sample_type & PERF_SAMPLE_CPU) {
5764 data->cpu_entry.cpu = raw_smp_processor_id();
5765 data->cpu_entry.reserved = 0;
5766 }
5767 }
5768
5769 void perf_event_header__init_id(struct perf_event_header *header,
5770 struct perf_sample_data *data,
5771 struct perf_event *event)
5772 {
5773 if (event->attr.sample_id_all)
5774 __perf_event_header__init_id(header, data, event);
5775 }
5776
5777 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5778 struct perf_sample_data *data)
5779 {
5780 u64 sample_type = data->type;
5781
5782 if (sample_type & PERF_SAMPLE_TID)
5783 perf_output_put(handle, data->tid_entry);
5784
5785 if (sample_type & PERF_SAMPLE_TIME)
5786 perf_output_put(handle, data->time);
5787
5788 if (sample_type & PERF_SAMPLE_ID)
5789 perf_output_put(handle, data->id);
5790
5791 if (sample_type & PERF_SAMPLE_STREAM_ID)
5792 perf_output_put(handle, data->stream_id);
5793
5794 if (sample_type & PERF_SAMPLE_CPU)
5795 perf_output_put(handle, data->cpu_entry);
5796
5797 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5798 perf_output_put(handle, data->id);
5799 }
5800
5801 void perf_event__output_id_sample(struct perf_event *event,
5802 struct perf_output_handle *handle,
5803 struct perf_sample_data *sample)
5804 {
5805 if (event->attr.sample_id_all)
5806 __perf_event__output_id_sample(handle, sample);
5807 }
5808
5809 static void perf_output_read_one(struct perf_output_handle *handle,
5810 struct perf_event *event,
5811 u64 enabled, u64 running)
5812 {
5813 u64 read_format = event->attr.read_format;
5814 u64 values[4];
5815 int n = 0;
5816
5817 values[n++] = perf_event_count(event);
5818 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5819 values[n++] = enabled +
5820 atomic64_read(&event->child_total_time_enabled);
5821 }
5822 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5823 values[n++] = running +
5824 atomic64_read(&event->child_total_time_running);
5825 }
5826 if (read_format & PERF_FORMAT_ID)
5827 values[n++] = primary_event_id(event);
5828
5829 __output_copy(handle, values, n * sizeof(u64));
5830 }
5831
5832 static void perf_output_read_group(struct perf_output_handle *handle,
5833 struct perf_event *event,
5834 u64 enabled, u64 running)
5835 {
5836 struct perf_event *leader = event->group_leader, *sub;
5837 u64 read_format = event->attr.read_format;
5838 u64 values[5];
5839 int n = 0;
5840
5841 values[n++] = 1 + leader->nr_siblings;
5842
5843 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5844 values[n++] = enabled;
5845
5846 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5847 values[n++] = running;
5848
5849 if ((leader != event) &&
5850 (leader->state == PERF_EVENT_STATE_ACTIVE))
5851 leader->pmu->read(leader);
5852
5853 values[n++] = perf_event_count(leader);
5854 if (read_format & PERF_FORMAT_ID)
5855 values[n++] = primary_event_id(leader);
5856
5857 __output_copy(handle, values, n * sizeof(u64));
5858
5859 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5860 n = 0;
5861
5862 if ((sub != event) &&
5863 (sub->state == PERF_EVENT_STATE_ACTIVE))
5864 sub->pmu->read(sub);
5865
5866 values[n++] = perf_event_count(sub);
5867 if (read_format & PERF_FORMAT_ID)
5868 values[n++] = primary_event_id(sub);
5869
5870 __output_copy(handle, values, n * sizeof(u64));
5871 }
5872 }
5873
5874 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5875 PERF_FORMAT_TOTAL_TIME_RUNNING)
5876
5877 /*
5878 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5879 *
5880 * The problem is that its both hard and excessively expensive to iterate the
5881 * child list, not to mention that its impossible to IPI the children running
5882 * on another CPU, from interrupt/NMI context.
5883 */
5884 static void perf_output_read(struct perf_output_handle *handle,
5885 struct perf_event *event)
5886 {
5887 u64 enabled = 0, running = 0, now;
5888 u64 read_format = event->attr.read_format;
5889
5890 /*
5891 * compute total_time_enabled, total_time_running
5892 * based on snapshot values taken when the event
5893 * was last scheduled in.
5894 *
5895 * we cannot simply called update_context_time()
5896 * because of locking issue as we are called in
5897 * NMI context
5898 */
5899 if (read_format & PERF_FORMAT_TOTAL_TIMES)
5900 calc_timer_values(event, &now, &enabled, &running);
5901
5902 if (event->attr.read_format & PERF_FORMAT_GROUP)
5903 perf_output_read_group(handle, event, enabled, running);
5904 else
5905 perf_output_read_one(handle, event, enabled, running);
5906 }
5907
5908 void perf_output_sample(struct perf_output_handle *handle,
5909 struct perf_event_header *header,
5910 struct perf_sample_data *data,
5911 struct perf_event *event)
5912 {
5913 u64 sample_type = data->type;
5914
5915 perf_output_put(handle, *header);
5916
5917 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5918 perf_output_put(handle, data->id);
5919
5920 if (sample_type & PERF_SAMPLE_IP)
5921 perf_output_put(handle, data->ip);
5922
5923 if (sample_type & PERF_SAMPLE_TID)
5924 perf_output_put(handle, data->tid_entry);
5925
5926 if (sample_type & PERF_SAMPLE_TIME)
5927 perf_output_put(handle, data->time);
5928
5929 if (sample_type & PERF_SAMPLE_ADDR)
5930 perf_output_put(handle, data->addr);
5931
5932 if (sample_type & PERF_SAMPLE_ID)
5933 perf_output_put(handle, data->id);
5934
5935 if (sample_type & PERF_SAMPLE_STREAM_ID)
5936 perf_output_put(handle, data->stream_id);
5937
5938 if (sample_type & PERF_SAMPLE_CPU)
5939 perf_output_put(handle, data->cpu_entry);
5940
5941 if (sample_type & PERF_SAMPLE_PERIOD)
5942 perf_output_put(handle, data->period);
5943
5944 if (sample_type & PERF_SAMPLE_READ)
5945 perf_output_read(handle, event);
5946
5947 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5948 if (data->callchain) {
5949 int size = 1;
5950
5951 if (data->callchain)
5952 size += data->callchain->nr;
5953
5954 size *= sizeof(u64);
5955
5956 __output_copy(handle, data->callchain, size);
5957 } else {
5958 u64 nr = 0;
5959 perf_output_put(handle, nr);
5960 }
5961 }
5962
5963 if (sample_type & PERF_SAMPLE_RAW) {
5964 struct perf_raw_record *raw = data->raw;
5965
5966 if (raw) {
5967 struct perf_raw_frag *frag = &raw->frag;
5968
5969 perf_output_put(handle, raw->size);
5970 do {
5971 if (frag->copy) {
5972 __output_custom(handle, frag->copy,
5973 frag->data, frag->size);
5974 } else {
5975 __output_copy(handle, frag->data,
5976 frag->size);
5977 }
5978 if (perf_raw_frag_last(frag))
5979 break;
5980 frag = frag->next;
5981 } while (1);
5982 if (frag->pad)
5983 __output_skip(handle, NULL, frag->pad);
5984 } else {
5985 struct {
5986 u32 size;
5987 u32 data;
5988 } raw = {
5989 .size = sizeof(u32),
5990 .data = 0,
5991 };
5992 perf_output_put(handle, raw);
5993 }
5994 }
5995
5996 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5997 if (data->br_stack) {
5998 size_t size;
5999
6000 size = data->br_stack->nr
6001 * sizeof(struct perf_branch_entry);
6002
6003 perf_output_put(handle, data->br_stack->nr);
6004 perf_output_copy(handle, data->br_stack->entries, size);
6005 } else {
6006 /*
6007 * we always store at least the value of nr
6008 */
6009 u64 nr = 0;
6010 perf_output_put(handle, nr);
6011 }
6012 }
6013
6014 if (sample_type & PERF_SAMPLE_REGS_USER) {
6015 u64 abi = data->regs_user.abi;
6016
6017 /*
6018 * If there are no regs to dump, notice it through
6019 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6020 */
6021 perf_output_put(handle, abi);
6022
6023 if (abi) {
6024 u64 mask = event->attr.sample_regs_user;
6025 perf_output_sample_regs(handle,
6026 data->regs_user.regs,
6027 mask);
6028 }
6029 }
6030
6031 if (sample_type & PERF_SAMPLE_STACK_USER) {
6032 perf_output_sample_ustack(handle,
6033 data->stack_user_size,
6034 data->regs_user.regs);
6035 }
6036
6037 if (sample_type & PERF_SAMPLE_WEIGHT)
6038 perf_output_put(handle, data->weight);
6039
6040 if (sample_type & PERF_SAMPLE_DATA_SRC)
6041 perf_output_put(handle, data->data_src.val);
6042
6043 if (sample_type & PERF_SAMPLE_TRANSACTION)
6044 perf_output_put(handle, data->txn);
6045
6046 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6047 u64 abi = data->regs_intr.abi;
6048 /*
6049 * If there are no regs to dump, notice it through
6050 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6051 */
6052 perf_output_put(handle, abi);
6053
6054 if (abi) {
6055 u64 mask = event->attr.sample_regs_intr;
6056
6057 perf_output_sample_regs(handle,
6058 data->regs_intr.regs,
6059 mask);
6060 }
6061 }
6062
6063 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6064 perf_output_put(handle, data->phys_addr);
6065
6066 if (!event->attr.watermark) {
6067 int wakeup_events = event->attr.wakeup_events;
6068
6069 if (wakeup_events) {
6070 struct ring_buffer *rb = handle->rb;
6071 int events = local_inc_return(&rb->events);
6072
6073 if (events >= wakeup_events) {
6074 local_sub(wakeup_events, &rb->events);
6075 local_inc(&rb->wakeup);
6076 }
6077 }
6078 }
6079 }
6080
6081 static u64 perf_virt_to_phys(u64 virt)
6082 {
6083 u64 phys_addr = 0;
6084 struct page *p = NULL;
6085
6086 if (!virt)
6087 return 0;
6088
6089 if (virt >= TASK_SIZE) {
6090 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6091 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6092 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6093 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6094 } else {
6095 /*
6096 * Walking the pages tables for user address.
6097 * Interrupts are disabled, so it prevents any tear down
6098 * of the page tables.
6099 * Try IRQ-safe __get_user_pages_fast first.
6100 * If failed, leave phys_addr as 0.
6101 */
6102 if ((current->mm != NULL) &&
6103 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6104 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6105
6106 if (p)
6107 put_page(p);
6108 }
6109
6110 return phys_addr;
6111 }
6112
6113 void perf_prepare_sample(struct perf_event_header *header,
6114 struct perf_sample_data *data,
6115 struct perf_event *event,
6116 struct pt_regs *regs)
6117 {
6118 u64 sample_type = event->attr.sample_type;
6119
6120 header->type = PERF_RECORD_SAMPLE;
6121 header->size = sizeof(*header) + event->header_size;
6122
6123 header->misc = 0;
6124 header->misc |= perf_misc_flags(regs);
6125
6126 __perf_event_header__init_id(header, data, event);
6127
6128 if (sample_type & PERF_SAMPLE_IP)
6129 data->ip = perf_instruction_pointer(regs);
6130
6131 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6132 int size = 1;
6133
6134 data->callchain = perf_callchain(event, regs);
6135
6136 if (data->callchain)
6137 size += data->callchain->nr;
6138
6139 header->size += size * sizeof(u64);
6140 }
6141
6142 if (sample_type & PERF_SAMPLE_RAW) {
6143 struct perf_raw_record *raw = data->raw;
6144 int size;
6145
6146 if (raw) {
6147 struct perf_raw_frag *frag = &raw->frag;
6148 u32 sum = 0;
6149
6150 do {
6151 sum += frag->size;
6152 if (perf_raw_frag_last(frag))
6153 break;
6154 frag = frag->next;
6155 } while (1);
6156
6157 size = round_up(sum + sizeof(u32), sizeof(u64));
6158 raw->size = size - sizeof(u32);
6159 frag->pad = raw->size - sum;
6160 } else {
6161 size = sizeof(u64);
6162 }
6163
6164 header->size += size;
6165 }
6166
6167 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6168 int size = sizeof(u64); /* nr */
6169 if (data->br_stack) {
6170 size += data->br_stack->nr
6171 * sizeof(struct perf_branch_entry);
6172 }
6173 header->size += size;
6174 }
6175
6176 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6177 perf_sample_regs_user(&data->regs_user, regs,
6178 &data->regs_user_copy);
6179
6180 if (sample_type & PERF_SAMPLE_REGS_USER) {
6181 /* regs dump ABI info */
6182 int size = sizeof(u64);
6183
6184 if (data->regs_user.regs) {
6185 u64 mask = event->attr.sample_regs_user;
6186 size += hweight64(mask) * sizeof(u64);
6187 }
6188
6189 header->size += size;
6190 }
6191
6192 if (sample_type & PERF_SAMPLE_STACK_USER) {
6193 /*
6194 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6195 * processed as the last one or have additional check added
6196 * in case new sample type is added, because we could eat
6197 * up the rest of the sample size.
6198 */
6199 u16 stack_size = event->attr.sample_stack_user;
6200 u16 size = sizeof(u64);
6201
6202 stack_size = perf_sample_ustack_size(stack_size, header->size,
6203 data->regs_user.regs);
6204
6205 /*
6206 * If there is something to dump, add space for the dump
6207 * itself and for the field that tells the dynamic size,
6208 * which is how many have been actually dumped.
6209 */
6210 if (stack_size)
6211 size += sizeof(u64) + stack_size;
6212
6213 data->stack_user_size = stack_size;
6214 header->size += size;
6215 }
6216
6217 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6218 /* regs dump ABI info */
6219 int size = sizeof(u64);
6220
6221 perf_sample_regs_intr(&data->regs_intr, regs);
6222
6223 if (data->regs_intr.regs) {
6224 u64 mask = event->attr.sample_regs_intr;
6225
6226 size += hweight64(mask) * sizeof(u64);
6227 }
6228
6229 header->size += size;
6230 }
6231
6232 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6233 data->phys_addr = perf_virt_to_phys(data->addr);
6234 }
6235
6236 static void __always_inline
6237 __perf_event_output(struct perf_event *event,
6238 struct perf_sample_data *data,
6239 struct pt_regs *regs,
6240 int (*output_begin)(struct perf_output_handle *,
6241 struct perf_event *,
6242 unsigned int))
6243 {
6244 struct perf_output_handle handle;
6245 struct perf_event_header header;
6246
6247 /* protect the callchain buffers */
6248 rcu_read_lock();
6249
6250 perf_prepare_sample(&header, data, event, regs);
6251
6252 if (output_begin(&handle, event, header.size))
6253 goto exit;
6254
6255 perf_output_sample(&handle, &header, data, event);
6256
6257 perf_output_end(&handle);
6258
6259 exit:
6260 rcu_read_unlock();
6261 }
6262
6263 void
6264 perf_event_output_forward(struct perf_event *event,
6265 struct perf_sample_data *data,
6266 struct pt_regs *regs)
6267 {
6268 __perf_event_output(event, data, regs, perf_output_begin_forward);
6269 }
6270
6271 void
6272 perf_event_output_backward(struct perf_event *event,
6273 struct perf_sample_data *data,
6274 struct pt_regs *regs)
6275 {
6276 __perf_event_output(event, data, regs, perf_output_begin_backward);
6277 }
6278
6279 void
6280 perf_event_output(struct perf_event *event,
6281 struct perf_sample_data *data,
6282 struct pt_regs *regs)
6283 {
6284 __perf_event_output(event, data, regs, perf_output_begin);
6285 }
6286
6287 /*
6288 * read event_id
6289 */
6290
6291 struct perf_read_event {
6292 struct perf_event_header header;
6293
6294 u32 pid;
6295 u32 tid;
6296 };
6297
6298 static void
6299 perf_event_read_event(struct perf_event *event,
6300 struct task_struct *task)
6301 {
6302 struct perf_output_handle handle;
6303 struct perf_sample_data sample;
6304 struct perf_read_event read_event = {
6305 .header = {
6306 .type = PERF_RECORD_READ,
6307 .misc = 0,
6308 .size = sizeof(read_event) + event->read_size,
6309 },
6310 .pid = perf_event_pid(event, task),
6311 .tid = perf_event_tid(event, task),
6312 };
6313 int ret;
6314
6315 perf_event_header__init_id(&read_event.header, &sample, event);
6316 ret = perf_output_begin(&handle, event, read_event.header.size);
6317 if (ret)
6318 return;
6319
6320 perf_output_put(&handle, read_event);
6321 perf_output_read(&handle, event);
6322 perf_event__output_id_sample(event, &handle, &sample);
6323
6324 perf_output_end(&handle);
6325 }
6326
6327 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6328
6329 static void
6330 perf_iterate_ctx(struct perf_event_context *ctx,
6331 perf_iterate_f output,
6332 void *data, bool all)
6333 {
6334 struct perf_event *event;
6335
6336 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6337 if (!all) {
6338 if (event->state < PERF_EVENT_STATE_INACTIVE)
6339 continue;
6340 if (!event_filter_match(event))
6341 continue;
6342 }
6343
6344 output(event, data);
6345 }
6346 }
6347
6348 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6349 {
6350 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6351 struct perf_event *event;
6352
6353 list_for_each_entry_rcu(event, &pel->list, sb_list) {
6354 /*
6355 * Skip events that are not fully formed yet; ensure that
6356 * if we observe event->ctx, both event and ctx will be
6357 * complete enough. See perf_install_in_context().
6358 */
6359 if (!smp_load_acquire(&event->ctx))
6360 continue;
6361
6362 if (event->state < PERF_EVENT_STATE_INACTIVE)
6363 continue;
6364 if (!event_filter_match(event))
6365 continue;
6366 output(event, data);
6367 }
6368 }
6369
6370 /*
6371 * Iterate all events that need to receive side-band events.
6372 *
6373 * For new callers; ensure that account_pmu_sb_event() includes
6374 * your event, otherwise it might not get delivered.
6375 */
6376 static void
6377 perf_iterate_sb(perf_iterate_f output, void *data,
6378 struct perf_event_context *task_ctx)
6379 {
6380 struct perf_event_context *ctx;
6381 int ctxn;
6382
6383 rcu_read_lock();
6384 preempt_disable();
6385
6386 /*
6387 * If we have task_ctx != NULL we only notify the task context itself.
6388 * The task_ctx is set only for EXIT events before releasing task
6389 * context.
6390 */
6391 if (task_ctx) {
6392 perf_iterate_ctx(task_ctx, output, data, false);
6393 goto done;
6394 }
6395
6396 perf_iterate_sb_cpu(output, data);
6397
6398 for_each_task_context_nr(ctxn) {
6399 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6400 if (ctx)
6401 perf_iterate_ctx(ctx, output, data, false);
6402 }
6403 done:
6404 preempt_enable();
6405 rcu_read_unlock();
6406 }
6407
6408 /*
6409 * Clear all file-based filters at exec, they'll have to be
6410 * re-instated when/if these objects are mmapped again.
6411 */
6412 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6413 {
6414 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6415 struct perf_addr_filter *filter;
6416 unsigned int restart = 0, count = 0;
6417 unsigned long flags;
6418
6419 if (!has_addr_filter(event))
6420 return;
6421
6422 raw_spin_lock_irqsave(&ifh->lock, flags);
6423 list_for_each_entry(filter, &ifh->list, entry) {
6424 if (filter->inode) {
6425 event->addr_filters_offs[count] = 0;
6426 restart++;
6427 }
6428
6429 count++;
6430 }
6431
6432 if (restart)
6433 event->addr_filters_gen++;
6434 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6435
6436 if (restart)
6437 perf_event_stop(event, 1);
6438 }
6439
6440 void perf_event_exec(void)
6441 {
6442 struct perf_event_context *ctx;
6443 int ctxn;
6444
6445 rcu_read_lock();
6446 for_each_task_context_nr(ctxn) {
6447 ctx = current->perf_event_ctxp[ctxn];
6448 if (!ctx)
6449 continue;
6450
6451 perf_event_enable_on_exec(ctxn);
6452
6453 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6454 true);
6455 }
6456 rcu_read_unlock();
6457 }
6458
6459 struct remote_output {
6460 struct ring_buffer *rb;
6461 int err;
6462 };
6463
6464 static void __perf_event_output_stop(struct perf_event *event, void *data)
6465 {
6466 struct perf_event *parent = event->parent;
6467 struct remote_output *ro = data;
6468 struct ring_buffer *rb = ro->rb;
6469 struct stop_event_data sd = {
6470 .event = event,
6471 };
6472
6473 if (!has_aux(event))
6474 return;
6475
6476 if (!parent)
6477 parent = event;
6478
6479 /*
6480 * In case of inheritance, it will be the parent that links to the
6481 * ring-buffer, but it will be the child that's actually using it.
