Merge branch 'release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched.h>
11 #include <linux/unistd.h>
12 #include <linux/cpu.h>
13 #include <linux/oom.h>
14 #include <linux/rcupdate.h>
15 #include <linux/export.h>
16 #include <linux/bug.h>
17 #include <linux/kthread.h>
18 #include <linux/stop_machine.h>
19 #include <linux/mutex.h>
20 #include <linux/gfp.h>
21 #include <linux/suspend.h>
22
23 #include "smpboot.h"
24
25 #ifdef CONFIG_SMP
26 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
27 static DEFINE_MUTEX(cpu_add_remove_lock);
28
29 /*
30 * The following two API's must be used when attempting
31 * to serialize the updates to cpu_online_mask, cpu_present_mask.
32 */
33 void cpu_maps_update_begin(void)
34 {
35 mutex_lock(&cpu_add_remove_lock);
36 }
37
38 void cpu_maps_update_done(void)
39 {
40 mutex_unlock(&cpu_add_remove_lock);
41 }
42
43 static RAW_NOTIFIER_HEAD(cpu_chain);
44
45 /* If set, cpu_up and cpu_down will return -EBUSY and do nothing.
46 * Should always be manipulated under cpu_add_remove_lock
47 */
48 static int cpu_hotplug_disabled;
49
50 #ifdef CONFIG_HOTPLUG_CPU
51
52 static struct {
53 struct task_struct *active_writer;
54 struct mutex lock; /* Synchronizes accesses to refcount, */
55 /*
56 * Also blocks the new readers during
57 * an ongoing cpu hotplug operation.
58 */
59 int refcount;
60 } cpu_hotplug = {
61 .active_writer = NULL,
62 .lock = __MUTEX_INITIALIZER(cpu_hotplug.lock),
63 .refcount = 0,
64 };
65
66 void get_online_cpus(void)
67 {
68 might_sleep();
69 if (cpu_hotplug.active_writer == current)
70 return;
71 mutex_lock(&cpu_hotplug.lock);
72 cpu_hotplug.refcount++;
73 mutex_unlock(&cpu_hotplug.lock);
74
75 }
76 EXPORT_SYMBOL_GPL(get_online_cpus);
77
78 void put_online_cpus(void)
79 {
80 if (cpu_hotplug.active_writer == current)
81 return;
82 mutex_lock(&cpu_hotplug.lock);
83
84 if (WARN_ON(!cpu_hotplug.refcount))
85 cpu_hotplug.refcount++; /* try to fix things up */
86
87 if (!--cpu_hotplug.refcount && unlikely(cpu_hotplug.active_writer))
88 wake_up_process(cpu_hotplug.active_writer);
89 mutex_unlock(&cpu_hotplug.lock);
90
91 }
92 EXPORT_SYMBOL_GPL(put_online_cpus);
93
94 /*
95 * This ensures that the hotplug operation can begin only when the
96 * refcount goes to zero.
97 *
98 * Note that during a cpu-hotplug operation, the new readers, if any,
99 * will be blocked by the cpu_hotplug.lock
100 *
101 * Since cpu_hotplug_begin() is always called after invoking
102 * cpu_maps_update_begin(), we can be sure that only one writer is active.
103 *
104 * Note that theoretically, there is a possibility of a livelock:
105 * - Refcount goes to zero, last reader wakes up the sleeping
106 * writer.
107 * - Last reader unlocks the cpu_hotplug.lock.
108 * - A new reader arrives at this moment, bumps up the refcount.
109 * - The writer acquires the cpu_hotplug.lock finds the refcount
110 * non zero and goes to sleep again.
111 *
112 * However, this is very difficult to achieve in practice since
113 * get_online_cpus() not an api which is called all that often.
