Merge 4.14.52 into android-4.14
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / kernel / cpu.c
1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40 * cpuhp_cpu_state - Per cpu hotplug state storage
41 * @state: The current cpu state
42 * @target: The target state
43 * @thread: Pointer to the hotplug thread
44 * @should_run: Thread should execute
45 * @rollback: Perform a rollback
46 * @single: Single callback invocation
47 * @bringup: Single callback bringup or teardown selector
48 * @cb_state: The state for a single callback (install/uninstall)
49 * @result: Result of the operation
50 * @done_up: Signal completion to the issuer of the task for cpu-up
51 * @done_down: Signal completion to the issuer of the task for cpu-down
52 */
53 struct cpuhp_cpu_state {
54 enum cpuhp_state state;
55 enum cpuhp_state target;
56 enum cpuhp_state fail;
57 #ifdef CONFIG_SMP
58 struct task_struct *thread;
59 bool should_run;
60 bool rollback;
61 bool single;
62 bool bringup;
63 struct hlist_node *node;
64 struct hlist_node *last;
65 enum cpuhp_state cb_state;
66 int result;
67 struct completion done_up;
68 struct completion done_down;
69 #endif
70 };
71
72 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
73 .fail = CPUHP_INVALID,
74 };
75
76 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
77 static struct lockdep_map cpuhp_state_up_map =
78 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
79 static struct lockdep_map cpuhp_state_down_map =
80 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
81
82
83 static void inline cpuhp_lock_acquire(bool bringup)
84 {
85 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
86 }
87
88 static void inline cpuhp_lock_release(bool bringup)
89 {
90 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
91 }
92 #else
93
94 static void inline cpuhp_lock_acquire(bool bringup) { }
95 static void inline cpuhp_lock_release(bool bringup) { }
96
97 #endif
98
99 /**
100 * cpuhp_step - Hotplug state machine step
101 * @name: Name of the step
102 * @startup: Startup function of the step
103 * @teardown: Teardown function of the step
104 * @skip_onerr: Do not invoke the functions on error rollback
105 * Will go away once the notifiers are gone
106 * @cant_stop: Bringup/teardown can't be stopped at this step
107 */
108 struct cpuhp_step {
109 const char *name;
110 union {
111 int (*single)(unsigned int cpu);
112 int (*multi)(unsigned int cpu,
113 struct hlist_node *node);
114 } startup;
115 union {
116 int (*single)(unsigned int cpu);
117 int (*multi)(unsigned int cpu,
118 struct hlist_node *node);
119 } teardown;
120 struct hlist_head list;
121 bool skip_onerr;
122 bool cant_stop;
123 bool multi_instance;
124 };
125
126 static DEFINE_MUTEX(cpuhp_state_mutex);
127 static struct cpuhp_step cpuhp_bp_states[];
128 static struct cpuhp_step cpuhp_ap_states[];
129
130 static bool cpuhp_is_ap_state(enum cpuhp_state state)
131 {
132 /*
133 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
134 * purposes as that state is handled explicitly in cpu_down.
135 */
136 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
137 }
138
139 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
140 {
141 struct cpuhp_step *sp;
142
143 sp = cpuhp_is_ap_state(state) ? cpuhp_ap_states : cpuhp_bp_states;
144 return sp + state;
145 }
146
147 /**
148 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
149 * @cpu: The cpu for which the callback should be invoked
150 * @state: The state to do callbacks for
151 * @bringup: True if the bringup callback should be invoked
152 * @node: For multi-instance, do a single entry callback for install/remove
153 * @lastp: For multi-instance rollback, remember how far we got
154 *
155 * Called from cpu hotplug and from the state register machinery.
156 */
157 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
158 bool bringup, struct hlist_node *node,
159 struct hlist_node **lastp)
160 {
161 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
162 struct cpuhp_step *step = cpuhp_get_step(state);
163 int (*cbm)(unsigned int cpu, struct hlist_node *node);
164 int (*cb)(unsigned int cpu);
165 int ret, cnt;
166
167 if (st->fail == state) {
168 st->fail = CPUHP_INVALID;
169
170 if (!(bringup ? step->startup.single : step->teardown.single))
171 return 0;
172
173 return -EAGAIN;
174 }
175
176 if (!step->multi_instance) {
177 WARN_ON_ONCE(lastp && *lastp);
178 cb = bringup ? step->startup.single : step->teardown.single;
179 if (!cb)
180 return 0;
181 trace_cpuhp_enter(cpu, st->target, state, cb);
182 ret = cb(cpu);
183 trace_cpuhp_exit(cpu, st->state, state, ret);
184 return ret;
185 }
186 cbm = bringup ? step->startup.multi : step->teardown.multi;
187 if (!cbm)
188 return 0;
189
190 /* Single invocation for instance add/remove */
191 if (node) {
192 WARN_ON_ONCE(lastp && *lastp);
193 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
194 ret = cbm(cpu, node);
195 trace_cpuhp_exit(cpu, st->state, state, ret);
196 return ret;
197 }
198
199 /* State transition. Invoke on all instances */
200 cnt = 0;
201 hlist_for_each(node, &step->list) {
202 if (lastp && node == *lastp)
203 break;
204
205 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
206 ret = cbm(cpu, node);
207 trace_cpuhp_exit(cpu, st->state, state, ret);
208 if (ret) {
209 if (!lastp)
210 goto err;
211
212 *lastp = node;
213 return ret;
214 }
215 cnt++;
216 }
217 if (lastp)
218 *lastp = NULL;
219 return 0;
220 err:
221 /* Rollback the instances if one failed */
222 cbm = !bringup ? step->startup.multi : step->teardown.multi;
223 if (!cbm)
224 return ret;
225
226 hlist_for_each(node, &step->list) {
227 if (!cnt--)
228 break;
229
230 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
231 ret = cbm(cpu, node);
232 trace_cpuhp_exit(cpu, st->state, state, ret);
233 /*
234 * Rollback must not fail,
235 */
236 WARN_ON_ONCE(ret);
237 }
238 return ret;
239 }
240
241 #ifdef CONFIG_SMP
242 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 struct completion *done = bringup ? &st->done_up : &st->done_down;
245 wait_for_completion(done);
246 }
247
248 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
249 {
250 struct completion *done = bringup ? &st->done_up : &st->done_down;
251 complete(done);
252 }
253
254 /*
255 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
256 */
257 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
258 {
259 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
260 }
261
262 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
263 static DEFINE_MUTEX(cpu_add_remove_lock);
264 bool cpuhp_tasks_frozen;
265 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
266
267 /*
268 * The following two APIs (cpu_maps_update_begin/done) must be used when
269 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
270 */
271 void cpu_maps_update_begin(void)
272 {
273 mutex_lock(&cpu_add_remove_lock);
274 }
275
276 void cpu_maps_update_done(void)
277 {
278 mutex_unlock(&cpu_add_remove_lock);
279 }
280
281 /*
282 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
283 * Should always be manipulated under cpu_add_remove_lock
284 */
285 static int cpu_hotplug_disabled;
286
287 #ifdef CONFIG_HOTPLUG_CPU
288
289 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
290
291 void cpus_read_lock(void)
292 {
293 percpu_down_read(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_lock);
296
297 void cpus_read_unlock(void)
298 {
299 percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302
303 void cpus_write_lock(void)
304 {
305 percpu_down_write(&cpu_hotplug_lock);
306 }
307
308 void cpus_write_unlock(void)
309 {
310 percpu_up_write(&cpu_hotplug_lock);
311 }
312
313 void lockdep_assert_cpus_held(void)
314 {
315 percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317
318 /*
319 * Wait for currently running CPU hotplug operations to complete (if any) and
320 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322 * hotplug path before performing hotplug operations. So acquiring that lock
323 * guarantees mutual exclusion from any currently running hotplug operations.