6482 *
6483 * We are using event::rb to determine if the event should be stopped,
6484 * however this may race with ring_buffer_attach() (through set_output),
6485 * which will make us skip the event that actually needs to be stopped.
6486 * So ring_buffer_attach() has to stop an aux event before re-assigning
6487 * its rb pointer.
6488 */
6489 if (rcu_dereference(parent->rb) == rb)
6490 ro->err = __perf_event_stop(&sd);
6491 }
6492
6493 static int __perf_pmu_output_stop(void *info)
6494 {
6495 struct perf_event *event = info;
6496 struct pmu *pmu = event->pmu;
6497 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6498 struct remote_output ro = {
6499 .rb = event->rb,
6500 };
6501
6502 rcu_read_lock();
6503 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6504 if (cpuctx->task_ctx)
6505 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6506 &ro, false);
6507 rcu_read_unlock();
6508
6509 return ro.err;
6510 }
6511
6512 static void perf_pmu_output_stop(struct perf_event *event)
6513 {
6514 struct perf_event *iter;
6515 int err, cpu;
6516
6517 restart:
6518 rcu_read_lock();
6519 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6520 /*
6521 * For per-CPU events, we need to make sure that neither they
6522 * nor their children are running; for cpu==-1 events it's
6523 * sufficient to stop the event itself if it's active, since
6524 * it can't have children.
6525 */
6526 cpu = iter->cpu;
6527 if (cpu == -1)
6528 cpu = READ_ONCE(iter->oncpu);
6529
6530 if (cpu == -1)
6531 continue;
6532
6533 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6534 if (err == -EAGAIN) {
6535 rcu_read_unlock();
6536 goto restart;
6537 }
6538 }
6539 rcu_read_unlock();
6540 }
6541
6542 /*
6543 * task tracking -- fork/exit
6544 *
6545 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6546 */
6547
6548 struct perf_task_event {
6549 struct task_struct *task;
6550 struct perf_event_context *task_ctx;
6551
6552 struct {
6553 struct perf_event_header header;
6554
6555 u32 pid;
6556 u32 ppid;
6557 u32 tid;
6558 u32 ptid;
6559 u64 time;
6560 } event_id;
6561 };
6562
6563 static int perf_event_task_match(struct perf_event *event)
6564 {
6565 return event->attr.comm || event->attr.mmap ||
6566 event->attr.mmap2 || event->attr.mmap_data ||
6567 event->attr.task;
6568 }
6569
6570 static void perf_event_task_output(struct perf_event *event,
6571 void *data)
6572 {
6573 struct perf_task_event *task_event = data;
6574 struct perf_output_handle handle;
6575 struct perf_sample_data sample;
6576 struct task_struct *task = task_event->task;
6577 int ret, size = task_event->event_id.header.size;
6578
6579 if (!perf_event_task_match(event))
6580 return;
6581
6582 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6583
6584 ret = perf_output_begin(&handle, event,
6585 task_event->event_id.header.size);
6586 if (ret)
6587 goto out;
6588
6589 task_event->event_id.pid = perf_event_pid(event, task);
6590 task_event->event_id.ppid = perf_event_pid(event, current);
6591
6592 task_event->event_id.tid = perf_event_tid(event, task);
6593 task_event->event_id.ptid = perf_event_tid(event, current);
6594
6595 task_event->event_id.time = perf_event_clock(event);
6596
6597 perf_output_put(&handle, task_event->event_id);
6598
6599 perf_event__output_id_sample(event, &handle, &sample);
6600
6601 perf_output_end(&handle);
6602 out:
6603 task_event->event_id.header.size = size;
6604 }
6605
6606 static void perf_event_task(struct task_struct *task,
6607 struct perf_event_context *task_ctx,
6608 int new)
6609 {
6610 struct perf_task_event task_event;
6611
6612 if (!atomic_read(&nr_comm_events) &&
6613 !atomic_read(&nr_mmap_events) &&
6614 !atomic_read(&nr_task_events))
6615 return;
6616
6617 task_event = (struct perf_task_event){
6618 .task = task,
6619 .task_ctx = task_ctx,
6620 .event_id = {
6621 .header = {
6622 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6623 .misc = 0,
6624 .size = sizeof(task_event.event_id),
6625 },
6626 /* .pid */
6627 /* .ppid */
6628 /* .tid */
6629 /* .ptid */
6630 /* .time */
6631 },
6632 };
6633
6634 perf_iterate_sb(perf_event_task_output,
6635 &task_event,
6636 task_ctx);
6637 }
6638
6639 void perf_event_fork(struct task_struct *task)
6640 {
6641 perf_event_task(task, NULL, 1);
6642 perf_event_namespaces(task);
6643 }
6644
6645 /*
6646 * comm tracking
6647 */
6648
6649 struct perf_comm_event {
6650 struct task_struct *task;
6651 char *comm;
6652 int comm_size;
6653
6654 struct {
6655 struct perf_event_header header;
6656
6657 u32 pid;
6658 u32 tid;
6659 } event_id;
6660 };
6661
6662 static int perf_event_comm_match(struct perf_event *event)
6663 {
6664 return event->attr.comm;
6665 }
6666
6667 static void perf_event_comm_output(struct perf_event *event,
6668 void *data)
6669 {
6670 struct perf_comm_event *comm_event = data;
6671 struct perf_output_handle handle;
6672 struct perf_sample_data sample;
6673 int size = comm_event->event_id.header.size;
6674 int ret;
6675
6676 if (!perf_event_comm_match(event))
6677 return;
6678
6679 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6680 ret = perf_output_begin(&handle, event,
6681 comm_event->event_id.header.size);
6682
6683 if (ret)
6684 goto out;
6685
6686 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6687 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6688
6689 perf_output_put(&handle, comm_event->event_id);
6690 __output_copy(&handle, comm_event->comm,
6691 comm_event->comm_size);
6692
6693 perf_event__output_id_sample(event, &handle, &sample);
6694
6695 perf_output_end(&handle);
6696 out:
6697 comm_event->event_id.header.size = size;
6698 }
6699
6700 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6701 {
6702 char comm[TASK_COMM_LEN];
6703 unsigned int size;
6704
6705 memset(comm, 0, sizeof(comm));
6706 strlcpy(comm, comm_event->task->comm, sizeof(comm));
6707 size = ALIGN(strlen(comm)+1, sizeof(u64));
6708
6709 comm_event->comm = comm;
6710 comm_event->comm_size = size;
6711
6712 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6713
6714 perf_iterate_sb(perf_event_comm_output,
6715 comm_event,
6716 NULL);
6717 }
6718
6719 void perf_event_comm(struct task_struct *task, bool exec)
6720 {
6721 struct perf_comm_event comm_event;
6722
6723 if (!atomic_read(&nr_comm_events))
6724 return;
6725
6726 comm_event = (struct perf_comm_event){
6727 .task = task,
6728 /* .comm */
6729 /* .comm_size */
6730 .event_id = {
6731 .header = {
6732 .type = PERF_RECORD_COMM,
6733 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6734 /* .size */
6735 },
6736 /* .pid */
6737 /* .tid */
6738 },
6739 };
6740
6741 perf_event_comm_event(&comm_event);
6742 }
6743
6744 /*
6745 * namespaces tracking
6746 */
6747
6748 struct perf_namespaces_event {
6749 struct task_struct *task;
6750
6751 struct {
6752 struct perf_event_header header;
6753
6754 u32 pid;
6755 u32 tid;
6756 u64 nr_namespaces;
6757 struct perf_ns_link_info link_info[NR_NAMESPACES];
6758 } event_id;
6759 };
6760
6761 static int perf_event_namespaces_match(struct perf_event *event)
6762 {
6763 return event->attr.namespaces;
6764 }
6765
6766 static void perf_event_namespaces_output(struct perf_event *event,
6767 void *data)
6768 {
6769 struct perf_namespaces_event *namespaces_event = data;
6770 struct perf_output_handle handle;
6771 struct perf_sample_data sample;
6772 u16 header_size = namespaces_event->event_id.header.size;
6773 int ret;
6774
6775 if (!perf_event_namespaces_match(event))
6776 return;
6777
6778 perf_event_header__init_id(&namespaces_event->event_id.header,
6779 &sample, event);
6780 ret = perf_output_begin(&handle, event,
6781 namespaces_event->event_id.header.size);
6782 if (ret)
6783 goto out;
6784
6785 namespaces_event->event_id.pid = perf_event_pid(event,
6786 namespaces_event->task);
6787 namespaces_event->event_id.tid = perf_event_tid(event,
6788 namespaces_event->task);
6789
6790 perf_output_put(&handle, namespaces_event->event_id);
6791
6792 perf_event__output_id_sample(event, &handle, &sample);
6793
6794 perf_output_end(&handle);
6795 out:
6796 namespaces_event->event_id.header.size = header_size;
6797 }
6798
6799 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6800 struct task_struct *task,
6801 const struct proc_ns_operations *ns_ops)
6802 {
6803 struct path ns_path;
6804 struct inode *ns_inode;
6805 void *error;
6806
6807 error = ns_get_path(&ns_path, task, ns_ops);
6808 if (!error) {
6809 ns_inode = ns_path.dentry->d_inode;
6810 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6811 ns_link_info->ino = ns_inode->i_ino;
6812 path_put(&ns_path);
6813 }
6814 }
6815
6816 void perf_event_namespaces(struct task_struct *task)
6817 {
6818 struct perf_namespaces_event namespaces_event;
6819 struct perf_ns_link_info *ns_link_info;
6820
6821 if (!atomic_read(&nr_namespaces_events))
6822 return;
6823
6824 namespaces_event = (struct perf_namespaces_event){
6825 .task = task,
6826 .event_id = {
6827 .header = {
6828 .type = PERF_RECORD_NAMESPACES,
6829 .misc = 0,
6830 .size = sizeof(namespaces_event.event_id),
6831 },
6832 /* .pid */
6833 /* .tid */
6834 .nr_namespaces = NR_NAMESPACES,
6835 /* .link_info[NR_NAMESPACES] */
6836 },
6837 };
6838
6839 ns_link_info = namespaces_event.event_id.link_info;
6840
6841 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6842 task, &mntns_operations);
6843
6844 #ifdef CONFIG_USER_NS
6845 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6846 task, &userns_operations);
6847 #endif
6848 #ifdef CONFIG_NET_NS
6849 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6850 task, &netns_operations);
6851 #endif
6852 #ifdef CONFIG_UTS_NS
6853 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6854 task, &utsns_operations);
6855 #endif
6856 #ifdef CONFIG_IPC_NS
6857 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6858 task, &ipcns_operations);
6859 #endif
6860 #ifdef CONFIG_PID_NS
6861 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6862 task, &pidns_operations);
6863 #endif
6864 #ifdef CONFIG_CGROUPS
6865 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6866 task, &cgroupns_operations);
6867 #endif
6868
6869 perf_iterate_sb(perf_event_namespaces_output,
6870 &namespaces_event,
6871 NULL);
6872 }
6873
6874 /*
6875 * mmap tracking
6876 */
6877
6878 struct perf_mmap_event {
6879 struct vm_area_struct *vma;
6880
6881 const char *file_name;
6882 int file_size;
6883 int maj, min;
6884 u64 ino;
6885 u64 ino_generation;
6886 u32 prot, flags;
6887
6888 struct {
6889 struct perf_event_header header;
6890
6891 u32 pid;
6892 u32 tid;
6893 u64 start;
6894 u64 len;
6895 u64 pgoff;
6896 } event_id;
6897 };
6898
6899 static int perf_event_mmap_match(struct perf_event *event,
6900 void *data)
6901 {
6902 struct perf_mmap_event *mmap_event = data;
6903 struct vm_area_struct *vma = mmap_event->vma;
6904 int executable = vma->vm_flags & VM_EXEC;
6905
6906 return (!executable && event->attr.mmap_data) ||
6907 (executable && (event->attr.mmap || event->attr.mmap2));
6908 }
6909
6910 static void perf_event_mmap_output(struct perf_event *event,
6911 void *data)
6912 {
6913 struct perf_mmap_event *mmap_event = data;
6914 struct perf_output_handle handle;
6915 struct perf_sample_data sample;
6916 int size = mmap_event->event_id.header.size;
6917 int ret;
6918
6919 if (!perf_event_mmap_match(event, data))
6920 return;
6921
6922 if (event->attr.mmap2) {
6923 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6924 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6925 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6926 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6927 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6928 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6929 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6930 }
6931
6932 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6933 ret = perf_output_begin(&handle, event,
6934 mmap_event->event_id.header.size);
6935 if (ret)
6936 goto out;
6937
6938 mmap_event->event_id.pid = perf_event_pid(event, current);
6939 mmap_event->event_id.tid = perf_event_tid(event, current);
6940
6941 perf_output_put(&handle, mmap_event->event_id);
6942
6943 if (event->attr.mmap2) {
6944 perf_output_put(&handle, mmap_event->maj);
6945 perf_output_put(&handle, mmap_event->min);
6946 perf_output_put(&handle, mmap_event->ino);
6947 perf_output_put(&handle, mmap_event->ino_generation);
6948 perf_output_put(&handle, mmap_event->prot);
6949 perf_output_put(&handle, mmap_event->flags);
6950 }
6951
6952 __output_copy(&handle, mmap_event->file_name,
6953 mmap_event->file_size);
6954
6955 perf_event__output_id_sample(event, &handle, &sample);
6956
6957 perf_output_end(&handle);
6958 out:
6959 mmap_event->event_id.header.size = size;
6960 }
6961
6962 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
6963 {
6964 struct vm_area_struct *vma = mmap_event->vma;
6965 struct file *file = vma->vm_file;
6966 int maj = 0, min = 0;
6967 u64 ino = 0, gen = 0;
6968 u32 prot = 0, flags = 0;
6969 unsigned int size;
6970 char tmp[16];
6971 char *buf = NULL;
6972 char *name;
6973
6974 if (vma->vm_flags & VM_READ)
6975 prot |= PROT_READ;
6976 if (vma->vm_flags & VM_WRITE)
6977 prot |= PROT_WRITE;
6978 if (vma->vm_flags & VM_EXEC)
6979 prot |= PROT_EXEC;
6980
6981 if (vma->vm_flags & VM_MAYSHARE)
6982 flags = MAP_SHARED;
6983 else
6984 flags = MAP_PRIVATE;
6985
6986 if (vma->vm_flags & VM_DENYWRITE)
6987 flags |= MAP_DENYWRITE;
6988 if (vma->vm_flags & VM_MAYEXEC)
6989 flags |= MAP_EXECUTABLE;
6990 if (vma->vm_flags & VM_LOCKED)
6991 flags |= MAP_LOCKED;
6992 if (vma->vm_flags & VM_HUGETLB)
6993 flags |= MAP_HUGETLB;
6994
6995 if (file) {
6996 struct inode *inode;
6997 dev_t dev;
6998
6999 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7000 if (!buf) {
7001 name = "//enomem";
7002 goto cpy_name;
7003 }
7004 /*
7005 * d_path() works from the end of the rb backwards, so we
7006 * need to add enough zero bytes after the string to handle
7007 * the 64bit alignment we do later.
7008 */
7009 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7010 if (IS_ERR(name)) {
7011 name = "//toolong";
7012 goto cpy_name;
7013 }
7014 inode = file_inode(vma->vm_file);
7015 dev = inode->i_sb->s_dev;
7016 ino = inode->i_ino;
7017 gen = inode->i_generation;
7018 maj = MAJOR(dev);
7019 min = MINOR(dev);
7020
7021 goto got_name;
7022 } else {
7023 if (vma->vm_ops && vma->vm_ops->name) {
7024 name = (char *) vma->vm_ops->name(vma);
7025 if (name)
7026 goto cpy_name;
7027 }
7028
7029 name = (char *)arch_vma_name(vma);
7030 if (name)
7031 goto cpy_name;
7032
7033 if (vma->vm_start <= vma->vm_mm->start_brk &&
7034 vma->vm_end >= vma->vm_mm->brk) {
7035 name = "[heap]";
7036 goto cpy_name;
7037 }
7038 if (vma->vm_start <= vma->vm_mm->start_stack &&
7039 vma->vm_end >= vma->vm_mm->start_stack) {
7040 name = "[stack]";
7041 goto cpy_name;
7042 }
7043
7044 name = "//anon";
7045 goto cpy_name;
7046 }
7047
7048 cpy_name:
7049 strlcpy(tmp, name, sizeof(tmp));
7050 name = tmp;
7051 got_name:
7052 /*
7053 * Since our buffer works in 8 byte units we need to align our string
7054 * size to a multiple of 8. However, we must guarantee the tail end is
7055 * zero'd out to avoid leaking random bits to userspace.
7056 */
7057 size = strlen(name)+1;
7058 while (!IS_ALIGNED(size, sizeof(u64)))
7059 name[size++] = '\0';
7060
7061 mmap_event->file_name = name;
7062 mmap_event->file_size = size;
7063 mmap_event->maj = maj;
7064 mmap_event->min = min;
7065 mmap_event->ino = ino;
7066 mmap_event->ino_generation = gen;
7067 mmap_event->prot = prot;
7068 mmap_event->flags = flags;
7069
7070 if (!(vma->vm_flags & VM_EXEC))
7071 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7072
7073 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7074
7075 perf_iterate_sb(perf_event_mmap_output,
7076 mmap_event,
7077 NULL);
7078
7079 kfree(buf);
7080 }
7081
7082 /*
7083 * Check whether inode and address range match filter criteria.