114 *
115 */
116 static void cpu_hotplug_begin(void)
117 {
118 cpu_hotplug.active_writer = current;
119
120 for (;;) {
121 mutex_lock(&cpu_hotplug.lock);
122 if (likely(!cpu_hotplug.refcount))
123 break;
124 __set_current_state(TASK_UNINTERRUPTIBLE);
125 mutex_unlock(&cpu_hotplug.lock);
126 schedule();
127 }
128 }
129
130 static void cpu_hotplug_done(void)
131 {
132 cpu_hotplug.active_writer = NULL;
133 mutex_unlock(&cpu_hotplug.lock);
134 }
135
136 #else /* #if CONFIG_HOTPLUG_CPU */
137 static void cpu_hotplug_begin(void) {}
138 static void cpu_hotplug_done(void) {}
139 #endif /* #else #if CONFIG_HOTPLUG_CPU */
140
141 /* Need to know about CPUs going up/down? */
142 int __ref register_cpu_notifier(struct notifier_block *nb)
143 {
144 int ret;
145 cpu_maps_update_begin();
146 ret = raw_notifier_chain_register(&cpu_chain, nb);
147 cpu_maps_update_done();
148 return ret;
149 }
150
151 static int __cpu_notify(unsigned long val, void *v, int nr_to_call,
152 int *nr_calls)
153 {
154 int ret;
155
156 ret = __raw_notifier_call_chain(&cpu_chain, val, v, nr_to_call,
157 nr_calls);
158
159 return notifier_to_errno(ret);
160 }
161
162 static int cpu_notify(unsigned long val, void *v)
163 {
164 return __cpu_notify(val, v, -1, NULL);
165 }
166
167 #ifdef CONFIG_HOTPLUG_CPU
168
169 static void cpu_notify_nofail(unsigned long val, void *v)
170 {
171 BUG_ON(cpu_notify(val, v));
172 }
173 EXPORT_SYMBOL(register_cpu_notifier);
174
175 void __ref unregister_cpu_notifier(struct notifier_block *nb)
176 {
177 cpu_maps_update_begin();
178 raw_notifier_chain_unregister(&cpu_chain, nb);
179 cpu_maps_update_done();
180 }
181 EXPORT_SYMBOL(unregister_cpu_notifier);
182
183 /**
184 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
185 * @cpu: a CPU id
186 *
187 * This function walks all processes, finds a valid mm struct for each one and
188 * then clears a corresponding bit in mm's cpumask. While this all sounds
189 * trivial, there are various non-obvious corner cases, which this function
190 * tries to solve in a safe manner.
191 *
192 * Also note that the function uses a somewhat relaxed locking scheme, so it may
193 * be called only for an already offlined CPU.
194 */
195 void clear_tasks_mm_cpumask(int cpu)
196 {
197 struct task_struct *p;
198
199 /*
200 * This function is called after the cpu is taken down and marked
201 * offline, so its not like new tasks will ever get this cpu set in
202 * their mm mask. -- Peter Zijlstra
203 * Thus, we may use rcu_read_lock() here, instead of grabbing
204 * full-fledged tasklist_lock.
205 */
206 WARN_ON(cpu_online(cpu));
207 rcu_read_lock();
208 for_each_process(p) {
209 struct task_struct *t;
210
211 /*
212 * Main thread might exit, but other threads may still have
213 * a valid mm. Find one.