324 */
325 void cpu_hotplug_disable(void)
326 {
327 cpu_maps_update_begin();
328 cpu_hotplug_disabled++;
329 cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332
333 static void __cpu_hotplug_enable(void)
334 {
335 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336 return;
337 cpu_hotplug_disabled--;
338 }
339
340 void cpu_hotplug_enable(void)
341 {
342 cpu_maps_update_begin();
343 __cpu_hotplug_enable();
344 cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif /* CONFIG_HOTPLUG_CPU */
348
349 static inline enum cpuhp_state
350 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
351 {
352 enum cpuhp_state prev_state = st->state;
353
354 st->rollback = false;
355 st->last = NULL;
356
357 st->target = target;
358 st->single = false;
359 st->bringup = st->state < target;
360
361 return prev_state;
362 }
363
364 static inline void
365 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
366 {
367 st->rollback = true;
368
369 /*
370 * If we have st->last we need to undo partial multi_instance of this
371 * state first. Otherwise start undo at the previous state.
372 */
373 if (!st->last) {
374 if (st->bringup)
375 st->state--;
376 else
377 st->state++;
378 }
379
380 st->target = prev_state;
381 st->bringup = !st->bringup;
382 }
383
384 /* Regular hotplug invocation of the AP hotplug thread */
385 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
386 {
387 if (!st->single && st->state == st->target)
388 return;
389
390 st->result = 0;
391 /*
392 * Make sure the above stores are visible before should_run becomes
393 * true. Paired with the mb() above in cpuhp_thread_fun()
394 */
395 smp_mb();
396 st->should_run = true;
397 wake_up_process(st->thread);
398 wait_for_ap_thread(st, st->bringup);
399 }
400
401 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
402 {
403 enum cpuhp_state prev_state;
404 int ret;
405
406 prev_state = cpuhp_set_state(st, target);
407 __cpuhp_kick_ap(st);
408 if ((ret = st->result)) {
409 cpuhp_reset_state(st, prev_state);
410 __cpuhp_kick_ap(st);
411 }
412
413 return ret;
414 }
415
416 static int bringup_wait_for_ap(unsigned int cpu)
417 {
418 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
419
420 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
421 wait_for_ap_thread(st, true);
422 if (WARN_ON_ONCE((!cpu_online(cpu))))
423 return -ECANCELED;
424
425 /* Unpark the stopper thread and the hotplug thread of the target cpu */
426 stop_machine_unpark(cpu);
427 kthread_unpark(st->thread);
428
429 if (st->target <= CPUHP_AP_ONLINE_IDLE)
430 return 0;
431
432 return cpuhp_kick_ap(st, st->target);
433 }
434
435 static int bringup_cpu(unsigned int cpu)
436 {
437 struct task_struct *idle = idle_thread_get(cpu);
438 int ret;
439
440 /*
441 * Some architectures have to walk the irq descriptors to
442 * setup the vector space for the cpu which comes online.
443 * Prevent irq alloc/free across the bringup.
444 */
445 irq_lock_sparse();
446
447 /* Arch-specific enabling code. */
448 ret = __cpu_up(cpu, idle);
449 irq_unlock_sparse();
450 if (ret)
451 return ret;
452 return bringup_wait_for_ap(cpu);
453 }
454
455 /*
456 * Hotplug state machine related functions
457 */
458
459 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
460 {
461 for (st->state--; st->state > st->target; st->state--) {
462 struct cpuhp_step *step = cpuhp_get_step(st->state);
463
464 if (!step->skip_onerr)
465 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
466 }
467 }
468
469 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
470 enum cpuhp_state target)
471 {
472 enum cpuhp_state prev_state = st->state;
473 int ret = 0;
474
475 while (st->state < target) {
476 st->state++;
477 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
478 if (ret) {
479 st->target = prev_state;
480 undo_cpu_up(cpu, st);
481 break;
482 }
483 }
484 return ret;
485 }
486
487 /*
488 * The cpu hotplug threads manage the bringup and teardown of the cpus
489 */
490 static void cpuhp_create(unsigned int cpu)
491 {
492 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
493
494 init_completion(&st->done_up);
495 init_completion(&st->done_down);
496 }
497
498 static int cpuhp_should_run(unsigned int cpu)
499 {
500 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
501
502 return st->should_run;
503 }
504
505 /*
506 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
507 * callbacks when a state gets [un]installed at runtime.
508 *
509 * Each invocation of this function by the smpboot thread does a single AP
510 * state callback.
511 *
512 * It has 3 modes of operation:
513 * - single: runs st->cb_state
514 * - up: runs ++st->state, while st->state < st->target
515 * - down: runs st->state--, while st->state > st->target
516 *
517 * When complete or on error, should_run is cleared and the completion is fired.
518 */
519 static void cpuhp_thread_fun(unsigned int cpu)
520 {
521 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
522 bool bringup = st->bringup;
523 enum cpuhp_state state;
524
525 /*
526 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
527 * that if we see ->should_run we also see the rest of the state.
528 */
529 smp_mb();
530
531 if (WARN_ON_ONCE(!st->should_run))
532 return;
533
534 cpuhp_lock_acquire(bringup);
535
536 if (st->single) {
537 state = st->cb_state;
538 st->should_run = false;
539 } else {
540 if (bringup) {
541 st->state++;
542 state = st->state;
543 st->should_run = (st->state < st->target);
544 WARN_ON_ONCE(st->state > st->target);
545 } else {
546 state = st->state;
547 st->state--;
548 st->should_run = (st->state > st->target);
549 WARN_ON_ONCE(st->state < st->target);
550 }
551 }
552
553 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
554
555 if (st->rollback) {
556 struct cpuhp_step *step = cpuhp_get_step(state);
557 if (step->skip_onerr)
558 goto next;
559 }
560
561 if (cpuhp_is_atomic_state(state)) {
562 local_irq_disable();
563 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
564 local_irq_enable();
565
566 /*
567 * STARTING/DYING must not fail!
568 */
569 WARN_ON_ONCE(st->result);
570 } else {
571 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
572 }
573
574 if (st->result) {
575 /*
576 * If we fail on a rollback, we're up a creek without no
577 * paddle, no way forward, no way back. We loose, thanks for
578 * playing.