7084 */
7085 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7086 struct file *file, unsigned long offset,
7087 unsigned long size)
7088 {
7089 if (filter->inode != file_inode(file))
7090 return false;
7091
7092 if (filter->offset > offset + size)
7093 return false;
7094
7095 if (filter->offset + filter->size < offset)
7096 return false;
7097
7098 return true;
7099 }
7100
7101 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7102 {
7103 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7104 struct vm_area_struct *vma = data;
7105 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7106 struct file *file = vma->vm_file;
7107 struct perf_addr_filter *filter;
7108 unsigned int restart = 0, count = 0;
7109
7110 if (!has_addr_filter(event))
7111 return;
7112
7113 if (!file)
7114 return;
7115
7116 raw_spin_lock_irqsave(&ifh->lock, flags);
7117 list_for_each_entry(filter, &ifh->list, entry) {
7118 if (perf_addr_filter_match(filter, file, off,
7119 vma->vm_end - vma->vm_start)) {
7120 event->addr_filters_offs[count] = vma->vm_start;
7121 restart++;
7122 }
7123
7124 count++;
7125 }
7126
7127 if (restart)
7128 event->addr_filters_gen++;
7129 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7130
7131 if (restart)
7132 perf_event_stop(event, 1);
7133 }
7134
7135 /*
7136 * Adjust all task's events' filters to the new vma
7137 */
7138 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7139 {
7140 struct perf_event_context *ctx;
7141 int ctxn;
7142
7143 /*
7144 * Data tracing isn't supported yet and as such there is no need
7145 * to keep track of anything that isn't related to executable code:
7146 */
7147 if (!(vma->vm_flags & VM_EXEC))
7148 return;
7149
7150 rcu_read_lock();
7151 for_each_task_context_nr(ctxn) {
7152 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7153 if (!ctx)
7154 continue;
7155
7156 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7157 }
7158 rcu_read_unlock();
7159 }
7160
7161 void perf_event_mmap(struct vm_area_struct *vma)
7162 {
7163 struct perf_mmap_event mmap_event;
7164
7165 if (!atomic_read(&nr_mmap_events))
7166 return;
7167
7168 mmap_event = (struct perf_mmap_event){
7169 .vma = vma,
7170 /* .file_name */
7171 /* .file_size */
7172 .event_id = {
7173 .header = {
7174 .type = PERF_RECORD_MMAP,
7175 .misc = PERF_RECORD_MISC_USER,
7176 /* .size */
7177 },
7178 /* .pid */
7179 /* .tid */
7180 .start = vma->vm_start,
7181 .len = vma->vm_end - vma->vm_start,
7182 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7183 },
7184 /* .maj (attr_mmap2 only) */
7185 /* .min (attr_mmap2 only) */
7186 /* .ino (attr_mmap2 only) */
7187 /* .ino_generation (attr_mmap2 only) */
7188 /* .prot (attr_mmap2 only) */
7189 /* .flags (attr_mmap2 only) */
7190 };
7191
7192 perf_addr_filters_adjust(vma);
7193 perf_event_mmap_event(&mmap_event);
7194 }
7195
7196 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7197 unsigned long size, u64 flags)
7198 {
7199 struct perf_output_handle handle;
7200 struct perf_sample_data sample;
7201 struct perf_aux_event {
7202 struct perf_event_header header;
7203 u64 offset;
7204 u64 size;
7205 u64 flags;
7206 } rec = {
7207 .header = {
7208 .type = PERF_RECORD_AUX,
7209 .misc = 0,
7210 .size = sizeof(rec),
7211 },
7212 .offset = head,
7213 .size = size,
7214 .flags = flags,
7215 };
7216 int ret;
7217
7218 perf_event_header__init_id(&rec.header, &sample, event);
7219 ret = perf_output_begin(&handle, event, rec.header.size);
7220
7221 if (ret)
7222 return;
7223
7224 perf_output_put(&handle, rec);
7225 perf_event__output_id_sample(event, &handle, &sample);
7226
7227 perf_output_end(&handle);
7228 }
7229
7230 /*
7231 * Lost/dropped samples logging
7232 */
7233 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7234 {
7235 struct perf_output_handle handle;
7236 struct perf_sample_data sample;
7237 int ret;
7238
7239 struct {
7240 struct perf_event_header header;
7241 u64 lost;
7242 } lost_samples_event = {
7243 .header = {
7244 .type = PERF_RECORD_LOST_SAMPLES,
7245 .misc = 0,
7246 .size = sizeof(lost_samples_event),
7247 },
7248 .lost = lost,
7249 };
7250
7251 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7252
7253 ret = perf_output_begin(&handle, event,
7254 lost_samples_event.header.size);
7255 if (ret)
7256 return;
7257
7258 perf_output_put(&handle, lost_samples_event);
7259 perf_event__output_id_sample(event, &handle, &sample);
7260 perf_output_end(&handle);
7261 }
7262
7263 /*
7264 * context_switch tracking
7265 */
7266
7267 struct perf_switch_event {
7268 struct task_struct *task;
7269 struct task_struct *next_prev;
7270
7271 struct {
7272 struct perf_event_header header;
7273 u32 next_prev_pid;
7274 u32 next_prev_tid;
7275 } event_id;
7276 };
7277
7278 static int perf_event_switch_match(struct perf_event *event)
7279 {
7280 return event->attr.context_switch;
7281 }
7282
7283 static void perf_event_switch_output(struct perf_event *event, void *data)
7284 {
7285 struct perf_switch_event *se = data;
7286 struct perf_output_handle handle;
7287 struct perf_sample_data sample;
7288 int ret;
7289
7290 if (!perf_event_switch_match(event))
7291 return;
7292
7293 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7294 if (event->ctx->task) {
7295 se->event_id.header.type = PERF_RECORD_SWITCH;
7296 se->event_id.header.size = sizeof(se->event_id.header);
7297 } else {
7298 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7299 se->event_id.header.size = sizeof(se->event_id);
7300 se->event_id.next_prev_pid =
7301 perf_event_pid(event, se->next_prev);
7302 se->event_id.next_prev_tid =
7303 perf_event_tid(event, se->next_prev);
7304 }
7305
7306 perf_event_header__init_id(&se->event_id.header, &sample, event);
7307
7308 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7309 if (ret)
7310 return;
7311
7312 if (event->ctx->task)
7313 perf_output_put(&handle, se->event_id.header);
7314 else
7315 perf_output_put(&handle, se->event_id);
7316
7317 perf_event__output_id_sample(event, &handle, &sample);
7318
7319 perf_output_end(&handle);
7320 }
7321
7322 static void perf_event_switch(struct task_struct *task,
7323 struct task_struct *next_prev, bool sched_in)
7324 {
7325 struct perf_switch_event switch_event;
7326
7327 /* N.B. caller checks nr_switch_events != 0 */
7328
7329 switch_event = (struct perf_switch_event){
7330 .task = task,
7331 .next_prev = next_prev,
7332 .event_id = {
7333 .header = {
7334 /* .type */
7335 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7336 /* .size */
7337 },
7338 /* .next_prev_pid */
7339 /* .next_prev_tid */
7340 },
7341 };
7342
7343 perf_iterate_sb(perf_event_switch_output,
7344 &switch_event,
7345 NULL);
7346 }
7347
7348 /*
7349 * IRQ throttle logging
7350 */
7351
7352 static void perf_log_throttle(struct perf_event *event, int enable)
7353 {
7354 struct perf_output_handle handle;
7355 struct perf_sample_data sample;
7356 int ret;
7357
7358 struct {
7359 struct perf_event_header header;
7360 u64 time;
7361 u64 id;
7362 u64 stream_id;
7363 } throttle_event = {
7364 .header = {
7365 .type = PERF_RECORD_THROTTLE,
7366 .misc = 0,
7367 .size = sizeof(throttle_event),
7368 },
7369 .time = perf_event_clock(event),
7370 .id = primary_event_id(event),
7371 .stream_id = event->id,
7372 };
7373
7374 if (enable)
7375 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7376
7377 perf_event_header__init_id(&throttle_event.header, &sample, event);
7378
7379 ret = perf_output_begin(&handle, event,
7380 throttle_event.header.size);
7381 if (ret)
7382 return;
7383
7384 perf_output_put(&handle, throttle_event);
7385 perf_event__output_id_sample(event, &handle, &sample);
7386 perf_output_end(&handle);
7387 }
7388
7389 void perf_event_itrace_started(struct perf_event *event)
7390 {
7391 event->attach_state |= PERF_ATTACH_ITRACE;
7392 }
7393
7394 static void perf_log_itrace_start(struct perf_event *event)
7395 {
7396 struct perf_output_handle handle;
7397 struct perf_sample_data sample;
7398 struct perf_aux_event {
7399 struct perf_event_header header;
7400 u32 pid;
7401 u32 tid;
7402 } rec;
7403 int ret;
7404
7405 if (event->parent)
7406 event = event->parent;
7407
7408 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7409 event->attach_state & PERF_ATTACH_ITRACE)
7410 return;
7411
7412 rec.header.type = PERF_RECORD_ITRACE_START;
7413 rec.header.misc = 0;
7414 rec.header.size = sizeof(rec);
7415 rec.pid = perf_event_pid(event, current);
7416 rec.tid = perf_event_tid(event, current);
7417
7418 perf_event_header__init_id(&rec.header, &sample, event);
7419 ret = perf_output_begin(&handle, event, rec.header.size);
7420
7421 if (ret)
7422 return;
7423
7424 perf_output_put(&handle, rec);
7425 perf_event__output_id_sample(event, &handle, &sample);
7426
7427 perf_output_end(&handle);
7428 }
7429
7430 static int
7431 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7432 {
7433 struct hw_perf_event *hwc = &event->hw;
7434 int ret = 0;
7435 u64 seq;
7436
7437 seq = __this_cpu_read(perf_throttled_seq);
7438 if (seq != hwc->interrupts_seq) {
7439 hwc->interrupts_seq = seq;
7440 hwc->interrupts = 1;
7441 } else {
7442 hwc->interrupts++;
7443 if (unlikely(throttle
7444 && hwc->interrupts >= max_samples_per_tick)) {
7445 __this_cpu_inc(perf_throttled_count);
7446 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7447 hwc->interrupts = MAX_INTERRUPTS;
7448 perf_log_throttle(event, 0);
7449 ret = 1;
7450 }
7451 }
7452
7453 if (event->attr.freq) {
7454 u64 now = perf_clock();
7455 s64 delta = now - hwc->freq_time_stamp;
7456
7457 hwc->freq_time_stamp = now;
7458
7459 if (delta > 0 && delta < 2*TICK_NSEC)
7460 perf_adjust_period(event, delta, hwc->last_period, true);
7461 }
7462
7463 return ret;
7464 }
7465
7466 int perf_event_account_interrupt(struct perf_event *event)
7467 {
7468 return __perf_event_account_interrupt(event, 1);
7469 }
7470
7471 /*
7472 * Generic event overflow handling, sampling.
7473 */
7474
7475 static int __perf_event_overflow(struct perf_event *event,
7476 int throttle, struct perf_sample_data *data,
7477 struct pt_regs *regs)
7478 {
7479 int events = atomic_read(&event->event_limit);
7480 int ret = 0;
7481
7482 /*
7483 * Non-sampling counters might still use the PMI to fold short
7484 * hardware counters, ignore those.
7485 */
7486 if (unlikely(!is_sampling_event(event)))
7487 return 0;
7488
7489 ret = __perf_event_account_interrupt(event, throttle);
7490
7491 /*
7492 * XXX event_limit might not quite work as expected on inherited
7493 * events
7494 */
7495
7496 event->pending_kill = POLL_IN;
7497 if (events && atomic_dec_and_test(&event->event_limit)) {
7498 ret = 1;
7499 event->pending_kill = POLL_HUP;
7500
7501 perf_event_disable_inatomic(event);
7502 }
7503
7504 READ_ONCE(event->overflow_handler)(event, data, regs);
7505
7506 if (*perf_event_fasync(event) && event->pending_kill) {
7507 event->pending_wakeup = 1;
7508 irq_work_queue(&event->pending);
7509 }
7510
7511 return ret;
7512 }
7513
7514 int perf_event_overflow(struct perf_event *event,
7515 struct perf_sample_data *data,
7516 struct pt_regs *regs)
7517 {
7518 return __perf_event_overflow(event, 1, data, regs);
7519 }
7520
7521 /*
7522 * Generic software event infrastructure
7523 */
7524
7525 struct swevent_htable {
7526 struct swevent_hlist *swevent_hlist;
7527 struct mutex hlist_mutex;
7528 int hlist_refcount;
7529
7530 /* Recursion avoidance in each contexts */
7531 int recursion[PERF_NR_CONTEXTS];
7532 };
7533
7534 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7535
7536 /*
7537 * We directly increment event->count and keep a second value in
7538 * event->hw.period_left to count intervals. This period event
7539 * is kept in the range [-sample_period, 0] so that we can use the
7540 * sign as trigger.
7541 */
7542
7543 u64 perf_swevent_set_period(struct perf_event *event)
7544 {
7545 struct hw_perf_event *hwc = &event->hw;
7546 u64 period = hwc->last_period;
7547 u64 nr, offset;
7548 s64 old, val;
7549
7550 hwc->last_period = hwc->sample_period;
7551
7552 again:
7553 old = val = local64_read(&hwc->period_left);
7554 if (val < 0)
7555 return 0;
7556
7557 nr = div64_u64(period + val, period);
7558 offset = nr * period;
7559 val -= offset;
7560 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7561 goto again;
7562
7563 return nr;
7564 }
7565
7566 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7567 struct perf_sample_data *data,
7568 struct pt_regs *regs)
7569 {
7570 struct hw_perf_event *hwc = &event->hw;
7571 int throttle = 0;
7572
7573 if (!overflow)
7574 overflow = perf_swevent_set_period(event);
7575
7576 if (hwc->interrupts == MAX_INTERRUPTS)
7577 return;
7578
7579 for (; overflow; overflow--) {
7580 if (__perf_event_overflow(event, throttle,
7581 data, regs)) {
7582 /*
7583 * We inhibit the overflow from happening when
7584 * hwc->interrupts == MAX_INTERRUPTS.
7585 */
7586 break;
7587 }
7588 throttle = 1;
7589 }
7590 }
7591
7592 static void perf_swevent_event(struct perf_event *event, u64 nr,
7593 struct perf_sample_data *data,
7594 struct pt_regs *regs)
7595 {
7596 struct hw_perf_event *hwc = &event->hw;
7597
7598 local64_add(nr, &event->count);
7599
7600 if (!regs)
7601 return;
7602
7603 if (!is_sampling_event(event))
7604 return;
7605
7606 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7607 data->period = nr;
7608 return perf_swevent_overflow(event, 1, data, regs);
7609 } else
7610 data->period = event->hw.last_period;
7611
7612 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7613 return perf_swevent_overflow(event, 1, data, regs);
7614
7615 if (local64_add_negative(nr, &hwc->period_left))
7616 return;
7617
7618 perf_swevent_overflow(event, 0, data, regs);
7619 }
7620
7621 static int perf_exclude_event(struct perf_event *event,
7622 struct pt_regs *regs)
7623 {
7624 if (event->hw.state & PERF_HES_STOPPED)
7625 return 1;
7626
7627 if (regs) {
7628 if (event->attr.exclude_user && user_mode(regs))
7629 return 1;
7630
7631 if (event->attr.exclude_kernel && !user_mode(regs))
7632 return 1;
7633 }
7634
7635 return 0;
7636 }
7637
7638 static int perf_swevent_match(struct perf_event *event,
7639 enum perf_type_id type,
7640 u32 event_id,
7641 struct perf_sample_data *data,
7642 struct pt_regs *regs)
7643 {
7644 if (event->attr.type != type)
7645 return 0;
7646
7647 if (event->attr.config != event_id)
7648 return 0;
7649
7650 if (perf_exclude_event(event, regs))
7651 return 0;
7652
7653 return 1;
7654 }
7655
7656 static inline u64 swevent_hash(u64 type, u32 event_id)
7657 {
7658 u64 val = event_id | (type << 32);
7659
7660 return hash_64(val, SWEVENT_HLIST_BITS);
7661 }
7662
7663 static inline struct hlist_head *
7664 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7665 {
7666 u64 hash = swevent_hash(type, event_id);
7667
7668 return &hlist->heads[hash];
7669 }
7670
7671 /* For the read side: events when they trigger */
7672 static inline struct hlist_head *
7673 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7674 {
7675 struct swevent_hlist *hlist;
7676
7677 hlist = rcu_dereference(swhash->swevent_hlist);
7678 if (!hlist)
7679 return NULL;
7680
7681 return __find_swevent_head(hlist, type, event_id);
7682 }
7683
7684 /* For the event head insertion and removal in the hlist */
7685 static inline struct hlist_head *
7686 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7687 {
7688 struct swevent_hlist *hlist;
7689 u32 event_id = event->attr.config;
7690 u64 type = event->attr.type;
7691
7692 /*
7693 * Event scheduling is always serialized against hlist allocation
7694 * and release. Which makes the protected version suitable here.
7695 * The context lock guarantees that.
7696 */
7697 hlist = rcu_dereference_protected(swhash->swevent_hlist,
7698 lockdep_is_held(&event->ctx->lock));
7699 if (!hlist)
7700 return NULL;
7701
7702 return __find_swevent_head(hlist, type, event_id);
7703 }
7704
7705 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7706 u64 nr,
7707 struct perf_sample_data *data,
7708 struct pt_regs *regs)
7709 {
7710 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7711 struct perf_event *event;
7712 struct hlist_head *head;
7713
7714 rcu_read_lock();
7715 head = find_swevent_head_rcu(swhash, type, event_id);
7716 if (!head)
7717 goto end;
7718
7719 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7720 if (perf_swevent_match(event, type, event_id, data, regs))
7721 perf_swevent_event(event, nr, data, regs);
7722 }
7723 end:
7724 rcu_read_unlock();
7725 }
7726
7727 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7728
7729 int perf_swevent_get_recursion_context(void)
7730 {
7731 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7732
7733 return get_recursion_context(swhash->recursion);
7734 }
7735 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7736
7737 void perf_swevent_put_recursion_context(int rctx)
7738 {
7739 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7740
7741 put_recursion_context(swhash->recursion, rctx);
7742 }
7743
7744 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7745 {
7746 struct perf_sample_data data;
7747
7748 if (WARN_ON_ONCE(!regs))
7749 return;
7750
7751 perf_sample_data_init(&data, addr, 0);
7752 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7753 }
7754
7755 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7756 {
7757 int rctx;
7758
7759 preempt_disable_notrace();
7760 rctx = perf_swevent_get_recursion_context();
7761 if (unlikely(rctx < 0))
7762 goto fail;
7763
7764 ___perf_sw_event(event_id, nr, regs, addr);
7765
7766 perf_swevent_put_recursion_context(rctx);
7767 fail:
7768 preempt_enable_notrace();
7769 }
7770
7771 static void perf_swevent_read(struct perf_event *event)
7772 {
7773 }
7774
7775 static int perf_swevent_add(struct perf_event *event, int flags)
7776 {
7777 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7778 struct hw_perf_event *hwc = &event->hw;
7779 struct hlist_head *head;
7780
7781 if (is_sampling_event(event)) {
7782 hwc->last_period = hwc->sample_period;
7783 perf_swevent_set_period(event);
7784 }
7785
7786 hwc->state = !(flags & PERF_EF_START);
7787
7788 head = find_swevent_head(swhash, event);
7789 if (WARN_ON_ONCE(!head))
7790 return -EINVAL;
7791
7792 hlist_add_head_rcu(&event->hlist_entry, head);
7793 perf_event_update_userpage(event);
7794
7795 return 0;
7796 }
7797
7798 static void perf_swevent_del(struct perf_event *event, int flags)
7799 {
7800 hlist_del_rcu(&event->hlist_entry);
7801 }
7802
7803 static void perf_swevent_start(struct perf_event *event, int flags)
7804 {
7805 event->hw.state = 0;
7806 }
7807
7808 static void perf_swevent_stop(struct perf_event *event, int flags)
7809 {
7810 event->hw.state = PERF_HES_STOPPED;
7811 }
7812
7813 /* Deref the hlist from the update side */
7814 static inline struct swevent_hlist *
7815 swevent_hlist_deref(struct swevent_htable *swhash)
7816 {
7817 return rcu_dereference_protected(swhash->swevent_hlist,
7818 lockdep_is_held(&swhash->hlist_mutex));
7819 }
7820
7821 static void swevent_hlist_release(struct swevent_htable *swhash)
7822 {
7823 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7824
7825 if (!hlist)
7826 return;
7827
7828 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7829 kfree_rcu(hlist, rcu_head);
7830 }
7831
7832 static void swevent_hlist_put_cpu(int cpu)
7833 {
7834 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7835
7836 mutex_lock(&swhash->hlist_mutex);
7837
7838 if (!--swhash->hlist_refcount)
7839 swevent_hlist_release(swhash);
7840
7841 mutex_unlock(&swhash->hlist_mutex);
7842 }
7843
7844 static void swevent_hlist_put(void)
7845 {
7846 int cpu;
7847
7848 for_each_possible_cpu(cpu)
7849 swevent_hlist_put_cpu(cpu);
7850 }
7851
7852 static int swevent_hlist_get_cpu(int cpu)
7853 {
7854 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7855 int err = 0;
7856
7857 mutex_lock(&swhash->hlist_mutex);
7858 if (!swevent_hlist_deref(swhash) &&
7859 cpumask_test_cpu(cpu, perf_online_mask)) {
7860 struct swevent_hlist *hlist;
7861
7862 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7863 if (!hlist) {
7864 err = -ENOMEM;
7865 goto exit;
7866 }
7867 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7868 }
7869 swhash->hlist_refcount++;
7870 exit:
7871 mutex_unlock(&swhash->hlist_mutex);
7872
7873 return err;
7874 }
7875
7876 static int swevent_hlist_get(void)
7877 {
7878 int err, cpu, failed_cpu;
7879
7880 mutex_lock(&pmus_lock);
7881 for_each_possible_cpu(cpu) {
7882 err = swevent_hlist_get_cpu(cpu);
7883 if (err) {
7884 failed_cpu = cpu;
7885 goto fail;
7886 }
7887 }
7888 mutex_unlock(&pmus_lock);
7889 return 0;
7890 fail:
7891 for_each_possible_cpu(cpu) {
7892 if (cpu == failed_cpu)
7893 break;
7894 swevent_hlist_put_cpu(cpu);
7895 }
7896 mutex_unlock(&pmus_lock);
7897 return err;
7898 }
7899
7900 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7901
7902 static void sw_perf_event_destroy(struct perf_event *event)
7903 {
7904 u64 event_id = event->attr.config;
7905
7906 WARN_ON(event->parent);
7907
7908 static_key_slow_dec(&perf_swevent_enabled[event_id]);
7909 swevent_hlist_put();
7910 }
7911
7912 static int perf_swevent_init(struct perf_event *event)
7913 {
7914 u64 event_id = event->attr.config;
7915
7916 if (event->attr.type != PERF_TYPE_SOFTWARE)
7917 return -ENOENT;
7918
7919 /*
7920 * no branch sampling for software events
7921 */
7922 if (has_branch_stack(event))
7923 return -EOPNOTSUPP;
7924
7925 switch (event_id) {
7926 case PERF_COUNT_SW_CPU_CLOCK:
7927 case PERF_COUNT_SW_TASK_CLOCK:
7928 return -ENOENT;
7929
7930 default:
7931 break;
7932 }
7933
7934 if (event_id >= PERF_COUNT_SW_MAX)
7935 return -ENOENT;
7936
7937 if (!event->parent) {
7938 int err;
7939
7940 err = swevent_hlist_get();
7941 if (err)
7942 return err;
7943
7944 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7945 event->destroy = sw_perf_event_destroy;
7946 }
7947
7948 return 0;
7949 }
7950
7951 static struct pmu perf_swevent = {
7952 .task_ctx_nr = perf_sw_context,
7953
7954 .capabilities = PERF_PMU_CAP_NO_NMI,
7955
7956 .event_init = perf_swevent_init,
7957 .add = perf_swevent_add,
7958 .del = perf_swevent_del,
7959 .start = perf_swevent_start,
7960 .stop = perf_swevent_stop,
7961 .read = perf_swevent_read,
7962 };
7963
7964 #ifdef CONFIG_EVENT_TRACING
7965
7966 static int perf_tp_filter_match(struct perf_event *event,
7967 struct perf_sample_data *data)
7968 {
7969 void *record = data->raw->frag.data;
7970
7971 /* only top level events have filters set */
7972 if (event->parent)
7973 event = event->parent;
7974
7975 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7976 return 1;
7977 return 0;
7978 }
7979
7980 static int perf_tp_event_match(struct perf_event *event,
7981 struct perf_sample_data *data,
7982 struct pt_regs *regs)
7983 {
7984 if (event->hw.state & PERF_HES_STOPPED)
7985 return 0;
7986 /*
7987 * All tracepoints are from kernel-space.
