dm raid1: use per_bio_data
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cgroup.c
1 /*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29 #include <linux/cgroup.h>
30 #include <linux/cred.h>
31 #include <linux/ctype.h>
32 #include <linux/errno.h>
33 #include <linux/fs.h>
34 #include <linux/init_task.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/mm.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/backing-dev.h>
45 #include <linux/seq_file.h>
46 #include <linux/slab.h>
47 #include <linux/magic.h>
48 #include <linux/spinlock.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/module.h>
53 #include <linux/delayacct.h>
54 #include <linux/cgroupstats.h>
55 #include <linux/hash.h>
56 #include <linux/namei.h>
57 #include <linux/pid_namespace.h>
58 #include <linux/idr.h>
59 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
60 #include <linux/eventfd.h>
61 #include <linux/poll.h>
62 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
63 #include <linux/kthread.h>
64
65 #include <linux/atomic.h>
66
67 /* css deactivation bias, makes css->refcnt negative to deny new trygets */
68 #define CSS_DEACT_BIAS INT_MIN
69
70 /*
71 * cgroup_mutex is the master lock. Any modification to cgroup or its
72 * hierarchy must be performed while holding it.
73 *
74 * cgroup_root_mutex nests inside cgroup_mutex and should be held to modify
75 * cgroupfs_root of any cgroup hierarchy - subsys list, flags,
76 * release_agent_path and so on. Modifying requires both cgroup_mutex and
77 * cgroup_root_mutex. Readers can acquire either of the two. This is to
78 * break the following locking order cycle.
79 *
80 * A. cgroup_mutex -> cred_guard_mutex -> s_type->i_mutex_key -> namespace_sem
81 * B. namespace_sem -> cgroup_mutex
82 *
83 * B happens only through cgroup_show_options() and using cgroup_root_mutex
84 * breaks it.
85 */
86 static DEFINE_MUTEX(cgroup_mutex);
87 static DEFINE_MUTEX(cgroup_root_mutex);
88
89 /*
90 * Generate an array of cgroup subsystem pointers. At boot time, this is
91 * populated with the built in subsystems, and modular subsystems are
92 * registered after that. The mutable section of this array is protected by
93 * cgroup_mutex.
94 */
95 #define SUBSYS(_x) [_x ## _subsys_id] = &_x ## _subsys,
96 #define IS_SUBSYS_ENABLED(option) IS_BUILTIN(option)
97 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
98 #include <linux/cgroup_subsys.h>
99 };
100
101 #define MAX_CGROUP_ROOT_NAMELEN 64
102
103 /*
104 * A cgroupfs_root represents the root of a cgroup hierarchy,
105 * and may be associated with a superblock to form an active
106 * hierarchy
107 */
108 struct cgroupfs_root {
109 struct super_block *sb;
110
111 /*
112 * The bitmask of subsystems intended to be attached to this
113 * hierarchy
114 */
115 unsigned long subsys_mask;
116
117 /* Unique id for this hierarchy. */
118 int hierarchy_id;
119
120 /* The bitmask of subsystems currently attached to this hierarchy */
121 unsigned long actual_subsys_mask;
122
123 /* A list running through the attached subsystems */
124 struct list_head subsys_list;
125
126 /* The root cgroup for this hierarchy */
127 struct cgroup top_cgroup;
128
129 /* Tracks how many cgroups are currently defined in hierarchy.*/
130 int number_of_cgroups;
131
132 /* A list running through the active hierarchies */
133 struct list_head root_list;
134
135 /* All cgroups on this root, cgroup_mutex protected */
136 struct list_head allcg_list;
137
138 /* Hierarchy-specific flags */
139 unsigned long flags;
140
141 /* The path to use for release notifications. */
142 char release_agent_path[PATH_MAX];
143
144 /* The name for this hierarchy - may be empty */
145 char name[MAX_CGROUP_ROOT_NAMELEN];
146 };
147
148 /*
149 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
150 * subsystems that are otherwise unattached - it never has more than a
151 * single cgroup, and all tasks are part of that cgroup.
152 */
153 static struct cgroupfs_root rootnode;
154
155 /*
156 * cgroupfs file entry, pointed to from leaf dentry->d_fsdata.
157 */
158 struct cfent {
159 struct list_head node;
160 struct dentry *dentry;
161 struct cftype *type;
162 };
163
164 /*
165 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
166 * cgroup_subsys->use_id != 0.
167 */
168 #define CSS_ID_MAX (65535)
169 struct css_id {
170 /*
171 * The css to which this ID points. This pointer is set to valid value
172 * after cgroup is populated. If cgroup is removed, this will be NULL.
173 * This pointer is expected to be RCU-safe because destroy()
174 * is called after synchronize_rcu(). But for safe use, css_is_removed()
175 * css_tryget() should be used for avoiding race.
176 */
177 struct cgroup_subsys_state __rcu *css;
178 /*
179 * ID of this css.
180 */
181 unsigned short id;
182 /*
183 * Depth in hierarchy which this ID belongs to.
184 */
185 unsigned short depth;
186 /*
187 * ID is freed by RCU. (and lookup routine is RCU safe.)
188 */
189 struct rcu_head rcu_head;
190 /*
191 * Hierarchy of CSS ID belongs to.
192 */
193 unsigned short stack[0]; /* Array of Length (depth+1) */
194 };
195
196 /*
197 * cgroup_event represents events which userspace want to receive.
198 */
199 struct cgroup_event {
200 /*
201 * Cgroup which the event belongs to.
202 */
203 struct cgroup *cgrp;
204 /*
205 * Control file which the event associated.
206 */
207 struct cftype *cft;
208 /*
209 * eventfd to signal userspace about the event.
210 */
211 struct eventfd_ctx *eventfd;
212 /*
213 * Each of these stored in a list by the cgroup.
214 */
215 struct list_head list;
216 /*
217 * All fields below needed to unregister event when
218 * userspace closes eventfd.
219 */
220 poll_table pt;
221 wait_queue_head_t *wqh;
222 wait_queue_t wait;
223 struct work_struct remove;
224 };
225
226 /* The list of hierarchy roots */
227
228 static LIST_HEAD(roots);
229 static int root_count;
230
231 static DEFINE_IDA(hierarchy_ida);
232 static int next_hierarchy_id;
233 static DEFINE_SPINLOCK(hierarchy_id_lock);
234
235 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
236 #define dummytop (&rootnode.top_cgroup)
237
238 /* This flag indicates whether tasks in the fork and exit paths should
239 * check for fork/exit handlers to call. This avoids us having to do
240 * extra work in the fork/exit path if none of the subsystems need to
241 * be called.
242 */
243 static int need_forkexit_callback __read_mostly;
244
245 #ifdef CONFIG_PROVE_LOCKING
246 int cgroup_lock_is_held(void)
247 {
248 return lockdep_is_held(&cgroup_mutex);
249 }
250 #else /* #ifdef CONFIG_PROVE_LOCKING */
251 int cgroup_lock_is_held(void)
252 {
253 return mutex_is_locked(&cgroup_mutex);
254 }
255 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
256
257 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
258
259 static int css_unbias_refcnt(int refcnt)
260 {
261 return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
262 }
263
264 /* the current nr of refs, always >= 0 whether @css is deactivated or not */
265 static int css_refcnt(struct cgroup_subsys_state *css)
266 {
267 int v = atomic_read(&css->refcnt);
268
269 return css_unbias_refcnt(v);
270 }
271
272 /* convenient tests for these bits */
273 inline int cgroup_is_removed(const struct cgroup *cgrp)
274 {
275 return test_bit(CGRP_REMOVED, &cgrp->flags);
276 }
277
278 /* bits in struct cgroupfs_root flags field */
279 enum {
280 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
281 ROOT_XATTR, /* supports extended attributes */
282 };
283
284 static int cgroup_is_releasable(const struct cgroup *cgrp)
285 {
286 const int bits =
287 (1 << CGRP_RELEASABLE) |
288 (1 << CGRP_NOTIFY_ON_RELEASE);
289 return (cgrp->flags & bits) == bits;
290 }
291
292 static int notify_on_release(const struct cgroup *cgrp)
293 {
294 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
295 }
296
297 static int clone_children(const struct cgroup *cgrp)
298 {
299 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
300 }
301
302 /*
303 * for_each_subsys() allows you to iterate on each subsystem attached to
304 * an active hierarchy
305 */
306 #define for_each_subsys(_root, _ss) \
307 list_for_each_entry(_ss, &_root->subsys_list, sibling)
308
309 /* for_each_active_root() allows you to iterate across the active hierarchies */
310 #define for_each_active_root(_root) \
311 list_for_each_entry(_root, &roots, root_list)
312
313 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
314 {
315 return dentry->d_fsdata;
316 }
317
318 static inline struct cfent *__d_cfe(struct dentry *dentry)
319 {
320 return dentry->d_fsdata;
321 }
322
323 static inline struct cftype *__d_cft(struct dentry *dentry)
324 {
325 return __d_cfe(dentry)->type;
326 }
327
328 /* the list of cgroups eligible for automatic release. Protected by
329 * release_list_lock */
330 static LIST_HEAD(release_list);
331 static DEFINE_RAW_SPINLOCK(release_list_lock);
332 static void cgroup_release_agent(struct work_struct *work);
333 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
334 static void check_for_release(struct cgroup *cgrp);
335
336 /* Link structure for associating css_set objects with cgroups */
337 struct cg_cgroup_link {
338 /*
339 * List running through cg_cgroup_links associated with a
340 * cgroup, anchored on cgroup->css_sets
341 */
342 struct list_head cgrp_link_list;
343 struct cgroup *cgrp;
344 /*
345 * List running through cg_cgroup_links pointing at a
346 * single css_set object, anchored on css_set->cg_links
347 */
348 struct list_head cg_link_list;
349 struct css_set *cg;
350 };
351
352 /* The default css_set - used by init and its children prior to any
353 * hierarchies being mounted. It contains a pointer to the root state
354 * for each subsystem. Also used to anchor the list of css_sets. Not
355 * reference-counted, to improve performance when child cgroups
356 * haven't been created.
357 */
358
359 static struct css_set init_css_set;
360 static struct cg_cgroup_link init_css_set_link;
361
362 static int cgroup_init_idr(struct cgroup_subsys *ss,
363 struct cgroup_subsys_state *css);
364
365 /* css_set_lock protects the list of css_set objects, and the
366 * chain of tasks off each css_set. Nests outside task->alloc_lock
367 * due to cgroup_iter_start() */
368 static DEFINE_RWLOCK(css_set_lock);
369 static int css_set_count;
370
371 /*
372 * hash table for cgroup groups. This improves the performance to find
373 * an existing css_set. This hash doesn't (currently) take into
374 * account cgroups in empty hierarchies.
375 */
376 #define CSS_SET_HASH_BITS 7
377 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
378 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
379
380 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
381 {
382 int i;
383 int index;
384 unsigned long tmp = 0UL;
385
386 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
387 tmp += (unsigned long)css[i];
388 tmp = (tmp >> 16) ^ tmp;
389
390 index = hash_long(tmp, CSS_SET_HASH_BITS);
391
392 return &css_set_table[index];
393 }
394
395 /* We don't maintain the lists running through each css_set to its
396 * task until after the first call to cgroup_iter_start(). This
397 * reduces the fork()/exit() overhead for people who have cgroups
398 * compiled into their kernel but not actually in use */
399 static int use_task_css_set_links __read_mostly;
400
401 static void __put_css_set(struct css_set *cg, int taskexit)
402 {
403 struct cg_cgroup_link *link;
404 struct cg_cgroup_link *saved_link;
405 /*
406 * Ensure that the refcount doesn't hit zero while any readers
407 * can see it. Similar to atomic_dec_and_lock(), but for an
408 * rwlock
409 */
410 if (atomic_add_unless(&cg->refcount, -1, 1))
411 return;
412 write_lock(&css_set_lock);
413 if (!atomic_dec_and_test(&cg->refcount)) {
414 write_unlock(&css_set_lock);
415 return;
416 }
417
418 /* This css_set is dead. unlink it and release cgroup refcounts */
419 hlist_del(&cg->hlist);
420 css_set_count--;
421
422 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
423 cg_link_list) {
424 struct cgroup *cgrp = link->cgrp;
425 list_del(&link->cg_link_list);
426 list_del(&link->cgrp_link_list);
427 if (atomic_dec_and_test(&cgrp->count) &&
428 notify_on_release(cgrp)) {
429 if (taskexit)
430 set_bit(CGRP_RELEASABLE, &cgrp->flags);
431 check_for_release(cgrp);
432 }
433
434 kfree(link);
435 }
436
437 write_unlock(&css_set_lock);
438 kfree_rcu(cg, rcu_head);
439 }
440
441 /*
442 * refcounted get/put for css_set objects
443 */
444 static inline void get_css_set(struct css_set *cg)
445 {
446 atomic_inc(&cg->refcount);
447 }
448
449 static inline void put_css_set(struct css_set *cg)
450 {
451 __put_css_set(cg, 0);
452 }
453
454 static inline void put_css_set_taskexit(struct css_set *cg)
455 {
456 __put_css_set(cg, 1);
457 }
458
459 /*
460 * compare_css_sets - helper function for find_existing_css_set().
461 * @cg: candidate css_set being tested
462 * @old_cg: existing css_set for a task
463 * @new_cgrp: cgroup that's being entered by the task
464 * @template: desired set of css pointers in css_set (pre-calculated)
465 *
466 * Returns true if "cg" matches "old_cg" except for the hierarchy
467 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
468 */
469 static bool compare_css_sets(struct css_set *cg,
470 struct css_set *old_cg,
471 struct cgroup *new_cgrp,
472 struct cgroup_subsys_state *template[])
473 {
474 struct list_head *l1, *l2;
475
476 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
477 /* Not all subsystems matched */
478 return false;
479 }
480
481 /*
482 * Compare cgroup pointers in order to distinguish between
483 * different cgroups in heirarchies with no subsystems. We
484 * could get by with just this check alone (and skip the
485 * memcmp above) but on most setups the memcmp check will
486 * avoid the need for this more expensive check on almost all
487 * candidates.
488 */
489
490 l1 = &cg->cg_links;
491 l2 = &old_cg->cg_links;
492 while (1) {
493 struct cg_cgroup_link *cgl1, *cgl2;
494 struct cgroup *cg1, *cg2;
495
496 l1 = l1->next;
497 l2 = l2->next;
498 /* See if we reached the end - both lists are equal length. */
499 if (l1 == &cg->cg_links) {
500 BUG_ON(l2 != &old_cg->cg_links);
501 break;
502 } else {
503 BUG_ON(l2 == &old_cg->cg_links);
504 }
505 /* Locate the cgroups associated with these links. */
506 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
507 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
508 cg1 = cgl1->cgrp;
509 cg2 = cgl2->cgrp;
510 /* Hierarchies should be linked in the same order. */
511 BUG_ON(cg1->root != cg2->root);
512
513 /*
514 * If this hierarchy is the hierarchy of the cgroup
515 * that's changing, then we need to check that this
516 * css_set points to the new cgroup; if it's any other
517 * hierarchy, then this css_set should point to the
518 * same cgroup as the old css_set.
519 */
520 if (cg1->root == new_cgrp->root) {
521 if (cg1 != new_cgrp)
522 return false;
523 } else {
524 if (cg1 != cg2)
525 return false;
526 }
527 }
528 return true;
529 }
530
531 /*
532 * find_existing_css_set() is a helper for
533 * find_css_set(), and checks to see whether an existing
534 * css_set is suitable.
535 *
536 * oldcg: the cgroup group that we're using before the cgroup
537 * transition
538 *
539 * cgrp: the cgroup that we're moving into
540 *
541 * template: location in which to build the desired set of subsystem
542 * state objects for the new cgroup group
543 */
544 static struct css_set *find_existing_css_set(
545 struct css_set *oldcg,
546 struct cgroup *cgrp,
547 struct cgroup_subsys_state *template[])
548 {
549 int i;
550 struct cgroupfs_root *root = cgrp->root;
551 struct hlist_head *hhead;
552 struct hlist_node *node;
553 struct css_set *cg;
554
555 /*
556 * Build the set of subsystem state objects that we want to see in the
557 * new css_set. while subsystems can change globally, the entries here
558 * won't change, so no need for locking.
559 */
560 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
561 if (root->subsys_mask & (1UL << i)) {
562 /* Subsystem is in this hierarchy. So we want
563 * the subsystem state from the new
564 * cgroup */
565 template[i] = cgrp->subsys[i];
566 } else {
567 /* Subsystem is not in this hierarchy, so we
568 * don't want to change the subsystem state */
569 template[i] = oldcg->subsys[i];
570 }
571 }
572
573 hhead = css_set_hash(template);
574 hlist_for_each_entry(cg, node, hhead, hlist) {
575 if (!compare_css_sets(cg, oldcg, cgrp, template))
576 continue;
577
578 /* This css_set matches what we need */
579 return cg;
580 }
581
582 /* No existing cgroup group matched */
583 return NULL;
584 }
585
586 static void free_cg_links(struct list_head *tmp)
587 {
588 struct cg_cgroup_link *link;
589 struct cg_cgroup_link *saved_link;
590
591 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
592 list_del(&link->cgrp_link_list);
593 kfree(link);
594 }
595 }
596
597 /*
598 * allocate_cg_links() allocates "count" cg_cgroup_link structures
599 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
600 * success or a negative error
601 */
602 static int allocate_cg_links(int count, struct list_head *tmp)
603 {
604 struct cg_cgroup_link *link;
605 int i;
606 INIT_LIST_HEAD(tmp);
607 for (i = 0; i < count; i++) {
608 link = kmalloc(sizeof(*link), GFP_KERNEL);
609 if (!link) {
610 free_cg_links(tmp);
611 return -ENOMEM;
612 }
613 list_add(&link->cgrp_link_list, tmp);
614 }
615 return 0;
616 }
617
618 /**
619 * link_css_set - a helper function to link a css_set to a cgroup
620 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
621 * @cg: the css_set to be linked
622 * @cgrp: the destination cgroup
623 */
624 static void link_css_set(struct list_head *tmp_cg_links,
625 struct css_set *cg, struct cgroup *cgrp)
626 {
627 struct cg_cgroup_link *link;
628
629 BUG_ON(list_empty(tmp_cg_links));
630 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
631 cgrp_link_list);
632 link->cg = cg;
633 link->cgrp = cgrp;
634 atomic_inc(&cgrp->count);
635 list_move(&link->cgrp_link_list, &cgrp->css_sets);
636 /*
637 * Always add links to the tail of the list so that the list
638 * is sorted by order of hierarchy creation
639 */
640 list_add_tail(&link->cg_link_list, &cg->cg_links);
641 }
642
643 /*
644 * find_css_set() takes an existing cgroup group and a
645 * cgroup object, and returns a css_set object that's
646 * equivalent to the old group, but with the given cgroup
647 * substituted into the appropriate hierarchy. Must be called with
648 * cgroup_mutex held
649 */
650 static struct css_set *find_css_set(
651 struct css_set *oldcg, struct cgroup *cgrp)
652 {
653 struct css_set *res;
654 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
655
656 struct list_head tmp_cg_links;
657
658 struct hlist_head *hhead;
659 struct cg_cgroup_link *link;
660
661 /* First see if we already have a cgroup group that matches
662 * the desired set */
663 read_lock(&css_set_lock);
664 res = find_existing_css_set(oldcg, cgrp, template);
665 if (res)
666 get_css_set(res);
667 read_unlock(&css_set_lock);
668
669 if (res)
670 return res;
671
672 res = kmalloc(sizeof(*res), GFP_KERNEL);
673 if (!res)
674 return NULL;
675
676 /* Allocate all the cg_cgroup_link objects that we'll need */
677 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
678 kfree(res);
679 return NULL;
680 }
681
682 atomic_set(&res->refcount, 1);
683 INIT_LIST_HEAD(&res->cg_links);
684 INIT_LIST_HEAD(&res->tasks);
685 INIT_HLIST_NODE(&res->hlist);
686
687 /* Copy the set of subsystem state objects generated in
688 * find_existing_css_set() */
689 memcpy(res->subsys, template, sizeof(res->subsys));
690
691 write_lock(&css_set_lock);
692 /* Add reference counts and links from the new css_set. */
693 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
694 struct cgroup *c = link->cgrp;
695 if (c->root == cgrp->root)
696 c = cgrp;
697 link_css_set(&tmp_cg_links, res, c);
698 }
699
700 BUG_ON(!list_empty(&tmp_cg_links));
701
702 css_set_count++;
703
704 /* Add this cgroup group to the hash table */
705 hhead = css_set_hash(res->subsys);
706 hlist_add_head(&res->hlist, hhead);
707
708 write_unlock(&css_set_lock);
709
710 return res;
711 }
712
713 /*
714 * Return the cgroup for "task" from the given hierarchy. Must be
715 * called with cgroup_mutex held.