579 */
580 WARN_ON_ONCE(st->rollback);
581 st->should_run = false;
582 }
583
584 next:
585 cpuhp_lock_release(bringup);
586
587 if (!st->should_run)
588 complete_ap_thread(st, bringup);
589 }
590
591 /* Invoke a single callback on a remote cpu */
592 static int
593 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
594 struct hlist_node *node)
595 {
596 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
597 int ret;
598
599 if (!cpu_online(cpu))
600 return 0;
601
602 cpuhp_lock_acquire(false);
603 cpuhp_lock_release(false);
604
605 cpuhp_lock_acquire(true);
606 cpuhp_lock_release(true);
607
608 /*
609 * If we are up and running, use the hotplug thread. For early calls
610 * we invoke the thread function directly.
611 */
612 if (!st->thread)
613 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
614
615 st->rollback = false;
616 st->last = NULL;
617
618 st->node = node;
619 st->bringup = bringup;
620 st->cb_state = state;
621 st->single = true;
622
623 __cpuhp_kick_ap(st);
624
625 /*
626 * If we failed and did a partial, do a rollback.
627 */
628 if ((ret = st->result) && st->last) {
629 st->rollback = true;
630 st->bringup = !bringup;
631
632 __cpuhp_kick_ap(st);
633 }
634
635 /*
636 * Clean up the leftovers so the next hotplug operation wont use stale
637 * data.
638 */
639 st->node = st->last = NULL;
640 return ret;
641 }
642
643 static int cpuhp_kick_ap_work(unsigned int cpu)
644 {
645 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
646 enum cpuhp_state prev_state = st->state;
647 int ret;
648
649 cpuhp_lock_acquire(false);
650 cpuhp_lock_release(false);
651
652 cpuhp_lock_acquire(true);
653 cpuhp_lock_release(true);
654
655 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
656 ret = cpuhp_kick_ap(st, st->target);
657 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
658
659 return ret;
660 }
661
662 static struct smp_hotplug_thread cpuhp_threads = {
663 .store = &cpuhp_state.thread,
664 .create = &cpuhp_create,
665 .thread_should_run = cpuhp_should_run,
666 .thread_fn = cpuhp_thread_fun,
667 .thread_comm = "cpuhp/%u",
668 .selfparking = true,
669 };
670
671 void __init cpuhp_threads_init(void)
672 {
673 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
674 kthread_unpark(this_cpu_read(cpuhp_state.thread));
675 }
676
677 #ifdef CONFIG_HOTPLUG_CPU
678 /**
679 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
680 * @cpu: a CPU id
681 *
682 * This function walks all processes, finds a valid mm struct for each one and
683 * then clears a corresponding bit in mm's cpumask. While this all sounds
684 * trivial, there are various non-obvious corner cases, which this function
685 * tries to solve in a safe manner.
686 *
687 * Also note that the function uses a somewhat relaxed locking scheme, so it may
688 * be called only for an already offlined CPU.
689 */
690 void clear_tasks_mm_cpumask(int cpu)
691 {
692 struct task_struct *p;
693
694 /*
695 * This function is called after the cpu is taken down and marked
696 * offline, so its not like new tasks will ever get this cpu set in
697 * their mm mask. -- Peter Zijlstra
698 * Thus, we may use rcu_read_lock() here, instead of grabbing
699 * full-fledged tasklist_lock.
700 */
701 WARN_ON(cpu_online(cpu));
702 rcu_read_lock();
703 for_each_process(p) {
704 struct task_struct *t;
705
706 /*
707 * Main thread might exit, but other threads may still have
708 * a valid mm. Find one.
709 */
710 t = find_lock_task_mm(p);
711 if (!t)
712 continue;
713 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
714 task_unlock(t);
715 }
716 rcu_read_unlock();
717 }
718
719 /* Take this CPU down. */
720 static int take_cpu_down(void *_param)
721 {
722 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
723 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
724 int err, cpu = smp_processor_id();
725 int ret;
726
727 /* Ensure this CPU doesn't handle any more interrupts. */
728 err = __cpu_disable();
729 if (err < 0)
730 return err;
731
732 /*
733 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
734 * do this step again.
735 */
736 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
737 st->state--;
738 /* Invoke the former CPU_DYING callbacks */
739 for (; st->state > target; st->state--) {
740 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
741 /*
742 * DYING must not fail!
743 */
744 WARN_ON_ONCE(ret);
745 }
746
747 /* Give up timekeeping duties */
748 tick_handover_do_timer();
749 /* Park the stopper thread */
750 stop_machine_park(cpu);
751 return 0;
752 }
753
754 static int takedown_cpu(unsigned int cpu)
755 {
756 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
757 int err;
758
759 /* Park the smpboot threads */
760 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
761 smpboot_park_threads(cpu);
762
763 /*
764 * Prevent irq alloc/free while the dying cpu reorganizes the
765 * interrupt affinities.
766 */
767 irq_lock_sparse();
768
769 /*
770 * So now all preempt/rcu users must observe !cpu_active().
771 */
772 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
773 if (err) {
774 /* CPU refused to die */
775 irq_unlock_sparse();
776 /* Unpark the hotplug thread so we can rollback there */
777 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
778 return err;
779 }
780 BUG_ON(cpu_online(cpu));
781
782 /*
783 * The CPUHP_AP_SCHED_MIGRATE_DYING callback will have removed all
784 * runnable tasks from the cpu, there's only the idle task left now
785 * that the migration thread is done doing the stop_machine thing.
786 *
787 * Wait for the stop thread to go away.
788 */
789 wait_for_ap_thread(st, false);
790 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
791
792 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
793 irq_unlock_sparse();
794
795 hotplug_cpu__broadcast_tick_pull(cpu);
796 /* This actually kills the CPU. */
797 __cpu_die(cpu);
798
799 tick_cleanup_dead_cpu(cpu);
800 rcutree_migrate_callbacks(cpu);
801 return 0;
802 }
803
804 static void cpuhp_complete_idle_dead(void *arg)
805 {
806 struct cpuhp_cpu_state *st = arg;
807
808 complete_ap_thread(st, false);
809 }
810
811 void cpuhp_report_idle_dead(void)
812 {
813 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
814
815 BUG_ON(st->state != CPUHP_AP_OFFLINE);
816 rcu_report_dead(smp_processor_id());
817 st->state = CPUHP_AP_IDLE_DEAD;
818 /*
819 * We cannot call complete after rcu_report_dead() so we delegate it
820 * to an online cpu.
821 */
822 smp_call_function_single(cpumask_first(cpu_online_mask),
823 cpuhp_complete_idle_dead, st, 0);
824 }
825
826 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
827 {
828 for (st->state++; st->state < st->target; st->state++) {
829 struct cpuhp_step *step = cpuhp_get_step(st->state);
830
831 if (!step->skip_onerr)
832 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
833 }
834 }
835
836 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
837 enum cpuhp_state target)
838 {
839 enum cpuhp_state prev_state = st->state;
840 int ret = 0;
841
842 for (; st->state > target; st->state--) {
843 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
844 if (ret) {
845 st->target = prev_state;
846 undo_cpu_down(cpu, st);
847 break;
848 }
849 }
850 return ret;
851 }
852
853 /* Requires cpu_add_remove_lock to be held */
854 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
855 enum cpuhp_state target)
856 {
857 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
858 int prev_state, ret = 0;
859
860 if (num_online_cpus() == 1)
861 return -EBUSY;
862
863 if (!cpu_present(cpu))
864 return -EINVAL;
865
866 cpus_write_lock();
867
868 cpuhp_tasks_frozen = tasks_frozen;
869
870 prev_state = cpuhp_set_state(st, target);
871 /*
872 * If the current CPU state is in the range of the AP hotplug thread,
873 * then we need to kick the thread.