7988 */
7989 if (event->attr.exclude_kernel)
7990 return 0;
7991
7992 if (!perf_tp_filter_match(event, data))
7993 return 0;
7994
7995 return 1;
7996 }
7997
7998 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7999 struct trace_event_call *call, u64 count,
8000 struct pt_regs *regs, struct hlist_head *head,
8001 struct task_struct *task)
8002 {
8003 struct bpf_prog *prog = call->prog;
8004
8005 if (prog) {
8006 *(struct pt_regs **)raw_data = regs;
8007 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
8008 perf_swevent_put_recursion_context(rctx);
8009 return;
8010 }
8011 }
8012 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8013 rctx, task, NULL);
8014 }
8015 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8016
8017 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8018 struct pt_regs *regs, struct hlist_head *head, int rctx,
8019 struct task_struct *task, struct perf_event *event)
8020 {
8021 struct perf_sample_data data;
8022
8023 struct perf_raw_record raw = {
8024 .frag = {
8025 .size = entry_size,
8026 .data = record,
8027 },
8028 };
8029
8030 perf_sample_data_init(&data, 0, 0);
8031 data.raw = &raw;
8032
8033 perf_trace_buf_update(record, event_type);
8034
8035 /* Use the given event instead of the hlist */
8036 if (event) {
8037 if (perf_tp_event_match(event, &data, regs))
8038 perf_swevent_event(event, count, &data, regs);
8039 } else {
8040 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8041 if (perf_tp_event_match(event, &data, regs))
8042 perf_swevent_event(event, count, &data, regs);
8043 }
8044 }
8045
8046 /*
8047 * If we got specified a target task, also iterate its context and
8048 * deliver this event there too.
8049 */
8050 if (task && task != current) {
8051 struct perf_event_context *ctx;
8052 struct trace_entry *entry = record;
8053
8054 rcu_read_lock();
8055 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8056 if (!ctx)
8057 goto unlock;
8058
8059 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8060 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8061 continue;
8062 if (event->attr.config != entry->type)
8063 continue;
8064 if (perf_tp_event_match(event, &data, regs))
8065 perf_swevent_event(event, count, &data, regs);
8066 }
8067 unlock:
8068 rcu_read_unlock();
8069 }
8070
8071 perf_swevent_put_recursion_context(rctx);
8072 }
8073 EXPORT_SYMBOL_GPL(perf_tp_event);
8074
8075 static void tp_perf_event_destroy(struct perf_event *event)
8076 {
8077 perf_trace_destroy(event);
8078 }
8079
8080 static int perf_tp_event_init(struct perf_event *event)
8081 {
8082 int err;
8083
8084 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8085 return -ENOENT;
8086
8087 /*
8088 * no branch sampling for tracepoint events
8089 */
8090 if (has_branch_stack(event))
8091 return -EOPNOTSUPP;
8092
8093 err = perf_trace_init(event);
8094 if (err)
8095 return err;
8096
8097 event->destroy = tp_perf_event_destroy;
8098
8099 return 0;
8100 }
8101
8102 static struct pmu perf_tracepoint = {
8103 .task_ctx_nr = perf_sw_context,
8104
8105 .event_init = perf_tp_event_init,
8106 .add = perf_trace_add,
8107 .del = perf_trace_del,
8108 .start = perf_swevent_start,
8109 .stop = perf_swevent_stop,
8110 .read = perf_swevent_read,
8111 };
8112
8113 static inline void perf_tp_register(void)
8114 {
8115 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8116 }
8117
8118 static void perf_event_free_filter(struct perf_event *event)
8119 {
8120 ftrace_profile_free_filter(event);
8121 }
8122
8123 #ifdef CONFIG_BPF_SYSCALL
8124 static void bpf_overflow_handler(struct perf_event *event,
8125 struct perf_sample_data *data,
8126 struct pt_regs *regs)
8127 {
8128 struct bpf_perf_event_data_kern ctx = {
8129 .data = data,
8130 .regs = regs,
8131 };
8132 int ret = 0;
8133
8134 preempt_disable();
8135 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8136 goto out;
8137 rcu_read_lock();
8138 ret = BPF_PROG_RUN(event->prog, &ctx);
8139 rcu_read_unlock();
8140 out:
8141 __this_cpu_dec(bpf_prog_active);
8142 preempt_enable();
8143 if (!ret)
8144 return;
8145
8146 event->orig_overflow_handler(event, data, regs);
8147 }
8148
8149 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8150 {
8151 struct bpf_prog *prog;
8152
8153 if (event->overflow_handler_context)
8154 /* hw breakpoint or kernel counter */
8155 return -EINVAL;
8156
8157 if (event->prog)
8158 return -EEXIST;
8159
8160 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8161 if (IS_ERR(prog))
8162 return PTR_ERR(prog);
8163
8164 event->prog = prog;
8165 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8166 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8167 return 0;
8168 }
8169
8170 static void perf_event_free_bpf_handler(struct perf_event *event)
8171 {
8172 struct bpf_prog *prog = event->prog;
8173
8174 if (!prog)
8175 return;
8176
8177 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8178 event->prog = NULL;
8179 bpf_prog_put(prog);
8180 }
8181 #else
8182 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8183 {
8184 return -EOPNOTSUPP;
8185 }
8186 static void perf_event_free_bpf_handler(struct perf_event *event)
8187 {
8188 }
8189 #endif
8190
8191 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8192 {
8193 bool is_kprobe, is_tracepoint, is_syscall_tp;
8194 struct bpf_prog *prog;
8195
8196 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8197 return perf_event_set_bpf_handler(event, prog_fd);
8198
8199 if (event->tp_event->prog)
8200 return -EEXIST;
8201
8202 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8203 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8204 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8205 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8206 /* bpf programs can only be attached to u/kprobe or tracepoint */
8207 return -EINVAL;
8208
8209 prog = bpf_prog_get(prog_fd);
8210 if (IS_ERR(prog))
8211 return PTR_ERR(prog);
8212
8213 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8214 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8215 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8216 /* valid fd, but invalid bpf program type */
8217 bpf_prog_put(prog);
8218 return -EINVAL;
8219 }
8220
8221 if (is_tracepoint || is_syscall_tp) {
8222 int off = trace_event_get_offsets(event->tp_event);
8223
8224 if (prog->aux->max_ctx_offset > off) {
8225 bpf_prog_put(prog);
8226 return -EACCES;
8227 }
8228 }
8229 event->tp_event->prog = prog;
8230 event->tp_event->bpf_prog_owner = event;
8231
8232 return 0;
8233 }
8234
8235 static void perf_event_free_bpf_prog(struct perf_event *event)
8236 {
8237 struct bpf_prog *prog;
8238
8239 perf_event_free_bpf_handler(event);
8240
8241 if (!event->tp_event)
8242 return;
8243
8244 prog = event->tp_event->prog;
8245 if (prog && event->tp_event->bpf_prog_owner == event) {
8246 event->tp_event->prog = NULL;
8247 bpf_prog_put(prog);
8248 }
8249 }
8250
8251 #else
8252
8253 static inline void perf_tp_register(void)
8254 {
8255 }
8256
8257 static void perf_event_free_filter(struct perf_event *event)
8258 {
8259 }
8260
8261 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8262 {
8263 return -ENOENT;
8264 }
8265
8266 static void perf_event_free_bpf_prog(struct perf_event *event)
8267 {
8268 }
8269 #endif /* CONFIG_EVENT_TRACING */
8270
8271 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8272 void perf_bp_event(struct perf_event *bp, void *data)
8273 {
8274 struct perf_sample_data sample;
8275 struct pt_regs *regs = data;
8276
8277 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8278
8279 if (!bp->hw.state && !perf_exclude_event(bp, regs))
8280 perf_swevent_event(bp, 1, &sample, regs);
8281 }
8282 #endif
8283
8284 /*
8285 * Allocate a new address filter
8286 */
8287 static struct perf_addr_filter *
8288 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8289 {
8290 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8291 struct perf_addr_filter *filter;
8292
8293 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8294 if (!filter)
8295 return NULL;
8296
8297 INIT_LIST_HEAD(&filter->entry);
8298 list_add_tail(&filter->entry, filters);
8299
8300 return filter;
8301 }
8302
8303 static void free_filters_list(struct list_head *filters)
8304 {
8305 struct perf_addr_filter *filter, *iter;
8306
8307 list_for_each_entry_safe(filter, iter, filters, entry) {
8308 if (filter->inode)
8309 iput(filter->inode);
8310 list_del(&filter->entry);
8311 kfree(filter);
8312 }
8313 }
8314
8315 /*
8316 * Free existing address filters and optionally install new ones
8317 */
8318 static void perf_addr_filters_splice(struct perf_event *event,
8319 struct list_head *head)
8320 {
8321 unsigned long flags;
8322 LIST_HEAD(list);
8323
8324 if (!has_addr_filter(event))
8325 return;
8326
8327 /* don't bother with children, they don't have their own filters */
8328 if (event->parent)
8329 return;
8330
8331 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8332
8333 list_splice_init(&event->addr_filters.list, &list);
8334 if (head)
8335 list_splice(head, &event->addr_filters.list);
8336
8337 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8338
8339 free_filters_list(&list);
8340 }
8341
8342 /*
8343 * Scan through mm's vmas and see if one of them matches the
8344 * @filter; if so, adjust filter's address range.
8345 * Called with mm::mmap_sem down for reading.
8346 */
8347 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8348 struct mm_struct *mm)
8349 {
8350 struct vm_area_struct *vma;
8351
8352 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8353 struct file *file = vma->vm_file;
8354 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8355 unsigned long vma_size = vma->vm_end - vma->vm_start;
8356
8357 if (!file)
8358 continue;
8359
8360 if (!perf_addr_filter_match(filter, file, off, vma_size))
8361 continue;
8362
8363 return vma->vm_start;
8364 }
8365
8366 return 0;
8367 }
8368
8369 /*
8370 * Update event's address range filters based on the
8371 * task's existing mappings, if any.
8372 */
8373 static void perf_event_addr_filters_apply(struct perf_event *event)
8374 {
8375 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8376 struct task_struct *task = READ_ONCE(event->ctx->task);
8377 struct perf_addr_filter *filter;
8378 struct mm_struct *mm = NULL;
8379 unsigned int count = 0;
8380 unsigned long flags;
8381
8382 /*
8383 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8384 * will stop on the parent's child_mutex that our caller is also holding
8385 */
8386 if (task == TASK_TOMBSTONE)
8387 return;
8388
8389 if (!ifh->nr_file_filters)
8390 return;
8391
8392 mm = get_task_mm(event->ctx->task);
8393 if (!mm)
8394 goto restart;
8395
8396 down_read(&mm->mmap_sem);
8397
8398 raw_spin_lock_irqsave(&ifh->lock, flags);
8399 list_for_each_entry(filter, &ifh->list, entry) {
8400 event->addr_filters_offs[count] = 0;
8401
8402 /*
8403 * Adjust base offset if the filter is associated to a binary
8404 * that needs to be mapped:
8405 */
8406 if (filter->inode)
8407 event->addr_filters_offs[count] =
8408 perf_addr_filter_apply(filter, mm);
8409
8410 count++;
8411 }
8412
8413 event->addr_filters_gen++;
8414 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8415
8416 up_read(&mm->mmap_sem);
8417
8418 mmput(mm);
8419
8420 restart:
8421 perf_event_stop(event, 1);
8422 }
8423
8424 /*
8425 * Address range filtering: limiting the data to certain
8426 * instruction address ranges. Filters are ioctl()ed to us from
8427 * userspace as ascii strings.
8428 *
8429 * Filter string format:
8430 *
8431 * ACTION RANGE_SPEC
8432 * where ACTION is one of the
8433 * * "filter": limit the trace to this region
8434 * * "start": start tracing from this address
8435 * * "stop": stop tracing at this address/region;
8436 * RANGE_SPEC is
8437 * * for kernel addresses: <start address>[/<size>]
8438 * * for object files: <start address>[/<size>]@</path/to/object/file>
8439 *
8440 * if <size> is not specified, the range is treated as a single address.
8441 */
8442 enum {
8443 IF_ACT_NONE = -1,
8444 IF_ACT_FILTER,
8445 IF_ACT_START,
8446 IF_ACT_STOP,
8447 IF_SRC_FILE,
8448 IF_SRC_KERNEL,
8449 IF_SRC_FILEADDR,
8450 IF_SRC_KERNELADDR,
8451 };
8452
8453 enum {
8454 IF_STATE_ACTION = 0,
8455 IF_STATE_SOURCE,
8456 IF_STATE_END,
8457 };
8458
8459 static const match_table_t if_tokens = {
8460 { IF_ACT_FILTER, "filter" },
8461 { IF_ACT_START, "start" },
8462 { IF_ACT_STOP, "stop" },
8463 { IF_SRC_FILE, "%u/%u@%s" },
8464 { IF_SRC_KERNEL, "%u/%u" },
8465 { IF_SRC_FILEADDR, "%u@%s" },
8466 { IF_SRC_KERNELADDR, "%u" },
8467 { IF_ACT_NONE, NULL },
8468 };
8469
8470 /*
8471 * Address filter string parser
8472 */
8473 static int
8474 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8475 struct list_head *filters)
8476 {
8477 struct perf_addr_filter *filter = NULL;
8478 char *start, *orig, *filename = NULL;
8479 struct path path;
8480 substring_t args[MAX_OPT_ARGS];
8481 int state = IF_STATE_ACTION, token;
8482 unsigned int kernel = 0;
8483 int ret = -EINVAL;
8484
8485 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8486 if (!fstr)
8487 return -ENOMEM;
8488
8489 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8490 ret = -EINVAL;
8491
8492 if (!*start)
8493 continue;
8494
8495 /* filter definition begins */
8496 if (state == IF_STATE_ACTION) {
8497 filter = perf_addr_filter_new(event, filters);
8498 if (!filter)
8499 goto fail;
8500 }
8501
8502 token = match_token(start, if_tokens, args);
8503 switch (token) {
8504 case IF_ACT_FILTER:
8505 case IF_ACT_START:
8506 filter->filter = 1;
8507
8508 case IF_ACT_STOP:
8509 if (state != IF_STATE_ACTION)
8510 goto fail;
8511
8512 state = IF_STATE_SOURCE;
8513 break;
8514
8515 case IF_SRC_KERNELADDR:
8516 case IF_SRC_KERNEL:
8517 kernel = 1;
8518
8519 case IF_SRC_FILEADDR:
8520 case IF_SRC_FILE:
8521 if (state != IF_STATE_SOURCE)
8522 goto fail;
8523
8524 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8525 filter->range = 1;
8526
8527 *args[0].to = 0;
8528 ret = kstrtoul(args[0].from, 0, &filter->offset);
8529 if (ret)
8530 goto fail;
8531
8532 if (filter->range) {
8533 *args[1].to = 0;
8534 ret = kstrtoul(args[1].from, 0, &filter->size);
8535 if (ret)
8536 goto fail;
8537 }
8538
8539 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8540 int fpos = filter->range ? 2 : 1;
8541
8542 filename = match_strdup(&args[fpos]);
8543 if (!filename) {
8544 ret = -ENOMEM;
8545 goto fail;
8546 }
8547 }
8548
8549 state = IF_STATE_END;
8550 break;
8551
8552 default:
8553 goto fail;
8554 }
8555
8556 /*
8557 * Filter definition is fully parsed, validate and install it.
8558 * Make sure that it doesn't contradict itself or the event's
8559 * attribute.
8560 */
8561 if (state == IF_STATE_END) {
8562 ret = -EINVAL;
8563 if (kernel && event->attr.exclude_kernel)
8564 goto fail;
8565
8566 if (!kernel) {
8567 if (!filename)
8568 goto fail;
8569
8570 /*
8571 * For now, we only support file-based filters
8572 * in per-task events; doing so for CPU-wide
8573 * events requires additional context switching
8574 * trickery, since same object code will be
8575 * mapped at different virtual addresses in
8576 * different processes.
8577 */
8578 ret = -EOPNOTSUPP;
8579 if (!event->ctx->task)
8580 goto fail_free_name;
8581
8582 /* look up the path and grab its inode */
8583 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8584 if (ret)
8585 goto fail_free_name;
8586
8587 filter->inode = igrab(d_inode(path.dentry));
8588 path_put(&path);
8589 kfree(filename);
8590 filename = NULL;
8591
8592 ret = -EINVAL;
8593 if (!filter->inode ||
8594 !S_ISREG(filter->inode->i_mode))
8595 /* free_filters_list() will iput() */
8596 goto fail;
8597
8598 event->addr_filters.nr_file_filters++;
8599 }
8600
8601 /* ready to consume more filters */
8602 state = IF_STATE_ACTION;
8603 filter = NULL;
8604 }
8605 }
8606
8607 if (state != IF_STATE_ACTION)
8608 goto fail;
8609
8610 kfree(orig);
8611
8612 return 0;
8613
8614 fail_free_name:
8615 kfree(filename);
8616 fail:
8617 free_filters_list(filters);
8618 kfree(orig);
8619
8620 return ret;
8621 }
8622
8623 static int
8624 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8625 {
8626 LIST_HEAD(filters);
8627 int ret;
8628
8629 /*
8630 * Since this is called in perf_ioctl() path, we're already holding
8631 * ctx::mutex.