716 */
717 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
718 struct cgroupfs_root *root)
719 {
720 struct css_set *css;
721 struct cgroup *res = NULL;
722
723 BUG_ON(!mutex_is_locked(&cgroup_mutex));
724 read_lock(&css_set_lock);
725 /*
726 * No need to lock the task - since we hold cgroup_mutex the
727 * task can't change groups, so the only thing that can happen
728 * is that it exits and its css is set back to init_css_set.
729 */
730 css = task->cgroups;
731 if (css == &init_css_set) {
732 res = &root->top_cgroup;
733 } else {
734 struct cg_cgroup_link *link;
735 list_for_each_entry(link, &css->cg_links, cg_link_list) {
736 struct cgroup *c = link->cgrp;
737 if (c->root == root) {
738 res = c;
739 break;
740 }
741 }
742 }
743 read_unlock(&css_set_lock);
744 BUG_ON(!res);
745 return res;
746 }
747
748 /*
749 * There is one global cgroup mutex. We also require taking
750 * task_lock() when dereferencing a task's cgroup subsys pointers.
751 * See "The task_lock() exception", at the end of this comment.
752 *
753 * A task must hold cgroup_mutex to modify cgroups.
754 *
755 * Any task can increment and decrement the count field without lock.
756 * So in general, code holding cgroup_mutex can't rely on the count
757 * field not changing. However, if the count goes to zero, then only
758 * cgroup_attach_task() can increment it again. Because a count of zero
759 * means that no tasks are currently attached, therefore there is no
760 * way a task attached to that cgroup can fork (the other way to
761 * increment the count). So code holding cgroup_mutex can safely
762 * assume that if the count is zero, it will stay zero. Similarly, if
763 * a task holds cgroup_mutex on a cgroup with zero count, it
764 * knows that the cgroup won't be removed, as cgroup_rmdir()
765 * needs that mutex.
766 *
767 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
768 * (usually) take cgroup_mutex. These are the two most performance
769 * critical pieces of code here. The exception occurs on cgroup_exit(),
770 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
771 * is taken, and if the cgroup count is zero, a usermode call made
772 * to the release agent with the name of the cgroup (path relative to
773 * the root of cgroup file system) as the argument.
774 *
775 * A cgroup can only be deleted if both its 'count' of using tasks
776 * is zero, and its list of 'children' cgroups is empty. Since all
777 * tasks in the system use _some_ cgroup, and since there is always at
778 * least one task in the system (init, pid == 1), therefore, top_cgroup
779 * always has either children cgroups and/or using tasks. So we don't
780 * need a special hack to ensure that top_cgroup cannot be deleted.
781 *
782 * The task_lock() exception
783 *
784 * The need for this exception arises from the action of
785 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
786 * another. It does so using cgroup_mutex, however there are
787 * several performance critical places that need to reference
788 * task->cgroup without the expense of grabbing a system global
789 * mutex. Therefore except as noted below, when dereferencing or, as
790 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
791 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
792 * the task_struct routinely used for such matters.
793 *
794 * P.S. One more locking exception. RCU is used to guard the
795 * update of a tasks cgroup pointer by cgroup_attach_task()
796 */
797
798 /**
799 * cgroup_lock - lock out any changes to cgroup structures
800 *
801 */
802 void cgroup_lock(void)
803 {
804 mutex_lock(&cgroup_mutex);
805 }
806 EXPORT_SYMBOL_GPL(cgroup_lock);
807
808 /**
809 * cgroup_unlock - release lock on cgroup changes
810 *
811 * Undo the lock taken in a previous cgroup_lock() call.
812 */
813 void cgroup_unlock(void)
814 {
815 mutex_unlock(&cgroup_mutex);
816 }
817 EXPORT_SYMBOL_GPL(cgroup_unlock);
818
819 /*
820 * A couple of forward declarations required, due to cyclic reference loop:
821 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
822 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
823 * -> cgroup_mkdir.
824 */
825
826 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode);
827 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, unsigned int);
828 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
829 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
830 unsigned long subsys_mask);
831 static const struct inode_operations cgroup_dir_inode_operations;
832 static const struct file_operations proc_cgroupstats_operations;
833
834 static struct backing_dev_info cgroup_backing_dev_info = {
835 .name = "cgroup",
836 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
837 };
838
839 static int alloc_css_id(struct cgroup_subsys *ss,
840 struct cgroup *parent, struct cgroup *child);
841
842 static struct inode *cgroup_new_inode(umode_t mode, struct super_block *sb)
843 {
844 struct inode *inode = new_inode(sb);
845
846 if (inode) {
847 inode->i_ino = get_next_ino();
848 inode->i_mode = mode;
849 inode->i_uid = current_fsuid();
850 inode->i_gid = current_fsgid();
851 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
852 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
853 }
854 return inode;
855 }
856
857 /*
858 * Call subsys's pre_destroy handler.
859 * This is called before css refcnt check.
860 */
861 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
862 {
863 struct cgroup_subsys *ss;
864 int ret = 0;
865
866 for_each_subsys(cgrp->root, ss) {
867 if (!ss->pre_destroy)
868 continue;
869
870 ret = ss->pre_destroy(cgrp);
871 if (ret) {
872 /* ->pre_destroy() failure is being deprecated */
873 WARN_ON_ONCE(!ss->__DEPRECATED_clear_css_refs);
874 break;
875 }
876 }
877
878 return ret;
879 }
880
881 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
882 {
883 /* is dentry a directory ? if so, kfree() associated cgroup */
884 if (S_ISDIR(inode->i_mode)) {
885 struct cgroup *cgrp = dentry->d_fsdata;
886 struct cgroup_subsys *ss;
887 BUG_ON(!(cgroup_is_removed(cgrp)));
888 /* It's possible for external users to be holding css
889 * reference counts on a cgroup; css_put() needs to
890 * be able to access the cgroup after decrementing
891 * the reference count in order to know if it needs to
892 * queue the cgroup to be handled by the release
893 * agent */
894 synchronize_rcu();
895
896 mutex_lock(&cgroup_mutex);
897 /*
898 * Release the subsystem state objects.
899 */
900 for_each_subsys(cgrp->root, ss)
901 ss->destroy(cgrp);
902
903 cgrp->root->number_of_cgroups--;
904 mutex_unlock(&cgroup_mutex);
905
906 /*
907 * Drop the active superblock reference that we took when we
908 * created the cgroup
909 */
910 deactivate_super(cgrp->root->sb);
911
912 /*
913 * if we're getting rid of the cgroup, refcount should ensure
914 * that there are no pidlists left.
915 */
916 BUG_ON(!list_empty(&cgrp->pidlists));
917
918 simple_xattrs_free(&cgrp->xattrs);
919
920 kfree_rcu(cgrp, rcu_head);
921 } else {
922 struct cfent *cfe = __d_cfe(dentry);
923 struct cgroup *cgrp = dentry->d_parent->d_fsdata;
924 struct cftype *cft = cfe->type;
925
926 WARN_ONCE(!list_empty(&cfe->node) &&
927 cgrp != &cgrp->root->top_cgroup,
928 "cfe still linked for %s\n", cfe->type->name);
929 kfree(cfe);
930 simple_xattrs_free(&cft->xattrs);
931 }
932 iput(inode);
933 }
934
935 static int cgroup_delete(const struct dentry *d)
936 {
937 return 1;
938 }
939
940 static void remove_dir(struct dentry *d)
941 {
942 struct dentry *parent = dget(d->d_parent);
943
944 d_delete(d);
945 simple_rmdir(parent->d_inode, d);
946 dput(parent);
947 }
948
949 static int cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
950 {
951 struct cfent *cfe;
952
953 lockdep_assert_held(&cgrp->dentry->d_inode->i_mutex);
954 lockdep_assert_held(&cgroup_mutex);
955
956 list_for_each_entry(cfe, &cgrp->files, node) {
957 struct dentry *d = cfe->dentry;
958
959 if (cft && cfe->type != cft)
960 continue;
961
962 dget(d);
963 d_delete(d);
964 simple_unlink(cgrp->dentry->d_inode, d);
965 list_del_init(&cfe->node);
966 dput(d);
967
968 return 0;
969 }
970 return -ENOENT;
971 }
972
973 /**
974 * cgroup_clear_directory - selective removal of base and subsystem files
975 * @dir: directory containing the files
976 * @base_files: true if the base files should be removed
977 * @subsys_mask: mask of the subsystem ids whose files should be removed
978 */
979 static void cgroup_clear_directory(struct dentry *dir, bool base_files,
980 unsigned long subsys_mask)
981 {
982 struct cgroup *cgrp = __d_cgrp(dir);
983 struct cgroup_subsys *ss;
984
985 for_each_subsys(cgrp->root, ss) {
986 struct cftype_set *set;
987 if (!test_bit(ss->subsys_id, &subsys_mask))
988 continue;
989 list_for_each_entry(set, &ss->cftsets, node)
990 cgroup_rm_file(cgrp, set->cfts);
991 }
992 if (base_files) {
993 while (!list_empty(&cgrp->files))
994 cgroup_rm_file(cgrp, NULL);
995 }
996 }
997
998 /*
999 * NOTE : the dentry must have been dget()'ed
1000 */
1001 static void cgroup_d_remove_dir(struct dentry *dentry)
1002 {
1003 struct dentry *parent;
1004 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1005
1006 cgroup_clear_directory(dentry, true, root->subsys_mask);
1007
1008 parent = dentry->d_parent;
1009 spin_lock(&parent->d_lock);
1010 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1011 list_del_init(&dentry->d_u.d_child);
1012 spin_unlock(&dentry->d_lock);
1013 spin_unlock(&parent->d_lock);
1014 remove_dir(dentry);
1015 }
1016
1017 /*
1018 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
1019 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
1020 * reference to css->refcnt. In general, this refcnt is expected to goes down
1021 * to zero, soon.
1022 *
1023 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
1024 */
1025 static DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
1026
1027 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
1028 {
1029 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
1030 wake_up_all(&cgroup_rmdir_waitq);
1031 }
1032
1033 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
1034 {
1035 css_get(css);
1036 }
1037
1038 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
1039 {
1040 cgroup_wakeup_rmdir_waiter(css->cgroup);
1041 css_put(css);
1042 }
1043
1044 /*
1045 * Call with cgroup_mutex held. Drops reference counts on modules, including
1046 * any duplicate ones that parse_cgroupfs_options took. If this function
1047 * returns an error, no reference counts are touched.
1048 */
1049 static int rebind_subsystems(struct cgroupfs_root *root,
1050 unsigned long final_subsys_mask)
1051 {
1052 unsigned long added_mask, removed_mask;
1053 struct cgroup *cgrp = &root->top_cgroup;
1054 int i;
1055
1056 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1057 BUG_ON(!mutex_is_locked(&cgroup_root_mutex));
1058
1059 removed_mask = root->actual_subsys_mask & ~final_subsys_mask;
1060 added_mask = final_subsys_mask & ~root->actual_subsys_mask;
1061 /* Check that any added subsystems are currently free */
1062 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1063 unsigned long bit = 1UL << i;
1064 struct cgroup_subsys *ss = subsys[i];
1065 if (!(bit & added_mask))
1066 continue;
1067 /*
1068 * Nobody should tell us to do a subsys that doesn't exist:
1069 * parse_cgroupfs_options should catch that case and refcounts
1070 * ensure that subsystems won't disappear once selected.
1071 */
1072 BUG_ON(ss == NULL);
1073 if (ss->root != &rootnode) {
1074 /* Subsystem isn't free */
1075 return -EBUSY;
1076 }
1077 }
1078
1079 /* Currently we don't handle adding/removing subsystems when
1080 * any child cgroups exist. This is theoretically supportable
1081 * but involves complex error handling, so it's being left until
1082 * later */
1083 if (root->number_of_cgroups > 1)
1084 return -EBUSY;
1085
1086 /* Process each subsystem */
1087 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1088 struct cgroup_subsys *ss = subsys[i];
1089 unsigned long bit = 1UL << i;
1090 if (bit & added_mask) {
1091 /* We're binding this subsystem to this hierarchy */
1092 BUG_ON(ss == NULL);
1093 BUG_ON(cgrp->subsys[i]);
1094 BUG_ON(!dummytop->subsys[i]);
1095 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
1096 cgrp->subsys[i] = dummytop->subsys[i];
1097 cgrp->subsys[i]->cgroup = cgrp;
1098 list_move(&ss->sibling, &root->subsys_list);
1099 ss->root = root;
1100 if (ss->bind)
1101 ss->bind(cgrp);
1102 /* refcount was already taken, and we're keeping it */
1103 } else if (bit & removed_mask) {
1104 /* We're removing this subsystem */
1105 BUG_ON(ss == NULL);
1106 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1107 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1108 if (ss->bind)
1109 ss->bind(dummytop);
1110 dummytop->subsys[i]->cgroup = dummytop;
1111 cgrp->subsys[i] = NULL;
1112 subsys[i]->root = &rootnode;
1113 list_move(&ss->sibling, &rootnode.subsys_list);
1114 /* subsystem is now free - drop reference on module */
1115 module_put(ss->module);
1116 } else if (bit & final_subsys_mask) {
1117 /* Subsystem state should already exist */
1118 BUG_ON(ss == NULL);
1119 BUG_ON(!cgrp->subsys[i]);
1120 /*
1121 * a refcount was taken, but we already had one, so
1122 * drop the extra reference.
1123 */
1124 module_put(ss->module);
1125 #ifdef CONFIG_MODULE_UNLOAD
1126 BUG_ON(ss->module && !module_refcount(ss->module));
1127 #endif
1128 } else {
1129 /* Subsystem state shouldn't exist */
1130 BUG_ON(cgrp->subsys[i]);
1131 }
1132 }
1133 root->subsys_mask = root->actual_subsys_mask = final_subsys_mask;
1134 synchronize_rcu();
1135
1136 return 0;
1137 }
1138
1139 static int cgroup_show_options(struct seq_file *seq, struct dentry *dentry)
1140 {
1141 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
1142 struct cgroup_subsys *ss;
1143
1144 mutex_lock(&cgroup_root_mutex);
1145 for_each_subsys(root, ss)
1146 seq_printf(seq, ",%s", ss->name);
1147 if (test_bit(ROOT_NOPREFIX, &root->flags))
1148 seq_puts(seq, ",noprefix");
1149 if (test_bit(ROOT_XATTR, &root->flags))
1150 seq_puts(seq, ",xattr");
1151 if (strlen(root->release_agent_path))
1152 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1153 if (clone_children(&root->top_cgroup))
1154 seq_puts(seq, ",clone_children");
1155 if (strlen(root->name))
1156 seq_printf(seq, ",name=%s", root->name);
1157 mutex_unlock(&cgroup_root_mutex);
1158 return 0;
1159 }
1160
1161 struct cgroup_sb_opts {
1162 unsigned long subsys_mask;
1163 unsigned long flags;
1164 char *release_agent;
1165 bool clone_children;
1166 char *name;
1167 /* User explicitly requested empty subsystem */
1168 bool none;
1169
1170 struct cgroupfs_root *new_root;
1171
1172 };
1173
1174 /*
1175 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1176 * with cgroup_mutex held to protect the subsys[] array. This function takes
1177 * refcounts on subsystems to be used, unless it returns error, in which case
1178 * no refcounts are taken.
1179 */
1180 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1181 {
1182 char *token, *o = data;
1183 bool all_ss = false, one_ss = false;
1184 unsigned long mask = (unsigned long)-1;
1185 int i;
1186 bool module_pin_failed = false;
1187
1188 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1189
1190 #ifdef CONFIG_CPUSETS
1191 mask = ~(1UL << cpuset_subsys_id);
1192 #endif
1193
1194 memset(opts, 0, sizeof(*opts));
1195
1196 while ((token = strsep(&o, ",")) != NULL) {
1197 if (!*token)
1198 return -EINVAL;
1199 if (!strcmp(token, "none")) {
1200 /* Explicitly have no subsystems */
1201 opts->none = true;
1202 continue;
1203 }
1204 if (!strcmp(token, "all")) {
1205 /* Mutually exclusive option 'all' + subsystem name */
1206 if (one_ss)
1207 return -EINVAL;
1208 all_ss = true;
1209 continue;
1210 }
1211 if (!strcmp(token, "noprefix")) {
1212 set_bit(ROOT_NOPREFIX, &opts->flags);
1213 continue;
1214 }
1215 if (!strcmp(token, "clone_children")) {
1216 opts->clone_children = true;
1217 continue;
1218 }
1219 if (!strcmp(token, "xattr")) {
1220 set_bit(ROOT_XATTR, &opts->flags);
1221 continue;
1222 }
1223 if (!strncmp(token, "release_agent=", 14)) {
1224 /* Specifying two release agents is forbidden */
1225 if (opts->release_agent)
1226 return -EINVAL;
1227 opts->release_agent =
1228 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1229 if (!opts->release_agent)
1230 return -ENOMEM;
1231 continue;
1232 }
1233 if (!strncmp(token, "name=", 5)) {
1234 const char *name = token + 5;
1235 /* Can't specify an empty name */
1236 if (!strlen(name))
1237 return -EINVAL;
1238 /* Must match [\w.-]+ */
1239 for (i = 0; i < strlen(name); i++) {
1240 char c = name[i];
1241 if (isalnum(c))
1242 continue;
1243 if ((c == '.') || (c == '-') || (c == '_'))
1244 continue;
1245 return -EINVAL;
1246 }
1247 /* Specifying two names is forbidden */
1248 if (opts->name)
1249 return -EINVAL;
1250 opts->name = kstrndup(name,
1251 MAX_CGROUP_ROOT_NAMELEN - 1,
1252 GFP_KERNEL);
1253 if (!opts->name)
1254 return -ENOMEM;
1255
1256 continue;
1257 }
1258
1259 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1260 struct cgroup_subsys *ss = subsys[i];
1261 if (ss == NULL)
1262 continue;
1263 if (strcmp(token, ss->name))
1264 continue;
1265 if (ss->disabled)
1266 continue;
1267
1268 /* Mutually exclusive option 'all' + subsystem name */
1269 if (all_ss)
1270 return -EINVAL;
1271 set_bit(i, &opts->subsys_mask);
1272 one_ss = true;
1273
1274 break;
1275 }
1276 if (i == CGROUP_SUBSYS_COUNT)
1277 return -ENOENT;
1278 }
1279
1280 /*
1281 * If the 'all' option was specified select all the subsystems,
1282 * otherwise if 'none', 'name=' and a subsystem name options
1283 * were not specified, let's default to 'all'
1284 */
1285 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1286 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1287 struct cgroup_subsys *ss = subsys[i];
1288 if (ss == NULL)
1289 continue;
1290 if (ss->disabled)
1291 continue;
1292 set_bit(i, &opts->subsys_mask);
1293 }
1294 }
1295
1296 /* Consistency checks */
1297
1298 /*
1299 * Option noprefix was introduced just for backward compatibility
1300 * with the old cpuset, so we allow noprefix only if mounting just
1301 * the cpuset subsystem.