874 */
875 if (st->state > CPUHP_TEARDOWN_CPU) {
876 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
877 ret = cpuhp_kick_ap_work(cpu);
878 /*
879 * The AP side has done the error rollback already. Just
880 * return the error code..
881 */
882 if (ret)
883 goto out;
884
885 /*
886 * We might have stopped still in the range of the AP hotplug
887 * thread. Nothing to do anymore.
888 */
889 if (st->state > CPUHP_TEARDOWN_CPU)
890 goto out;
891
892 st->target = target;
893 }
894 /*
895 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
896 * to do the further cleanups.
897 */
898 ret = cpuhp_down_callbacks(cpu, st, target);
899 if (ret && st->state > CPUHP_TEARDOWN_CPU && st->state < prev_state) {
900 cpuhp_reset_state(st, prev_state);
901 __cpuhp_kick_ap(st);
902 }
903
904 out:
905 cpus_write_unlock();
906 /*
907 * Do post unplug cleanup. This is still protected against
908 * concurrent CPU hotplug via cpu_add_remove_lock.
909 */
910 lockup_detector_cleanup();
911 return ret;
912 }
913
914 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
915 {
916 int err;
917
918 cpu_maps_update_begin();
919
920 if (cpu_hotplug_disabled) {
921 err = -EBUSY;
922 goto out;
923 }
924
925 err = _cpu_down(cpu, 0, target);
926
927 out:
928 cpu_maps_update_done();
929 return err;
930 }
931
932 int cpu_down(unsigned int cpu)
933 {
934 return do_cpu_down(cpu, CPUHP_OFFLINE);
935 }
936 EXPORT_SYMBOL(cpu_down);
937
938 #else
939 #define takedown_cpu NULL
940 #endif /*CONFIG_HOTPLUG_CPU*/
941
942 /**
943 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
944 * @cpu: cpu that just started
945 *
946 * It must be called by the arch code on the new cpu, before the new cpu
947 * enables interrupts and before the "boot" cpu returns from __cpu_up().
948 */
949 void notify_cpu_starting(unsigned int cpu)
950 {
951 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
952 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
953 int ret;
954
955 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
956 while (st->state < target) {
957 st->state++;
958 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
959 /*
960 * STARTING must not fail!
961 */
962 WARN_ON_ONCE(ret);
963 }
964 }
965
966 /*
967 * Called from the idle task. Wake up the controlling task which brings the
968 * stopper and the hotplug thread of the upcoming CPU up and then delegates
969 * the rest of the online bringup to the hotplug thread.
970 */
971 void cpuhp_online_idle(enum cpuhp_state state)
972 {
973 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
974
975 /* Happens for the boot cpu */
976 if (state != CPUHP_AP_ONLINE_IDLE)
977 return;
978
979 st->state = CPUHP_AP_ONLINE_IDLE;
980 complete_ap_thread(st, true);
981 }
982
983 /* Requires cpu_add_remove_lock to be held */
984 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
985 {
986 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
987 struct task_struct *idle;
988 int ret = 0;
989
990 cpus_write_lock();
991
992 if (!cpu_present(cpu)) {
993 ret = -EINVAL;
994 goto out;
995 }
996
997 /*
998 * The caller of do_cpu_up might have raced with another
999 * caller. Ignore it for now.
1000 */
1001 if (st->state >= target)
1002 goto out;
1003
1004 if (st->state == CPUHP_OFFLINE) {
1005 /* Let it fail before we try to bring the cpu up */
1006 idle = idle_thread_get(cpu);
1007 if (IS_ERR(idle)) {
1008 ret = PTR_ERR(idle);
1009 goto out;
1010 }
1011 }
1012
1013 cpuhp_tasks_frozen = tasks_frozen;
1014
1015 cpuhp_set_state(st, target);
1016 /*
1017 * If the current CPU state is in the range of the AP hotplug thread,
1018 * then we need to kick the thread once more.
1019 */
1020 if (st->state > CPUHP_BRINGUP_CPU) {
1021 ret = cpuhp_kick_ap_work(cpu);
1022 /*
1023 * The AP side has done the error rollback already. Just
1024 * return the error code..
1025 */
1026 if (ret)
1027 goto out;
1028 }
1029
1030 /*
1031 * Try to reach the target state. We max out on the BP at
1032 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1033 * responsible for bringing it up to the target state.
1034 */
1035 target = min((int)target, CPUHP_BRINGUP_CPU);
1036 ret = cpuhp_up_callbacks(cpu, st, target);
1037 out:
1038 cpus_write_unlock();
1039 return ret;
1040 }
1041
1042 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1043 {
1044 int err = 0;
1045
1046 if (!cpu_possible(cpu)) {
1047 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1048 cpu);
1049 #if defined(CONFIG_IA64)
1050 pr_err("please check additional_cpus= boot parameter\n");
1051 #endif
1052 return -EINVAL;
1053 }
1054
1055 err = try_online_node(cpu_to_node(cpu));
1056 if (err)
1057 return err;
1058
1059 cpu_maps_update_begin();
1060
1061 if (cpu_hotplug_disabled) {
1062 err = -EBUSY;
1063 goto out;
1064 }
1065
1066 err = _cpu_up(cpu, 0, target);
1067 out:
1068 cpu_maps_update_done();
1069 return err;
1070 }
1071
1072 int cpu_up(unsigned int cpu)
1073 {
1074 return do_cpu_up(cpu, CPUHP_ONLINE);
1075 }
1076 EXPORT_SYMBOL_GPL(cpu_up);
1077
1078 #ifdef CONFIG_PM_SLEEP_SMP
1079 static cpumask_var_t frozen_cpus;
1080
1081 int freeze_secondary_cpus(int primary)
1082 {
1083 int cpu, error = 0;
1084
1085 cpu_maps_update_begin();
1086 if (!cpu_online(primary))
1087 primary = cpumask_first(cpu_online_mask);
1088 /*
1089 * We take down all of the non-boot CPUs in one shot to avoid races
1090 * with the userspace trying to use the CPU hotplug at the same time
1091 */
1092 cpumask_clear(frozen_cpus);
1093
1094 pr_info("Disabling non-boot CPUs ...\n");
1095 for_each_online_cpu(cpu) {
1096 if (cpu == primary)
1097 continue;
1098 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1099 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1100 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1101 if (!error)
1102 cpumask_set_cpu(cpu, frozen_cpus);
1103 else {
1104 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1105 break;
1106 }
1107 }
1108
1109 if (!error)
1110 BUG_ON(num_online_cpus() > 1);
1111 else
1112 pr_err("Non-boot CPUs are not disabled\n");
1113
1114 /*
1115 * Make sure the CPUs won't be enabled by someone else. We need to do
1116 * this even in case of failure as all disable_nonboot_cpus() users are
1117 * supposed to do enable_nonboot_cpus() on the failure path.