214 */
215 t = find_lock_task_mm(p);
216 if (!t)
217 continue;
218 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
219 task_unlock(t);
220 }
221 rcu_read_unlock();
222 }
223
224 static inline void check_for_tasks(int cpu)
225 {
226 struct task_struct *p;
227
228 write_lock_irq(&tasklist_lock);
229 for_each_process(p) {
230 if (task_cpu(p) == cpu && p->state == TASK_RUNNING &&
231 (p->utime || p->stime))
232 printk(KERN_WARNING "Task %s (pid = %d) is on cpu %d "
233 "(state = %ld, flags = %x)\n",
234 p->comm, task_pid_nr(p), cpu,
235 p->state, p->flags);
236 }
237 write_unlock_irq(&tasklist_lock);
238 }
239
240 struct take_cpu_down_param {
241 unsigned long mod;
242 void *hcpu;
243 };
244
245 /* Take this CPU down. */
246 static int __ref take_cpu_down(void *_param)
247 {
248 struct take_cpu_down_param *param = _param;
249 int err;
250
251 /* Ensure this CPU doesn't handle any more interrupts. */
252 err = __cpu_disable();
253 if (err < 0)
254 return err;
255
256 cpu_notify(CPU_DYING | param->mod, param->hcpu);
257 return 0;
258 }
259
260 /* Requires cpu_add_remove_lock to be held */
261 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen)
262 {
263 int err, nr_calls = 0;
264 void *hcpu = (void *)(long)cpu;
265 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
266 struct take_cpu_down_param tcd_param = {
267 .mod = mod,
268 .hcpu = hcpu,
269 };
270
271 if (num_online_cpus() == 1)
272 return -EBUSY;
273
274 if (!cpu_online(cpu))
275 return -EINVAL;
276
277 cpu_hotplug_begin();
278
279 err = __cpu_notify(CPU_DOWN_PREPARE | mod, hcpu, -1, &nr_calls);
280 if (err) {
281 nr_calls--;
282 __cpu_notify(CPU_DOWN_FAILED | mod, hcpu, nr_calls, NULL);
283 printk("%s: attempt to take down CPU %u failed\n",
284 __func__, cpu);
285 goto out_release;
286 }
287 smpboot_park_threads(cpu);
288
289 err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
290 if (err) {
291 /* CPU didn't die: tell everyone. Can't complain. */
292 smpboot_unpark_threads(cpu);
293 cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
294 goto out_release;
295 }
296 BUG_ON(cpu_online(cpu));
297
298 /*
299 * The migration_call() CPU_DYING callback will have removed all
300 * runnable tasks from the cpu, there's only the idle task left now
301 * that the migration thread is done doing the stop_machine thing.
302 *
303 * Wait for the stop thread to go away.
304 */
305 while (!idle_cpu(cpu))
306 cpu_relax();
307
308 /* This actually kills the CPU. */
309 __cpu_die(cpu);
310
311 /* CPU is completely dead: tell everyone. Too late to complain. */
312 cpu_notify_nofail(CPU_DEAD | mod, hcpu);
313
314 check_for_tasks(cpu);
315
316 out_release:
317 cpu_hotplug_done();
318 if (!err)
319 cpu_notify_nofail(CPU_POST_DEAD | mod, hcpu);
320 return err;
321 }
322
323 int __ref cpu_down(unsigned int cpu)
324 {
325 int err;
326
327 cpu_maps_update_begin();
328
329 if (cpu_hotplug_disabled) {
330 err = -EBUSY;
331 goto out;
332 }
333
334 err = _cpu_down(cpu, 0);
335
336 out:
337 cpu_maps_update_done();
338 return err;
339 }
340 EXPORT_SYMBOL(cpu_down);
341 #endif /*CONFIG_HOTPLUG_CPU*/
342
343 /* Requires cpu_add_remove_lock to be held */
344 static int __cpuinit _cpu_up(unsigned int cpu, int tasks_frozen)
345 {
346 int ret, nr_calls = 0;
347 void *hcpu = (void *)(long)cpu;
348 unsigned long mod = tasks_frozen ? CPU_TASKS_FROZEN : 0;
349 struct task_struct *idle;
350
351 cpu_hotplug_begin();
352
353 if (cpu_online(cpu) || !cpu_present(cpu)) {
354 ret = -EINVAL;
355 goto out;
356 }
357
358 idle = idle_thread_get(cpu);
359 if (IS_ERR(idle)) {
360 ret = PTR_ERR(idle);
361 goto out;
362 }
363
364 ret = smpboot_create_threads(cpu);
365 if (ret)
366 goto out;
367
368 ret = __cpu_notify(CPU_UP_PREPARE | mod, hcpu, -1, &nr_calls);
369 if (ret) {
370 nr_calls--;
371 printk(KERN_WARNING "%s: attempt to bring up CPU %u failed\n",
372 __func__, cpu);
373 goto out_notify;
374 }
375