1302 */
1303 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1304 (opts->subsys_mask & mask))
1305 return -EINVAL;
1306
1307
1308 /* Can't specify "none" and some subsystems */
1309 if (opts->subsys_mask && opts->none)
1310 return -EINVAL;
1311
1312 /*
1313 * We either have to specify by name or by subsystems. (So all
1314 * empty hierarchies must have a name).
1315 */
1316 if (!opts->subsys_mask && !opts->name)
1317 return -EINVAL;
1318
1319 /*
1320 * Grab references on all the modules we'll need, so the subsystems
1321 * don't dance around before rebind_subsystems attaches them. This may
1322 * take duplicate reference counts on a subsystem that's already used,
1323 * but rebind_subsystems handles this case.
1324 */
1325 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1326 unsigned long bit = 1UL << i;
1327
1328 if (!(bit & opts->subsys_mask))
1329 continue;
1330 if (!try_module_get(subsys[i]->module)) {
1331 module_pin_failed = true;
1332 break;
1333 }
1334 }
1335 if (module_pin_failed) {
1336 /*
1337 * oops, one of the modules was going away. this means that we
1338 * raced with a module_delete call, and to the user this is
1339 * essentially a "subsystem doesn't exist" case.
1340 */
1341 for (i--; i >= 0; i--) {
1342 /* drop refcounts only on the ones we took */
1343 unsigned long bit = 1UL << i;
1344
1345 if (!(bit & opts->subsys_mask))
1346 continue;
1347 module_put(subsys[i]->module);
1348 }
1349 return -ENOENT;
1350 }
1351
1352 return 0;
1353 }
1354
1355 static void drop_parsed_module_refcounts(unsigned long subsys_mask)
1356 {
1357 int i;
1358 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1359 unsigned long bit = 1UL << i;
1360
1361 if (!(bit & subsys_mask))
1362 continue;
1363 module_put(subsys[i]->module);
1364 }
1365 }
1366
1367 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1368 {
1369 int ret = 0;
1370 struct cgroupfs_root *root = sb->s_fs_info;
1371 struct cgroup *cgrp = &root->top_cgroup;
1372 struct cgroup_sb_opts opts;
1373 unsigned long added_mask, removed_mask;
1374
1375 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1376 mutex_lock(&cgroup_mutex);
1377 mutex_lock(&cgroup_root_mutex);
1378
1379 /* See what subsystems are wanted */
1380 ret = parse_cgroupfs_options(data, &opts);
1381 if (ret)
1382 goto out_unlock;
1383
1384 /* See feature-removal-schedule.txt */
1385 if (opts.subsys_mask != root->actual_subsys_mask || opts.release_agent)
1386 pr_warning("cgroup: option changes via remount are deprecated (pid=%d comm=%s)\n",
1387 task_tgid_nr(current), current->comm);
1388
1389 added_mask = opts.subsys_mask & ~root->subsys_mask;
1390 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1391
1392 /* Don't allow flags or name to change at remount */
1393 if (opts.flags != root->flags ||
1394 (opts.name && strcmp(opts.name, root->name))) {
1395 ret = -EINVAL;
1396 drop_parsed_module_refcounts(opts.subsys_mask);
1397 goto out_unlock;
1398 }
1399
1400 ret = rebind_subsystems(root, opts.subsys_mask);
1401 if (ret) {
1402 drop_parsed_module_refcounts(opts.subsys_mask);
1403 goto out_unlock;
1404 }
1405
1406 /* clear out any existing files and repopulate subsystem files */
1407 cgroup_clear_directory(cgrp->dentry, false, removed_mask);
1408 /* re-populate subsystem files */
1409 cgroup_populate_dir(cgrp, false, added_mask);
1410
1411 if (opts.release_agent)
1412 strcpy(root->release_agent_path, opts.release_agent);
1413 out_unlock:
1414 kfree(opts.release_agent);
1415 kfree(opts.name);
1416 mutex_unlock(&cgroup_root_mutex);
1417 mutex_unlock(&cgroup_mutex);
1418 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1419 return ret;
1420 }
1421
1422 static const struct super_operations cgroup_ops = {
1423 .statfs = simple_statfs,
1424 .drop_inode = generic_delete_inode,
1425 .show_options = cgroup_show_options,
1426 .remount_fs = cgroup_remount,
1427 };
1428
1429 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1430 {
1431 INIT_LIST_HEAD(&cgrp->sibling);
1432 INIT_LIST_HEAD(&cgrp->children);
1433 INIT_LIST_HEAD(&cgrp->files);
1434 INIT_LIST_HEAD(&cgrp->css_sets);
1435 INIT_LIST_HEAD(&cgrp->release_list);
1436 INIT_LIST_HEAD(&cgrp->pidlists);
1437 mutex_init(&cgrp->pidlist_mutex);
1438 INIT_LIST_HEAD(&cgrp->event_list);
1439 spin_lock_init(&cgrp->event_list_lock);
1440 simple_xattrs_init(&cgrp->xattrs);
1441 }
1442
1443 static void init_cgroup_root(struct cgroupfs_root *root)
1444 {
1445 struct cgroup *cgrp = &root->top_cgroup;
1446
1447 INIT_LIST_HEAD(&root->subsys_list);
1448 INIT_LIST_HEAD(&root->root_list);
1449 INIT_LIST_HEAD(&root->allcg_list);
1450 root->number_of_cgroups = 1;
1451 cgrp->root = root;
1452 cgrp->top_cgroup = cgrp;
1453 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
1454 init_cgroup_housekeeping(cgrp);
1455 }
1456
1457 static bool init_root_id(struct cgroupfs_root *root)
1458 {
1459 int ret = 0;
1460
1461 do {
1462 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1463 return false;
1464 spin_lock(&hierarchy_id_lock);
1465 /* Try to allocate the next unused ID */
1466 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1467 &root->hierarchy_id);
1468 if (ret == -ENOSPC)
1469 /* Try again starting from 0 */
1470 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1471 if (!ret) {
1472 next_hierarchy_id = root->hierarchy_id + 1;
1473 } else if (ret != -EAGAIN) {
1474 /* Can only get here if the 31-bit IDR is full ... */
1475 BUG_ON(ret);
1476 }
1477 spin_unlock(&hierarchy_id_lock);
1478 } while (ret);
1479 return true;
1480 }
1481
1482 static int cgroup_test_super(struct super_block *sb, void *data)
1483 {
1484 struct cgroup_sb_opts *opts = data;
1485 struct cgroupfs_root *root = sb->s_fs_info;
1486
1487 /* If we asked for a name then it must match */
1488 if (opts->name && strcmp(opts->name, root->name))
1489 return 0;
1490
1491 /*
1492 * If we asked for subsystems (or explicitly for no
1493 * subsystems) then they must match
1494 */
1495 if ((opts->subsys_mask || opts->none)
1496 && (opts->subsys_mask != root->subsys_mask))
1497 return 0;
1498
1499 return 1;
1500 }
1501
1502 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1503 {
1504 struct cgroupfs_root *root;
1505
1506 if (!opts->subsys_mask && !opts->none)
1507 return NULL;
1508
1509 root = kzalloc(sizeof(*root), GFP_KERNEL);
1510 if (!root)
1511 return ERR_PTR(-ENOMEM);
1512
1513 if (!init_root_id(root)) {
1514 kfree(root);
1515 return ERR_PTR(-ENOMEM);
1516 }
1517 init_cgroup_root(root);
1518
1519 root->subsys_mask = opts->subsys_mask;
1520 root->flags = opts->flags;
1521 if (opts->release_agent)
1522 strcpy(root->release_agent_path, opts->release_agent);
1523 if (opts->name)
1524 strcpy(root->name, opts->name);
1525 if (opts->clone_children)
1526 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1527 return root;
1528 }
1529
1530 static void cgroup_drop_root(struct cgroupfs_root *root)
1531 {
1532 if (!root)
1533 return;
1534
1535 BUG_ON(!root->hierarchy_id);
1536 spin_lock(&hierarchy_id_lock);
1537 ida_remove(&hierarchy_ida, root->hierarchy_id);
1538 spin_unlock(&hierarchy_id_lock);
1539 kfree(root);
1540 }
1541
1542 static int cgroup_set_super(struct super_block *sb, void *data)
1543 {
1544 int ret;
1545 struct cgroup_sb_opts *opts = data;
1546
1547 /* If we don't have a new root, we can't set up a new sb */
1548 if (!opts->new_root)
1549 return -EINVAL;
1550
1551 BUG_ON(!opts->subsys_mask && !opts->none);
1552
1553 ret = set_anon_super(sb, NULL);
1554 if (ret)
1555 return ret;
1556
1557 sb->s_fs_info = opts->new_root;
1558 opts->new_root->sb = sb;
1559
1560 sb->s_blocksize = PAGE_CACHE_SIZE;
1561 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1562 sb->s_magic = CGROUP_SUPER_MAGIC;
1563 sb->s_op = &cgroup_ops;
1564
1565 return 0;
1566 }
1567
1568 static int cgroup_get_rootdir(struct super_block *sb)
1569 {
1570 static const struct dentry_operations cgroup_dops = {
1571 .d_iput = cgroup_diput,
1572 .d_delete = cgroup_delete,
1573 };
1574
1575 struct inode *inode =
1576 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1577
1578 if (!inode)
1579 return -ENOMEM;
1580
1581 inode->i_fop = &simple_dir_operations;
1582 inode->i_op = &cgroup_dir_inode_operations;
1583 /* directories start off with i_nlink == 2 (for "." entry) */
1584 inc_nlink(inode);
1585 sb->s_root = d_make_root(inode);
1586 if (!sb->s_root)
1587 return -ENOMEM;
1588 /* for everything else we want ->d_op set */
1589 sb->s_d_op = &cgroup_dops;
1590 return 0;
1591 }
1592
1593 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1594 int flags, const char *unused_dev_name,
1595 void *data)
1596 {
1597 struct cgroup_sb_opts opts;
1598 struct cgroupfs_root *root;
1599 int ret = 0;
1600 struct super_block *sb;
1601 struct cgroupfs_root *new_root;
1602 struct inode *inode;
1603
1604 /* First find the desired set of subsystems */
1605 mutex_lock(&cgroup_mutex);
1606 ret = parse_cgroupfs_options(data, &opts);
1607 mutex_unlock(&cgroup_mutex);
1608 if (ret)
1609 goto out_err;
1610
1611 /*
1612 * Allocate a new cgroup root. We may not need it if we're
1613 * reusing an existing hierarchy.
1614 */
1615 new_root = cgroup_root_from_opts(&opts);
1616 if (IS_ERR(new_root)) {
1617 ret = PTR_ERR(new_root);
1618 goto drop_modules;
1619 }
1620 opts.new_root = new_root;
1621
1622 /* Locate an existing or new sb for this hierarchy */
1623 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, 0, &opts);
1624 if (IS_ERR(sb)) {
1625 ret = PTR_ERR(sb);
1626 cgroup_drop_root(opts.new_root);
1627 goto drop_modules;
1628 }
1629
1630 root = sb->s_fs_info;
1631 BUG_ON(!root);
1632 if (root == opts.new_root) {
1633 /* We used the new root structure, so this is a new hierarchy */
1634 struct list_head tmp_cg_links;
1635 struct cgroup *root_cgrp = &root->top_cgroup;
1636 struct cgroupfs_root *existing_root;
1637 const struct cred *cred;
1638 int i;
1639
1640 BUG_ON(sb->s_root != NULL);
1641
1642 ret = cgroup_get_rootdir(sb);
1643 if (ret)
1644 goto drop_new_super;
1645 inode = sb->s_root->d_inode;
1646
1647 mutex_lock(&inode->i_mutex);
1648 mutex_lock(&cgroup_mutex);
1649 mutex_lock(&cgroup_root_mutex);
1650
1651 /* Check for name clashes with existing mounts */
1652 ret = -EBUSY;
1653 if (strlen(root->name))
1654 for_each_active_root(existing_root)
1655 if (!strcmp(existing_root->name, root->name))
1656 goto unlock_drop;
1657
1658 /*
1659 * We're accessing css_set_count without locking
1660 * css_set_lock here, but that's OK - it can only be
1661 * increased by someone holding cgroup_lock, and
1662 * that's us. The worst that can happen is that we
1663 * have some link structures left over
1664 */
1665 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1666 if (ret)
1667 goto unlock_drop;
1668
1669 ret = rebind_subsystems(root, root->subsys_mask);
1670 if (ret == -EBUSY) {
1671 free_cg_links(&tmp_cg_links);
1672 goto unlock_drop;
1673 }
1674 /*
1675 * There must be no failure case after here, since rebinding
1676 * takes care of subsystems' refcounts, which are explicitly
1677 * dropped in the failure exit path.
1678 */
1679
1680 /* EBUSY should be the only error here */
1681 BUG_ON(ret);
1682
1683 list_add(&root->root_list, &roots);
1684 root_count++;
1685
1686 sb->s_root->d_fsdata = root_cgrp;
1687 root->top_cgroup.dentry = sb->s_root;
1688
1689 /* Link the top cgroup in this hierarchy into all
1690 * the css_set objects */
1691 write_lock(&css_set_lock);
1692 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1693 struct hlist_head *hhead = &css_set_table[i];
1694 struct hlist_node *node;
1695 struct css_set *cg;
1696
1697 hlist_for_each_entry(cg, node, hhead, hlist)
1698 link_css_set(&tmp_cg_links, cg, root_cgrp);
1699 }
1700 write_unlock(&css_set_lock);
1701
1702 free_cg_links(&tmp_cg_links);
1703
1704 BUG_ON(!list_empty(&root_cgrp->sibling));
1705 BUG_ON(!list_empty(&root_cgrp->children));
1706 BUG_ON(root->number_of_cgroups != 1);
1707
1708 cred = override_creds(&init_cred);
1709 cgroup_populate_dir(root_cgrp, true, root->subsys_mask);
1710 revert_creds(cred);
1711 mutex_unlock(&cgroup_root_mutex);
1712 mutex_unlock(&cgroup_mutex);
1713 mutex_unlock(&inode->i_mutex);
1714 } else {
1715 /*
1716 * We re-used an existing hierarchy - the new root (if
1717 * any) is not needed
1718 */
1719 cgroup_drop_root(opts.new_root);
1720 /* no subsys rebinding, so refcounts don't change */
1721 drop_parsed_module_refcounts(opts.subsys_mask);
1722 }
1723
1724 kfree(opts.release_agent);
1725 kfree(opts.name);
1726 return dget(sb->s_root);
1727
1728 unlock_drop:
1729 mutex_unlock(&cgroup_root_mutex);
1730 mutex_unlock(&cgroup_mutex);
1731 mutex_unlock(&inode->i_mutex);
1732 drop_new_super:
1733 deactivate_locked_super(sb);
1734 drop_modules:
1735 drop_parsed_module_refcounts(opts.subsys_mask);
1736 out_err:
1737 kfree(opts.release_agent);
1738 kfree(opts.name);
1739 return ERR_PTR(ret);
1740 }
1741
1742 static void cgroup_kill_sb(struct super_block *sb) {
1743 struct cgroupfs_root *root = sb->s_fs_info;
1744 struct cgroup *cgrp = &root->top_cgroup;
1745 int ret;
1746 struct cg_cgroup_link *link;
1747 struct cg_cgroup_link *saved_link;
1748
1749 BUG_ON(!root);
1750
1751 BUG_ON(root->number_of_cgroups != 1);
1752 BUG_ON(!list_empty(&cgrp->children));
1753 BUG_ON(!list_empty(&cgrp->sibling));
1754
1755 mutex_lock(&cgroup_mutex);
1756 mutex_lock(&cgroup_root_mutex);
1757
1758 /* Rebind all subsystems back to the default hierarchy */
1759 ret = rebind_subsystems(root, 0);
1760 /* Shouldn't be able to fail ... */
1761 BUG_ON(ret);
1762
1763 /*
1764 * Release all the links from css_sets to this hierarchy's
1765 * root cgroup
1766 */
1767 write_lock(&css_set_lock);
1768
1769 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1770 cgrp_link_list) {
1771 list_del(&link->cg_link_list);
1772 list_del(&link->cgrp_link_list);
1773 kfree(link);
1774 }
1775 write_unlock(&css_set_lock);
1776
1777 if (!list_empty(&root->root_list)) {
1778 list_del(&root->root_list);
1779 root_count--;
1780 }
1781
1782 mutex_unlock(&cgroup_root_mutex);
1783 mutex_unlock(&cgroup_mutex);
1784
1785 simple_xattrs_free(&cgrp->xattrs);
1786
1787 kill_litter_super(sb);
1788 cgroup_drop_root(root);
1789 }
1790
1791 static struct file_system_type cgroup_fs_type = {
1792 .name = "cgroup",
1793 .mount = cgroup_mount,
1794 .kill_sb = cgroup_kill_sb,
1795 };
1796
1797 static struct kobject *cgroup_kobj;
1798
1799 /**
1800 * cgroup_path - generate the path of a cgroup
1801 * @cgrp: the cgroup in question
1802 * @buf: the buffer to write the path into
1803 * @buflen: the length of the buffer
1804 *
1805 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1806 * reference. Writes path of cgroup into buf. Returns 0 on success,
1807 * -errno on error.