1118 */
1119 cpu_hotplug_disabled++;
1120
1121 cpu_maps_update_done();
1122 return error;
1123 }
1124
1125 void __weak arch_enable_nonboot_cpus_begin(void)
1126 {
1127 }
1128
1129 void __weak arch_enable_nonboot_cpus_end(void)
1130 {
1131 }
1132
1133 void enable_nonboot_cpus(void)
1134 {
1135 int cpu, error;
1136 struct device *cpu_device;
1137
1138 /* Allow everyone to use the CPU hotplug again */
1139 cpu_maps_update_begin();
1140 __cpu_hotplug_enable();
1141 if (cpumask_empty(frozen_cpus))
1142 goto out;
1143
1144 pr_info("Enabling non-boot CPUs ...\n");
1145
1146 arch_enable_nonboot_cpus_begin();
1147
1148 for_each_cpu(cpu, frozen_cpus) {
1149 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1150 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1151 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1152 if (!error) {
1153 pr_info("CPU%d is up\n", cpu);
1154 cpu_device = get_cpu_device(cpu);
1155 if (!cpu_device)
1156 pr_err("%s: failed to get cpu%d device\n",
1157 __func__, cpu);
1158 else
1159 kobject_uevent(&cpu_device->kobj, KOBJ_ONLINE);
1160 continue;
1161 }
1162 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1163 }
1164
1165 arch_enable_nonboot_cpus_end();
1166
1167 cpumask_clear(frozen_cpus);
1168 out:
1169 cpu_maps_update_done();
1170 }
1171
1172 static int __init alloc_frozen_cpus(void)
1173 {
1174 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1175 return -ENOMEM;
1176 return 0;
1177 }
1178 core_initcall(alloc_frozen_cpus);
1179
1180 /*
1181 * When callbacks for CPU hotplug notifications are being executed, we must
1182 * ensure that the state of the system with respect to the tasks being frozen
1183 * or not, as reported by the notification, remains unchanged *throughout the
1184 * duration* of the execution of the callbacks.
1185 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1186 *
1187 * This synchronization is implemented by mutually excluding regular CPU
1188 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1189 * Hibernate notifications.
1190 */
1191 static int
1192 cpu_hotplug_pm_callback(struct notifier_block *nb,
1193 unsigned long action, void *ptr)
1194 {
1195 switch (action) {
1196
1197 case PM_SUSPEND_PREPARE:
1198 case PM_HIBERNATION_PREPARE:
1199 cpu_hotplug_disable();
1200 break;
1201
1202 case PM_POST_SUSPEND:
1203 case PM_POST_HIBERNATION:
1204 cpu_hotplug_enable();
1205 break;
1206
1207 default:
1208 return NOTIFY_DONE;
1209 }
1210
1211 return NOTIFY_OK;
1212 }
1213
1214
1215 static int __init cpu_hotplug_pm_sync_init(void)
1216 {
1217 /*
1218 * cpu_hotplug_pm_callback has higher priority than x86
1219 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1220 * to disable cpu hotplug to avoid cpu hotplug race.
1221 */
1222 pm_notifier(cpu_hotplug_pm_callback, 0);
1223 return 0;
1224 }
1225 core_initcall(cpu_hotplug_pm_sync_init);
1226
1227 #endif /* CONFIG_PM_SLEEP_SMP */
1228
1229 int __boot_cpu_id;
1230
1231 #endif /* CONFIG_SMP */
1232
1233 /* Boot processor state steps */
1234 static struct cpuhp_step cpuhp_bp_states[] = {
1235 [CPUHP_OFFLINE] = {
1236 .name = "offline",
1237 .startup.single = NULL,
1238 .teardown.single = NULL,
1239 },
1240 #ifdef CONFIG_SMP
1241 [CPUHP_CREATE_THREADS]= {
1242 .name = "threads:prepare",
1243 .startup.single = smpboot_create_threads,
1244 .teardown.single = NULL,
1245 .cant_stop = true,
1246 },
1247 [CPUHP_PERF_PREPARE] = {
1248 .name = "perf:prepare",
1249 .startup.single = perf_event_init_cpu,
1250 .teardown.single = perf_event_exit_cpu,
1251 },
1252 [CPUHP_WORKQUEUE_PREP] = {
1253 .name = "workqueue:prepare",
1254 .startup.single = workqueue_prepare_cpu,
1255 .teardown.single = NULL,
1256 },
1257 [CPUHP_HRTIMERS_PREPARE] = {
1258 .name = "hrtimers:prepare",
1259 .startup.single = hrtimers_prepare_cpu,
1260 .teardown.single = hrtimers_dead_cpu,
1261 },
1262 [CPUHP_SMPCFD_PREPARE] = {
1263 .name = "smpcfd:prepare",
1264 .startup.single = smpcfd_prepare_cpu,
1265 .teardown.single = smpcfd_dead_cpu,
1266 },
1267 [CPUHP_RELAY_PREPARE] = {
1268 .name = "relay:prepare",
1269 .startup.single = relay_prepare_cpu,
1270 .teardown.single = NULL,
1271 },
1272 [CPUHP_SLAB_PREPARE] = {
1273 .name = "slab:prepare",
1274 .startup.single = slab_prepare_cpu,
1275 .teardown.single = slab_dead_cpu,
1276 },
1277 [CPUHP_RCUTREE_PREP] = {
1278 .name = "RCU/tree:prepare",
1279 .startup.single = rcutree_prepare_cpu,
1280 .teardown.single = rcutree_dead_cpu,
1281 },
1282 /*
1283 * On the tear-down path, timers_dead_cpu() must be invoked
1284 * before blk_mq_queue_reinit_notify() from notify_dead(),
1285 * otherwise a RCU stall occurs.
1286 */
1287 [CPUHP_TIMERS_PREPARE] = {
1288 .name = "timers:dead",
1289 .startup.single = timers_prepare_cpu,
1290 .teardown.single = timers_dead_cpu,
1291 },
1292 /* Kicks the plugged cpu into life */
1293 [CPUHP_BRINGUP_CPU] = {
1294 .name = "cpu:bringup",
1295 .startup.single = bringup_cpu,
1296 .teardown.single = NULL,
1297 .cant_stop = true,
1298 },
1299 /*
1300 * Handled on controll processor until the plugged processor manages
1301 * this itself.
1302 */
1303 [CPUHP_TEARDOWN_CPU] = {
1304 .name = "cpu:teardown",
1305 .startup.single = NULL,
1306 .teardown.single = takedown_cpu,
1307 .cant_stop = true,
1308 },
1309 #else
1310 [CPUHP_BRINGUP_CPU] = { },
1311 #endif
1312 };
1313
1314 /* Application processor state steps */
1315 static struct cpuhp_step cpuhp_ap_states[] = {
1316 #ifdef CONFIG_SMP
1317 /* Final state before CPU kills itself */
1318 [CPUHP_AP_IDLE_DEAD] = {
1319 .name = "idle:dead",
1320 },
1321 /*
1322 * Last state before CPU enters the idle loop to die. Transient state
1323 * for synchronization.