376 /* Arch-specific enabling code. */
377 ret = __cpu_up(cpu, idle);
378 if (ret != 0)
379 goto out_notify;
380 BUG_ON(!cpu_online(cpu));
381
382 /* Wake the per cpu threads */
383 smpboot_unpark_threads(cpu);
384
385 /* Now call notifier in preparation. */
386 cpu_notify(CPU_ONLINE | mod, hcpu);
387
388 out_notify:
389 if (ret != 0)
390 __cpu_notify(CPU_UP_CANCELED | mod, hcpu, nr_calls, NULL);
391 out:
392 cpu_hotplug_done();
393
394 return ret;
395 }
396
397 int __cpuinit cpu_up(unsigned int cpu)
398 {
399 int err = 0;
400
401 #ifdef CONFIG_MEMORY_HOTPLUG
402 int nid;
403 pg_data_t *pgdat;
404 #endif
405
406 if (!cpu_possible(cpu)) {
407 printk(KERN_ERR "can't online cpu %d because it is not "
408 "configured as may-hotadd at boot time\n", cpu);
409 #if defined(CONFIG_IA64)
410 printk(KERN_ERR "please check additional_cpus= boot "
411 "parameter\n");
412 #endif
413 return -EINVAL;
414 }
415
416 #ifdef CONFIG_MEMORY_HOTPLUG
417 nid = cpu_to_node(cpu);
418 if (!node_online(nid)) {
419 err = mem_online_node(nid);
420 if (err)
421 return err;
422 }
423
424 pgdat = NODE_DATA(nid);
425 if (!pgdat) {
426 printk(KERN_ERR
427 "Can't online cpu %d due to NULL pgdat\n", cpu);
428 return -ENOMEM;
429 }
430
431 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
432 mutex_lock(&zonelists_mutex);
433 build_all_zonelists(NULL, NULL);
434 mutex_unlock(&zonelists_mutex);
435 }
436 #endif
437
438 cpu_maps_update_begin();
439
440 if (cpu_hotplug_disabled) {
441 err = -EBUSY;
442 goto out;
443 }
444
445 err = _cpu_up(cpu, 0);
446
447 out:
448 cpu_maps_update_done();
449 return err;
450 }
451 EXPORT_SYMBOL_GPL(cpu_up);
452
453 #ifdef CONFIG_PM_SLEEP_SMP
454 static cpumask_var_t frozen_cpus;
455
456 int disable_nonboot_cpus(void)
457 {
458 int cpu, first_cpu, error = 0;
459
460 cpu_maps_update_begin();
461 first_cpu = cpumask_first(cpu_online_mask);
462 /*
463 * We take down all of the non-boot CPUs in one shot to avoid races
464 * with the userspace trying to use the CPU hotplug at the same time
465 */
466 cpumask_clear(frozen_cpus);
467
468 printk("Disabling non-boot CPUs ...\n");
469 for_each_online_cpu(cpu) {
470 if (cpu == first_cpu)
471 continue;
472 error = _cpu_down(cpu, 1);
473 if (!error)
474 cpumask_set_cpu(cpu, frozen_cpus);
475 else {
476 printk(KERN_ERR "Error taking CPU%d down: %d\n",
477 cpu, error);
478 break;
479 }
480 }
481
482 if (!error) {
483 BUG_ON(num_online_cpus() > 1);
484 /* Make sure the CPUs won't be enabled by someone else */
485 cpu_hotplug_disabled = 1;
486 } else {
487 printk(KERN_ERR "Non-boot CPUs are not disabled\n");
488 }
489 cpu_maps_update_done();
490 return error;
491 }
492
493 void __weak arch_enable_nonboot_cpus_begin(void)
494 {
495 }
496
497 void __weak arch_enable_nonboot_cpus_end(void)
498 {
499 }
500
501 void __ref enable_nonboot_cpus(void)
502 {
503 int cpu, error;
504
505 /* Allow everyone to use the CPU hotplug again */
506 cpu_maps_update_begin();
507 cpu_hotplug_disabled = 0;
508 if (cpumask_empty(frozen_cpus))
509 goto out;
510
511 printk(KERN_INFO "Enabling non-boot CPUs ...\n");
512
513 arch_enable_nonboot_cpus_begin();
514
515 for_each_cpu(cpu, frozen_cpus) {
516 error = _cpu_up(cpu, 1);
517 if (!error) {
518 printk(KERN_INFO "CPU%d is up\n", cpu);
519 continue;
520 }
521 printk(KERN_WARNING "Error taking CPU%d up: %d\n", cpu, error);
522 }
523
524 arch_enable_nonboot_cpus_end();
525
526 cpumask_clear(frozen_cpus);
527 out:
528 cpu_maps_update_done();
529 }
530
531 static int __init alloc_frozen_cpus(void)
532 {
533 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
534 return -ENOMEM;
535 return 0;
536 }
537 core_initcall(alloc_frozen_cpus);
538
539 /*
540 * Prevent regular CPU hotplug from racing with the freezer, by disabling CPU
541 * hotplug when tasks are about to be frozen. Also, don't allow the freezer
542 * to continue until any currently running CPU hotplug operation gets
543 * completed.