8632 */
8633 lockdep_assert_held(&event->ctx->mutex);
8634
8635 if (WARN_ON_ONCE(event->parent))
8636 return -EINVAL;
8637
8638 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8639 if (ret)
8640 goto fail_clear_files;
8641
8642 ret = event->pmu->addr_filters_validate(&filters);
8643 if (ret)
8644 goto fail_free_filters;
8645
8646 /* remove existing filters, if any */
8647 perf_addr_filters_splice(event, &filters);
8648
8649 /* install new filters */
8650 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8651
8652 return ret;
8653
8654 fail_free_filters:
8655 free_filters_list(&filters);
8656
8657 fail_clear_files:
8658 event->addr_filters.nr_file_filters = 0;
8659
8660 return ret;
8661 }
8662
8663 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8664 {
8665 char *filter_str;
8666 int ret = -EINVAL;
8667
8668 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8669 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8670 !has_addr_filter(event))
8671 return -EINVAL;
8672
8673 filter_str = strndup_user(arg, PAGE_SIZE);
8674 if (IS_ERR(filter_str))
8675 return PTR_ERR(filter_str);
8676
8677 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8678 event->attr.type == PERF_TYPE_TRACEPOINT)
8679 ret = ftrace_profile_set_filter(event, event->attr.config,
8680 filter_str);
8681 else if (has_addr_filter(event))
8682 ret = perf_event_set_addr_filter(event, filter_str);
8683
8684 kfree(filter_str);
8685 return ret;
8686 }
8687
8688 /*
8689 * hrtimer based swevent callback
8690 */
8691
8692 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8693 {
8694 enum hrtimer_restart ret = HRTIMER_RESTART;
8695 struct perf_sample_data data;
8696 struct pt_regs *regs;
8697 struct perf_event *event;
8698 u64 period;
8699
8700 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8701
8702 if (event->state != PERF_EVENT_STATE_ACTIVE)
8703 return HRTIMER_NORESTART;
8704
8705 event->pmu->read(event);
8706
8707 perf_sample_data_init(&data, 0, event->hw.last_period);
8708 regs = get_irq_regs();
8709
8710 if (regs && !perf_exclude_event(event, regs)) {
8711 if (!(event->attr.exclude_idle && is_idle_task(current)))
8712 if (__perf_event_overflow(event, 1, &data, regs))
8713 ret = HRTIMER_NORESTART;
8714 }
8715
8716 period = max_t(u64, 10000, event->hw.sample_period);
8717 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8718
8719 return ret;
8720 }
8721
8722 static void perf_swevent_start_hrtimer(struct perf_event *event)
8723 {
8724 struct hw_perf_event *hwc = &event->hw;
8725 s64 period;
8726
8727 if (!is_sampling_event(event))
8728 return;
8729
8730 period = local64_read(&hwc->period_left);
8731 if (period) {
8732 if (period < 0)
8733 period = 10000;
8734
8735 local64_set(&hwc->period_left, 0);
8736 } else {
8737 period = max_t(u64, 10000, hwc->sample_period);
8738 }
8739 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8740 HRTIMER_MODE_REL_PINNED);
8741 }
8742
8743 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8744 {
8745 struct hw_perf_event *hwc = &event->hw;
8746
8747 if (is_sampling_event(event)) {
8748 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8749 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8750
8751 hrtimer_cancel(&hwc->hrtimer);
8752 }
8753 }
8754
8755 static void perf_swevent_init_hrtimer(struct perf_event *event)
8756 {
8757 struct hw_perf_event *hwc = &event->hw;
8758
8759 if (!is_sampling_event(event))
8760 return;
8761
8762 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8763 hwc->hrtimer.function = perf_swevent_hrtimer;
8764
8765 /*
8766 * Since hrtimers have a fixed rate, we can do a static freq->period
8767 * mapping and avoid the whole period adjust feedback stuff.
8768 */
8769 if (event->attr.freq) {
8770 long freq = event->attr.sample_freq;
8771
8772 event->attr.sample_period = NSEC_PER_SEC / freq;
8773 hwc->sample_period = event->attr.sample_period;
8774 local64_set(&hwc->period_left, hwc->sample_period);
8775 hwc->last_period = hwc->sample_period;
8776 event->attr.freq = 0;
8777 }
8778 }
8779
8780 /*
8781 * Software event: cpu wall time clock
8782 */
8783
8784 static void cpu_clock_event_update(struct perf_event *event)
8785 {
8786 s64 prev;
8787 u64 now;
8788
8789 now = local_clock();
8790 prev = local64_xchg(&event->hw.prev_count, now);
8791 local64_add(now - prev, &event->count);
8792 }
8793
8794 static void cpu_clock_event_start(struct perf_event *event, int flags)
8795 {
8796 local64_set(&event->hw.prev_count, local_clock());
8797 perf_swevent_start_hrtimer(event);
8798 }
8799
8800 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8801 {
8802 perf_swevent_cancel_hrtimer(event);
8803 cpu_clock_event_update(event);
8804 }
8805
8806 static int cpu_clock_event_add(struct perf_event *event, int flags)
8807 {
8808 if (flags & PERF_EF_START)
8809 cpu_clock_event_start(event, flags);
8810 perf_event_update_userpage(event);
8811
8812 return 0;
8813 }
8814
8815 static void cpu_clock_event_del(struct perf_event *event, int flags)
8816 {
8817 cpu_clock_event_stop(event, flags);
8818 }
8819
8820 static void cpu_clock_event_read(struct perf_event *event)
8821 {
8822 cpu_clock_event_update(event);
8823 }
8824
8825 static int cpu_clock_event_init(struct perf_event *event)
8826 {
8827 if (event->attr.type != PERF_TYPE_SOFTWARE)
8828 return -ENOENT;
8829
8830 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8831 return -ENOENT;
8832
8833 /*
8834 * no branch sampling for software events
8835 */
8836 if (has_branch_stack(event))
8837 return -EOPNOTSUPP;
8838
8839 perf_swevent_init_hrtimer(event);
8840
8841 return 0;
8842 }
8843
8844 static struct pmu perf_cpu_clock = {
8845 .task_ctx_nr = perf_sw_context,
8846
8847 .capabilities = PERF_PMU_CAP_NO_NMI,
8848
8849 .event_init = cpu_clock_event_init,
8850 .add = cpu_clock_event_add,
8851 .del = cpu_clock_event_del,
8852 .start = cpu_clock_event_start,
8853 .stop = cpu_clock_event_stop,
8854 .read = cpu_clock_event_read,
8855 };
8856
8857 /*
8858 * Software event: task time clock
8859 */
8860
8861 static void task_clock_event_update(struct perf_event *event, u64 now)
8862 {
8863 u64 prev;
8864 s64 delta;
8865
8866 prev = local64_xchg(&event->hw.prev_count, now);
8867 delta = now - prev;
8868 local64_add(delta, &event->count);
8869 }
8870
8871 static void task_clock_event_start(struct perf_event *event, int flags)
8872 {
8873 local64_set(&event->hw.prev_count, event->ctx->time);
8874 perf_swevent_start_hrtimer(event);
8875 }
8876
8877 static void task_clock_event_stop(struct perf_event *event, int flags)
8878 {
8879 perf_swevent_cancel_hrtimer(event);
8880 task_clock_event_update(event, event->ctx->time);
8881 }
8882
8883 static int task_clock_event_add(struct perf_event *event, int flags)
8884 {
8885 if (flags & PERF_EF_START)
8886 task_clock_event_start(event, flags);
8887 perf_event_update_userpage(event);
8888
8889 return 0;
8890 }
8891
8892 static void task_clock_event_del(struct perf_event *event, int flags)
8893 {
8894 task_clock_event_stop(event, PERF_EF_UPDATE);
8895 }
8896
8897 static void task_clock_event_read(struct perf_event *event)
8898 {
8899 u64 now = perf_clock();
8900 u64 delta = now - event->ctx->timestamp;
8901 u64 time = event->ctx->time + delta;
8902
8903 task_clock_event_update(event, time);
8904 }
8905
8906 static int task_clock_event_init(struct perf_event *event)
8907 {
8908 if (event->attr.type != PERF_TYPE_SOFTWARE)
8909 return -ENOENT;
8910
8911 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8912 return -ENOENT;
8913
8914 /*
8915 * no branch sampling for software events
8916 */
8917 if (has_branch_stack(event))
8918 return -EOPNOTSUPP;
8919
8920 perf_swevent_init_hrtimer(event);
8921
8922 return 0;
8923 }
8924
8925 static struct pmu perf_task_clock = {
8926 .task_ctx_nr = perf_sw_context,
8927
8928 .capabilities = PERF_PMU_CAP_NO_NMI,
8929
8930 .event_init = task_clock_event_init,
8931 .add = task_clock_event_add,
8932 .del = task_clock_event_del,
8933 .start = task_clock_event_start,
8934 .stop = task_clock_event_stop,
8935 .read = task_clock_event_read,
8936 };
8937
8938 static void perf_pmu_nop_void(struct pmu *pmu)
8939 {
8940 }
8941
8942 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8943 {
8944 }
8945
8946 static int perf_pmu_nop_int(struct pmu *pmu)
8947 {
8948 return 0;
8949 }
8950
8951 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
8952
8953 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
8954 {
8955 __this_cpu_write(nop_txn_flags, flags);
8956
8957 if (flags & ~PERF_PMU_TXN_ADD)
8958 return;
8959
8960 perf_pmu_disable(pmu);
8961 }
8962
8963 static int perf_pmu_commit_txn(struct pmu *pmu)
8964 {
8965 unsigned int flags = __this_cpu_read(nop_txn_flags);
8966
8967 __this_cpu_write(nop_txn_flags, 0);
8968
8969 if (flags & ~PERF_PMU_TXN_ADD)
8970 return 0;
8971
8972 perf_pmu_enable(pmu);
8973 return 0;
8974 }
8975
8976 static void perf_pmu_cancel_txn(struct pmu *pmu)
8977 {
8978 unsigned int flags = __this_cpu_read(nop_txn_flags);
8979
8980 __this_cpu_write(nop_txn_flags, 0);
8981
8982 if (flags & ~PERF_PMU_TXN_ADD)
8983 return;
8984
8985 perf_pmu_enable(pmu);
8986 }
8987
8988 static int perf_event_idx_default(struct perf_event *event)
8989 {
8990 return 0;
8991 }
8992
8993 /*
8994 * Ensures all contexts with the same task_ctx_nr have the same
8995 * pmu_cpu_context too.
8996 */
8997 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
8998 {
8999 struct pmu *pmu;
9000
9001 if (ctxn < 0)
9002 return NULL;
9003
9004 list_for_each_entry(pmu, &pmus, entry) {
9005 if (pmu->task_ctx_nr == ctxn)
9006 return pmu->pmu_cpu_context;
9007 }
9008
9009 return NULL;
9010 }
9011
9012 static void free_pmu_context(struct pmu *pmu)
9013 {
9014 /*
9015 * Static contexts such as perf_sw_context have a global lifetime
9016 * and may be shared between different PMUs. Avoid freeing them
9017 * when a single PMU is going away.
9018 */
9019 if (pmu->task_ctx_nr > perf_invalid_context)
9020 return;
9021
9022 mutex_lock(&pmus_lock);
9023 free_percpu(pmu->pmu_cpu_context);
9024 mutex_unlock(&pmus_lock);
9025 }
9026
9027 /*
9028 * Let userspace know that this PMU supports address range filtering:
9029 */
9030 static ssize_t nr_addr_filters_show(struct device *dev,
9031 struct device_attribute *attr,
9032 char *page)
9033 {
9034 struct pmu *pmu = dev_get_drvdata(dev);
9035
9036 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9037 }
9038 DEVICE_ATTR_RO(nr_addr_filters);
9039
9040 static struct idr pmu_idr;
9041
9042 static ssize_t
9043 type_show(struct device *dev, struct device_attribute *attr, char *page)
9044 {
9045 struct pmu *pmu = dev_get_drvdata(dev);
9046
9047 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9048 }
9049 static DEVICE_ATTR_RO(type);
9050
9051 static ssize_t
9052 perf_event_mux_interval_ms_show(struct device *dev,
9053 struct device_attribute *attr,
9054 char *page)
9055 {
9056 struct pmu *pmu = dev_get_drvdata(dev);
9057
9058 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9059 }
9060
9061 static DEFINE_MUTEX(mux_interval_mutex);
9062
9063 static ssize_t
9064 perf_event_mux_interval_ms_store(struct device *dev,
9065 struct device_attribute *attr,
9066 const char *buf, size_t count)
9067 {
9068 struct pmu *pmu = dev_get_drvdata(dev);
9069 int timer, cpu, ret;
9070
9071 ret = kstrtoint(buf, 0, &timer);
9072 if (ret)
9073 return ret;
9074
9075 if (timer < 1)
9076 return -EINVAL;
9077
9078 /* same value, noting to do */
9079 if (timer == pmu->hrtimer_interval_ms)
9080 return count;
9081
9082 mutex_lock(&mux_interval_mutex);
9083 pmu->hrtimer_interval_ms = timer;
9084
9085 /* update all cpuctx for this PMU */
9086 cpus_read_lock();
9087 for_each_online_cpu(cpu) {
9088 struct perf_cpu_context *cpuctx;
9089 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9090 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9091
9092 cpu_function_call(cpu,
9093 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9094 }
9095 cpus_read_unlock();
9096 mutex_unlock(&mux_interval_mutex);
9097
9098 return count;
9099 }
9100 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9101
9102 static struct attribute *pmu_dev_attrs[] = {
9103 &dev_attr_type.attr,
9104 &dev_attr_perf_event_mux_interval_ms.attr,
9105 NULL,
9106 };
9107 ATTRIBUTE_GROUPS(pmu_dev);
9108
9109 static int pmu_bus_running;
9110 static struct bus_type pmu_bus = {
9111 .name = "event_source",
9112 .dev_groups = pmu_dev_groups,
9113 };
9114
9115 static void pmu_dev_release(struct device *dev)
9116 {
9117 kfree(dev);
9118 }
9119
9120 static int pmu_dev_alloc(struct pmu *pmu)
9121 {
9122 int ret = -ENOMEM;
9123
9124 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9125 if (!pmu->dev)
9126 goto out;
9127
9128 pmu->dev->groups = pmu->attr_groups;
9129 device_initialize(pmu->dev);
9130 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9131 if (ret)
9132 goto free_dev;
9133
9134 dev_set_drvdata(pmu->dev, pmu);
9135 pmu->dev->bus = &pmu_bus;
9136 pmu->dev->release = pmu_dev_release;
9137 ret = device_add(pmu->dev);
9138 if (ret)
9139 goto free_dev;
9140
9141 /* For PMUs with address filters, throw in an extra attribute: */
9142 if (pmu->nr_addr_filters)
9143 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9144
9145 if (ret)
9146 goto del_dev;
9147
9148 out:
9149 return ret;
9150
9151 del_dev:
9152 device_del(pmu->dev);
9153
9154 free_dev:
9155 put_device(pmu->dev);
9156 goto out;
9157 }
9158
9159 static struct lock_class_key cpuctx_mutex;
9160 static struct lock_class_key cpuctx_lock;
9161
9162 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9163 {
9164 int cpu, ret;
9165
9166 mutex_lock(&pmus_lock);
9167 ret = -ENOMEM;
9168 pmu->pmu_disable_count = alloc_percpu(int);
9169 if (!pmu->pmu_disable_count)
9170 goto unlock;
9171
9172 pmu->type = -1;
9173 if (!name)
9174 goto skip_type;
9175 pmu->name = name;
9176
9177 if (type < 0) {
9178 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9179 if (type < 0) {
9180 ret = type;
9181 goto free_pdc;
9182 }
9183 }
9184 pmu->type = type;
9185
9186 if (pmu_bus_running) {
9187 ret = pmu_dev_alloc(pmu);
9188 if (ret)
9189 goto free_idr;
9190 }
9191
9192 skip_type:
9193 if (pmu->task_ctx_nr == perf_hw_context) {
9194 static int hw_context_taken = 0;
9195
9196 /*
9197 * Other than systems with heterogeneous CPUs, it never makes
9198 * sense for two PMUs to share perf_hw_context. PMUs which are
9199 * uncore must use perf_invalid_context.
9200 */
9201 if (WARN_ON_ONCE(hw_context_taken &&
9202 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9203 pmu->task_ctx_nr = perf_invalid_context;
9204
9205 hw_context_taken = 1;
9206 }
9207
9208 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9209 if (pmu->pmu_cpu_context)
9210 goto got_cpu_context;
9211
9212 ret = -ENOMEM;
9213 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9214 if (!pmu->pmu_cpu_context)
9215 goto free_dev;
9216
9217 for_each_possible_cpu(cpu) {
9218 struct perf_cpu_context *cpuctx;
9219
9220 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9221 __perf_event_init_context(&cpuctx->ctx);
9222 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9223 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9224 cpuctx->ctx.pmu = pmu;
9225 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9226
9227 __perf_mux_hrtimer_init(cpuctx, cpu);
9228 }
9229
9230 got_cpu_context:
9231 if (!pmu->start_txn) {
9232 if (pmu->pmu_enable) {
9233 /*
9234 * If we have pmu_enable/pmu_disable calls, install
9235 * transaction stubs that use that to try and batch
9236 * hardware accesses.
9237 */
9238 pmu->start_txn = perf_pmu_start_txn;
9239 pmu->commit_txn = perf_pmu_commit_txn;
9240 pmu->cancel_txn = perf_pmu_cancel_txn;
9241 } else {
9242 pmu->start_txn = perf_pmu_nop_txn;
9243 pmu->commit_txn = perf_pmu_nop_int;
9244 pmu->cancel_txn = perf_pmu_nop_void;
9245 }
9246 }
9247
9248 if (!pmu->pmu_enable) {
9249 pmu->pmu_enable = perf_pmu_nop_void;
9250 pmu->pmu_disable = perf_pmu_nop_void;
9251 }
9252
9253 if (!pmu->event_idx)
9254 pmu->event_idx = perf_event_idx_default;
9255
9256 list_add_rcu(&pmu->entry, &pmus);
9257 atomic_set(&pmu->exclusive_cnt, 0);
9258 ret = 0;
9259 unlock:
9260 mutex_unlock(&pmus_lock);
9261
9262 return ret;
9263
9264 free_dev:
9265 device_del(pmu->dev);
9266 put_device(pmu->dev);
9267
9268 free_idr:
9269 if (pmu->type >= PERF_TYPE_MAX)
9270 idr_remove(&pmu_idr, pmu->type);
9271
9272 free_pdc:
9273 free_percpu(pmu->pmu_disable_count);
9274 goto unlock;
9275 }
9276 EXPORT_SYMBOL_GPL(perf_pmu_register);
9277
9278 void perf_pmu_unregister(struct pmu *pmu)
9279 {
9280 int remove_device;
9281
9282 mutex_lock(&pmus_lock);
9283 remove_device = pmu_bus_running;
9284 list_del_rcu(&pmu->entry);
9285 mutex_unlock(&pmus_lock);
9286
9287 /*
9288 * We dereference the pmu list under both SRCU and regular RCU, so
9289 * synchronize against both of those.
9290 */
9291 synchronize_srcu(&pmus_srcu);
9292 synchronize_rcu();
9293
9294 free_percpu(pmu->pmu_disable_count);
9295 if (pmu->type >= PERF_TYPE_MAX)
9296 idr_remove(&pmu_idr, pmu->type);
9297 if (remove_device) {
9298 if (pmu->nr_addr_filters)
9299 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9300 device_del(pmu->dev);
9301 put_device(pmu->dev);
9302 }
9303 free_pmu_context(pmu);
9304 }
9305 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9306
9307 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9308 {
9309 struct perf_event_context *ctx = NULL;
9310 int ret;
9311
9312 if (!try_module_get(pmu->module))
9313 return -ENODEV;
9314
9315 if (event->group_leader != event) {
9316 /*
9317 * This ctx->mutex can nest when we're called through
9318 * inheritance. See the perf_event_ctx_lock_nested() comment.