1324 */
1325 [CPUHP_AP_OFFLINE] = {
1326 .name = "ap:offline",
1327 .cant_stop = true,
1328 },
1329 /* First state is scheduler control. Interrupts are disabled */
1330 [CPUHP_AP_SCHED_STARTING] = {
1331 .name = "sched:starting",
1332 .startup.single = sched_cpu_starting,
1333 .teardown.single = sched_cpu_dying,
1334 },
1335 [CPUHP_AP_RCUTREE_DYING] = {
1336 .name = "RCU/tree:dying",
1337 .startup.single = NULL,
1338 .teardown.single = rcutree_dying_cpu,
1339 },
1340 [CPUHP_AP_SMPCFD_DYING] = {
1341 .name = "smpcfd:dying",
1342 .startup.single = NULL,
1343 .teardown.single = smpcfd_dying_cpu,
1344 },
1345 /* Entry state on starting. Interrupts enabled from here on. Transient
1346 * state for synchronsization */
1347 [CPUHP_AP_ONLINE] = {
1348 .name = "ap:online",
1349 },
1350 /* Handle smpboot threads park/unpark */
1351 [CPUHP_AP_SMPBOOT_THREADS] = {
1352 .name = "smpboot/threads:online",
1353 .startup.single = smpboot_unpark_threads,
1354 .teardown.single = NULL,
1355 },
1356 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1357 .name = "irq/affinity:online",
1358 .startup.single = irq_affinity_online_cpu,
1359 .teardown.single = NULL,
1360 },
1361 [CPUHP_AP_PERF_ONLINE] = {
1362 .name = "perf:online",
1363 .startup.single = perf_event_init_cpu,
1364 .teardown.single = perf_event_exit_cpu,
1365 },
1366 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1367 .name = "workqueue:online",
1368 .startup.single = workqueue_online_cpu,
1369 .teardown.single = workqueue_offline_cpu,
1370 },
1371 [CPUHP_AP_RCUTREE_ONLINE] = {
1372 .name = "RCU/tree:online",
1373 .startup.single = rcutree_online_cpu,
1374 .teardown.single = rcutree_offline_cpu,
1375 },
1376 #endif
1377 /*
1378 * The dynamically registered state space is here
1379 */
1380
1381 #ifdef CONFIG_SMP
1382 /* Last state is scheduler control setting the cpu active */
1383 [CPUHP_AP_ACTIVE] = {
1384 .name = "sched:active",
1385 .startup.single = sched_cpu_activate,
1386 .teardown.single = sched_cpu_deactivate,
1387 },
1388 #endif
1389
1390 /* CPU is fully up and running. */
1391 [CPUHP_ONLINE] = {
1392 .name = "online",
1393 .startup.single = NULL,
1394 .teardown.single = NULL,
1395 },
1396 };
1397
1398 /* Sanity check for callbacks */
1399 static int cpuhp_cb_check(enum cpuhp_state state)
1400 {
1401 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1402 return -EINVAL;
1403 return 0;
1404 }
1405
1406 /*
1407 * Returns a free for dynamic slot assignment of the Online state. The states
1408 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1409 * by having no name assigned.
1410 */
1411 static int cpuhp_reserve_state(enum cpuhp_state state)
1412 {
1413 enum cpuhp_state i, end;
1414 struct cpuhp_step *step;
1415
1416 switch (state) {
1417 case CPUHP_AP_ONLINE_DYN:
1418 step = cpuhp_ap_states + CPUHP_AP_ONLINE_DYN;
1419 end = CPUHP_AP_ONLINE_DYN_END;
1420 break;
1421 case CPUHP_BP_PREPARE_DYN:
1422 step = cpuhp_bp_states + CPUHP_BP_PREPARE_DYN;
1423 end = CPUHP_BP_PREPARE_DYN_END;
1424 break;
1425 default:
1426 return -EINVAL;
1427 }
1428
1429 for (i = state; i <= end; i++, step++) {
1430 if (!step->name)
1431 return i;
1432 }
1433 WARN(1, "No more dynamic states available for CPU hotplug\n");
1434 return -ENOSPC;
1435 }
1436
1437 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1438 int (*startup)(unsigned int cpu),
1439 int (*teardown)(unsigned int cpu),
1440 bool multi_instance)
1441 {
1442 /* (Un)Install the callbacks for further cpu hotplug operations */
1443 struct cpuhp_step *sp;
1444 int ret = 0;
1445
1446 /*
1447 * If name is NULL, then the state gets removed.
1448 *
1449 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1450 * the first allocation from these dynamic ranges, so the removal
1451 * would trigger a new allocation and clear the wrong (already
1452 * empty) state, leaving the callbacks of the to be cleared state
1453 * dangling, which causes wreckage on the next hotplug operation.
1454 */
1455 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1456 state == CPUHP_BP_PREPARE_DYN)) {
1457 ret = cpuhp_reserve_state(state);
1458 if (ret < 0)
1459 return ret;
1460 state = ret;
1461 }
1462 sp = cpuhp_get_step(state);
1463 if (name && sp->name)
1464 return -EBUSY;
1465
1466 sp->startup.single = startup;
1467 sp->teardown.single = teardown;
1468 sp->name = name;
1469 sp->multi_instance = multi_instance;
1470 INIT_HLIST_HEAD(&sp->list);
1471 return ret;
1472 }
1473
1474 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1475 {
1476 return cpuhp_get_step(state)->teardown.single;
1477 }
1478
1479 /*
1480 * Call the startup/teardown function for a step either on the AP or
1481 * on the current CPU.
1482 */
1483 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1484 struct hlist_node *node)
1485 {
1486 struct cpuhp_step *sp = cpuhp_get_step(state);
1487 int ret;
1488
1489 /*
1490 * If there's nothing to do, we done.
1491 * Relies on the union for multi_instance.
1492 */
1493 if ((bringup && !sp->startup.single) ||
1494 (!bringup && !sp->teardown.single))
1495 return 0;
1496 /*
1497 * The non AP bound callbacks can fail on bringup. On teardown
1498 * e.g. module removal we crash for now.
1499 */
1500 #ifdef CONFIG_SMP
1501 if (cpuhp_is_ap_state(state))
1502 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1503 else
1504 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1505 #else
1506 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1507 #endif
1508 BUG_ON(ret && !bringup);
1509 return ret;
1510 }
1511
1512 /*
1513 * Called from __cpuhp_setup_state on a recoverable failure.
1514 *
1515 * Note: The teardown callbacks for rollback are not allowed to fail!