544 * To modify the 'cpu_hotplug_disabled' flag, we need to acquire the
545 * 'cpu_add_remove_lock'. And this same lock is also taken by the regular
546 * CPU hotplug path and released only after it is complete. Thus, we
547 * (and hence the freezer) will block here until any currently running CPU
548 * hotplug operation gets completed.
549 */
550 void cpu_hotplug_disable_before_freeze(void)
551 {
552 cpu_maps_update_begin();
553 cpu_hotplug_disabled = 1;
554 cpu_maps_update_done();
555 }
556
557
558 /*
559 * When tasks have been thawed, re-enable regular CPU hotplug (which had been
560 * disabled while beginning to freeze tasks).
561 */
562 void cpu_hotplug_enable_after_thaw(void)
563 {
564 cpu_maps_update_begin();
565 cpu_hotplug_disabled = 0;
566 cpu_maps_update_done();
567 }
568
569 /*
570 * When callbacks for CPU hotplug notifications are being executed, we must
571 * ensure that the state of the system with respect to the tasks being frozen
572 * or not, as reported by the notification, remains unchanged *throughout the
573 * duration* of the execution of the callbacks.
574 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
575 *
576 * This synchronization is implemented by mutually excluding regular CPU
577 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
578 * Hibernate notifications.
579 */
580 static int
581 cpu_hotplug_pm_callback(struct notifier_block *nb,
582 unsigned long action, void *ptr)
583 {
584 switch (action) {
585
586 case PM_SUSPEND_PREPARE:
587 case PM_HIBERNATION_PREPARE:
588 cpu_hotplug_disable_before_freeze();
589 break;
590
591 case PM_POST_SUSPEND:
592 case PM_POST_HIBERNATION:
593 cpu_hotplug_enable_after_thaw();
594 break;
595
596 default:
597 return NOTIFY_DONE;
598 }
599
600 return NOTIFY_OK;
601 }
602
603
604 static int __init cpu_hotplug_pm_sync_init(void)
605 {
606 /*
607 * cpu_hotplug_pm_callback has higher priority than x86
608 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
609 * to disable cpu hotplug to avoid cpu hotplug race.
610 */
611 pm_notifier(cpu_hotplug_pm_callback, 0);
612 return 0;
613 }
614 core_initcall(cpu_hotplug_pm_sync_init);
615
616 #endif /* CONFIG_PM_SLEEP_SMP */
617
618 /**
619 * notify_cpu_starting(cpu) - call the CPU_STARTING notifiers
620 * @cpu: cpu that just started
621 *
622 * This function calls the cpu_chain notifiers with CPU_STARTING.
623 * It must be called by the arch code on the new cpu, before the new cpu
624 * enables interrupts and before the "boot" cpu returns from __cpu_up().