9319 */
9320 ctx = perf_event_ctx_lock_nested(event->group_leader,
9321 SINGLE_DEPTH_NESTING);
9322 BUG_ON(!ctx);
9323 }
9324
9325 event->pmu = pmu;
9326 ret = pmu->event_init(event);
9327
9328 if (ctx)
9329 perf_event_ctx_unlock(event->group_leader, ctx);
9330
9331 if (ret)
9332 module_put(pmu->module);
9333
9334 return ret;
9335 }
9336
9337 static struct pmu *perf_init_event(struct perf_event *event)
9338 {
9339 struct pmu *pmu;
9340 int idx;
9341 int ret;
9342
9343 idx = srcu_read_lock(&pmus_srcu);
9344
9345 /* Try parent's PMU first: */
9346 if (event->parent && event->parent->pmu) {
9347 pmu = event->parent->pmu;
9348 ret = perf_try_init_event(pmu, event);
9349 if (!ret)
9350 goto unlock;
9351 }
9352
9353 rcu_read_lock();
9354 pmu = idr_find(&pmu_idr, event->attr.type);
9355 rcu_read_unlock();
9356 if (pmu) {
9357 ret = perf_try_init_event(pmu, event);
9358 if (ret)
9359 pmu = ERR_PTR(ret);
9360 goto unlock;
9361 }
9362
9363 list_for_each_entry_rcu(pmu, &pmus, entry) {
9364 ret = perf_try_init_event(pmu, event);
9365 if (!ret)
9366 goto unlock;
9367
9368 if (ret != -ENOENT) {
9369 pmu = ERR_PTR(ret);
9370 goto unlock;
9371 }
9372 }
9373 pmu = ERR_PTR(-ENOENT);
9374 unlock:
9375 srcu_read_unlock(&pmus_srcu, idx);
9376
9377 return pmu;
9378 }
9379
9380 static void attach_sb_event(struct perf_event *event)
9381 {
9382 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9383
9384 raw_spin_lock(&pel->lock);
9385 list_add_rcu(&event->sb_list, &pel->list);
9386 raw_spin_unlock(&pel->lock);
9387 }
9388
9389 /*
9390 * We keep a list of all !task (and therefore per-cpu) events
9391 * that need to receive side-band records.
9392 *
9393 * This avoids having to scan all the various PMU per-cpu contexts
9394 * looking for them.
9395 */
9396 static void account_pmu_sb_event(struct perf_event *event)
9397 {
9398 if (is_sb_event(event))
9399 attach_sb_event(event);
9400 }
9401
9402 static void account_event_cpu(struct perf_event *event, int cpu)
9403 {
9404 if (event->parent)
9405 return;
9406
9407 if (is_cgroup_event(event))
9408 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9409 }
9410
9411 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9412 static void account_freq_event_nohz(void)
9413 {
9414 #ifdef CONFIG_NO_HZ_FULL
9415 /* Lock so we don't race with concurrent unaccount */
9416 spin_lock(&nr_freq_lock);
9417 if (atomic_inc_return(&nr_freq_events) == 1)
9418 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9419 spin_unlock(&nr_freq_lock);
9420 #endif
9421 }
9422
9423 static void account_freq_event(void)
9424 {
9425 if (tick_nohz_full_enabled())
9426 account_freq_event_nohz();
9427 else
9428 atomic_inc(&nr_freq_events);
9429 }
9430
9431
9432 static void account_event(struct perf_event *event)
9433 {
9434 bool inc = false;
9435
9436 if (event->parent)
9437 return;
9438
9439 if (event->attach_state & PERF_ATTACH_TASK)
9440 inc = true;
9441 if (event->attr.mmap || event->attr.mmap_data)
9442 atomic_inc(&nr_mmap_events);
9443 if (event->attr.comm)
9444 atomic_inc(&nr_comm_events);
9445 if (event->attr.namespaces)
9446 atomic_inc(&nr_namespaces_events);
9447 if (event->attr.task)
9448 atomic_inc(&nr_task_events);
9449 if (event->attr.freq)
9450 account_freq_event();
9451 if (event->attr.context_switch) {
9452 atomic_inc(&nr_switch_events);
9453 inc = true;
9454 }
9455 if (has_branch_stack(event))
9456 inc = true;
9457 if (is_cgroup_event(event))
9458 inc = true;
9459
9460 if (inc) {
9461 if (atomic_inc_not_zero(&perf_sched_count))
9462 goto enabled;
9463
9464 mutex_lock(&perf_sched_mutex);
9465 if (!atomic_read(&perf_sched_count)) {
9466 static_branch_enable(&perf_sched_events);
9467 /*
9468 * Guarantee that all CPUs observe they key change and
9469 * call the perf scheduling hooks before proceeding to
9470 * install events that need them.
9471 */
9472 synchronize_sched();
9473 }
9474 /*
9475 * Now that we have waited for the sync_sched(), allow further
9476 * increments to by-pass the mutex.
9477 */
9478 atomic_inc(&perf_sched_count);
9479 mutex_unlock(&perf_sched_mutex);
9480 }
9481 enabled:
9482
9483 account_event_cpu(event, event->cpu);
9484
9485 account_pmu_sb_event(event);
9486 }
9487
9488 /*
9489 * Allocate and initialize a event structure
9490 */
9491 static struct perf_event *
9492 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9493 struct task_struct *task,
9494 struct perf_event *group_leader,
9495 struct perf_event *parent_event,
9496 perf_overflow_handler_t overflow_handler,
9497 void *context, int cgroup_fd)
9498 {
9499 struct pmu *pmu;
9500 struct perf_event *event;
9501 struct hw_perf_event *hwc;
9502 long err = -EINVAL;
9503
9504 if ((unsigned)cpu >= nr_cpu_ids) {
9505 if (!task || cpu != -1)
9506 return ERR_PTR(-EINVAL);
9507 }
9508
9509 event = kzalloc(sizeof(*event), GFP_KERNEL);
9510 if (!event)
9511 return ERR_PTR(-ENOMEM);
9512
9513 /*
9514 * Single events are their own group leaders, with an
9515 * empty sibling list:
9516 */
9517 if (!group_leader)
9518 group_leader = event;
9519
9520 mutex_init(&event->child_mutex);
9521 INIT_LIST_HEAD(&event->child_list);
9522
9523 INIT_LIST_HEAD(&event->group_entry);
9524 INIT_LIST_HEAD(&event->event_entry);
9525 INIT_LIST_HEAD(&event->sibling_list);
9526 INIT_LIST_HEAD(&event->rb_entry);
9527 INIT_LIST_HEAD(&event->active_entry);
9528 INIT_LIST_HEAD(&event->addr_filters.list);
9529 INIT_HLIST_NODE(&event->hlist_entry);
9530
9531
9532 init_waitqueue_head(&event->waitq);
9533 init_irq_work(&event->pending, perf_pending_event);
9534
9535 mutex_init(&event->mmap_mutex);
9536 raw_spin_lock_init(&event->addr_filters.lock);
9537
9538 atomic_long_set(&event->refcount, 1);
9539 event->cpu = cpu;
9540 event->attr = *attr;
9541 event->group_leader = group_leader;
9542 event->pmu = NULL;
9543 event->oncpu = -1;
9544
9545 event->parent = parent_event;
9546
9547 event->ns = get_pid_ns(task_active_pid_ns(current));
9548 event->id = atomic64_inc_return(&perf_event_id);
9549
9550 event->state = PERF_EVENT_STATE_INACTIVE;
9551
9552 if (task) {
9553 event->attach_state = PERF_ATTACH_TASK;
9554 /*
9555 * XXX pmu::event_init needs to know what task to account to
9556 * and we cannot use the ctx information because we need the
9557 * pmu before we get a ctx.
9558 */
9559 get_task_struct(task);
9560 event->hw.target = task;
9561 }
9562
9563 event->clock = &local_clock;
9564 if (parent_event)
9565 event->clock = parent_event->clock;
9566
9567 if (!overflow_handler && parent_event) {
9568 overflow_handler = parent_event->overflow_handler;
9569 context = parent_event->overflow_handler_context;
9570 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9571 if (overflow_handler == bpf_overflow_handler) {
9572 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9573
9574 if (IS_ERR(prog)) {
9575 err = PTR_ERR(prog);
9576 goto err_ns;
9577 }
9578 event->prog = prog;
9579 event->orig_overflow_handler =
9580 parent_event->orig_overflow_handler;
9581 }
9582 #endif
9583 }
9584
9585 if (overflow_handler) {
9586 event->overflow_handler = overflow_handler;
9587 event->overflow_handler_context = context;
9588 } else if (is_write_backward(event)){
9589 event->overflow_handler = perf_event_output_backward;
9590 event->overflow_handler_context = NULL;
9591 } else {
9592 event->overflow_handler = perf_event_output_forward;
9593 event->overflow_handler_context = NULL;
9594 }
9595
9596 perf_event__state_init(event);
9597
9598 pmu = NULL;
9599
9600 hwc = &event->hw;
9601 hwc->sample_period = attr->sample_period;
9602 if (attr->freq && attr->sample_freq)
9603 hwc->sample_period = 1;
9604 hwc->last_period = hwc->sample_period;
9605
9606 local64_set(&hwc->period_left, hwc->sample_period);
9607
9608 /*
9609 * We currently do not support PERF_SAMPLE_READ on inherited events.
9610 * See perf_output_read().
9611 */
9612 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9613 goto err_ns;
9614
9615 if (!has_branch_stack(event))
9616 event->attr.branch_sample_type = 0;
9617
9618 if (cgroup_fd != -1) {
9619 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9620 if (err)
9621 goto err_ns;
9622 }
9623
9624 pmu = perf_init_event(event);
9625 if (IS_ERR(pmu)) {
9626 err = PTR_ERR(pmu);
9627 goto err_ns;
9628 }
9629
9630 err = exclusive_event_init(event);
9631 if (err)
9632 goto err_pmu;
9633
9634 if (has_addr_filter(event)) {
9635 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9636 sizeof(unsigned long),
9637 GFP_KERNEL);
9638 if (!event->addr_filters_offs) {
9639 err = -ENOMEM;
9640 goto err_per_task;
9641 }
9642
9643 /* force hw sync on the address filters */
9644 event->addr_filters_gen = 1;
9645 }
9646
9647 if (!event->parent) {
9648 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9649 err = get_callchain_buffers(attr->sample_max_stack);
9650 if (err)
9651 goto err_addr_filters;
9652 }
9653 }
9654
9655 /* symmetric to unaccount_event() in _free_event() */
9656 account_event(event);
9657
9658 return event;
9659
9660 err_addr_filters:
9661 kfree(event->addr_filters_offs);
9662
9663 err_per_task:
9664 exclusive_event_destroy(event);
9665
9666 err_pmu:
9667 if (event->destroy)
9668 event->destroy(event);
9669 module_put(pmu->module);
9670 err_ns:
9671 if (is_cgroup_event(event))
9672 perf_detach_cgroup(event);
9673 if (event->ns)
9674 put_pid_ns(event->ns);
9675 if (event->hw.target)
9676 put_task_struct(event->hw.target);
9677 kfree(event);
9678
9679 return ERR_PTR(err);
9680 }
9681
9682 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9683 struct perf_event_attr *attr)
9684 {
9685 u32 size;
9686 int ret;
9687
9688 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9689 return -EFAULT;
9690
9691 /*
9692 * zero the full structure, so that a short copy will be nice.
9693 */
9694 memset(attr, 0, sizeof(*attr));
9695
9696 ret = get_user(size, &uattr->size);
9697 if (ret)
9698 return ret;
9699
9700 if (size > PAGE_SIZE) /* silly large */
9701 goto err_size;
9702
9703 if (!size) /* abi compat */
9704 size = PERF_ATTR_SIZE_VER0;
9705
9706 if (size < PERF_ATTR_SIZE_VER0)
9707 goto err_size;
9708
9709 /*
9710 * If we're handed a bigger struct than we know of,
9711 * ensure all the unknown bits are 0 - i.e. new
9712 * user-space does not rely on any kernel feature
9713 * extensions we dont know about yet.
9714 */
9715 if (size > sizeof(*attr)) {
9716 unsigned char __user *addr;
9717 unsigned char __user *end;
9718 unsigned char val;
9719
9720 addr = (void __user *)uattr + sizeof(*attr);
9721 end = (void __user *)uattr + size;
9722
9723 for (; addr < end; addr++) {
9724 ret = get_user(val, addr);
9725 if (ret)
9726 return ret;
9727 if (val)
9728 goto err_size;
9729 }
9730 size = sizeof(*attr);
9731 }
9732
9733 ret = copy_from_user(attr, uattr, size);
9734 if (ret)
9735 return -EFAULT;
9736
9737 attr->size = size;
9738
9739 if (attr->__reserved_1)
9740 return -EINVAL;
9741
9742 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9743 return -EINVAL;
9744
9745 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9746 return -EINVAL;
9747
9748 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9749 u64 mask = attr->branch_sample_type;
9750
9751 /* only using defined bits */
9752 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9753 return -EINVAL;
9754
9755 /* at least one branch bit must be set */
9756 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9757 return -EINVAL;
9758
9759 /* propagate priv level, when not set for branch */
9760 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9761
9762 /* exclude_kernel checked on syscall entry */
9763 if (!attr->exclude_kernel)
9764 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9765
9766 if (!attr->exclude_user)
9767 mask |= PERF_SAMPLE_BRANCH_USER;
9768
9769 if (!attr->exclude_hv)
9770 mask |= PERF_SAMPLE_BRANCH_HV;
9771 /*
9772 * adjust user setting (for HW filter setup)
9773 */
9774 attr->branch_sample_type = mask;
9775 }
9776 /* privileged levels capture (kernel, hv): check permissions */
9777 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9778 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9779 return -EACCES;
9780 }
9781
9782 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9783 ret = perf_reg_validate(attr->sample_regs_user);
9784 if (ret)
9785 return ret;
9786 }
9787
9788 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9789 if (!arch_perf_have_user_stack_dump())
9790 return -ENOSYS;
9791
9792 /*
9793 * We have __u32 type for the size, but so far
9794 * we can only use __u16 as maximum due to the
9795 * __u16 sample size limit.
9796 */
9797 if (attr->sample_stack_user >= USHRT_MAX)
9798 return -EINVAL;
9799 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9800 return -EINVAL;
9801 }
9802
9803 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9804 ret = perf_reg_validate(attr->sample_regs_intr);
9805 out:
9806 return ret;
9807
9808 err_size:
9809 put_user(sizeof(*attr), &uattr->size);
9810 ret = -E2BIG;
9811 goto out;
9812 }
9813
9814 static int
9815 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9816 {
9817 struct ring_buffer *rb = NULL;
9818 int ret = -EINVAL;
9819
9820 if (!output_event)
9821 goto set;
9822
9823 /* don't allow circular references */
9824 if (event == output_event)
9825 goto out;
9826
9827 /*
9828 * Don't allow cross-cpu buffers
9829 */
9830 if (output_event->cpu != event->cpu)
9831 goto out;
9832
9833 /*
9834 * If its not a per-cpu rb, it must be the same task.
9835 */
9836 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9837 goto out;
9838
9839 /*
9840 * Mixing clocks in the same buffer is trouble you don't need.
9841 */
9842 if (output_event->clock != event->clock)
9843 goto out;
9844
9845 /*
9846 * Either writing ring buffer from beginning or from end.
9847 * Mixing is not allowed.
9848 */
9849 if (is_write_backward(output_event) != is_write_backward(event))
9850 goto out;
9851
9852 /*
9853 * If both events generate aux data, they must be on the same PMU
9854 */
9855 if (has_aux(event) && has_aux(output_event) &&
9856 event->pmu != output_event->pmu)
9857 goto out;
9858
9859 set:
9860 mutex_lock(&event->mmap_mutex);
9861 /* Can't redirect output if we've got an active mmap() */
9862 if (atomic_read(&event->mmap_count))
9863 goto unlock;
9864
9865 if (output_event) {
9866 /* get the rb we want to redirect to */
9867 rb = ring_buffer_get(output_event);
9868 if (!rb)
9869 goto unlock;
9870 }
9871
9872 ring_buffer_attach(event, rb);
9873
9874 ret = 0;
9875 unlock:
9876 mutex_unlock(&event->mmap_mutex);
9877
9878 out:
9879 return ret;
9880 }
9881
9882 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9883 {
9884 if (b < a)
9885 swap(a, b);
9886
9887 mutex_lock(a);
9888 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9889 }
9890
9891 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9892 {
9893 bool nmi_safe = false;
9894
9895 switch (clk_id) {
9896 case CLOCK_MONOTONIC:
9897 event->clock = &ktime_get_mono_fast_ns;
9898 nmi_safe = true;
9899 break;
9900
9901 case CLOCK_MONOTONIC_RAW:
9902 event->clock = &ktime_get_raw_fast_ns;
9903 nmi_safe = true;
9904 break;
9905
9906 case CLOCK_REALTIME:
9907 event->clock = &ktime_get_real_ns;
9908 break;
9909
9910 case CLOCK_BOOTTIME:
9911 event->clock = &ktime_get_boot_ns;
9912 break;
9913
9914 case CLOCK_TAI:
9915 event->clock = &ktime_get_tai_ns;
9916 break;
9917
9918 default:
9919 return -EINVAL;
9920 }
9921
9922 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9923 return -EINVAL;
9924
9925 return 0;
9926 }
9927
9928 /*
9929 * Variation on perf_event_ctx_lock_nested(), except we take two context
9930 * mutexes.
9931 */
9932 static struct perf_event_context *
9933 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9934 struct perf_event_context *ctx)
9935 {
9936 struct perf_event_context *gctx;
9937
9938 again:
9939 rcu_read_lock();
9940 gctx = READ_ONCE(group_leader->ctx);
9941 if (!atomic_inc_not_zero(&gctx->refcount)) {
9942 rcu_read_unlock();
9943 goto again;
9944 }
9945 rcu_read_unlock();
9946
9947 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9948
9949 if (group_leader->ctx != gctx) {
9950 mutex_unlock(&ctx->mutex);
9951 mutex_unlock(&gctx->mutex);
9952 put_ctx(gctx);
9953 goto again;
9954 }
9955
9956 return gctx;
9957 }
9958
9959 /**
9960 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9961 *
9962 * @attr_uptr: event_id type attributes for monitoring/sampling
9963 * @pid: target pid
9964 * @cpu: target cpu
9965 * @group_fd: group leader event fd
9966 */
9967 SYSCALL_DEFINE5(perf_event_open,
9968 struct perf_event_attr __user *, attr_uptr,
9969 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
9970 {
9971 struct perf_event *group_leader = NULL, *output_event = NULL;
9972 struct perf_event *event, *sibling;
9973 struct perf_event_attr attr;
9974 struct perf_event_context *ctx, *uninitialized_var(gctx);
9975 struct file *event_file = NULL;
9976 struct fd group = {NULL, 0};
9977 struct task_struct *task = NULL;
9978 struct pmu *pmu;
9979 int event_fd;
9980 int move_group = 0;
9981 int err;
9982 int f_flags = O_RDWR;
9983 int cgroup_fd = -1;
9984
9985 /* for future expandability... */
9986 if (flags & ~PERF_FLAG_ALL)
9987 return -EINVAL;
9988
9989 if (perf_paranoid_any() && !capable(CAP_SYS_ADMIN))
9990 return -EACCES;
9991
9992 err = perf_copy_attr(attr_uptr, &attr);
9993 if (err)
9994 return err;
9995
9996 if (!attr.exclude_kernel) {
9997 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9998 return -EACCES;
9999 }
10000
10001 if (attr.namespaces) {
10002 if (!capable(CAP_SYS_ADMIN))
10003 return -EACCES;
10004 }
10005
10006 if (attr.freq) {
10007 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10008 return -EINVAL;
10009 } else {
10010 if (attr.sample_period & (1ULL << 63))
10011 return -EINVAL;
10012 }
10013
10014 /* Only privileged users can get physical addresses */
10015 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10016 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10017 return -EACCES;
10018
10019 if (!attr.sample_max_stack)
10020 attr.sample_max_stack = sysctl_perf_event_max_stack;
10021
10022 /*
10023 * In cgroup mode, the pid argument is used to pass the fd
10024 * opened to the cgroup directory in cgroupfs. The cpu argument
10025 * designates the cpu on which to monitor threads from that
10026 * cgroup.