1516 */
1517 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1518 struct hlist_node *node)
1519 {
1520 int cpu;
1521
1522 /* Roll back the already executed steps on the other cpus */
1523 for_each_present_cpu(cpu) {
1524 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1525 int cpustate = st->state;
1526
1527 if (cpu >= failedcpu)
1528 break;
1529
1530 /* Did we invoke the startup call on that cpu ? */
1531 if (cpustate >= state)
1532 cpuhp_issue_call(cpu, state, false, node);
1533 }
1534 }
1535
1536 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1537 struct hlist_node *node,
1538 bool invoke)
1539 {
1540 struct cpuhp_step *sp;
1541 int cpu;
1542 int ret;
1543
1544 lockdep_assert_cpus_held();
1545
1546 sp = cpuhp_get_step(state);
1547 if (sp->multi_instance == false)
1548 return -EINVAL;
1549
1550 mutex_lock(&cpuhp_state_mutex);
1551
1552 if (!invoke || !sp->startup.multi)
1553 goto add_node;
1554
1555 /*
1556 * Try to call the startup callback for each present cpu
1557 * depending on the hotplug state of the cpu.
1558 */
1559 for_each_present_cpu(cpu) {
1560 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1561 int cpustate = st->state;
1562
1563 if (cpustate < state)
1564 continue;
1565
1566 ret = cpuhp_issue_call(cpu, state, true, node);
1567 if (ret) {
1568 if (sp->teardown.multi)
1569 cpuhp_rollback_install(cpu, state, node);
1570 goto unlock;
1571 }
1572 }
1573 add_node:
1574 ret = 0;
1575 hlist_add_head(node, &sp->list);
1576 unlock:
1577 mutex_unlock(&cpuhp_state_mutex);
1578 return ret;
1579 }
1580
1581 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1582 bool invoke)
1583 {
1584 int ret;
1585
1586 cpus_read_lock();
1587 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1588 cpus_read_unlock();
1589 return ret;
1590 }
1591 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1592
1593 /**
1594 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1595 * @state: The state to setup
1596 * @invoke: If true, the startup function is invoked for cpus where
1597 * cpu state >= @state
1598 * @startup: startup callback function
1599 * @teardown: teardown callback function
1600 * @multi_instance: State is set up for multiple instances which get
1601 * added afterwards.
1602 *
1603 * The caller needs to hold cpus read locked while calling this function.
1604 * Returns:
1605 * On success:
1606 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1607 * 0 for all other states
1608 * On failure: proper (negative) error code
1609 */
1610 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1611 const char *name, bool invoke,
1612 int (*startup)(unsigned int cpu),
1613 int (*teardown)(unsigned int cpu),
1614 bool multi_instance)
1615 {
1616 int cpu, ret = 0;
1617 bool dynstate;
1618
1619 lockdep_assert_cpus_held();
1620
1621 if (cpuhp_cb_check(state) || !name)
1622 return -EINVAL;
1623
1624 mutex_lock(&cpuhp_state_mutex);
1625
1626 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1627 multi_instance);
1628
1629 dynstate = state == CPUHP_AP_ONLINE_DYN;
1630 if (ret > 0 && dynstate) {
1631 state = ret;
1632 ret = 0;
1633 }
1634
1635 if (ret || !invoke || !startup)
1636 goto out;
1637
1638 /*
1639 * Try to call the startup callback for each present cpu
1640 * depending on the hotplug state of the cpu.
1641 */
1642 for_each_present_cpu(cpu) {
1643 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1644 int cpustate = st->state;
1645
1646 if (cpustate < state)
1647 continue;
1648
1649 ret = cpuhp_issue_call(cpu, state, true, NULL);
1650 if (ret) {
1651 if (teardown)
1652 cpuhp_rollback_install(cpu, state, NULL);
1653 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1654 goto out;
1655 }
1656 }
1657 out:
1658 mutex_unlock(&cpuhp_state_mutex);
1659 /*
1660 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1661 * dynamically allocated state in case of success.
1662 */
1663 if (!ret && dynstate)
1664 return state;
1665 return ret;
1666 }
1667 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1668
1669 int __cpuhp_setup_state(enum cpuhp_state state,
1670 const char *name, bool invoke,
1671 int (*startup)(unsigned int cpu),
1672 int (*teardown)(unsigned int cpu),
1673 bool multi_instance)
1674 {
1675 int ret;
1676
1677 cpus_read_lock();
1678 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1679 teardown, multi_instance);
1680 cpus_read_unlock();
1681 return ret;
1682 }
1683 EXPORT_SYMBOL(__cpuhp_setup_state);
1684
1685 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1686 struct hlist_node *node, bool invoke)
1687 {
1688 struct cpuhp_step *sp = cpuhp_get_step(state);
1689 int cpu;
1690
1691 BUG_ON(cpuhp_cb_check(state));
1692
1693 if (!sp->multi_instance)
1694 return -EINVAL;
1695
1696 cpus_read_lock();
1697 mutex_lock(&cpuhp_state_mutex);
1698
1699 if (!invoke || !cpuhp_get_teardown_cb(state))
1700 goto remove;
1701 /*
1702 * Call the teardown callback for each present cpu depending
1703 * on the hotplug state of the cpu. This function is not
1704 * allowed to fail currently!
1705 */
1706 for_each_present_cpu(cpu) {
1707 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1708 int cpustate = st->state;
1709
1710 if (cpustate >= state)
1711 cpuhp_issue_call(cpu, state, false, node);
1712 }
1713
1714 remove:
1715 hlist_del(node);
1716 mutex_unlock(&cpuhp_state_mutex);
1717 cpus_read_unlock();
1718
1719 return 0;
1720 }
1721 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1722
1723 /**
1724 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1725 * @state: The state to remove
1726 * @invoke: If true, the teardown function is invoked for cpus where
1727 * cpu state >= @state
1728 *
1729 * The caller needs to hold cpus read locked while calling this function.
1730 * The teardown callback is currently not allowed to fail. Think
1731 * about module removal!
1732 */
1733 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1734 {
1735 struct cpuhp_step *sp = cpuhp_get_step(state);
1736 int cpu;
1737
1738 BUG_ON(cpuhp_cb_check(state));
1739
1740 lockdep_assert_cpus_held();
1741
1742 mutex_lock(&cpuhp_state_mutex);
1743 if (sp->multi_instance) {
1744 WARN(!hlist_empty(&sp->list),
1745 "Error: Removing state %d which has instances left.\n",
1746 state);
1747 goto remove;
1748 }
1749
1750 if (!invoke || !cpuhp_get_teardown_cb(state))
1751 goto remove;
1752
1753 /*
1754 * Call the teardown callback for each present cpu depending
1755 * on the hotplug state of the cpu. This function is not
1756 * allowed to fail currently!