1808 */
1809 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1810 {
1811 char *start;
1812 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1813 cgroup_lock_is_held());
1814
1815 if (!dentry || cgrp == dummytop) {
1816 /*
1817 * Inactive subsystems have no dentry for their root
1818 * cgroup
1819 */
1820 strcpy(buf, "/");
1821 return 0;
1822 }
1823
1824 start = buf + buflen;
1825
1826 *--start = '\0';
1827 for (;;) {
1828 int len = dentry->d_name.len;
1829
1830 if ((start -= len) < buf)
1831 return -ENAMETOOLONG;
1832 memcpy(start, dentry->d_name.name, len);
1833 cgrp = cgrp->parent;
1834 if (!cgrp)
1835 break;
1836
1837 dentry = rcu_dereference_check(cgrp->dentry,
1838 cgroup_lock_is_held());
1839 if (!cgrp->parent)
1840 continue;
1841 if (--start < buf)
1842 return -ENAMETOOLONG;
1843 *start = '/';
1844 }
1845 memmove(buf, start, buf + buflen - start);
1846 return 0;
1847 }
1848 EXPORT_SYMBOL_GPL(cgroup_path);
1849
1850 /*
1851 * Control Group taskset
1852 */
1853 struct task_and_cgroup {
1854 struct task_struct *task;
1855 struct cgroup *cgrp;
1856 struct css_set *cg;
1857 };
1858
1859 struct cgroup_taskset {
1860 struct task_and_cgroup single;
1861 struct flex_array *tc_array;
1862 int tc_array_len;
1863 int idx;
1864 struct cgroup *cur_cgrp;
1865 };
1866
1867 /**
1868 * cgroup_taskset_first - reset taskset and return the first task
1869 * @tset: taskset of interest
1870 *
1871 * @tset iteration is initialized and the first task is returned.
1872 */
1873 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
1874 {
1875 if (tset->tc_array) {
1876 tset->idx = 0;
1877 return cgroup_taskset_next(tset);
1878 } else {
1879 tset->cur_cgrp = tset->single.cgrp;
1880 return tset->single.task;
1881 }
1882 }
1883 EXPORT_SYMBOL_GPL(cgroup_taskset_first);
1884
1885 /**
1886 * cgroup_taskset_next - iterate to the next task in taskset
1887 * @tset: taskset of interest
1888 *
1889 * Return the next task in @tset. Iteration must have been initialized
1890 * with cgroup_taskset_first().
1891 */
1892 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
1893 {
1894 struct task_and_cgroup *tc;
1895
1896 if (!tset->tc_array || tset->idx >= tset->tc_array_len)
1897 return NULL;
1898
1899 tc = flex_array_get(tset->tc_array, tset->idx++);
1900 tset->cur_cgrp = tc->cgrp;
1901 return tc->task;
1902 }
1903 EXPORT_SYMBOL_GPL(cgroup_taskset_next);
1904
1905 /**
1906 * cgroup_taskset_cur_cgroup - return the matching cgroup for the current task
1907 * @tset: taskset of interest
1908 *
1909 * Return the cgroup for the current (last returned) task of @tset. This
1910 * function must be preceded by either cgroup_taskset_first() or
1911 * cgroup_taskset_next().
1912 */
1913 struct cgroup *cgroup_taskset_cur_cgroup(struct cgroup_taskset *tset)
1914 {
1915 return tset->cur_cgrp;
1916 }
1917 EXPORT_SYMBOL_GPL(cgroup_taskset_cur_cgroup);
1918
1919 /**
1920 * cgroup_taskset_size - return the number of tasks in taskset
1921 * @tset: taskset of interest
1922 */
1923 int cgroup_taskset_size(struct cgroup_taskset *tset)
1924 {
1925 return tset->tc_array ? tset->tc_array_len : 1;
1926 }
1927 EXPORT_SYMBOL_GPL(cgroup_taskset_size);
1928
1929
1930 /*
1931 * cgroup_task_migrate - move a task from one cgroup to another.
1932 *
1933 * 'guarantee' is set if the caller promises that a new css_set for the task
1934 * will already exist. If not set, this function might sleep, and can fail with
1935 * -ENOMEM. Must be called with cgroup_mutex and threadgroup locked.
1936 */
1937 static void cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1938 struct task_struct *tsk, struct css_set *newcg)
1939 {
1940 struct css_set *oldcg;
1941
1942 /*
1943 * We are synchronized through threadgroup_lock() against PF_EXITING
1944 * setting such that we can't race against cgroup_exit() changing the
1945 * css_set to init_css_set and dropping the old one.
1946 */
1947 WARN_ON_ONCE(tsk->flags & PF_EXITING);
1948 oldcg = tsk->cgroups;
1949
1950 task_lock(tsk);
1951 rcu_assign_pointer(tsk->cgroups, newcg);
1952 task_unlock(tsk);
1953
1954 /* Update the css_set linked lists if we're using them */
1955 write_lock(&css_set_lock);
1956 if (!list_empty(&tsk->cg_list))
1957 list_move(&tsk->cg_list, &newcg->tasks);
1958 write_unlock(&css_set_lock);
1959
1960 /*
1961 * We just gained a reference on oldcg by taking it from the task. As
1962 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1963 * it here; it will be freed under RCU.
1964 */
1965 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1966 put_css_set(oldcg);
1967 }
1968
1969 /**
1970 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1971 * @cgrp: the cgroup the task is attaching to
1972 * @tsk: the task to be attached
1973 *
1974 * Call with cgroup_mutex and threadgroup locked. May take task_lock of
1975 * @tsk during call.
1976 */
1977 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1978 {
1979 int retval = 0;
1980 struct cgroup_subsys *ss, *failed_ss = NULL;
1981 struct cgroup *oldcgrp;
1982 struct cgroupfs_root *root = cgrp->root;
1983 struct cgroup_taskset tset = { };
1984 struct css_set *newcg;
1985
1986 /* @tsk either already exited or can't exit until the end */
1987 if (tsk->flags & PF_EXITING)
1988 return -ESRCH;
1989
1990 /* Nothing to do if the task is already in that cgroup */
1991 oldcgrp = task_cgroup_from_root(tsk, root);
1992 if (cgrp == oldcgrp)
1993 return 0;
1994
1995 tset.single.task = tsk;
1996 tset.single.cgrp = oldcgrp;
1997
1998 for_each_subsys(root, ss) {
1999 if (ss->can_attach) {
2000 retval = ss->can_attach(cgrp, &tset);
2001 if (retval) {
2002 /*
2003 * Remember on which subsystem the can_attach()
2004 * failed, so that we only call cancel_attach()
2005 * against the subsystems whose can_attach()
2006 * succeeded. (See below)
2007 */
2008 failed_ss = ss;
2009 goto out;
2010 }
2011 }
2012 }
2013
2014 newcg = find_css_set(tsk->cgroups, cgrp);
2015 if (!newcg) {
2016 retval = -ENOMEM;
2017 goto out;
2018 }
2019
2020 cgroup_task_migrate(cgrp, oldcgrp, tsk, newcg);
2021
2022 for_each_subsys(root, ss) {
2023 if (ss->attach)
2024 ss->attach(cgrp, &tset);
2025 }
2026
2027 synchronize_rcu();
2028
2029 /*
2030 * wake up rmdir() waiter. the rmdir should fail since the cgroup
2031 * is no longer empty.
2032 */
2033 cgroup_wakeup_rmdir_waiter(cgrp);
2034 out:
2035 if (retval) {
2036 for_each_subsys(root, ss) {
2037 if (ss == failed_ss)
2038 /*
2039 * This subsystem was the one that failed the
2040 * can_attach() check earlier, so we don't need
2041 * to call cancel_attach() against it or any
2042 * remaining subsystems.
2043 */
2044 break;
2045 if (ss->cancel_attach)
2046 ss->cancel_attach(cgrp, &tset);
2047 }
2048 }
2049 return retval;
2050 }
2051
2052 /**
2053 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2054 * @from: attach to all cgroups of a given task
2055 * @tsk: the task to be attached
2056 */
2057 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2058 {
2059 struct cgroupfs_root *root;
2060 int retval = 0;
2061
2062 cgroup_lock();
2063 for_each_active_root(root) {
2064 struct cgroup *from_cg = task_cgroup_from_root(from, root);
2065
2066 retval = cgroup_attach_task(from_cg, tsk);
2067 if (retval)
2068 break;
2069 }
2070 cgroup_unlock();
2071
2072 return retval;
2073 }
2074 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2075
2076 /**
2077 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
2078 * @cgrp: the cgroup to attach to
2079 * @leader: the threadgroup leader task_struct of the group to be attached
2080 *
2081 * Call holding cgroup_mutex and the group_rwsem of the leader. Will take
2082 * task_lock of each thread in leader's threadgroup individually in turn.
2083 */
2084 static int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
2085 {
2086 int retval, i, group_size;
2087 struct cgroup_subsys *ss, *failed_ss = NULL;
2088 /* guaranteed to be initialized later, but the compiler needs this */
2089 struct cgroupfs_root *root = cgrp->root;
2090 /* threadgroup list cursor and array */
2091 struct task_struct *tsk;
2092 struct task_and_cgroup *tc;
2093 struct flex_array *group;
2094 struct cgroup_taskset tset = { };
2095
2096 /*
2097 * step 0: in order to do expensive, possibly blocking operations for
2098 * every thread, we cannot iterate the thread group list, since it needs
2099 * rcu or tasklist locked. instead, build an array of all threads in the
2100 * group - group_rwsem prevents new threads from appearing, and if
2101 * threads exit, this will just be an over-estimate.
2102 */
2103 group_size = get_nr_threads(leader);
2104 /* flex_array supports very large thread-groups better than kmalloc. */
2105 group = flex_array_alloc(sizeof(*tc), group_size, GFP_KERNEL);
2106 if (!group)
2107 return -ENOMEM;
2108 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2109 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2110 if (retval)
2111 goto out_free_group_list;
2112
2113 tsk = leader;
2114 i = 0;
2115 /*
2116 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2117 * already PF_EXITING could be freed from underneath us unless we
2118 * take an rcu_read_lock.
2119 */
2120 rcu_read_lock();
2121 do {
2122 struct task_and_cgroup ent;
2123
2124 /* @tsk either already exited or can't exit until the end */
2125 if (tsk->flags & PF_EXITING)
2126 continue;
2127
2128 /* as per above, nr_threads may decrease, but not increase. */
2129 BUG_ON(i >= group_size);
2130 ent.task = tsk;
2131 ent.cgrp = task_cgroup_from_root(tsk, root);
2132 /* nothing to do if this task is already in the cgroup */
2133 if (ent.cgrp == cgrp)
2134 continue;
2135 /*
2136 * saying GFP_ATOMIC has no effect here because we did prealloc
2137 * earlier, but it's good form to communicate our expectations.
2138 */
2139 retval = flex_array_put(group, i, &ent, GFP_ATOMIC);
2140 BUG_ON(retval != 0);
2141 i++;
2142 } while_each_thread(leader, tsk);
2143 rcu_read_unlock();
2144 /* remember the number of threads in the array for later. */
2145 group_size = i;
2146 tset.tc_array = group;
2147 tset.tc_array_len = group_size;
2148
2149 /* methods shouldn't be called if no task is actually migrating */
2150 retval = 0;
2151 if (!group_size)
2152 goto out_free_group_list;
2153
2154 /*
2155 * step 1: check that we can legitimately attach to the cgroup.
2156 */
2157 for_each_subsys(root, ss) {
2158 if (ss->can_attach) {
2159 retval = ss->can_attach(cgrp, &tset);
2160 if (retval) {
2161 failed_ss = ss;
2162 goto out_cancel_attach;
2163 }
2164 }
2165 }
2166
2167 /*
2168 * step 2: make sure css_sets exist for all threads to be migrated.
2169 * we use find_css_set, which allocates a new one if necessary.
2170 */
2171 for (i = 0; i < group_size; i++) {
2172 tc = flex_array_get(group, i);
2173 tc->cg = find_css_set(tc->task->cgroups, cgrp);
2174 if (!tc->cg) {
2175 retval = -ENOMEM;
2176 goto out_put_css_set_refs;
2177 }
2178 }
2179
2180 /*
2181 * step 3: now that we're guaranteed success wrt the css_sets,
2182 * proceed to move all tasks to the new cgroup. There are no
2183 * failure cases after here, so this is the commit point.
2184 */
2185 for (i = 0; i < group_size; i++) {
2186 tc = flex_array_get(group, i);
2187 cgroup_task_migrate(cgrp, tc->cgrp, tc->task, tc->cg);
2188 }
2189 /* nothing is sensitive to fork() after this point. */
2190
2191 /*
2192 * step 4: do subsystem attach callbacks.
2193 */
2194 for_each_subsys(root, ss) {
2195 if (ss->attach)
2196 ss->attach(cgrp, &tset);
2197 }
2198
2199 /*
2200 * step 5: success! and cleanup
2201 */
2202 synchronize_rcu();
2203 cgroup_wakeup_rmdir_waiter(cgrp);
2204 retval = 0;
2205 out_put_css_set_refs:
2206 if (retval) {
2207 for (i = 0; i < group_size; i++) {
2208 tc = flex_array_get(group, i);
2209 if (!tc->cg)
2210 break;
2211 put_css_set(tc->cg);
2212 }
2213 }
2214 out_cancel_attach:
2215 if (retval) {
2216 for_each_subsys(root, ss) {
2217 if (ss == failed_ss)
2218 break;
2219 if (ss->cancel_attach)
2220 ss->cancel_attach(cgrp, &tset);
2221 }
2222 }
2223 out_free_group_list:
2224 flex_array_free(group);
2225 return retval;
2226 }
2227
2228 /*
2229 * Find the task_struct of the task to attach by vpid and pass it along to the
2230 * function to attach either it or all tasks in its threadgroup. Will lock
2231 * cgroup_mutex and threadgroup; may take task_lock of task.
2232 */
2233 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2234 {
2235 struct task_struct *tsk;
2236 const struct cred *cred = current_cred(), *tcred;
2237 int ret;
2238
2239 if (!cgroup_lock_live_group(cgrp))
2240 return -ENODEV;
2241
2242 retry_find_task:
2243 rcu_read_lock();
2244 if (pid) {
2245 tsk = find_task_by_vpid(pid);
2246 if (!tsk) {
2247 rcu_read_unlock();
2248 ret= -ESRCH;
2249 goto out_unlock_cgroup;
2250 }
2251 /*
2252 * even if we're attaching all tasks in the thread group, we
2253 * only need to check permissions on one of them.
2254 */
2255 tcred = __task_cred(tsk);
2256 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2257 !uid_eq(cred->euid, tcred->uid) &&
2258 !uid_eq(cred->euid, tcred->suid)) {
2259 rcu_read_unlock();
2260 ret = -EACCES;
2261 goto out_unlock_cgroup;
2262 }
2263 } else
2264 tsk = current;
2265
2266 if (threadgroup)
2267 tsk = tsk->group_leader;
2268
2269 /*
2270 * Workqueue threads may acquire PF_THREAD_BOUND and become
2271 * trapped in a cpuset, or RT worker may be born in a cgroup
2272 * with no rt_runtime allocated. Just say no.
2273 */
2274 if (tsk == kthreadd_task || (tsk->flags & PF_THREAD_BOUND)) {
2275 ret = -EINVAL;
2276 rcu_read_unlock();
2277 goto out_unlock_cgroup;
2278 }
2279
2280 get_task_struct(tsk);
2281 rcu_read_unlock();
2282
2283 threadgroup_lock(tsk);
2284 if (threadgroup) {
2285 if (!thread_group_leader(tsk)) {
2286 /*
2287 * a race with de_thread from another thread's exec()
2288 * may strip us of our leadership, if this happens,
2289 * there is no choice but to throw this task away and
2290 * try again; this is
2291 * "double-double-toil-and-trouble-check locking".
2292 */
2293 threadgroup_unlock(tsk);
2294 put_task_struct(tsk);
2295 goto retry_find_task;
2296 }
2297 ret = cgroup_attach_proc(cgrp, tsk);
2298 } else
2299 ret = cgroup_attach_task(cgrp, tsk);
2300 threadgroup_unlock(tsk);
2301
2302 put_task_struct(tsk);
2303 out_unlock_cgroup:
2304 cgroup_unlock();
2305 return ret;
2306 }
2307
2308 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2309 {
2310 return attach_task_by_pid(cgrp, pid, false);
2311 }
2312
2313 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2314 {
2315 return attach_task_by_pid(cgrp, tgid, true);
2316 }
2317
2318 /**
2319 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2320 * @cgrp: the cgroup to be checked for liveness
2321 *
2322 * On success, returns true; the lock should be later released with
2323 * cgroup_unlock(). On failure returns false with no lock held.
2324 */
2325 bool cgroup_lock_live_group(struct cgroup *cgrp)
2326 {
2327 mutex_lock(&cgroup_mutex);
2328 if (cgroup_is_removed(cgrp)) {
2329 mutex_unlock(&cgroup_mutex);
2330 return false;
2331 }
2332 return true;
2333 }
2334 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2335
2336 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2337 const char *buffer)
2338 {
2339 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2340 if (strlen(buffer) >= PATH_MAX)
2341 return -EINVAL;
2342 if (!cgroup_lock_live_group(cgrp))
2343 return -ENODEV;
2344 mutex_lock(&cgroup_root_mutex);
2345 strcpy(cgrp->root->release_agent_path, buffer);
2346 mutex_unlock(&cgroup_root_mutex);
2347 cgroup_unlock();
2348 return 0;
2349 }
2350
2351 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2352 struct seq_file *seq)
2353 {
2354 if (!cgroup_lock_live_group(cgrp))
2355 return -ENODEV;
2356 seq_puts(seq, cgrp->root->release_agent_path);
2357 seq_putc(seq, '\n');
2358 cgroup_unlock();
2359 return 0;
2360 }
2361
2362 /* A buffer size big enough for numbers or short strings */
2363 #define CGROUP_LOCAL_BUFFER_SIZE 64
2364
2365 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2366 struct file *file,
2367 const char __user *userbuf,
2368 size_t nbytes, loff_t *unused_ppos)
2369 {
2370 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2371 int retval = 0;
2372 char *end;
2373
2374 if (!nbytes)
2375 return -EINVAL;
2376 if (nbytes >= sizeof(buffer))
2377 return -E2BIG;
2378 if (copy_from_user(buffer, userbuf, nbytes))
2379 return -EFAULT;
2380
2381 buffer[nbytes] = 0; /* nul-terminate */
2382 if (cft->write_u64) {
2383 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2384 if (*end)
2385 return -EINVAL;
2386 retval = cft->write_u64(cgrp, cft, val);
2387 } else {
2388 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2389 if (*end)
2390 return -EINVAL;
2391 retval = cft->write_s64(cgrp, cft, val);
2392 }
2393 if (!retval)
2394 retval = nbytes;
2395 return retval;
2396 }
2397
2398 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2399 struct file *file,
2400 const char __user *userbuf,
2401 size_t nbytes, loff_t *unused_ppos)
2402 {
2403 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2404 int retval = 0;
2405 size_t max_bytes = cft->max_write_len;
2406 char *buffer = local_buffer;
2407
2408 if (!max_bytes)
2409 max_bytes = sizeof(local_buffer) - 1;
2410 if (nbytes >= max_bytes)
2411 return -E2BIG;
2412 /* Allocate a dynamic buffer if we need one */
2413 if (nbytes >= sizeof(local_buffer)) {
2414 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2415 if (buffer == NULL)
2416 return -ENOMEM;
2417 }
2418 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2419 retval = -EFAULT;
2420 goto out;
2421 }
2422
2423 buffer[nbytes] = 0; /* nul-terminate */
2424 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2425 if (!retval)
2426 retval = nbytes;
2427 out:
2428 if (buffer != local_buffer)
2429 kfree(buffer);
2430 return retval;
2431 }
2432
2433 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2434 size_t nbytes, loff_t *ppos)
2435 {
2436 struct cftype *cft = __d_cft(file->f_dentry);
2437 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2438
2439 if (cgroup_is_removed(cgrp))
2440 return -ENODEV;
2441 if (cft->write)
2442 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2443 if (cft->write_u64 || cft->write_s64)
2444 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2445 if (cft->write_string)
2446 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2447 if (cft->trigger) {
2448 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2449 return ret ? ret : nbytes;
2450 }
2451 return -EINVAL;
2452 }
2453
2454 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2455 struct file *file,
2456 char __user *buf, size_t nbytes,
2457 loff_t *ppos)
2458 {
2459 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2460 u64 val = cft->read_u64(cgrp, cft);
2461 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2462
2463 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2464 }
2465
2466 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2467 struct file *file,
2468 char __user *buf, size_t nbytes,
2469 loff_t *ppos)
2470 {
2471 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2472 s64 val = cft->read_s64(cgrp, cft);
2473 int len = sprintf(tmp, "%lld\n", (long long) val);
2474
2475 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2476 }
2477
2478 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2479 size_t nbytes, loff_t *ppos)
2480 {
2481 struct cftype *cft = __d_cft(file->f_dentry);
2482 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2483
2484 if (cgroup_is_removed(cgrp))
2485 return -ENODEV;
2486
2487 if (cft->read)
2488 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2489 if (cft->read_u64)
2490 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2491 if (cft->read_s64)
2492 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2493 return -EINVAL;
2494 }
2495
2496 /*
2497 * seqfile ops/methods for returning structured data. Currently just
2498 * supports string->u64 maps, but can be extended in future.