10027 */
10028 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10029 return -EINVAL;
10030
10031 if (flags & PERF_FLAG_FD_CLOEXEC)
10032 f_flags |= O_CLOEXEC;
10033
10034 event_fd = get_unused_fd_flags(f_flags);
10035 if (event_fd < 0)
10036 return event_fd;
10037
10038 if (group_fd != -1) {
10039 err = perf_fget_light(group_fd, &group);
10040 if (err)
10041 goto err_fd;
10042 group_leader = group.file->private_data;
10043 if (flags & PERF_FLAG_FD_OUTPUT)
10044 output_event = group_leader;
10045 if (flags & PERF_FLAG_FD_NO_GROUP)
10046 group_leader = NULL;
10047 }
10048
10049 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10050 task = find_lively_task_by_vpid(pid);
10051 if (IS_ERR(task)) {
10052 err = PTR_ERR(task);
10053 goto err_group_fd;
10054 }
10055 }
10056
10057 if (task && group_leader &&
10058 group_leader->attr.inherit != attr.inherit) {
10059 err = -EINVAL;
10060 goto err_task;
10061 }
10062
10063 if (task) {
10064 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10065 if (err)
10066 goto err_task;
10067
10068 /*
10069 * Reuse ptrace permission checks for now.
10070 *
10071 * We must hold cred_guard_mutex across this and any potential
10072 * perf_install_in_context() call for this new event to
10073 * serialize against exec() altering our credentials (and the
10074 * perf_event_exit_task() that could imply).
10075 */
10076 err = -EACCES;
10077 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10078 goto err_cred;
10079 }
10080
10081 if (flags & PERF_FLAG_PID_CGROUP)
10082 cgroup_fd = pid;
10083
10084 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10085 NULL, NULL, cgroup_fd);
10086 if (IS_ERR(event)) {
10087 err = PTR_ERR(event);
10088 goto err_cred;
10089 }
10090
10091 if (is_sampling_event(event)) {
10092 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10093 err = -EOPNOTSUPP;
10094 goto err_alloc;
10095 }
10096 }
10097
10098 /*
10099 * Special case software events and allow them to be part of
10100 * any hardware group.
10101 */
10102 pmu = event->pmu;
10103
10104 if (attr.use_clockid) {
10105 err = perf_event_set_clock(event, attr.clockid);
10106 if (err)
10107 goto err_alloc;
10108 }
10109
10110 if (pmu->task_ctx_nr == perf_sw_context)
10111 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10112
10113 if (group_leader &&
10114 (is_software_event(event) != is_software_event(group_leader))) {
10115 if (is_software_event(event)) {
10116 /*
10117 * If event and group_leader are not both a software
10118 * event, and event is, then group leader is not.
10119 *
10120 * Allow the addition of software events to !software
10121 * groups, this is safe because software events never
10122 * fail to schedule.
10123 */
10124 pmu = group_leader->pmu;
10125 } else if (is_software_event(group_leader) &&
10126 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10127 /*
10128 * In case the group is a pure software group, and we
10129 * try to add a hardware event, move the whole group to
10130 * the hardware context.
10131 */
10132 move_group = 1;
10133 }
10134 }
10135
10136 /*
10137 * Get the target context (task or percpu):
10138 */
10139 ctx = find_get_context(pmu, task, event);
10140 if (IS_ERR(ctx)) {
10141 err = PTR_ERR(ctx);
10142 goto err_alloc;
10143 }
10144
10145 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10146 err = -EBUSY;
10147 goto err_context;
10148 }
10149
10150 /*
10151 * Look up the group leader (we will attach this event to it):
10152 */
10153 if (group_leader) {
10154 err = -EINVAL;
10155
10156 /*
10157 * Do not allow a recursive hierarchy (this new sibling
10158 * becoming part of another group-sibling):
10159 */
10160 if (group_leader->group_leader != group_leader)
10161 goto err_context;
10162
10163 /* All events in a group should have the same clock */
10164 if (group_leader->clock != event->clock)
10165 goto err_context;
10166
10167 /*
10168 * Make sure we're both events for the same CPU;
10169 * grouping events for different CPUs is broken; since
10170 * you can never concurrently schedule them anyhow.
10171 */
10172 if (group_leader->cpu != event->cpu)
10173 goto err_context;
10174
10175 /*
10176 * Make sure we're both on the same task, or both
10177 * per-CPU events.
10178 */
10179 if (group_leader->ctx->task != ctx->task)
10180 goto err_context;
10181
10182 /*
10183 * Do not allow to attach to a group in a different task
10184 * or CPU context. If we're moving SW events, we'll fix
10185 * this up later, so allow that.
10186 */
10187 if (!move_group && group_leader->ctx != ctx)
10188 goto err_context;
10189
10190 /*
10191 * Only a group leader can be exclusive or pinned
10192 */
10193 if (attr.exclusive || attr.pinned)
10194 goto err_context;
10195 }
10196
10197 if (output_event) {
10198 err = perf_event_set_output(event, output_event);
10199 if (err)
10200 goto err_context;
10201 }
10202
10203 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10204 f_flags);
10205 if (IS_ERR(event_file)) {
10206 err = PTR_ERR(event_file);
10207 event_file = NULL;
10208 goto err_context;
10209 }
10210
10211 if (move_group) {
10212 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10213
10214 if (gctx->task == TASK_TOMBSTONE) {
10215 err = -ESRCH;
10216 goto err_locked;
10217 }
10218
10219 /*
10220 * Check if we raced against another sys_perf_event_open() call
10221 * moving the software group underneath us.
10222 */
10223 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10224 /*
10225 * If someone moved the group out from under us, check
10226 * if this new event wound up on the same ctx, if so
10227 * its the regular !move_group case, otherwise fail.
10228 */
10229 if (gctx != ctx) {
10230 err = -EINVAL;
10231 goto err_locked;
10232 } else {
10233 perf_event_ctx_unlock(group_leader, gctx);
10234 move_group = 0;
10235 }
10236 }
10237 } else {
10238 mutex_lock(&ctx->mutex);
10239 }
10240
10241 if (ctx->task == TASK_TOMBSTONE) {
10242 err = -ESRCH;
10243 goto err_locked;
10244 }
10245
10246 if (!perf_event_validate_size(event)) {
10247 err = -E2BIG;
10248 goto err_locked;
10249 }
10250
10251 if (!task) {
10252 /*
10253 * Check if the @cpu we're creating an event for is online.
10254 *
10255 * We use the perf_cpu_context::ctx::mutex to serialize against
10256 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10257 */
10258 struct perf_cpu_context *cpuctx =
10259 container_of(ctx, struct perf_cpu_context, ctx);
10260
10261 if (!cpuctx->online) {
10262 err = -ENODEV;
10263 goto err_locked;
10264 }
10265 }
10266
10267
10268 /*
10269 * Must be under the same ctx::mutex as perf_install_in_context(),
10270 * because we need to serialize with concurrent event creation.
10271 */
10272 if (!exclusive_event_installable(event, ctx)) {
10273 /* exclusive and group stuff are assumed mutually exclusive */
10274 WARN_ON_ONCE(move_group);
10275
10276 err = -EBUSY;
10277 goto err_locked;
10278 }
10279
10280 WARN_ON_ONCE(ctx->parent_ctx);
10281
10282 /*
10283 * This is the point on no return; we cannot fail hereafter. This is
10284 * where we start modifying current state.
10285 */
10286
10287 if (move_group) {
10288 /*
10289 * See perf_event_ctx_lock() for comments on the details
10290 * of swizzling perf_event::ctx.
10291 */
10292 perf_remove_from_context(group_leader, 0);
10293 put_ctx(gctx);
10294
10295 list_for_each_entry(sibling, &group_leader->sibling_list,
10296 group_entry) {
10297 perf_remove_from_context(sibling, 0);
10298 put_ctx(gctx);
10299 }
10300
10301 /*
10302 * Wait for everybody to stop referencing the events through
10303 * the old lists, before installing it on new lists.
10304 */
10305 synchronize_rcu();
10306
10307 /*
10308 * Install the group siblings before the group leader.
10309 *
10310 * Because a group leader will try and install the entire group
10311 * (through the sibling list, which is still in-tact), we can
10312 * end up with siblings installed in the wrong context.
10313 *
10314 * By installing siblings first we NO-OP because they're not
10315 * reachable through the group lists.
10316 */
10317 list_for_each_entry(sibling, &group_leader->sibling_list,
10318 group_entry) {
10319 perf_event__state_init(sibling);
10320 perf_install_in_context(ctx, sibling, sibling->cpu);
10321 get_ctx(ctx);
10322 }
10323
10324 /*
10325 * Removing from the context ends up with disabled
10326 * event. What we want here is event in the initial
10327 * startup state, ready to be add into new context.
10328 */
10329 perf_event__state_init(group_leader);
10330 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10331 get_ctx(ctx);
10332 }
10333
10334 /*
10335 * Precalculate sample_data sizes; do while holding ctx::mutex such
10336 * that we're serialized against further additions and before
10337 * perf_install_in_context() which is the point the event is active and
10338 * can use these values.
10339 */
10340 perf_event__header_size(event);
10341 perf_event__id_header_size(event);
10342
10343 event->owner = current;
10344
10345 perf_install_in_context(ctx, event, event->cpu);
10346 perf_unpin_context(ctx);
10347
10348 if (move_group)
10349 perf_event_ctx_unlock(group_leader, gctx);
10350 mutex_unlock(&ctx->mutex);
10351
10352 if (task) {
10353 mutex_unlock(&task->signal->cred_guard_mutex);
10354 put_task_struct(task);
10355 }
10356
10357 mutex_lock(&current->perf_event_mutex);
10358 list_add_tail(&event->owner_entry, &current->perf_event_list);
10359 mutex_unlock(&current->perf_event_mutex);
10360
10361 /*
10362 * Drop the reference on the group_event after placing the
10363 * new event on the sibling_list. This ensures destruction
10364 * of the group leader will find the pointer to itself in
10365 * perf_group_detach().
10366 */
10367 fdput(group);
10368 fd_install(event_fd, event_file);
10369 return event_fd;
10370
10371 err_locked:
10372 if (move_group)
10373 perf_event_ctx_unlock(group_leader, gctx);
10374 mutex_unlock(&ctx->mutex);
10375 /* err_file: */
10376 fput(event_file);
10377 err_context:
10378 perf_unpin_context(ctx);
10379 put_ctx(ctx);
10380 err_alloc:
10381 /*
10382 * If event_file is set, the fput() above will have called ->release()
10383 * and that will take care of freeing the event.
10384 */
10385 if (!event_file)
10386 free_event(event);
10387 err_cred:
10388 if (task)
10389 mutex_unlock(&task->signal->cred_guard_mutex);
10390 err_task:
10391 if (task)
10392 put_task_struct(task);
10393 err_group_fd:
10394 fdput(group);
10395 err_fd:
10396 put_unused_fd(event_fd);
10397 return err;
10398 }
10399
10400 /**
10401 * perf_event_create_kernel_counter
10402 *
10403 * @attr: attributes of the counter to create
10404 * @cpu: cpu in which the counter is bound
10405 * @task: task to profile (NULL for percpu)
10406 */
10407 struct perf_event *
10408 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10409 struct task_struct *task,
10410 perf_overflow_handler_t overflow_handler,
10411 void *context)
10412 {
10413 struct perf_event_context *ctx;
10414 struct perf_event *event;
10415 int err;
10416
10417 /*
10418 * Get the target context (task or percpu):
10419 */
10420
10421 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10422 overflow_handler, context, -1);
10423 if (IS_ERR(event)) {
10424 err = PTR_ERR(event);
10425 goto err;
10426 }
10427
10428 /* Mark owner so we could distinguish it from user events. */
10429 event->owner = TASK_TOMBSTONE;
10430
10431 ctx = find_get_context(event->pmu, task, event);
10432 if (IS_ERR(ctx)) {
10433 err = PTR_ERR(ctx);
10434 goto err_free;
10435 }
10436
10437 WARN_ON_ONCE(ctx->parent_ctx);
10438 mutex_lock(&ctx->mutex);
10439 if (ctx->task == TASK_TOMBSTONE) {
10440 err = -ESRCH;
10441 goto err_unlock;
10442 }
10443
10444 if (!task) {
10445 /*
10446 * Check if the @cpu we're creating an event for is online.
10447 *
10448 * We use the perf_cpu_context::ctx::mutex to serialize against
10449 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10450 */
10451 struct perf_cpu_context *cpuctx =
10452 container_of(ctx, struct perf_cpu_context, ctx);
10453 if (!cpuctx->online) {
10454 err = -ENODEV;
10455 goto err_unlock;
10456 }
10457 }
10458
10459 if (!exclusive_event_installable(event, ctx)) {
10460 err = -EBUSY;
10461 goto err_unlock;
10462 }
10463
10464 perf_install_in_context(ctx, event, cpu);
10465 perf_unpin_context(ctx);
10466 mutex_unlock(&ctx->mutex);
10467
10468 return event;
10469
10470 err_unlock:
10471 mutex_unlock(&ctx->mutex);
10472 perf_unpin_context(ctx);
10473 put_ctx(ctx);
10474 err_free:
10475 free_event(event);
10476 err:
10477 return ERR_PTR(err);
10478 }
10479 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10480
10481 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10482 {
10483 struct perf_event_context *src_ctx;
10484 struct perf_event_context *dst_ctx;
10485 struct perf_event *event, *tmp;
10486 LIST_HEAD(events);
10487
10488 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10489 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10490
10491 /*
10492 * See perf_event_ctx_lock() for comments on the details
10493 * of swizzling perf_event::ctx.
10494 */
10495 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10496 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10497 event_entry) {
10498 perf_remove_from_context(event, 0);
10499 unaccount_event_cpu(event, src_cpu);
10500 put_ctx(src_ctx);
10501 list_add(&event->migrate_entry, &events);
10502 }
10503
10504 /*
10505 * Wait for the events to quiesce before re-instating them.
10506 */
10507 synchronize_rcu();
10508
10509 /*
10510 * Re-instate events in 2 passes.
10511 *
10512 * Skip over group leaders and only install siblings on this first
10513 * pass, siblings will not get enabled without a leader, however a
10514 * leader will enable its siblings, even if those are still on the old
10515 * context.
10516 */
10517 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10518 if (event->group_leader == event)
10519 continue;
10520
10521 list_del(&event->migrate_entry);
10522 if (event->state >= PERF_EVENT_STATE_OFF)
10523 event->state = PERF_EVENT_STATE_INACTIVE;
10524 account_event_cpu(event, dst_cpu);
10525 perf_install_in_context(dst_ctx, event, dst_cpu);
10526 get_ctx(dst_ctx);
10527 }
10528
10529 /*
10530 * Once all the siblings are setup properly, install the group leaders
10531 * to make it go.
10532 */
10533 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10534 list_del(&event->migrate_entry);
10535 if (event->state >= PERF_EVENT_STATE_OFF)
10536 event->state = PERF_EVENT_STATE_INACTIVE;
10537 account_event_cpu(event, dst_cpu);
10538 perf_install_in_context(dst_ctx, event, dst_cpu);
10539 get_ctx(dst_ctx);
10540 }
10541 mutex_unlock(&dst_ctx->mutex);
10542 mutex_unlock(&src_ctx->mutex);
10543 }
10544 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10545
10546 static void sync_child_event(struct perf_event *child_event,
10547 struct task_struct *child)
10548 {
10549 struct perf_event *parent_event = child_event->parent;
10550 u64 child_val;
10551
10552 if (child_event->attr.inherit_stat)
10553 perf_event_read_event(child_event, child);
10554
10555 child_val = perf_event_count(child_event);
10556
10557 /*
10558 * Add back the child's count to the parent's count:
10559 */
10560 atomic64_add(child_val, &parent_event->child_count);
10561 atomic64_add(child_event->total_time_enabled,
10562 &parent_event->child_total_time_enabled);
10563 atomic64_add(child_event->total_time_running,
10564 &parent_event->child_total_time_running);
10565 }
10566
10567 static void
10568 perf_event_exit_event(struct perf_event *child_event,
10569 struct perf_event_context *child_ctx,
10570 struct task_struct *child)
10571 {
10572 struct perf_event *parent_event = child_event->parent;
10573
10574 /*
10575 * Do not destroy the 'original' grouping; because of the context
10576 * switch optimization the original events could've ended up in a
10577 * random child task.
10578 *
10579 * If we were to destroy the original group, all group related
10580 * operations would cease to function properly after this random
10581 * child dies.
10582 *
10583 * Do destroy all inherited groups, we don't care about those
10584 * and being thorough is better.
10585 */
10586 raw_spin_lock_irq(&child_ctx->lock);
10587 WARN_ON_ONCE(child_ctx->is_active);
10588
10589 if (parent_event)
10590 perf_group_detach(child_event);
10591 list_del_event(child_event, child_ctx);
10592 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10593 raw_spin_unlock_irq(&child_ctx->lock);
10594
10595 /*
10596 * Parent events are governed by their filedesc, retain them.
10597 */
10598 if (!parent_event) {
10599 perf_event_wakeup(child_event);
10600 return;
10601 }
10602 /*
10603 * Child events can be cleaned up.
10604 */
10605
10606 sync_child_event(child_event, child);
10607
10608 /*
10609 * Remove this event from the parent's list
10610 */
10611 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10612 mutex_lock(&parent_event->child_mutex);
10613 list_del_init(&child_event->child_list);
10614 mutex_unlock(&parent_event->child_mutex);
10615
10616 /*
10617 * Kick perf_poll() for is_event_hup().
10618 */
10619 perf_event_wakeup(parent_event);
10620 free_event(child_event);
10621 put_event(parent_event);
10622 }
10623
10624 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10625 {
10626 struct perf_event_context *child_ctx, *clone_ctx = NULL;
10627 struct perf_event *child_event, *next;
10628
10629 WARN_ON_ONCE(child != current);
10630
10631 child_ctx = perf_pin_task_context(child, ctxn);
10632 if (!child_ctx)
10633 return;
10634
10635 /*
10636 * In order to reduce the amount of tricky in ctx tear-down, we hold
10637 * ctx::mutex over the entire thing. This serializes against almost
10638 * everything that wants to access the ctx.
10639 *
10640 * The exception is sys_perf_event_open() /
10641 * perf_event_create_kernel_count() which does find_get_context()
10642 * without ctx::mutex (it cannot because of the move_group double mutex
10643 * lock thing). See the comments in perf_install_in_context().
10644 */
10645 mutex_lock(&child_ctx->mutex);
10646
10647 /*
10648 * In a single ctx::lock section, de-schedule the events and detach the
10649 * context from the task such that we cannot ever get it scheduled back
10650 * in.
10651 */
10652 raw_spin_lock_irq(&child_ctx->lock);
10653 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10654
10655 /*
10656 * Now that the context is inactive, destroy the task <-> ctx relation
10657 * and mark the context dead.
10658 */
10659 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10660 put_ctx(child_ctx); /* cannot be last */
10661 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10662 put_task_struct(current); /* cannot be last */
10663
10664 clone_ctx = unclone_ctx(child_ctx);
10665 raw_spin_unlock_irq(&child_ctx->lock);
10666
10667 if (clone_ctx)
10668 put_ctx(clone_ctx);
10669
10670 /*
10671 * Report the task dead after unscheduling the events so that we
10672 * won't get any samples after PERF_RECORD_EXIT. We can however still
10673 * get a few PERF_RECORD_READ events.
10674 */
10675 perf_event_task(child, child_ctx, 0);
10676
10677 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10678 perf_event_exit_event(child_event, child_ctx, child);
10679
10680 mutex_unlock(&child_ctx->mutex);
10681
10682 put_ctx(child_ctx);
10683 }
10684
10685 /*
10686 * When a child task exits, feed back event values to parent events.
10687 *
10688 * Can be called with cred_guard_mutex held when called from
10689 * install_exec_creds().