625 */
626 void __cpuinit notify_cpu_starting(unsigned int cpu)
627 {
628 unsigned long val = CPU_STARTING;
629
630 #ifdef CONFIG_PM_SLEEP_SMP
631 if (frozen_cpus != NULL && cpumask_test_cpu(cpu, frozen_cpus))
632 val = CPU_STARTING_FROZEN;
633 #endif /* CONFIG_PM_SLEEP_SMP */
634 cpu_notify(val, (void *)(long)cpu);
635 }
636
637 #endif /* CONFIG_SMP */
638
639 /*
640 * cpu_bit_bitmap[] is a special, "compressed" data structure that
641 * represents all NR_CPUS bits binary values of 1<<nr.
642 *
643 * It is used by cpumask_of() to get a constant address to a CPU
644 * mask value that has a single bit set only.
645 */
646
647 /* cpu_bit_bitmap[0] is empty - so we can back into it */
648 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
649 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
650 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
651 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
652
653 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
654
655 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
656 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
657 #if BITS_PER_LONG > 32
658 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
659 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
660 #endif
661 };
662 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
663
664 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
665 EXPORT_SYMBOL(cpu_all_bits);
666
667 #ifdef CONFIG_INIT_ALL_POSSIBLE
668 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly
669 = CPU_BITS_ALL;
670 #else
671 static DECLARE_BITMAP(cpu_possible_bits, CONFIG_NR_CPUS) __read_mostly;
672 #endif
673 const struct cpumask *const cpu_possible_mask = to_cpumask(cpu_possible_bits);
674 EXPORT_SYMBOL(cpu_possible_mask);
675
676 static DECLARE_BITMAP(cpu_online_bits, CONFIG_NR_CPUS) __read_mostly;
677 const struct cpumask *const cpu_online_mask = to_cpumask(cpu_online_bits);
678 EXPORT_SYMBOL(cpu_online_mask);
679
680 static DECLARE_BITMAP(cpu_present_bits, CONFIG_NR_CPUS) __read_mostly;
681 const struct cpumask *const cpu_present_mask = to_cpumask(cpu_present_bits);
682 EXPORT_SYMBOL(cpu_present_mask);
683
684 static DECLARE_BITMAP(cpu_active_bits, CONFIG_NR_CPUS) __read_mostly;
685 const struct cpumask *const cpu_active_mask = to_cpumask(cpu_active_bits);
686 EXPORT_SYMBOL(cpu_active_mask);
687
688 void set_cpu_possible(unsigned int cpu, bool possible)
689 {
690 if (possible)
691 cpumask_set_cpu(cpu, to_cpumask(cpu_possible_bits));
692 else
693 cpumask_clear_cpu(cpu, to_cpumask(cpu_possible_bits));
694 }
695
696 void set_cpu_present(unsigned int cpu, bool present)
697 {
698 if (present)
699 cpumask_set_cpu(cpu, to_cpumask(cpu_present_bits));
700 else
701 cpumask_clear_cpu(cpu, to_cpumask(cpu_present_bits));
702 }
703
704 void set_cpu_online(unsigned int cpu, bool online)
705 {
706 if (online)
707 cpumask_set_cpu(cpu, to_cpumask(cpu_online_bits));
708 else
709 cpumask_clear_cpu(cpu, to_cpumask(cpu_online_bits));
710 }
711
712 void set_cpu_active(unsigned int cpu, bool active)
713 {
714 if (active)
715 cpumask_set_cpu(cpu, to_cpumask(cpu_active_bits));
716 else
717 cpumask_clear_cpu(cpu, to_cpumask(cpu_active_bits));
718 }
719
720 void init_cpu_present(const struct cpumask *src)
721 {
722 cpumask_copy(to_cpumask(cpu_present_bits), src);
723 }
724
725 void init_cpu_possible(const struct cpumask *src)
726 {
727 cpumask_copy(to_cpumask(cpu_possible_bits), src);
728 }
729
730 void init_cpu_online(const struct cpumask *src)
731 {
732 cpumask_copy(to_cpumask(cpu_online_bits), src);
733 }