2499 */
2500
2501 struct cgroup_seqfile_state {
2502 struct cftype *cft;
2503 struct cgroup *cgroup;
2504 };
2505
2506 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2507 {
2508 struct seq_file *sf = cb->state;
2509 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2510 }
2511
2512 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2513 {
2514 struct cgroup_seqfile_state *state = m->private;
2515 struct cftype *cft = state->cft;
2516 if (cft->read_map) {
2517 struct cgroup_map_cb cb = {
2518 .fill = cgroup_map_add,
2519 .state = m,
2520 };
2521 return cft->read_map(state->cgroup, cft, &cb);
2522 }
2523 return cft->read_seq_string(state->cgroup, cft, m);
2524 }
2525
2526 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2527 {
2528 struct seq_file *seq = file->private_data;
2529 kfree(seq->private);
2530 return single_release(inode, file);
2531 }
2532
2533 static const struct file_operations cgroup_seqfile_operations = {
2534 .read = seq_read,
2535 .write = cgroup_file_write,
2536 .llseek = seq_lseek,
2537 .release = cgroup_seqfile_release,
2538 };
2539
2540 static int cgroup_file_open(struct inode *inode, struct file *file)
2541 {
2542 int err;
2543 struct cftype *cft;
2544
2545 err = generic_file_open(inode, file);
2546 if (err)
2547 return err;
2548 cft = __d_cft(file->f_dentry);
2549
2550 if (cft->read_map || cft->read_seq_string) {
2551 struct cgroup_seqfile_state *state =
2552 kzalloc(sizeof(*state), GFP_USER);
2553 if (!state)
2554 return -ENOMEM;
2555 state->cft = cft;
2556 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2557 file->f_op = &cgroup_seqfile_operations;
2558 err = single_open(file, cgroup_seqfile_show, state);
2559 if (err < 0)
2560 kfree(state);
2561 } else if (cft->open)
2562 err = cft->open(inode, file);
2563 else
2564 err = 0;
2565
2566 return err;
2567 }
2568
2569 static int cgroup_file_release(struct inode *inode, struct file *file)
2570 {
2571 struct cftype *cft = __d_cft(file->f_dentry);
2572 if (cft->release)
2573 return cft->release(inode, file);
2574 return 0;
2575 }
2576
2577 /*
2578 * cgroup_rename - Only allow simple rename of directories in place.
2579 */
2580 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2581 struct inode *new_dir, struct dentry *new_dentry)
2582 {
2583 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2584 return -ENOTDIR;
2585 if (new_dentry->d_inode)
2586 return -EEXIST;
2587 if (old_dir != new_dir)
2588 return -EIO;
2589 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2590 }
2591
2592 static struct simple_xattrs *__d_xattrs(struct dentry *dentry)
2593 {
2594 if (S_ISDIR(dentry->d_inode->i_mode))
2595 return &__d_cgrp(dentry)->xattrs;
2596 else
2597 return &__d_cft(dentry)->xattrs;
2598 }
2599
2600 static inline int xattr_enabled(struct dentry *dentry)
2601 {
2602 struct cgroupfs_root *root = dentry->d_sb->s_fs_info;
2603 return test_bit(ROOT_XATTR, &root->flags);
2604 }
2605
2606 static bool is_valid_xattr(const char *name)
2607 {
2608 if (!strncmp(name, XATTR_TRUSTED_PREFIX, XATTR_TRUSTED_PREFIX_LEN) ||
2609 !strncmp(name, XATTR_SECURITY_PREFIX, XATTR_SECURITY_PREFIX_LEN))
2610 return true;
2611 return false;
2612 }
2613
2614 static int cgroup_setxattr(struct dentry *dentry, const char *name,
2615 const void *val, size_t size, int flags)
2616 {
2617 if (!xattr_enabled(dentry))
2618 return -EOPNOTSUPP;
2619 if (!is_valid_xattr(name))
2620 return -EINVAL;
2621 return simple_xattr_set(__d_xattrs(dentry), name, val, size, flags);
2622 }
2623
2624 static int cgroup_removexattr(struct dentry *dentry, const char *name)
2625 {
2626 if (!xattr_enabled(dentry))
2627 return -EOPNOTSUPP;
2628 if (!is_valid_xattr(name))
2629 return -EINVAL;
2630 return simple_xattr_remove(__d_xattrs(dentry), name);
2631 }
2632
2633 static ssize_t cgroup_getxattr(struct dentry *dentry, const char *name,
2634 void *buf, size_t size)
2635 {
2636 if (!xattr_enabled(dentry))
2637 return -EOPNOTSUPP;
2638 if (!is_valid_xattr(name))
2639 return -EINVAL;
2640 return simple_xattr_get(__d_xattrs(dentry), name, buf, size);
2641 }
2642
2643 static ssize_t cgroup_listxattr(struct dentry *dentry, char *buf, size_t size)
2644 {
2645 if (!xattr_enabled(dentry))
2646 return -EOPNOTSUPP;
2647 return simple_xattr_list(__d_xattrs(dentry), buf, size);
2648 }
2649
2650 static const struct file_operations cgroup_file_operations = {
2651 .read = cgroup_file_read,
2652 .write = cgroup_file_write,
2653 .llseek = generic_file_llseek,
2654 .open = cgroup_file_open,
2655 .release = cgroup_file_release,
2656 };
2657
2658 static const struct inode_operations cgroup_file_inode_operations = {
2659 .setxattr = cgroup_setxattr,
2660 .getxattr = cgroup_getxattr,
2661 .listxattr = cgroup_listxattr,
2662 .removexattr = cgroup_removexattr,
2663 };
2664
2665 static const struct inode_operations cgroup_dir_inode_operations = {
2666 .lookup = cgroup_lookup,
2667 .mkdir = cgroup_mkdir,
2668 .rmdir = cgroup_rmdir,
2669 .rename = cgroup_rename,
2670 .setxattr = cgroup_setxattr,
2671 .getxattr = cgroup_getxattr,
2672 .listxattr = cgroup_listxattr,
2673 .removexattr = cgroup_removexattr,
2674 };
2675
2676 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2677 {
2678 if (dentry->d_name.len > NAME_MAX)
2679 return ERR_PTR(-ENAMETOOLONG);
2680 d_add(dentry, NULL);
2681 return NULL;
2682 }
2683
2684 /*
2685 * Check if a file is a control file
2686 */
2687 static inline struct cftype *__file_cft(struct file *file)
2688 {
2689 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2690 return ERR_PTR(-EINVAL);
2691 return __d_cft(file->f_dentry);
2692 }
2693
2694 static int cgroup_create_file(struct dentry *dentry, umode_t mode,
2695 struct super_block *sb)
2696 {
2697 struct inode *inode;
2698
2699 if (!dentry)
2700 return -ENOENT;
2701 if (dentry->d_inode)
2702 return -EEXIST;
2703
2704 inode = cgroup_new_inode(mode, sb);
2705 if (!inode)
2706 return -ENOMEM;
2707
2708 if (S_ISDIR(mode)) {
2709 inode->i_op = &cgroup_dir_inode_operations;
2710 inode->i_fop = &simple_dir_operations;
2711
2712 /* start off with i_nlink == 2 (for "." entry) */
2713 inc_nlink(inode);
2714
2715 /* start with the directory inode held, so that we can
2716 * populate it without racing with another mkdir */
2717 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2718 } else if (S_ISREG(mode)) {
2719 inode->i_size = 0;
2720 inode->i_fop = &cgroup_file_operations;
2721 inode->i_op = &cgroup_file_inode_operations;
2722 }
2723 d_instantiate(dentry, inode);
2724 dget(dentry); /* Extra count - pin the dentry in core */
2725 return 0;
2726 }
2727
2728 /*
2729 * cgroup_create_dir - create a directory for an object.
2730 * @cgrp: the cgroup we create the directory for. It must have a valid
2731 * ->parent field. And we are going to fill its ->dentry field.
2732 * @dentry: dentry of the new cgroup
2733 * @mode: mode to set on new directory.
2734 */
2735 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2736 umode_t mode)
2737 {
2738 struct dentry *parent;
2739 int error = 0;
2740
2741 parent = cgrp->parent->dentry;
2742 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2743 if (!error) {
2744 dentry->d_fsdata = cgrp;
2745 inc_nlink(parent->d_inode);
2746 rcu_assign_pointer(cgrp->dentry, dentry);
2747 dget(dentry);
2748 }
2749 dput(dentry);
2750
2751 return error;
2752 }
2753
2754 /**
2755 * cgroup_file_mode - deduce file mode of a control file
2756 * @cft: the control file in question
2757 *
2758 * returns cft->mode if ->mode is not 0
2759 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2760 * returns S_IRUGO if it has only a read handler
2761 * returns S_IWUSR if it has only a write hander
2762 */
2763 static umode_t cgroup_file_mode(const struct cftype *cft)
2764 {
2765 umode_t mode = 0;
2766
2767 if (cft->mode)
2768 return cft->mode;
2769
2770 if (cft->read || cft->read_u64 || cft->read_s64 ||
2771 cft->read_map || cft->read_seq_string)
2772 mode |= S_IRUGO;
2773
2774 if (cft->write || cft->write_u64 || cft->write_s64 ||
2775 cft->write_string || cft->trigger)
2776 mode |= S_IWUSR;
2777
2778 return mode;
2779 }
2780
2781 static int cgroup_add_file(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2782 struct cftype *cft)
2783 {
2784 struct dentry *dir = cgrp->dentry;
2785 struct cgroup *parent = __d_cgrp(dir);
2786 struct dentry *dentry;
2787 struct cfent *cfe;
2788 int error;
2789 umode_t mode;
2790 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2791
2792 simple_xattrs_init(&cft->xattrs);
2793
2794 /* does @cft->flags tell us to skip creation on @cgrp? */
2795 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgrp->parent)
2796 return 0;
2797 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgrp->parent)
2798 return 0;
2799
2800 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2801 strcpy(name, subsys->name);
2802 strcat(name, ".");
2803 }
2804 strcat(name, cft->name);
2805
2806 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2807
2808 cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
2809 if (!cfe)
2810 return -ENOMEM;
2811
2812 dentry = lookup_one_len(name, dir, strlen(name));
2813 if (IS_ERR(dentry)) {
2814 error = PTR_ERR(dentry);
2815 goto out;
2816 }
2817
2818 mode = cgroup_file_mode(cft);
2819 error = cgroup_create_file(dentry, mode | S_IFREG, cgrp->root->sb);
2820 if (!error) {
2821 cfe->type = (void *)cft;
2822 cfe->dentry = dentry;
2823 dentry->d_fsdata = cfe;
2824 list_add_tail(&cfe->node, &parent->files);
2825 cfe = NULL;
2826 }
2827 dput(dentry);
2828 out:
2829 kfree(cfe);
2830 return error;
2831 }
2832
2833 static int cgroup_addrm_files(struct cgroup *cgrp, struct cgroup_subsys *subsys,
2834 struct cftype cfts[], bool is_add)
2835 {
2836 struct cftype *cft;
2837 int err, ret = 0;
2838
2839 for (cft = cfts; cft->name[0] != '\0'; cft++) {
2840 if (is_add)
2841 err = cgroup_add_file(cgrp, subsys, cft);
2842 else
2843 err = cgroup_rm_file(cgrp, cft);
2844 if (err) {
2845 pr_warning("cgroup_addrm_files: failed to %s %s, err=%d\n",
2846 is_add ? "add" : "remove", cft->name, err);
2847 ret = err;
2848 }
2849 }
2850 return ret;
2851 }
2852
2853 static DEFINE_MUTEX(cgroup_cft_mutex);
2854
2855 static void cgroup_cfts_prepare(void)
2856 __acquires(&cgroup_cft_mutex) __acquires(&cgroup_mutex)
2857 {
2858 /*
2859 * Thanks to the entanglement with vfs inode locking, we can't walk
2860 * the existing cgroups under cgroup_mutex and create files.
2861 * Instead, we increment reference on all cgroups and build list of
2862 * them using @cgrp->cft_q_node. Grab cgroup_cft_mutex to ensure
2863 * exclusive access to the field.
2864 */
2865 mutex_lock(&cgroup_cft_mutex);
2866 mutex_lock(&cgroup_mutex);
2867 }
2868
2869 static void cgroup_cfts_commit(struct cgroup_subsys *ss,
2870 struct cftype *cfts, bool is_add)
2871 __releases(&cgroup_mutex) __releases(&cgroup_cft_mutex)
2872 {
2873 LIST_HEAD(pending);
2874 struct cgroup *cgrp, *n;
2875
2876 /* %NULL @cfts indicates abort and don't bother if @ss isn't attached */
2877 if (cfts && ss->root != &rootnode) {
2878 list_for_each_entry(cgrp, &ss->root->allcg_list, allcg_node) {
2879 dget(cgrp->dentry);
2880 list_add_tail(&cgrp->cft_q_node, &pending);
2881 }
2882 }
2883
2884 mutex_unlock(&cgroup_mutex);
2885
2886 /*
2887 * All new cgroups will see @cfts update on @ss->cftsets. Add/rm
2888 * files for all cgroups which were created before.
2889 */
2890 list_for_each_entry_safe(cgrp, n, &pending, cft_q_node) {
2891 struct inode *inode = cgrp->dentry->d_inode;
2892
2893 mutex_lock(&inode->i_mutex);
2894 mutex_lock(&cgroup_mutex);
2895 if (!cgroup_is_removed(cgrp))
2896 cgroup_addrm_files(cgrp, ss, cfts, is_add);
2897 mutex_unlock(&cgroup_mutex);
2898 mutex_unlock(&inode->i_mutex);
2899
2900 list_del_init(&cgrp->cft_q_node);
2901 dput(cgrp->dentry);
2902 }
2903
2904 mutex_unlock(&cgroup_cft_mutex);
2905 }
2906
2907 /**
2908 * cgroup_add_cftypes - add an array of cftypes to a subsystem
2909 * @ss: target cgroup subsystem
2910 * @cfts: zero-length name terminated array of cftypes
2911 *
2912 * Register @cfts to @ss. Files described by @cfts are created for all
2913 * existing cgroups to which @ss is attached and all future cgroups will
2914 * have them too. This function can be called anytime whether @ss is
2915 * attached or not.
2916 *
2917 * Returns 0 on successful registration, -errno on failure. Note that this
2918 * function currently returns 0 as long as @cfts registration is successful
2919 * even if some file creation attempts on existing cgroups fail.
2920 */
2921 int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2922 {
2923 struct cftype_set *set;
2924
2925 set = kzalloc(sizeof(*set), GFP_KERNEL);
2926 if (!set)
2927 return -ENOMEM;
2928
2929 cgroup_cfts_prepare();
2930 set->cfts = cfts;
2931 list_add_tail(&set->node, &ss->cftsets);
2932 cgroup_cfts_commit(ss, cfts, true);
2933
2934 return 0;
2935 }
2936 EXPORT_SYMBOL_GPL(cgroup_add_cftypes);
2937
2938 /**
2939 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
2940 * @ss: target cgroup subsystem
2941 * @cfts: zero-length name terminated array of cftypes
2942 *
2943 * Unregister @cfts from @ss. Files described by @cfts are removed from
2944 * all existing cgroups to which @ss is attached and all future cgroups
2945 * won't have them either. This function can be called anytime whether @ss
2946 * is attached or not.
2947 *
2948 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
2949 * registered with @ss.
2950 */
2951 int cgroup_rm_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
2952 {
2953 struct cftype_set *set;
2954
2955 cgroup_cfts_prepare();
2956
2957 list_for_each_entry(set, &ss->cftsets, node) {
2958 if (set->cfts == cfts) {
2959 list_del_init(&set->node);
2960 cgroup_cfts_commit(ss, cfts, false);
2961 return 0;
2962 }
2963 }
2964
2965 cgroup_cfts_commit(ss, NULL, false);
2966 return -ENOENT;
2967 }
2968
2969 /**
2970 * cgroup_task_count - count the number of tasks in a cgroup.
2971 * @cgrp: the cgroup in question
2972 *
2973 * Return the number of tasks in the cgroup.
2974 */
2975 int cgroup_task_count(const struct cgroup *cgrp)
2976 {
2977 int count = 0;
2978 struct cg_cgroup_link *link;
2979
2980 read_lock(&css_set_lock);
2981 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2982 count += atomic_read(&link->cg->refcount);
2983 }
2984 read_unlock(&css_set_lock);
2985 return count;
2986 }
2987
2988 /*
2989 * Advance a list_head iterator. The iterator should be positioned at
2990 * the start of a css_set
2991 */
2992 static void cgroup_advance_iter(struct cgroup *cgrp,
2993 struct cgroup_iter *it)
2994 {
2995 struct list_head *l = it->cg_link;
2996 struct cg_cgroup_link *link;
2997 struct css_set *cg;
2998
2999 /* Advance to the next non-empty css_set */
3000 do {
3001 l = l->next;
3002 if (l == &cgrp->css_sets) {
3003 it->cg_link = NULL;
3004 return;
3005 }
3006 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
3007 cg = link->cg;
3008 } while (list_empty(&cg->tasks));
3009 it->cg_link = l;
3010 it->task = cg->tasks.next;
3011 }
3012
3013 /*
3014 * To reduce the fork() overhead for systems that are not actually
3015 * using their cgroups capability, we don't maintain the lists running
3016 * through each css_set to its tasks until we see the list actually
3017 * used - in other words after the first call to cgroup_iter_start().
3018 */
3019 static void cgroup_enable_task_cg_lists(void)
3020 {
3021 struct task_struct *p, *g;
3022 write_lock(&css_set_lock);
3023 use_task_css_set_links = 1;
3024 /*
3025 * We need tasklist_lock because RCU is not safe against
3026 * while_each_thread(). Besides, a forking task that has passed
3027 * cgroup_post_fork() without seeing use_task_css_set_links = 1
3028 * is not guaranteed to have its child immediately visible in the
3029 * tasklist if we walk through it with RCU.