10690 */
10691 void perf_event_exit_task(struct task_struct *child)
10692 {
10693 struct perf_event *event, *tmp;
10694 int ctxn;
10695
10696 mutex_lock(&child->perf_event_mutex);
10697 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10698 owner_entry) {
10699 list_del_init(&event->owner_entry);
10700
10701 /*
10702 * Ensure the list deletion is visible before we clear
10703 * the owner, closes a race against perf_release() where
10704 * we need to serialize on the owner->perf_event_mutex.
10705 */
10706 smp_store_release(&event->owner, NULL);
10707 }
10708 mutex_unlock(&child->perf_event_mutex);
10709
10710 for_each_task_context_nr(ctxn)
10711 perf_event_exit_task_context(child, ctxn);
10712
10713 /*
10714 * The perf_event_exit_task_context calls perf_event_task
10715 * with child's task_ctx, which generates EXIT events for
10716 * child contexts and sets child->perf_event_ctxp[] to NULL.
10717 * At this point we need to send EXIT events to cpu contexts.
10718 */
10719 perf_event_task(child, NULL, 0);
10720 }
10721
10722 static void perf_free_event(struct perf_event *event,
10723 struct perf_event_context *ctx)
10724 {
10725 struct perf_event *parent = event->parent;
10726
10727 if (WARN_ON_ONCE(!parent))
10728 return;
10729
10730 mutex_lock(&parent->child_mutex);
10731 list_del_init(&event->child_list);
10732 mutex_unlock(&parent->child_mutex);
10733
10734 put_event(parent);
10735
10736 raw_spin_lock_irq(&ctx->lock);
10737 perf_group_detach(event);
10738 list_del_event(event, ctx);
10739 raw_spin_unlock_irq(&ctx->lock);
10740 free_event(event);
10741 }
10742
10743 /*
10744 * Free an unexposed, unused context as created by inheritance by
10745 * perf_event_init_task below, used by fork() in case of fail.
10746 *
10747 * Not all locks are strictly required, but take them anyway to be nice and
10748 * help out with the lockdep assertions.
10749 */
10750 void perf_event_free_task(struct task_struct *task)
10751 {
10752 struct perf_event_context *ctx;
10753 struct perf_event *event, *tmp;
10754 int ctxn;
10755
10756 for_each_task_context_nr(ctxn) {
10757 ctx = task->perf_event_ctxp[ctxn];
10758 if (!ctx)
10759 continue;
10760
10761 mutex_lock(&ctx->mutex);
10762 raw_spin_lock_irq(&ctx->lock);
10763 /*
10764 * Destroy the task <-> ctx relation and mark the context dead.
10765 *
10766 * This is important because even though the task hasn't been
10767 * exposed yet the context has been (through child_list).
10768 */
10769 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10770 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10771 put_task_struct(task); /* cannot be last */
10772 raw_spin_unlock_irq(&ctx->lock);
10773
10774 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10775 perf_free_event(event, ctx);
10776
10777 mutex_unlock(&ctx->mutex);
10778 put_ctx(ctx);
10779 }
10780 }
10781
10782 void perf_event_delayed_put(struct task_struct *task)
10783 {
10784 int ctxn;
10785
10786 for_each_task_context_nr(ctxn)
10787 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10788 }
10789
10790 struct file *perf_event_get(unsigned int fd)
10791 {
10792 struct file *file;
10793
10794 file = fget_raw(fd);
10795 if (!file)
10796 return ERR_PTR(-EBADF);
10797
10798 if (file->f_op != &perf_fops) {
10799 fput(file);
10800 return ERR_PTR(-EBADF);
10801 }
10802
10803 return file;
10804 }
10805
10806 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10807 {
10808 if (!event)
10809 return ERR_PTR(-EINVAL);
10810
10811 return &event->attr;
10812 }
10813
10814 /*
10815 * Inherit a event from parent task to child task.
10816 *
10817 * Returns:
10818 * - valid pointer on success
10819 * - NULL for orphaned events
10820 * - IS_ERR() on error
10821 */
10822 static struct perf_event *
10823 inherit_event(struct perf_event *parent_event,
10824 struct task_struct *parent,
10825 struct perf_event_context *parent_ctx,
10826 struct task_struct *child,
10827 struct perf_event *group_leader,
10828 struct perf_event_context *child_ctx)
10829 {
10830 enum perf_event_active_state parent_state = parent_event->state;
10831 struct perf_event *child_event;
10832 unsigned long flags;
10833
10834 /*
10835 * Instead of creating recursive hierarchies of events,
10836 * we link inherited events back to the original parent,
10837 * which has a filp for sure, which we use as the reference
10838 * count:
10839 */
10840 if (parent_event->parent)
10841 parent_event = parent_event->parent;
10842
10843 child_event = perf_event_alloc(&parent_event->attr,
10844 parent_event->cpu,
10845 child,
10846 group_leader, parent_event,
10847 NULL, NULL, -1);
10848 if (IS_ERR(child_event))
10849 return child_event;
10850
10851 /*
10852 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10853 * must be under the same lock in order to serialize against
10854 * perf_event_release_kernel(), such that either we must observe
10855 * is_orphaned_event() or they will observe us on the child_list.
10856 */
10857 mutex_lock(&parent_event->child_mutex);
10858 if (is_orphaned_event(parent_event) ||
10859 !atomic_long_inc_not_zero(&parent_event->refcount)) {
10860 mutex_unlock(&parent_event->child_mutex);
10861 free_event(child_event);
10862 return NULL;
10863 }
10864
10865 get_ctx(child_ctx);
10866
10867 /*
10868 * Make the child state follow the state of the parent event,
10869 * not its attr.disabled bit. We hold the parent's mutex,
10870 * so we won't race with perf_event_{en, dis}able_family.
10871 */
10872 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10873 child_event->state = PERF_EVENT_STATE_INACTIVE;
10874 else
10875 child_event->state = PERF_EVENT_STATE_OFF;
10876
10877 if (parent_event->attr.freq) {
10878 u64 sample_period = parent_event->hw.sample_period;
10879 struct hw_perf_event *hwc = &child_event->hw;
10880
10881 hwc->sample_period = sample_period;
10882 hwc->last_period = sample_period;
10883
10884 local64_set(&hwc->period_left, sample_period);
10885 }
10886
10887 child_event->ctx = child_ctx;
10888 child_event->overflow_handler = parent_event->overflow_handler;
10889 child_event->overflow_handler_context
10890 = parent_event->overflow_handler_context;
10891
10892 /*
10893 * Precalculate sample_data sizes
10894 */
10895 perf_event__header_size(child_event);
10896 perf_event__id_header_size(child_event);
10897
10898 /*
10899 * Link it up in the child's context:
10900 */
10901 raw_spin_lock_irqsave(&child_ctx->lock, flags);
10902 add_event_to_ctx(child_event, child_ctx);
10903 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10904
10905 /*
10906 * Link this into the parent event's child list
10907 */
10908 list_add_tail(&child_event->child_list, &parent_event->child_list);
10909 mutex_unlock(&parent_event->child_mutex);
10910
10911 return child_event;
10912 }
10913
10914 /*
10915 * Inherits an event group.
10916 *
10917 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10918 * This matches with perf_event_release_kernel() removing all child events.
10919 *
10920 * Returns:
10921 * - 0 on success
10922 * - <0 on error
10923 */
10924 static int inherit_group(struct perf_event *parent_event,
10925 struct task_struct *parent,
10926 struct perf_event_context *parent_ctx,
10927 struct task_struct *child,
10928 struct perf_event_context *child_ctx)
10929 {
10930 struct perf_event *leader;
10931 struct perf_event *sub;
10932 struct perf_event *child_ctr;
10933
10934 leader = inherit_event(parent_event, parent, parent_ctx,
10935 child, NULL, child_ctx);
10936 if (IS_ERR(leader))
10937 return PTR_ERR(leader);
10938 /*
10939 * @leader can be NULL here because of is_orphaned_event(). In this
10940 * case inherit_event() will create individual events, similar to what
10941 * perf_group_detach() would do anyway.
10942 */
10943 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10944 child_ctr = inherit_event(sub, parent, parent_ctx,
10945 child, leader, child_ctx);
10946 if (IS_ERR(child_ctr))
10947 return PTR_ERR(child_ctr);
10948 }
10949 return 0;
10950 }
10951
10952 /*
10953 * Creates the child task context and tries to inherit the event-group.
10954 *
10955 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10956 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10957 * consistent with perf_event_release_kernel() removing all child events.
10958 *
10959 * Returns:
10960 * - 0 on success
10961 * - <0 on error
10962 */
10963 static int
10964 inherit_task_group(struct perf_event *event, struct task_struct *parent,
10965 struct perf_event_context *parent_ctx,
10966 struct task_struct *child, int ctxn,
10967 int *inherited_all)
10968 {
10969 int ret;
10970 struct perf_event_context *child_ctx;
10971
10972 if (!event->attr.inherit) {
10973 *inherited_all = 0;
10974 return 0;
10975 }
10976
10977 child_ctx = child->perf_event_ctxp[ctxn];
10978 if (!child_ctx) {
10979 /*
10980 * This is executed from the parent task context, so
10981 * inherit events that have been marked for cloning.
10982 * First allocate and initialize a context for the
10983 * child.
10984 */
10985 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
10986 if (!child_ctx)
10987 return -ENOMEM;
10988
10989 child->perf_event_ctxp[ctxn] = child_ctx;
10990 }
10991
10992 ret = inherit_group(event, parent, parent_ctx,
10993 child, child_ctx);
10994
10995 if (ret)
10996 *inherited_all = 0;
10997
10998 return ret;
10999 }
11000
11001 /*
11002 * Initialize the perf_event context in task_struct
11003 */
11004 static int perf_event_init_context(struct task_struct *child, int ctxn)
11005 {
11006 struct perf_event_context *child_ctx, *parent_ctx;
11007 struct perf_event_context *cloned_ctx;
11008 struct perf_event *event;
11009 struct task_struct *parent = current;
11010 int inherited_all = 1;
11011 unsigned long flags;
11012 int ret = 0;
11013
11014 if (likely(!parent->perf_event_ctxp[ctxn]))
11015 return 0;
11016
11017 /*
11018 * If the parent's context is a clone, pin it so it won't get
11019 * swapped under us.
11020 */
11021 parent_ctx = perf_pin_task_context(parent, ctxn);
11022 if (!parent_ctx)
11023 return 0;
11024
11025 /*
11026 * No need to check if parent_ctx != NULL here; since we saw
11027 * it non-NULL earlier, the only reason for it to become NULL
11028 * is if we exit, and since we're currently in the middle of
11029 * a fork we can't be exiting at the same time.
11030 */
11031
11032 /*
11033 * Lock the parent list. No need to lock the child - not PID
11034 * hashed yet and not running, so nobody can access it.
11035 */
11036 mutex_lock(&parent_ctx->mutex);
11037
11038 /*
11039 * We dont have to disable NMIs - we are only looking at
11040 * the list, not manipulating it:
11041 */
11042 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
11043 ret = inherit_task_group(event, parent, parent_ctx,
11044 child, ctxn, &inherited_all);
11045 if (ret)
11046 goto out_unlock;
11047 }
11048
11049 /*
11050 * We can't hold ctx->lock when iterating the ->flexible_group list due
11051 * to allocations, but we need to prevent rotation because
11052 * rotate_ctx() will change the list from interrupt context.
11053 */
11054 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11055 parent_ctx->rotate_disable = 1;
11056 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11057
11058 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11059 ret = inherit_task_group(event, parent, parent_ctx,
11060 child, ctxn, &inherited_all);
11061 if (ret)
11062 goto out_unlock;
11063 }
11064
11065 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11066 parent_ctx->rotate_disable = 0;
11067
11068 child_ctx = child->perf_event_ctxp[ctxn];
11069
11070 if (child_ctx && inherited_all) {
11071 /*
11072 * Mark the child context as a clone of the parent
11073 * context, or of whatever the parent is a clone of.
11074 *
11075 * Note that if the parent is a clone, the holding of
11076 * parent_ctx->lock avoids it from being uncloned.
11077 */
11078 cloned_ctx = parent_ctx->parent_ctx;
11079 if (cloned_ctx) {
11080 child_ctx->parent_ctx = cloned_ctx;
11081 child_ctx->parent_gen = parent_ctx->parent_gen;
11082 } else {
11083 child_ctx->parent_ctx = parent_ctx;
11084 child_ctx->parent_gen = parent_ctx->generation;
11085 }
11086 get_ctx(child_ctx->parent_ctx);
11087 }
11088
11089 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11090 out_unlock:
11091 mutex_unlock(&parent_ctx->mutex);
11092
11093 perf_unpin_context(parent_ctx);
11094 put_ctx(parent_ctx);
11095
11096 return ret;
11097 }
11098
11099 /*
11100 * Initialize the perf_event context in task_struct
11101 */
11102 int perf_event_init_task(struct task_struct *child)
11103 {
11104 int ctxn, ret;
11105
11106 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11107 mutex_init(&child->perf_event_mutex);
11108 INIT_LIST_HEAD(&child->perf_event_list);
11109
11110 for_each_task_context_nr(ctxn) {
11111 ret = perf_event_init_context(child, ctxn);
11112 if (ret) {
11113 perf_event_free_task(child);
11114 return ret;
11115 }
11116 }
11117
11118 return 0;
11119 }
11120
11121 static void __init perf_event_init_all_cpus(void)
11122 {
11123 struct swevent_htable *swhash;
11124 int cpu;
11125
11126 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11127
11128 for_each_possible_cpu(cpu) {
11129 swhash = &per_cpu(swevent_htable, cpu);
11130 mutex_init(&swhash->hlist_mutex);
11131 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11132
11133 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11134 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11135
11136 #ifdef CONFIG_CGROUP_PERF
11137 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11138 #endif
11139 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11140 }
11141 }
11142
11143 void perf_swevent_init_cpu(unsigned int cpu)
11144 {
11145 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11146
11147 mutex_lock(&swhash->hlist_mutex);
11148 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11149 struct swevent_hlist *hlist;
11150
11151 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11152 WARN_ON(!hlist);
11153 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11154 }
11155 mutex_unlock(&swhash->hlist_mutex);
11156 }
11157
11158 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11159 static void __perf_event_exit_context(void *__info)
11160 {
11161 struct perf_event_context *ctx = __info;
11162 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11163 struct perf_event *event;
11164
11165 raw_spin_lock(&ctx->lock);
11166 list_for_each_entry(event, &ctx->event_list, event_entry)
11167 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11168 raw_spin_unlock(&ctx->lock);
11169 }
11170
11171 static void perf_event_exit_cpu_context(int cpu)
11172 {
11173 struct perf_cpu_context *cpuctx;
11174 struct perf_event_context *ctx;
11175 struct pmu *pmu;
11176
11177 mutex_lock(&pmus_lock);
11178 list_for_each_entry(pmu, &pmus, entry) {
11179 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11180 ctx = &cpuctx->ctx;
11181
11182 mutex_lock(&ctx->mutex);
11183 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11184 cpuctx->online = 0;
11185 mutex_unlock(&ctx->mutex);
11186 }
11187 cpumask_clear_cpu(cpu, perf_online_mask);
11188 mutex_unlock(&pmus_lock);
11189 }
11190 #else
11191
11192 static void perf_event_exit_cpu_context(int cpu) { }
11193
11194 #endif
11195
11196 int perf_event_init_cpu(unsigned int cpu)
11197 {
11198 struct perf_cpu_context *cpuctx;
11199 struct perf_event_context *ctx;
11200 struct pmu *pmu;
11201
11202 perf_swevent_init_cpu(cpu);
11203
11204 mutex_lock(&pmus_lock);
11205 cpumask_set_cpu(cpu, perf_online_mask);
11206 list_for_each_entry(pmu, &pmus, entry) {
11207 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11208 ctx = &cpuctx->ctx;
11209
11210 mutex_lock(&ctx->mutex);
11211 cpuctx->online = 1;
11212 mutex_unlock(&ctx->mutex);
11213 }
11214 mutex_unlock(&pmus_lock);
11215
11216 return 0;
11217 }
11218
11219 int perf_event_exit_cpu(unsigned int cpu)
11220 {
11221 perf_event_exit_cpu_context(cpu);
11222 return 0;
11223 }
11224
11225 static int
11226 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11227 {
11228 int cpu;
11229
11230 for_each_online_cpu(cpu)
11231 perf_event_exit_cpu(cpu);
11232
11233 return NOTIFY_OK;
11234 }
11235
11236 /*
11237 * Run the perf reboot notifier at the very last possible moment so that
11238 * the generic watchdog code runs as long as possible.
11239 */
11240 static struct notifier_block perf_reboot_notifier = {
11241 .notifier_call = perf_reboot,
11242 .priority = INT_MIN,
11243 };
11244
11245 void __init perf_event_init(void)
11246 {
11247 int ret;
11248
11249 idr_init(&pmu_idr);
11250
11251 perf_event_init_all_cpus();
11252 init_srcu_struct(&pmus_srcu);
11253 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11254 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11255 perf_pmu_register(&perf_task_clock, NULL, -1);
11256 perf_tp_register();
11257 perf_event_init_cpu(smp_processor_id());
11258 register_reboot_notifier(&perf_reboot_notifier);
11259
11260 ret = init_hw_breakpoint();
11261 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11262
11263 /*
11264 * Build time assertion that we keep the data_head at the intended
11265 * location. IOW, validation we got the __reserved[] size right.
11266 */
11267 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11268 != 1024);
11269 }
11270
11271 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11272 char *page)
11273 {
11274 struct perf_pmu_events_attr *pmu_attr =
11275 container_of(attr, struct perf_pmu_events_attr, attr);
11276
11277 if (pmu_attr->event_str)
11278 return sprintf(page, "%s\n", pmu_attr->event_str);
11279
11280 return 0;
11281 }
11282 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11283
11284 static int __init perf_event_sysfs_init(void)
11285 {
11286 struct pmu *pmu;
11287 int ret;
11288
11289 mutex_lock(&pmus_lock);
11290
11291 ret = bus_register(&pmu_bus);
11292 if (ret)
11293 goto unlock;
11294
11295 list_for_each_entry(pmu, &pmus, entry) {
11296 if (!pmu->name || pmu->type < 0)
11297 continue;
11298
11299 ret = pmu_dev_alloc(pmu);
11300 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11301 }
11302 pmu_bus_running = 1;
11303 ret = 0;
11304
11305 unlock:
11306 mutex_unlock(&pmus_lock);
11307
11308 return ret;
11309 }
11310 device_initcall(perf_event_sysfs_init);
11311
11312 #ifdef CONFIG_CGROUP_PERF
11313 static struct cgroup_subsys_state *
11314 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11315 {
11316 struct perf_cgroup *jc;
11317
11318 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11319 if (!jc)
11320 return ERR_PTR(-ENOMEM);
11321
11322 jc->info = alloc_percpu(struct perf_cgroup_info);
11323 if (!jc->info) {
11324 kfree(jc);
11325 return ERR_PTR(-ENOMEM);
11326 }
11327
11328 return &jc->css;
11329 }
11330
11331 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11332 {
11333 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11334
11335 free_percpu(jc->info);
11336 kfree(jc);
11337 }
11338
11339 static int __perf_cgroup_move(void *info)
11340 {
11341 struct task_struct *task = info;
11342 rcu_read_lock();
11343 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11344 rcu_read_unlock();
11345 return 0;
11346 }
11347
11348 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11349 {
11350 struct task_struct *task;
11351 struct cgroup_subsys_state *css;
11352
11353 cgroup_taskset_for_each(task, css, tset)
11354 task_function_call(task, __perf_cgroup_move, task);
11355 }
11356
11357 struct cgroup_subsys perf_event_cgrp_subsys = {
11358 .css_alloc = perf_cgroup_css_alloc,
11359 .css_free = perf_cgroup_css_free,
11360 .attach = perf_cgroup_attach,
11361 /*
11362 * Implicitly enable on dfl hierarchy so that perf events can
11363 * always be filtered by cgroup2 path as long as perf_event
11364 * controller is not mounted on a legacy hierarchy.
11365 */
11366 .implicit_on_dfl = true,
11367 .threaded = true,
11368 };
11369 #endif /* CONFIG_CGROUP_PERF */