1757 */
1758 for_each_present_cpu(cpu) {
1759 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1760 int cpustate = st->state;
1761
1762 if (cpustate >= state)
1763 cpuhp_issue_call(cpu, state, false, NULL);
1764 }
1765 remove:
1766 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1767 mutex_unlock(&cpuhp_state_mutex);
1768 }
1769 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1770
1771 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1772 {
1773 cpus_read_lock();
1774 __cpuhp_remove_state_cpuslocked(state, invoke);
1775 cpus_read_unlock();
1776 }
1777 EXPORT_SYMBOL(__cpuhp_remove_state);
1778
1779 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1780 static ssize_t show_cpuhp_state(struct device *dev,
1781 struct device_attribute *attr, char *buf)
1782 {
1783 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1784
1785 return sprintf(buf, "%d\n", st->state);
1786 }
1787 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1788
1789 static ssize_t write_cpuhp_target(struct device *dev,
1790 struct device_attribute *attr,
1791 const char *buf, size_t count)
1792 {
1793 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1794 struct cpuhp_step *sp;
1795 int target, ret;
1796
1797 ret = kstrtoint(buf, 10, &target);
1798 if (ret)
1799 return ret;
1800
1801 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1802 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1803 return -EINVAL;
1804 #else
1805 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1806 return -EINVAL;
1807 #endif
1808
1809 ret = lock_device_hotplug_sysfs();
1810 if (ret)
1811 return ret;
1812
1813 mutex_lock(&cpuhp_state_mutex);
1814 sp = cpuhp_get_step(target);
1815 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1816 mutex_unlock(&cpuhp_state_mutex);
1817 if (ret)
1818 goto out;
1819
1820 if (st->state < target)
1821 ret = do_cpu_up(dev->id, target);
1822 else
1823 ret = do_cpu_down(dev->id, target);
1824 out:
1825 unlock_device_hotplug();
1826 return ret ? ret : count;
1827 }
1828
1829 static ssize_t show_cpuhp_target(struct device *dev,
1830 struct device_attribute *attr, char *buf)
1831 {
1832 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1833
1834 return sprintf(buf, "%d\n", st->target);
1835 }
1836 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1837
1838
1839 static ssize_t write_cpuhp_fail(struct device *dev,
1840 struct device_attribute *attr,
1841 const char *buf, size_t count)
1842 {
1843 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1844 struct cpuhp_step *sp;
1845 int fail, ret;
1846
1847 ret = kstrtoint(buf, 10, &fail);
1848 if (ret)
1849 return ret;
1850
1851 /*
1852 * Cannot fail STARTING/DYING callbacks.
1853 */
1854 if (cpuhp_is_atomic_state(fail))
1855 return -EINVAL;
1856
1857 /*
1858 * Cannot fail anything that doesn't have callbacks.
1859 */
1860 mutex_lock(&cpuhp_state_mutex);
1861 sp = cpuhp_get_step(fail);
1862 if (!sp->startup.single && !sp->teardown.single)
1863 ret = -EINVAL;
1864 mutex_unlock(&cpuhp_state_mutex);
1865 if (ret)
1866 return ret;
1867
1868 st->fail = fail;
1869
1870 return count;
1871 }
1872
1873 static ssize_t show_cpuhp_fail(struct device *dev,
1874 struct device_attribute *attr, char *buf)
1875 {
1876 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1877
1878 return sprintf(buf, "%d\n", st->fail);
1879 }
1880
1881 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1882
1883 static struct attribute *cpuhp_cpu_attrs[] = {
1884 &dev_attr_state.attr,
1885 &dev_attr_target.attr,
1886 &dev_attr_fail.attr,
1887 NULL
1888 };
1889
1890 static const struct attribute_group cpuhp_cpu_attr_group = {
1891 .attrs = cpuhp_cpu_attrs,
1892 .name = "hotplug",
1893 NULL
1894 };
1895
1896 static ssize_t show_cpuhp_states(struct device *dev,
1897 struct device_attribute *attr, char *buf)
1898 {
1899 ssize_t cur, res = 0;
1900 int i;
1901
1902 mutex_lock(&cpuhp_state_mutex);
1903 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1904 struct cpuhp_step *sp = cpuhp_get_step(i);
1905
1906 if (sp->name) {
1907 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1908 buf += cur;
1909 res += cur;
1910 }
1911 }
1912 mutex_unlock(&cpuhp_state_mutex);
1913 return res;
1914 }
1915 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1916
1917 static struct attribute *cpuhp_cpu_root_attrs[] = {
1918 &dev_attr_states.attr,
1919 NULL
1920 };
1921
1922 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1923 .attrs = cpuhp_cpu_root_attrs,
1924 .name = "hotplug",
1925 NULL
1926 };
1927
1928 static int __init cpuhp_sysfs_init(void)
1929 {
1930 int cpu, ret;
1931
1932 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
1933 &cpuhp_cpu_root_attr_group);
1934 if (ret)
1935 return ret;
1936
1937 for_each_possible_cpu(cpu) {
1938 struct device *dev = get_cpu_device(cpu);
1939
1940 if (!dev)
1941 continue;
1942 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
1943 if (ret)
1944 return ret;
1945 }
1946 return 0;
1947 }
1948 device_initcall(cpuhp_sysfs_init);
1949 #endif
1950
1951 /*
1952 * cpu_bit_bitmap[] is a special, "compressed" data structure that
1953 * represents all NR_CPUS bits binary values of 1<<nr.
1954 *
1955 * It is used by cpumask_of() to get a constant address to a CPU
1956 * mask value that has a single bit set only.
1957 */
1958
1959 /* cpu_bit_bitmap[0] is empty - so we can back into it */
1960 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
1961 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
1962 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
1963 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
1964
1965 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
1966
1967 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
1968 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
1969 #if BITS_PER_LONG > 32
1970 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
1971 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
1972 #endif
1973 };
1974 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
1975
1976 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
1977 EXPORT_SYMBOL(cpu_all_bits);
1978
1979 #ifdef CONFIG_INIT_ALL_POSSIBLE
1980 struct cpumask __cpu_possible_mask __read_mostly
1981 = {CPU_BITS_ALL};
1982 #else
1983 struct cpumask __cpu_possible_mask __read_mostly;
1984 #endif
1985 EXPORT_SYMBOL(__cpu_possible_mask);
1986
1987 struct cpumask __cpu_online_mask __read_mostly;
1988 EXPORT_SYMBOL(__cpu_online_mask);
1989
1990 struct cpumask __cpu_present_mask __read_mostly;
1991 EXPORT_SYMBOL(__cpu_present_mask);
1992
1993 struct cpumask __cpu_active_mask __read_mostly;
1994 EXPORT_SYMBOL(__cpu_active_mask);
1995
1996 void init_cpu_present(const struct cpumask *src)
1997 {
1998 cpumask_copy(&__cpu_present_mask, src);
1999 }
2000
2001 void init_cpu_possible(const struct cpumask *src)
2002 {
2003 cpumask_copy(&__cpu_possible_mask, src);
2004 }
2005
2006 void init_cpu_online(const struct cpumask *src)
2007 {
2008 cpumask_copy(&__cpu_online_mask, src);
2009 }
2010
2011 /*
2012 * Activate the first processor.
2013 */
2014 void __init boot_cpu_init(void)
2015 {
2016 int cpu = smp_processor_id();
2017
2018 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2019 set_cpu_online(cpu, true);
2020 set_cpu_active(cpu, true);
2021 set_cpu_present(cpu, true);
2022 set_cpu_possible(cpu, true);
2023
2024 #ifdef CONFIG_SMP
2025 __boot_cpu_id = cpu;
2026 #endif
2027 }
2028
2029 /*
2030 * Must be called _AFTER_ setting up the per_cpu areas
2031 */
2032 void __init boot_cpu_state_init(void)
2033 {
2034 per_cpu_ptr(&cpuhp_state, smp_processor_id())->state = CPUHP_ONLINE;
2035 }