3030 */
3031 read_lock(&tasklist_lock);
3032 do_each_thread(g, p) {
3033 task_lock(p);
3034 /*
3035 * We should check if the process is exiting, otherwise
3036 * it will race with cgroup_exit() in that the list
3037 * entry won't be deleted though the process has exited.
3038 */
3039 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
3040 list_add(&p->cg_list, &p->cgroups->tasks);
3041 task_unlock(p);
3042 } while_each_thread(g, p);
3043 read_unlock(&tasklist_lock);
3044 write_unlock(&css_set_lock);
3045 }
3046
3047 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
3048 __acquires(css_set_lock)
3049 {
3050 /*
3051 * The first time anyone tries to iterate across a cgroup,
3052 * we need to enable the list linking each css_set to its
3053 * tasks, and fix up all existing tasks.
3054 */
3055 if (!use_task_css_set_links)
3056 cgroup_enable_task_cg_lists();
3057
3058 read_lock(&css_set_lock);
3059 it->cg_link = &cgrp->css_sets;
3060 cgroup_advance_iter(cgrp, it);
3061 }
3062
3063 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
3064 struct cgroup_iter *it)
3065 {
3066 struct task_struct *res;
3067 struct list_head *l = it->task;
3068 struct cg_cgroup_link *link;
3069
3070 /* If the iterator cg is NULL, we have no tasks */
3071 if (!it->cg_link)
3072 return NULL;
3073 res = list_entry(l, struct task_struct, cg_list);
3074 /* Advance iterator to find next entry */
3075 l = l->next;
3076 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
3077 if (l == &link->cg->tasks) {
3078 /* We reached the end of this task list - move on to
3079 * the next cg_cgroup_link */
3080 cgroup_advance_iter(cgrp, it);
3081 } else {
3082 it->task = l;
3083 }
3084 return res;
3085 }
3086
3087 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
3088 __releases(css_set_lock)
3089 {
3090 read_unlock(&css_set_lock);
3091 }
3092
3093 static inline int started_after_time(struct task_struct *t1,
3094 struct timespec *time,
3095 struct task_struct *t2)
3096 {
3097 int start_diff = timespec_compare(&t1->start_time, time);
3098 if (start_diff > 0) {
3099 return 1;
3100 } else if (start_diff < 0) {
3101 return 0;
3102 } else {
3103 /*
3104 * Arbitrarily, if two processes started at the same
3105 * time, we'll say that the lower pointer value
3106 * started first. Note that t2 may have exited by now
3107 * so this may not be a valid pointer any longer, but
3108 * that's fine - it still serves to distinguish
3109 * between two tasks started (effectively) simultaneously.
3110 */
3111 return t1 > t2;
3112 }
3113 }
3114
3115 /*
3116 * This function is a callback from heap_insert() and is used to order
3117 * the heap.
3118 * In this case we order the heap in descending task start time.
3119 */
3120 static inline int started_after(void *p1, void *p2)
3121 {
3122 struct task_struct *t1 = p1;
3123 struct task_struct *t2 = p2;
3124 return started_after_time(t1, &t2->start_time, t2);
3125 }
3126
3127 /**
3128 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
3129 * @scan: struct cgroup_scanner containing arguments for the scan
3130 *
3131 * Arguments include pointers to callback functions test_task() and
3132 * process_task().
3133 * Iterate through all the tasks in a cgroup, calling test_task() for each,
3134 * and if it returns true, call process_task() for it also.
3135 * The test_task pointer may be NULL, meaning always true (select all tasks).
3136 * Effectively duplicates cgroup_iter_{start,next,end}()
3137 * but does not lock css_set_lock for the call to process_task().
3138 * The struct cgroup_scanner may be embedded in any structure of the caller's
3139 * creation.
3140 * It is guaranteed that process_task() will act on every task that
3141 * is a member of the cgroup for the duration of this call. This
3142 * function may or may not call process_task() for tasks that exit
3143 * or move to a different cgroup during the call, or are forked or
3144 * move into the cgroup during the call.
3145 *
3146 * Note that test_task() may be called with locks held, and may in some
3147 * situations be called multiple times for the same task, so it should
3148 * be cheap.
3149 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
3150 * pre-allocated and will be used for heap operations (and its "gt" member will
3151 * be overwritten), else a temporary heap will be used (allocation of which
3152 * may cause this function to fail).
3153 */
3154 int cgroup_scan_tasks(struct cgroup_scanner *scan)
3155 {
3156 int retval, i;
3157 struct cgroup_iter it;
3158 struct task_struct *p, *dropped;
3159 /* Never dereference latest_task, since it's not refcounted */
3160 struct task_struct *latest_task = NULL;
3161 struct ptr_heap tmp_heap;
3162 struct ptr_heap *heap;
3163 struct timespec latest_time = { 0, 0 };
3164
3165 if (scan->heap) {
3166 /* The caller supplied our heap and pre-allocated its memory */
3167 heap = scan->heap;
3168 heap->gt = &started_after;
3169 } else {
3170 /* We need to allocate our own heap memory */
3171 heap = &tmp_heap;
3172 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
3173 if (retval)
3174 /* cannot allocate the heap */
3175 return retval;
3176 }
3177
3178 again:
3179 /*
3180 * Scan tasks in the cgroup, using the scanner's "test_task" callback
3181 * to determine which are of interest, and using the scanner's
3182 * "process_task" callback to process any of them that need an update.
3183 * Since we don't want to hold any locks during the task updates,
3184 * gather tasks to be processed in a heap structure.
3185 * The heap is sorted by descending task start time.
3186 * If the statically-sized heap fills up, we overflow tasks that
3187 * started later, and in future iterations only consider tasks that
3188 * started after the latest task in the previous pass. This
3189 * guarantees forward progress and that we don't miss any tasks.
3190 */
3191 heap->size = 0;
3192 cgroup_iter_start(scan->cg, &it);
3193 while ((p = cgroup_iter_next(scan->cg, &it))) {
3194 /*
3195 * Only affect tasks that qualify per the caller's callback,
3196 * if he provided one
3197 */
3198 if (scan->test_task && !scan->test_task(p, scan))
3199 continue;
3200 /*
3201 * Only process tasks that started after the last task
3202 * we processed
3203 */
3204 if (!started_after_time(p, &latest_time, latest_task))
3205 continue;
3206 dropped = heap_insert(heap, p);
3207 if (dropped == NULL) {
3208 /*
3209 * The new task was inserted; the heap wasn't
3210 * previously full
3211 */
3212 get_task_struct(p);
3213 } else if (dropped != p) {
3214 /*
3215 * The new task was inserted, and pushed out a
3216 * different task
3217 */
3218 get_task_struct(p);
3219 put_task_struct(dropped);
3220 }
3221 /*
3222 * Else the new task was newer than anything already in
3223 * the heap and wasn't inserted
3224 */
3225 }
3226 cgroup_iter_end(scan->cg, &it);
3227
3228 if (heap->size) {
3229 for (i = 0; i < heap->size; i++) {
3230 struct task_struct *q = heap->ptrs[i];
3231 if (i == 0) {
3232 latest_time = q->start_time;
3233 latest_task = q;
3234 }
3235 /* Process the task per the caller's callback */
3236 scan->process_task(q, scan);
3237 put_task_struct(q);
3238 }
3239 /*
3240 * If we had to process any tasks at all, scan again
3241 * in case some of them were in the middle of forking
3242 * children that didn't get processed.
3243 * Not the most efficient way to do it, but it avoids
3244 * having to take callback_mutex in the fork path
3245 */
3246 goto again;
3247 }
3248 if (heap == &tmp_heap)
3249 heap_free(&tmp_heap);
3250 return 0;
3251 }
3252
3253 /*
3254 * Stuff for reading the 'tasks'/'procs' files.
3255 *
3256 * Reading this file can return large amounts of data if a cgroup has
3257 * *lots* of attached tasks. So it may need several calls to read(),
3258 * but we cannot guarantee that the information we produce is correct
3259 * unless we produce it entirely atomically.
3260 *
3261 */
3262
3263 /* which pidlist file are we talking about? */
3264 enum cgroup_filetype {
3265 CGROUP_FILE_PROCS,
3266 CGROUP_FILE_TASKS,
3267 };
3268
3269 /*
3270 * A pidlist is a list of pids that virtually represents the contents of one
3271 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
3272 * a pair (one each for procs, tasks) for each pid namespace that's relevant
3273 * to the cgroup.
3274 */
3275 struct cgroup_pidlist {
3276 /*
3277 * used to find which pidlist is wanted. doesn't change as long as
3278 * this particular list stays in the list.
3279 */
3280 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
3281 /* array of xids */
3282 pid_t *list;
3283 /* how many elements the above list has */
3284 int length;
3285 /* how many files are using the current array */
3286 int use_count;
3287 /* each of these stored in a list by its cgroup */
3288 struct list_head links;
3289 /* pointer to the cgroup we belong to, for list removal purposes */
3290 struct cgroup *owner;
3291 /* protects the other fields */
3292 struct rw_semaphore mutex;
3293 };
3294
3295 /*
3296 * The following two functions "fix" the issue where there are more pids
3297 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
3298 * TODO: replace with a kernel-wide solution to this problem
3299 */
3300 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3301 static void *pidlist_allocate(int count)
3302 {
3303 if (PIDLIST_TOO_LARGE(count))
3304 return vmalloc(count * sizeof(pid_t));
3305 else
3306 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3307 }
3308 static void pidlist_free(void *p)
3309 {
3310 if (is_vmalloc_addr(p))
3311 vfree(p);
3312 else
3313 kfree(p);
3314 }
3315 static void *pidlist_resize(void *p, int newcount)
3316 {
3317 void *newlist;
3318 /* note: if new alloc fails, old p will still be valid either way */
3319 if (is_vmalloc_addr(p)) {
3320 newlist = vmalloc(newcount * sizeof(pid_t));
3321 if (!newlist)
3322 return NULL;
3323 memcpy(newlist, p, newcount * sizeof(pid_t));
3324 vfree(p);
3325 } else {
3326 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3327 }
3328 return newlist;
3329 }
3330
3331 /*
3332 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3333 * If the new stripped list is sufficiently smaller and there's enough memory
3334 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3335 * number of unique elements.
3336 */
3337 /* is the size difference enough that we should re-allocate the array? */
3338 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3339 static int pidlist_uniq(pid_t **p, int length)
3340 {
3341 int src, dest = 1;
3342 pid_t *list = *p;
3343 pid_t *newlist;
3344
3345 /*
3346 * we presume the 0th element is unique, so i starts at 1. trivial
3347 * edge cases first; no work needs to be done for either
3348 */
3349 if (length == 0 || length == 1)
3350 return length;
3351 /* src and dest walk down the list; dest counts unique elements */
3352 for (src = 1; src < length; src++) {
3353 /* find next unique element */
3354 while (list[src] == list[src-1]) {
3355 src++;
3356 if (src == length)
3357 goto after;
3358 }
3359 /* dest always points to where the next unique element goes */
3360 list[dest] = list[src];
3361 dest++;
3362 }
3363 after:
3364 /*
3365 * if the length difference is large enough, we want to allocate a
3366 * smaller buffer to save memory. if this fails due to out of memory,
3367 * we'll just stay with what we've got.
3368 */
3369 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3370 newlist = pidlist_resize(list, dest);
3371 if (newlist)
3372 *p = newlist;
3373 }
3374 return dest;
3375 }
3376
3377 static int cmppid(const void *a, const void *b)
3378 {
3379 return *(pid_t *)a - *(pid_t *)b;
3380 }
3381
3382 /*
3383 * find the appropriate pidlist for our purpose (given procs vs tasks)
3384 * returns with the lock on that pidlist already held, and takes care
3385 * of the use count, or returns NULL with no locks held if we're out of
3386 * memory.
3387 */
3388 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3389 enum cgroup_filetype type)
3390 {
3391 struct cgroup_pidlist *l;
3392 /* don't need task_nsproxy() if we're looking at ourself */
3393 struct pid_namespace *ns = current->nsproxy->pid_ns;
3394
3395 /*
3396 * We can't drop the pidlist_mutex before taking the l->mutex in case
3397 * the last ref-holder is trying to remove l from the list at the same
3398 * time. Holding the pidlist_mutex precludes somebody taking whichever
3399 * list we find out from under us - compare release_pid_array().
3400 */
3401 mutex_lock(&cgrp->pidlist_mutex);
3402 list_for_each_entry(l, &cgrp->pidlists, links) {
3403 if (l->key.type == type && l->key.ns == ns) {
3404 /* make sure l doesn't vanish out from under us */
3405 down_write(&l->mutex);
3406 mutex_unlock(&cgrp->pidlist_mutex);
3407 return l;
3408 }
3409 }
3410 /* entry not found; create a new one */
3411 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3412 if (!l) {
3413 mutex_unlock(&cgrp->pidlist_mutex);
3414 return l;
3415 }
3416 init_rwsem(&l->mutex);
3417 down_write(&l->mutex);
3418 l->key.type = type;
3419 l->key.ns = get_pid_ns(ns);
3420 l->use_count = 0; /* don't increment here */
3421 l->list = NULL;
3422 l->owner = cgrp;
3423 list_add(&l->links, &cgrp->pidlists);
3424 mutex_unlock(&cgrp->pidlist_mutex);
3425 return l;
3426 }
3427
3428 /*
3429 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3430 */
3431 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3432 struct cgroup_pidlist **lp)
3433 {
3434 pid_t *array;
3435 int length;
3436 int pid, n = 0; /* used for populating the array */
3437 struct cgroup_iter it;
3438 struct task_struct *tsk;
3439 struct cgroup_pidlist *l;
3440
3441 /*
3442 * If cgroup gets more users after we read count, we won't have
3443 * enough space - tough. This race is indistinguishable to the
3444 * caller from the case that the additional cgroup users didn't
3445 * show up until sometime later on.
3446 */
3447 length = cgroup_task_count(cgrp);
3448 array = pidlist_allocate(length);
3449 if (!array)
3450 return -ENOMEM;
3451 /* now, populate the array */
3452 cgroup_iter_start(cgrp, &it);
3453 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3454 if (unlikely(n == length))
3455 break;
3456 /* get tgid or pid for procs or tasks file respectively */
3457 if (type == CGROUP_FILE_PROCS)
3458 pid = task_tgid_vnr(tsk);
3459 else
3460 pid = task_pid_vnr(tsk);
3461 if (pid > 0) /* make sure to only use valid results */
3462 array[n++] = pid;
3463 }
3464 cgroup_iter_end(cgrp, &it);
3465 length = n;
3466 /* now sort & (if procs) strip out duplicates */
3467 sort(array, length, sizeof(pid_t), cmppid, NULL);
3468 if (type == CGROUP_FILE_PROCS)
3469 length = pidlist_uniq(&array, length);
3470 l = cgroup_pidlist_find(cgrp, type);
3471 if (!l) {
3472 pidlist_free(array);
3473 return -ENOMEM;
3474 }
3475 /* store array, freeing old if necessary - lock already held */
3476 pidlist_free(l->list);
3477 l->list = array;
3478 l->length = length;
3479 l->use_count++;
3480 up_write(&l->mutex);
3481 *lp = l;
3482 return 0;
3483 }
3484
3485 /**
3486 * cgroupstats_build - build and fill cgroupstats
3487 * @stats: cgroupstats to fill information into
3488 * @dentry: A dentry entry belonging to the cgroup for which stats have
3489 * been requested.
3490 *
3491 * Build and fill cgroupstats so that taskstats can export it to user
3492 * space.
3493 */
3494 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3495 {
3496 int ret = -EINVAL;
3497 struct cgroup *cgrp;
3498 struct cgroup_iter it;
3499 struct task_struct *tsk;
3500
3501 /*
3502 * Validate dentry by checking the superblock operations,
3503 * and make sure it's a directory.
3504 */
3505 if (dentry->d_sb->s_op != &cgroup_ops ||
3506 !S_ISDIR(dentry->d_inode->i_mode))
3507 goto err;
3508
3509 ret = 0;
3510 cgrp = dentry->d_fsdata;
3511
3512 cgroup_iter_start(cgrp, &it);
3513 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3514 switch (tsk->state) {
3515 case TASK_RUNNING:
3516 stats->nr_running++;
3517 break;
3518 case TASK_INTERRUPTIBLE:
3519 stats->nr_sleeping++;
3520 break;
3521 case TASK_UNINTERRUPTIBLE:
3522 stats->nr_uninterruptible++;
3523 break;
3524 case TASK_STOPPED:
3525 stats->nr_stopped++;
3526 break;
3527 default:
3528 if (delayacct_is_task_waiting_on_io(tsk))
3529 stats->nr_io_wait++;
3530 break;
3531 }
3532 }
3533 cgroup_iter_end(cgrp, &it);
3534
3535 err:
3536 return ret;
3537 }
3538
3539
3540 /*
3541 * seq_file methods for the tasks/procs files. The seq_file position is the
3542 * next pid to display; the seq_file iterator is a pointer to the pid
3543 * in the cgroup->l->list array.
3544 */
3545
3546 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3547 {
3548 /*
3549 * Initially we receive a position value that corresponds to
3550 * one more than the last pid shown (or 0 on the first call or
3551 * after a seek to the start). Use a binary-search to find the
3552 * next pid to display, if any
3553 */
3554 struct cgroup_pidlist *l = s->private;
3555 int index = 0, pid = *pos;
3556 int *iter;
3557
3558 down_read(&l->mutex);
3559 if (pid) {
3560 int end = l->length;
3561
3562 while (index < end) {
3563 int mid = (index + end) / 2;
3564 if (l->list[mid] == pid) {
3565 index = mid;
3566 break;
3567 } else if (l->list[mid] <= pid)
3568 index = mid + 1;
3569 else
3570 end = mid;
3571 }
3572 }
3573 /* If we're off the end of the array, we're done */
3574 if (index >= l->length)
3575 return NULL;
3576 /* Update the abstract position to be the actual pid that we found */
3577 iter = l->list + index;
3578 *pos = *iter;
3579 return iter;
3580 }
3581
3582 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3583 {
3584 struct cgroup_pidlist *l = s->private;
3585 up_read(&l->mutex);
3586 }
3587
3588 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3589 {
3590 struct cgroup_pidlist *l = s->private;
3591 pid_t *p = v;
3592 pid_t *end = l->list + l->length;
3593 /*
3594 * Advance to the next pid in the array. If this goes off the
3595 * end, we're done
3596 */
3597 p++;
3598 if (p >= end) {
3599 return NULL;
3600 } else {
3601 *pos = *p;
3602 return p;
3603 }
3604 }
3605
3606 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3607 {
3608 return seq_printf(s, "%d\n", *(int *)v);
3609 }
3610
3611 /*
3612 * seq_operations functions for iterating on pidlists through seq_file -
3613 * independent of whether it's tasks or procs
3614 */
3615 static const struct seq_operations cgroup_pidlist_seq_operations = {
3616 .start = cgroup_pidlist_start,
3617 .stop = cgroup_pidlist_stop,
3618 .next = cgroup_pidlist_next,
3619 .show = cgroup_pidlist_show,
3620 };
3621
3622 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3623 {
3624 /*
3625 * the case where we're the last user of this particular pidlist will
3626 * have us remove it from the cgroup's list, which entails taking the
3627 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3628 * pidlist_mutex, we have to take pidlist_mutex first.
3629 */
3630 mutex_lock(&l->owner->pidlist_mutex);
3631 down_write(&l->mutex);
3632 BUG_ON(!l->use_count);
3633 if (!--l->use_count) {
3634 /* we're the last user if refcount is 0; remove and free */
3635 list_del(&l->links);
3636 mutex_unlock(&l->owner->pidlist_mutex);
3637 pidlist_free(l->list);
3638 put_pid_ns(l->key.ns);
3639 up_write(&l->mutex);
3640 kfree(l);
3641 return;
3642 }
3643 mutex_unlock(&l->owner->pidlist_mutex);
3644 up_write(&l->mutex);
3645 }
3646
3647 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3648 {
3649 struct cgroup_pidlist *l;
3650 if (!(file->f_mode & FMODE_READ))
3651 return 0;
3652 /*
3653 * the seq_file will only be initialized if the file was opened for
3654 * reading; hence we check if it's not null only in that case.
3655 */
3656 l = ((struct seq_file *)file->private_data)->private;
3657 cgroup_release_pid_array(l);
3658 return seq_release(inode, file);
3659 }
3660
3661 static const struct file_operations cgroup_pidlist_operations = {
3662 .read = seq_read,
3663 .llseek = seq_lseek,
3664 .write = cgroup_file_write,
3665 .release = cgroup_pidlist_release,
3666 };
3667
3668 /*
3669 * The following functions handle opens on a file that displays a pidlist
3670 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3671 * in the cgroup.
3672 */
3673 /* helper function for the two below it */
3674 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3675 {
3676 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3677 struct cgroup_pidlist *l;
3678 int retval;
3679
3680 /* Nothing to do for write-only files */
3681 if (!(file->f_mode & FMODE_READ))
3682 return 0;
3683
3684 /* have the array populated */
3685 retval = pidlist_array_load(cgrp, type, &l);
3686 if (retval)
3687 return retval;
3688 /* configure file information */
3689 file->f_op = &cgroup_pidlist_operations;
3690
3691 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3692 if (retval) {
3693 cgroup_release_pid_array(l);
3694 return retval;
3695 }
3696 ((struct seq_file *)file->private_data)->private = l;
3697 return 0;
3698 }
3699 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3700 {
3701 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3702 }
3703 static int cgroup_procs_open(struct inode *unused, struct file *file)
3704 {
3705 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3706 }
3707
3708 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3709 struct cftype *cft)
3710 {
3711 return notify_on_release(cgrp);
3712 }
3713
3714 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3715 struct cftype *cft,
3716 u64 val)
3717 {
3718 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3719 if (val)
3720 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3721 else
3722 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3723 return 0;
3724 }
3725
3726 /*
3727 * Unregister event and free resources.
3728 *
3729 * Gets called from workqueue.
3730 */
3731 static void cgroup_event_remove(struct work_struct *work)
3732 {
3733 struct cgroup_event *event = container_of(work, struct cgroup_event,
3734 remove);
3735 struct cgroup *cgrp = event->cgrp;
3736
3737 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3738
3739 eventfd_ctx_put(event->eventfd);
3740 kfree(event);
3741 dput(cgrp->dentry);
3742 }
3743
3744 /*
3745 * Gets called on POLLHUP on eventfd when user closes it.
3746 *
3747 * Called with wqh->lock held and interrupts disabled.
3748 */
3749 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3750 int sync, void *key)
3751 {
3752 struct cgroup_event *event = container_of(wait,
3753 struct cgroup_event, wait);
3754 struct cgroup *cgrp = event->cgrp;
3755 unsigned long flags = (unsigned long)key;
3756
3757 if (flags & POLLHUP) {
3758 __remove_wait_queue(event->wqh, &event->wait);
3759 spin_lock(&cgrp->event_list_lock);
3760 list_del(&event->list);
3761 spin_unlock(&cgrp->event_list_lock);
3762 /*
3763 * We are in atomic context, but cgroup_event_remove() may
3764 * sleep, so we have to call it in workqueue.
3765 */
3766 schedule_work(&event->remove);
3767 }
3768
3769 return 0;
3770 }
3771
3772 static void cgroup_event_ptable_queue_proc(struct file *file,
3773 wait_queue_head_t *wqh, poll_table *pt)
3774 {
3775 struct cgroup_event *event = container_of(pt,
3776 struct cgroup_event, pt);
3777
3778 event->wqh = wqh;
3779 add_wait_queue(wqh, &event->wait);
3780 }
3781
3782 /*
3783 * Parse input and register new cgroup event handler.
3784 *
3785 * Input must be in format '<event_fd> <control_fd> <args>'.
3786 * Interpretation of args is defined by control file implementation.
3787 */
3788 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3789 const char *buffer)
3790 {
3791 struct cgroup_event *event = NULL;
3792 unsigned int efd, cfd;
3793 struct file *efile = NULL;
3794 struct file *cfile = NULL;
3795 char *endp;
3796 int ret;
3797
3798 efd = simple_strtoul(buffer, &endp, 10);
3799 if (*endp != ' ')
3800 return -EINVAL;
3801 buffer = endp + 1;
3802
3803 cfd = simple_strtoul(buffer, &endp, 10);
3804 if ((*endp != ' ') && (*endp != '\0'))
3805 return -EINVAL;
3806 buffer = endp + 1;
3807
3808 event = kzalloc(sizeof(*event), GFP_KERNEL);
3809 if (!event)
3810 return -ENOMEM;
3811 event->cgrp = cgrp;
3812 INIT_LIST_HEAD(&event->list);
3813 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3814 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3815 INIT_WORK(&event->remove, cgroup_event_remove);
3816
3817 efile = eventfd_fget(efd);
3818 if (IS_ERR(efile)) {
3819 ret = PTR_ERR(efile);
3820 goto fail;
3821 }
3822
3823 event->eventfd = eventfd_ctx_fileget(efile);
3824 if (IS_ERR(event->eventfd)) {
3825 ret = PTR_ERR(event->eventfd);
3826 goto fail;
3827 }
3828
3829 cfile = fget(cfd);
3830 if (!cfile) {
3831 ret = -EBADF;
3832 goto fail;
3833 }
3834
3835 /* the process need read permission on control file */
3836 /* AV: shouldn't we check that it's been opened for read instead? */
3837 ret = inode_permission(cfile->f_path.dentry->d_inode, MAY_READ);
3838 if (ret < 0)
3839 goto fail;
3840
3841 event->cft = __file_cft(cfile);
3842 if (IS_ERR(event->cft)) {
3843 ret = PTR_ERR(event->cft);
3844 goto fail;
3845 }
3846
3847 if (!event->cft->register_event || !event->cft->unregister_event) {
3848 ret = -EINVAL;
3849 goto fail;
3850 }
3851
3852 ret = event->cft->register_event(cgrp, event->cft,
3853 event->eventfd, buffer);
3854 if (ret)
3855 goto fail;
3856
3857 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3858 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3859 ret = 0;
3860 goto fail;
3861 }
3862
3863 /*
3864 * Events should be removed after rmdir of cgroup directory, but before
3865 * destroying subsystem state objects. Let's take reference to cgroup
3866 * directory dentry to do that.
3867 */
3868 dget(cgrp->dentry);
3869
3870 spin_lock(&cgrp->event_list_lock);
3871 list_add(&event->list, &cgrp->event_list);
3872 spin_unlock(&cgrp->event_list_lock);
3873
3874 fput(cfile);
3875 fput(efile);
3876
3877 return 0;
3878
3879 fail:
3880 if (cfile)
3881 fput(cfile);
3882
3883 if (event && event->eventfd && !IS_ERR(event->eventfd))
3884 eventfd_ctx_put(event->eventfd);
3885
3886 if (!IS_ERR_OR_NULL(efile))
3887 fput(efile);
3888
3889 kfree(event);
3890
3891 return ret;
3892 }
3893
3894 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3895 struct cftype *cft)
3896 {
3897 return clone_children(cgrp);
3898 }
3899
3900 static int cgroup_clone_children_write(struct cgroup *cgrp,
3901 struct cftype *cft,
3902 u64 val)
3903 {
3904 if (val)
3905 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3906 else
3907 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3908 return 0;
3909 }
3910
3911 /*
3912 * for the common functions, 'private' gives the type of file
3913 */
3914 /* for hysterical raisins, we can't put this on the older files */
3915 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3916 static struct cftype files[] = {
3917 {
3918 .name = "tasks",
3919 .open = cgroup_tasks_open,
3920 .write_u64 = cgroup_tasks_write,
3921 .release = cgroup_pidlist_release,
3922 .mode = S_IRUGO | S_IWUSR,
3923 },
3924 {
3925 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3926 .open = cgroup_procs_open,
3927 .write_u64 = cgroup_procs_write,
3928 .release = cgroup_pidlist_release,
3929 .mode = S_IRUGO | S_IWUSR,
3930 },
3931 {
3932 .name = "notify_on_release",
3933 .read_u64 = cgroup_read_notify_on_release,
3934 .write_u64 = cgroup_write_notify_on_release,
3935 },
3936 {
3937 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3938 .write_string = cgroup_write_event_control,
3939 .mode = S_IWUGO,
3940 },
3941 {
3942 .name = "cgroup.clone_children",
3943 .read_u64 = cgroup_clone_children_read,
3944 .write_u64 = cgroup_clone_children_write,
3945 },
3946 {
3947 .name = "release_agent",
3948 .flags = CFTYPE_ONLY_ON_ROOT,
3949 .read_seq_string = cgroup_release_agent_show,
3950 .write_string = cgroup_release_agent_write,
3951 .max_write_len = PATH_MAX,
3952 },
3953 { } /* terminate */
3954 };
3955
3956 /**
3957 * cgroup_populate_dir - selectively creation of files in a directory
3958 * @cgrp: target cgroup
3959 * @base_files: true if the base files should be added
3960 * @subsys_mask: mask of the subsystem ids whose files should be added
3961 */
3962 static int cgroup_populate_dir(struct cgroup *cgrp, bool base_files,
3963 unsigned long subsys_mask)
3964 {
3965 int err;
3966 struct cgroup_subsys *ss;
3967
3968 if (base_files) {
3969 err = cgroup_addrm_files(cgrp, NULL, files, true);
3970 if (err < 0)
3971 return err;
3972 }
3973
3974 /* process cftsets of each subsystem */
3975 for_each_subsys(cgrp->root, ss) {
3976 struct cftype_set *set;
3977 if (!test_bit(ss->subsys_id, &subsys_mask))
3978 continue;
3979
3980 list_for_each_entry(set, &ss->cftsets, node)
3981 cgroup_addrm_files(cgrp, ss, set->cfts, true);
3982 }
3983
3984 /* This cgroup is ready now */
3985 for_each_subsys(cgrp->root, ss) {
3986 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3987 /*
3988 * Update id->css pointer and make this css visible from
3989 * CSS ID functions. This pointer will be dereferened
3990 * from RCU-read-side without locks.
3991 */
3992 if (css->id)
3993 rcu_assign_pointer(css->id->css, css);
3994 }
3995
3996 return 0;
3997 }
3998
3999 static void css_dput_fn(struct work_struct *work)
4000 {
4001 struct cgroup_subsys_state *css =
4002 container_of(work, struct cgroup_subsys_state, dput_work);
4003 struct dentry *dentry = css->cgroup->dentry;
4004 struct super_block *sb = dentry->d_sb;
4005
4006 atomic_inc(&sb->s_active);
4007 dput(dentry);
4008 deactivate_super(sb);
4009 }
4010
4011 static void init_cgroup_css(struct cgroup_subsys_state *css,
4012 struct cgroup_subsys *ss,
4013 struct cgroup *cgrp)
4014 {
4015 css->cgroup = cgrp;
4016 atomic_set(&css->refcnt, 1);
4017 css->flags = 0;
4018 css->id = NULL;
4019 if (cgrp == dummytop)
4020 set_bit(CSS_ROOT, &css->flags);
4021 BUG_ON(cgrp->subsys[ss->subsys_id]);
4022 cgrp->subsys[ss->subsys_id] = css;
4023
4024 /*
4025 * If !clear_css_refs, css holds an extra ref to @cgrp->dentry
4026 * which is put on the last css_put(). dput() requires process
4027 * context, which css_put() may be called without. @css->dput_work
4028 * will be used to invoke dput() asynchronously from css_put().
4029 */
4030 INIT_WORK(&css->dput_work, css_dput_fn);
4031 if (ss->__DEPRECATED_clear_css_refs)
4032 set_bit(CSS_CLEAR_CSS_REFS, &css->flags);
4033 }
4034
4035 /*
4036 * cgroup_create - create a cgroup
4037 * @parent: cgroup that will be parent of the new cgroup
4038 * @dentry: dentry of the new cgroup
4039 * @mode: mode to set on new inode
4040 *
4041 * Must be called with the mutex on the parent inode held
4042 */
4043 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
4044 umode_t mode)
4045 {
4046 struct cgroup *cgrp;
4047 struct cgroupfs_root *root = parent->root;
4048 int err = 0;
4049 struct cgroup_subsys *ss;
4050 struct super_block *sb = root->sb;
4051
4052 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
4053 if (!cgrp)
4054 return -ENOMEM;
4055
4056 /* Grab a reference on the superblock so the hierarchy doesn't
4057 * get deleted on unmount if there are child cgroups. This
4058 * can be done outside cgroup_mutex, since the sb can't
4059 * disappear while someone has an open control file on the
4060 * fs */
4061 atomic_inc(&sb->s_active);
4062
4063 mutex_lock(&cgroup_mutex);
4064
4065 init_cgroup_housekeeping(cgrp);
4066
4067 cgrp->parent = parent;
4068 cgrp->root = parent->root;
4069 cgrp->top_cgroup = parent->top_cgroup;
4070
4071 if (notify_on_release(parent))
4072 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4073
4074 if (clone_children(parent))
4075 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
4076
4077 for_each_subsys(root, ss) {
4078 struct cgroup_subsys_state *css;
4079
4080 css = ss->create(cgrp);
4081 if (IS_ERR(css)) {
4082 err = PTR_ERR(css);
4083 goto err_destroy;
4084 }
4085 init_cgroup_css(css, ss, cgrp);
4086 if (ss->use_id) {
4087 err = alloc_css_id(ss, parent, cgrp);
4088 if (err)
4089 goto err_destroy;
4090 }
4091 /* At error, ->destroy() callback has to free assigned ID. */
4092 if (clone_children(parent) && ss->post_clone)
4093 ss->post_clone(cgrp);
4094
4095 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4096 parent->parent) {
4097 pr_warning("cgroup: %s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4098 current->comm, current->pid, ss->name);
4099 if (!strcmp(ss->name, "memory"))
4100 pr_warning("cgroup: \"memory\" requires setting use_hierarchy to 1 on the root.\n");
4101 ss->warned_broken_hierarchy = true;
4102 }
4103 }
4104
4105 list_add(&cgrp->sibling, &cgrp->parent->children);
4106 root->number_of_cgroups++;
4107
4108 err = cgroup_create_dir(cgrp, dentry, mode);
4109 if (err < 0)
4110 goto err_remove;
4111
4112 /* If !clear_css_refs, each css holds a ref to the cgroup's dentry */
4113 for_each_subsys(root, ss)
4114 if (!ss->__DEPRECATED_clear_css_refs)
4115 dget(dentry);
4116
4117 /* The cgroup directory was pre-locked for us */
4118 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
4119
4120 list_add_tail(&cgrp->allcg_node, &root->allcg_list);
4121
4122 err = cgroup_populate_dir(cgrp, true, root->subsys_mask);
4123 /* If err < 0, we have a half-filled directory - oh well ;) */
4124
4125 mutex_unlock(&cgroup_mutex);
4126 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
4127
4128 return 0;
4129
4130 err_remove:
4131
4132 list_del(&cgrp->sibling);
4133 root->number_of_cgroups--;
4134
4135 err_destroy:
4136
4137 for_each_subsys(root, ss) {
4138 if (cgrp->subsys[ss->subsys_id])
4139 ss->destroy(cgrp);
4140 }
4141
4142 mutex_unlock(&cgroup_mutex);
4143
4144 /* Release the reference count that we took on the superblock */
4145 deactivate_super(sb);
4146
4147 kfree(cgrp);
4148 return err;
4149 }
4150
4151 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
4152 {
4153 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
4154
4155 /* the vfs holds inode->i_mutex already */
4156 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
4157 }
4158
4159 /*
4160 * Check the reference count on each subsystem. Since we already
4161 * established that there are no tasks in the cgroup, if the css refcount
4162 * is also 1, then there should be no outstanding references, so the
4163 * subsystem is safe to destroy. We scan across all subsystems rather than
4164 * using the per-hierarchy linked list of mounted subsystems since we can
4165 * be called via check_for_release() with no synchronization other than
4166 * RCU, and the subsystem linked list isn't RCU-safe.
4167 */
4168 static int cgroup_has_css_refs(struct cgroup *cgrp)
4169 {
4170 int i;
4171
4172 /*
4173 * We won't need to lock the subsys array, because the subsystems
4174 * we're concerned about aren't going anywhere since our cgroup root
4175 * has a reference on them.
4176 */
4177 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4178 struct cgroup_subsys *ss = subsys[i];
4179 struct cgroup_subsys_state *css;
4180
4181 /* Skip subsystems not present or not in this hierarchy */
4182 if (ss == NULL || ss->root != cgrp->root)
4183 continue;
4184
4185 css = cgrp->subsys[ss->subsys_id];
4186 /*
4187 * When called from check_for_release() it's possible
4188 * that by this point the cgroup has been removed
4189 * and the css deleted. But a false-positive doesn't
4190 * matter, since it can only happen if the cgroup
4191 * has been deleted and hence no longer needs the
4192 * release agent to be called anyway.
4193 */
4194 if (css && css_refcnt(css) > 1)
4195 return 1;
4196 }
4197 return 0;
4198 }
4199
4200 /*
4201 * Atomically mark all (or else none) of the cgroup's CSS objects as
4202 * CSS_REMOVED. Return true on success, or false if the cgroup has
4203 * busy subsystems. Call with cgroup_mutex held
4204 *
4205 * Depending on whether a subsys has __DEPRECATED_clear_css_refs set or
4206 * not, cgroup removal behaves differently.
4207 *
4208 * If clear is set, css refcnt for the subsystem should be zero before
4209 * cgroup removal can be committed. This is implemented by
4210 * CGRP_WAIT_ON_RMDIR and retry logic around ->pre_destroy(), which may be
4211 * called multiple times until all css refcnts reach zero and is allowed to
4212 * veto removal on any invocation. This behavior is deprecated and will be
4213 * removed as soon as the existing user (memcg) is updated.
4214 *
4215 * If clear is not set, each css holds an extra reference to the cgroup's
4216 * dentry and cgroup removal proceeds regardless of css refs.
4217 * ->pre_destroy() will be called at least once and is not allowed to fail.
4218 * On the last put of each css, whenever that may be, the extra dentry ref
4219 * is put so that dentry destruction happens only after all css's are
4220 * released.
4221 */
4222 static int cgroup_clear_css_refs(struct cgroup *cgrp)
4223 {
4224 struct cgroup_subsys *ss;
4225 unsigned long flags;
4226 bool failed = false;
4227
4228 local_irq_save(flags);
4229
4230 /*
4231 * Block new css_tryget() by deactivating refcnt. If all refcnts
4232 * for subsystems w/ clear_css_refs set were 1 at the moment of
4233 * deactivation, we succeeded.
4234 */
4235 for_each_subsys(cgrp->root, ss) {
4236 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4237
4238 WARN_ON(atomic_read(&css->refcnt) < 0);
4239 atomic_add(CSS_DEACT_BIAS, &css->refcnt);
4240
4241 if (ss->__DEPRECATED_clear_css_refs)
4242 failed |= css_refcnt(css) != 1;
4243 }
4244
4245 /*
4246 * If succeeded, set REMOVED and put all the base refs; otherwise,
4247 * restore refcnts to positive values. Either way, all in-progress
4248 * css_tryget() will be released.
4249 */
4250 for_each_subsys(cgrp->root, ss) {
4251 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
4252
4253 if (!failed) {
4254 set_bit(CSS_REMOVED, &css->flags);
4255 css_put(css);
4256 } else {
4257 atomic_sub(CSS_DEACT_BIAS, &css->refcnt);
4258 }
4259 }
4260
4261 local_irq_restore(flags);
4262 return !failed;
4263 }
4264
4265 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
4266 {
4267 struct cgroup *cgrp = dentry->d_fsdata;
4268 struct dentry *d;
4269 struct cgroup *parent;
4270 DEFINE_WAIT(wait);
4271 struct cgroup_event *event, *tmp;
4272 int ret;
4273
4274 /* the vfs holds both inode->i_mutex already */
4275 again:
4276 mutex_lock(&cgroup_mutex);
4277 if (atomic_read(&cgrp->count) != 0) {
4278 mutex_unlock(&cgroup_mutex);
4279 return -EBUSY;
4280 }
4281 if (!list_empty(&cgrp->children)) {
4282 mutex_unlock(&cgroup_mutex);
4283 return -EBUSY;
4284 }
4285 mutex_unlock(&cgroup_mutex);
4286
4287 /*
4288 * In general, subsystem has no css->refcnt after pre_destroy(). But
4289 * in racy cases, subsystem may have to get css->refcnt after
4290 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
4291 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
4292 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
4293 * and subsystem's reference count handling. Please see css_get/put
4294 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
4295 */
4296 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4297
4298 /*
4299 * Call pre_destroy handlers of subsys. Notify subsystems
4300 * that rmdir() request comes.
4301 */
4302 ret = cgroup_call_pre_destroy(cgrp);
4303 if (ret) {
4304 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4305 return ret;
4306 }
4307
4308 mutex_lock(&cgroup_mutex);
4309 parent = cgrp->parent;
4310 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
4311 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4312 mutex_unlock(&cgroup_mutex);
4313 return -EBUSY;
4314 }
4315 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
4316 if (!cgroup_clear_css_refs(cgrp)) {
4317 mutex_unlock(&cgroup_mutex);
4318 /*
4319 * Because someone may call cgroup_wakeup_rmdir_waiter() before
4320 * prepare_to_wait(), we need to check this flag.
4321 */
4322 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
4323 schedule();
4324 finish_wait(&cgroup_rmdir_waitq, &wait);
4325 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4326 if (signal_pending(current))
4327 return -EINTR;
4328 goto again;
4329 }
4330 /* NO css_tryget() can success after here. */
4331 finish_wait(&cgroup_rmdir_waitq, &wait);
4332 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4333
4334 raw_spin_lock(&release_list_lock);
4335 set_bit(CGRP_REMOVED, &cgrp->flags);
4336 if (!list_empty(&cgrp->release_list))
4337 list_del_init(&cgrp->release_list);
4338 raw_spin_unlock(&release_list_lock);
4339
4340 /* delete this cgroup from parent->children */
4341 list_del_init(&cgrp->sibling);
4342
4343 list_del_init(&cgrp->allcg_node);
4344
4345 d = dget(cgrp->dentry);
4346
4347 cgroup_d_remove_dir(d);
4348 dput(d);
4349
4350 set_bit(CGRP_RELEASABLE, &parent->flags);
4351 check_for_release(parent);
4352
4353 /*
4354 * Unregister events and notify userspace.
4355 * Notify userspace about cgroup removing only after rmdir of cgroup
4356 * directory to avoid race between userspace and kernelspace
4357 */
4358 spin_lock(&cgrp->event_list_lock);
4359 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4360 list_del(&event->list);
4361 remove_wait_queue(event->wqh, &event->wait);
4362 eventfd_signal(event->eventfd, 1);
4363 schedule_work(&event->remove);
4364 }
4365 spin_unlock(&cgrp->event_list_lock);
4366
4367 mutex_unlock(&cgroup_mutex);
4368 return 0;
4369 }
4370
4371 static void __init_or_module cgroup_init_cftsets(struct cgroup_subsys *ss)
4372 {
4373 INIT_LIST_HEAD(&ss->cftsets);
4374
4375 /*
4376 * base_cftset is embedded in subsys itself, no need to worry about
4377 * deregistration.
4378 */
4379 if (ss->base_cftypes) {
4380 ss->base_cftset.cfts = ss->base_cftypes;
4381 list_add_tail(&ss->base_cftset.node, &ss->cftsets);
4382 }
4383 }
4384
4385 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4386 {
4387 struct cgroup_subsys_state *css;
4388
4389 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4390
4391 /* init base cftset */
4392 cgroup_init_cftsets(ss);
4393
4394 /* Create the top cgroup state for this subsystem */
4395 list_add(&ss->sibling, &rootnode.subsys_list);
4396 ss->root = &rootnode;
4397 css = ss->create(dummytop);
4398 /* We don't handle early failures gracefully */
4399 BUG_ON(IS_ERR(css));
4400 init_cgroup_css(css, ss, dummytop);
4401
4402 /* Update the init_css_set to contain a subsys
4403 * pointer to this state - since the subsystem is
4404 * newly registered, all tasks and hence the
4405 * init_css_set is in the subsystem's top cgroup. */
4406 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4407
4408 need_forkexit_callback |= ss->fork || ss->exit;
4409
4410 /* At system boot, before all subsystems have been
4411 * registered, no tasks have been forked, so we don't
4412 * need to invoke fork callbacks here. */
4413 BUG_ON(!list_empty(&init_task.tasks));
4414
4415 ss->active = 1;
4416
4417 /* this function shouldn't be used with modular subsystems, since they
4418 * need to register a subsys_id, among other things */
4419 BUG_ON(ss->module);
4420 }
4421
4422 /**
4423 * cgroup_load_subsys: load and register a modular subsystem at runtime
4424 * @ss: the subsystem to load
4425 *
4426 * This function should be called in a modular subsystem's initcall. If the
4427 * subsystem is built as a module, it will be assigned a new subsys_id and set
4428 * up for use. If the subsystem is built-in anyway, work is delegated to the
4429 * simpler cgroup_init_subsys.
4430 */
4431 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4432 {
4433 int i;
4434 struct cgroup_subsys_state *css;
4435
4436 /* check name and function validity */
4437 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4438 ss->create == NULL || ss->destroy == NULL)
4439 return -EINVAL;
4440
4441 /*
4442 * we don't support callbacks in modular subsystems. this check is
4443 * before the ss->module check for consistency; a subsystem that could
4444 * be a module should still have no callbacks even if the user isn't
4445 * compiling it as one.
4446 */
4447 if (ss->fork || ss->exit)
4448 return -EINVAL;
4449
4450 /*
4451 * an optionally modular subsystem is built-in: we want to do nothing,
4452 * since cgroup_init_subsys will have already taken care of it.
4453 */
4454 if (ss->module == NULL) {
4455 /* a sanity check */
4456 BUG_ON(subsys[ss->subsys_id] != ss);
4457 return 0;
4458 }
4459
4460 /* init base cftset */
4461 cgroup_init_cftsets(ss);
4462
4463 mutex_lock(&cgroup_mutex);
4464 subsys[ss->subsys_id] = ss;
4465
4466 /*
4467 * no ss->create seems to need anything important in the ss struct, so
4468 * this can happen first (i.e. before the rootnode attachment).
4469 */
4470 css = ss->create(dummytop);
4471 if (IS_ERR(css)) {
4472 /* failure case - need to deassign the subsys[] slot. */
4473 subsys[ss->subsys_id] = NULL;
4474 mutex_unlock(&cgroup_mutex);
4475 return PTR_ERR(css);
4476 }
4477
4478 list_add(&ss->sibling, &rootnode.subsys_list);
4479 ss->root = &rootnode;
4480
4481 /* our new subsystem will be attached to the dummy hierarchy. */
4482 init_cgroup_css(css, ss, dummytop);
4483 /* init_idr must be after init_cgroup_css because it sets css->id. */
4484 if (ss->use_id) {
4485 int ret = cgroup_init_idr(ss, css);
4486 if (ret) {
4487 dummytop->subsys[ss->subsys_id] = NULL;
4488 ss->destroy(dummytop);
4489 subsys[ss->subsys_id] = NULL;
4490 mutex_unlock(&cgroup_mutex);
4491 return ret;
4492 }
4493 }
4494
4495 /*
4496 * Now we need to entangle the css into the existing css_sets. unlike
4497 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4498 * will need a new pointer to it; done by iterating the css_set_table.
4499 * furthermore, modifying the existing css_sets will corrupt the hash
4500 * table state, so each changed css_set will need its hash recomputed.
4501 * this is all done under the css_set_lock.
4502 */
4503 write_lock(&css_set_lock);
4504 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4505 struct css_set *cg;
4506 struct hlist_node *node, *tmp;
4507 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4508
4509 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4510 /* skip entries that we already rehashed */
4511 if (cg->subsys[ss->subsys_id])
4512 continue;
4513 /* remove existing entry */
4514 hlist_del(&cg->hlist);
4515 /* set new value */
4516 cg->subsys[ss->subsys_id] = css;
4517 /* recompute hash and restore entry */
4518 new_bucket = css_set_hash(cg->subsys);
4519 hlist_add_head(&cg->hlist, new_bucket);
4520 }
4521 }
4522 write_unlock(&css_set_lock);
4523
4524 ss->active = 1;
4525
4526 /* success! */
4527 mutex_unlock(&cgroup_mutex);
4528 return 0;
4529 }
4530 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4531
4532 /**
4533 * cgroup_unload_subsys: unload a modular subsystem
4534 * @ss: the subsystem to unload
4535 *
4536 * This function should be called in a modular subsystem's exitcall. When this
4537 * function is invoked, the refcount on the subsystem's module will be 0, so
4538 * the subsystem will not be attached to any hierarchy.
4539 */
4540 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4541 {
4542 struct cg_cgroup_link *link;
4543 struct hlist_head *hhead;
4544
4545 BUG_ON(ss->module == NULL);
4546
4547 /*
4548 * we shouldn't be called if the subsystem is in use, and the use of
4549 * try_module_get in parse_cgroupfs_options should ensure that it
4550 * doesn't start being used while we're killing it off.
4551 */
4552 BUG_ON(ss->root != &rootnode);
4553
4554 mutex_lock(&cgroup_mutex);
4555 /* deassign the subsys_id */
4556 subsys[ss->subsys_id] = NULL;
4557
4558 /* remove subsystem from rootnode's list of subsystems */
4559 list_del_init(&ss->sibling);
4560
4561 /*
4562 * disentangle the css from all css_sets attached to the dummytop. as
4563 * in loading, we need to pay our respects to the hashtable gods.
4564 */
4565 write_lock(&css_set_lock);
4566 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4567 struct css_set *cg = link->cg;
4568
4569 hlist_del(&cg->hlist);
4570 BUG_ON(!cg->subsys[ss->subsys_id]);
4571 cg->subsys[ss->subsys_id] = NULL;
4572 hhead = css_set_hash(cg->subsys);
4573 hlist_add_head(&cg->hlist, hhead);
4574 }
4575 write_unlock(&css_set_lock);
4576
4577 /*
4578 * remove subsystem's css from the dummytop and free it - need to free
4579 * before marking as null because ss->destroy needs the cgrp->subsys
4580 * pointer to find their state. note that this also takes care of
4581 * freeing the css_id.
4582 */
4583 ss->destroy(dummytop);
4584 dummytop->subsys[ss->subsys_id] = NULL;
4585
4586 mutex_unlock(&cgroup_mutex);
4587 }
4588 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4589
4590 /**
4591 * cgroup_init_early - cgroup initialization at system boot
4592 *
4593 * Initialize cgroups at system boot, and initialize any
4594 * subsystems that request early init.
4595 */
4596 int __init cgroup_init_early(void)
4597 {
4598 int i;
4599 atomic_set(&init_css_set.refcount, 1);
4600 INIT_LIST_HEAD(&init_css_set.cg_links);
4601 INIT_LIST_HEAD(&init_css_set.tasks);
4602 INIT_HLIST_NODE(&init_css_set.hlist);
4603 css_set_count = 1;
4604 init_cgroup_root(&rootnode);
4605 root_count = 1;
4606 init_task.cgroups = &init_css_set;
4607
4608 init_css_set_link.cg = &init_css_set;
4609 init_css_set_link.cgrp = dummytop;
4610 list_add(&init_css_set_link.cgrp_link_list,
4611 &rootnode.top_cgroup.css_sets);
4612 list_add(&init_css_set_link.cg_link_list,
4613 &init_css_set.cg_links);
4614
4615 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4616 INIT_HLIST_HEAD(&css_set_table[i]);
4617
4618 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4619 struct cgroup_subsys *ss = subsys[i];
4620
4621 /* at bootup time, we don't worry about modular subsystems */
4622 if (!ss || ss->module)
4623 continue;
4624
4625 BUG_ON(!ss->name);
4626 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4627 BUG_ON(!ss->create);
4628 BUG_ON(!ss->destroy);
4629 if (ss->subsys_id != i) {
4630 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4631 ss->name, ss->subsys_id);
4632 BUG();
4633 }
4634
4635 if (ss->early_init)
4636 cgroup_init_subsys(ss);
4637 }
4638 return 0;
4639 }
4640
4641 /**
4642 * cgroup_init - cgroup initialization
4643 *
4644 * Register cgroup filesystem and /proc file, and initialize
4645 * any subsystems that didn't request early init.
4646 */
4647 int __init cgroup_init(void)
4648 {
4649 int err;
4650 int i;
4651 struct hlist_head *hhead;
4652
4653 err = bdi_init(&cgroup_backing_dev_info);
4654 if (err)
4655 return err;
4656
4657 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4658 struct cgroup_subsys *ss = subsys[i];
4659
4660 /* at bootup time, we don't worry about modular subsystems */
4661 if (!ss || ss->module)
4662 continue;
4663 if (!ss->early_init)
4664 cgroup_init_subsys(ss);
4665 if (ss->use_id)
4666 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4667 }
4668
4669 /* Add init_css_set to the hash table */
4670 hhead = css_set_hash(init_css_set.subsys);
4671 hlist_add_head(&init_css_set.hlist, hhead);
4672 BUG_ON(!init_root_id(&rootnode));
4673
4674 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4675 if (!cgroup_kobj) {
4676 err = -ENOMEM;
4677 goto out;
4678 }
4679
4680 err = register_filesystem(&cgroup_fs_type);
4681 if (err < 0) {
4682 kobject_put(cgroup_kobj);
4683 goto out;
4684 }
4685
4686 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4687
4688 out:
4689 if (err)
4690 bdi_destroy(&cgroup_backing_dev_info);
4691
4692 return err;
4693 }
4694
4695 /*
4696 * proc_cgroup_show()
4697 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4698 * - Used for /proc/<pid>/cgroup.
4699 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4700 * doesn't really matter if tsk->cgroup changes after we read it,
4701 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4702 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4703 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4704 * cgroup to top_cgroup.
4705 */
4706
4707 /* TODO: Use a proper seq_file iterator */
4708 static int proc_cgroup_show(struct seq_file *m, void *v)
4709 {
4710 struct pid *pid;
4711 struct task_struct *tsk;
4712 char *buf;
4713 int retval;
4714 struct cgroupfs_root *root;
4715
4716 retval = -ENOMEM;
4717 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4718 if (!buf)
4719 goto out;
4720
4721 retval = -ESRCH;
4722 pid = m->private;
4723 tsk = get_pid_task(pid, PIDTYPE_PID);
4724 if (!tsk)
4725 goto out_free;
4726
4727 retval = 0;
4728
4729 mutex_lock(&cgroup_mutex);
4730
4731 for_each_active_root(root) {
4732 struct cgroup_subsys *ss;
4733 struct cgroup *cgrp;
4734 int count = 0;
4735
4736 seq_printf(m, "%d:", root->hierarchy_id);
4737 for_each_subsys(root, ss)
4738 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4739 if (strlen(root->name))
4740 seq_printf(m, "%sname=%s", count ? "," : "",
4741 root->name);
4742 seq_putc(m, ':');
4743 cgrp = task_cgroup_from_root(tsk, root);
4744 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4745 if (retval < 0)
4746 goto out_unlock;
4747 seq_puts(m, buf);
4748 seq_putc(m, '\n');
4749 }
4750
4751 out_unlock:
4752 mutex_unlock(&cgroup_mutex);
4753 put_task_struct(tsk);
4754 out_free:
4755 kfree(buf);
4756 out:
4757 return retval;
4758 }
4759
4760 static int cgroup_open(struct inode *inode, struct file *file)
4761 {
4762 struct pid *pid = PROC_I(inode)->pid;
4763 return single_open(file, proc_cgroup_show, pid);
4764 }
4765
4766 const struct file_operations proc_cgroup_operations = {
4767 .open = cgroup_open,
4768 .read = seq_read,
4769 .llseek = seq_lseek,
4770 .release = single_release,
4771 };
4772
4773 /* Display information about each subsystem and each hierarchy */
4774 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4775 {
4776 int i;
4777
4778 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4779 /*
4780 * ideally we don't want subsystems moving around while we do this.
4781 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4782 * subsys/hierarchy state.
4783 */
4784 mutex_lock(&cgroup_mutex);
4785 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4786 struct cgroup_subsys *ss = subsys[i];
4787 if (ss == NULL)
4788 continue;
4789 seq_printf(m, "%s\t%d\t%d\t%d\n",
4790 ss->name, ss->root->hierarchy_id,
4791 ss->root->number_of_cgroups, !ss->disabled);
4792 }
4793 mutex_unlock(&cgroup_mutex);
4794 return 0;
4795 }
4796
4797 static int cgroupstats_open(struct inode *inode, struct file *file)
4798 {
4799 return single_open(file, proc_cgroupstats_show, NULL);
4800 }
4801
4802 static const struct file_operations proc_cgroupstats_operations = {
4803 .open = cgroupstats_open,
4804 .read = seq_read,
4805 .llseek = seq_lseek,
4806 .release = single_release,
4807 };
4808
4809 /**
4810 * cgroup_fork - attach newly forked task to its parents cgroup.
4811 * @child: pointer to task_struct of forking parent process.
4812 *
4813 * Description: A task inherits its parent's cgroup at fork().
4814 *
4815 * A pointer to the shared css_set was automatically copied in
4816 * fork.c by dup_task_struct(). However, we ignore that copy, since
4817 * it was not made under the protection of RCU or cgroup_mutex, so
4818 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4819 * have already changed current->cgroups, allowing the previously
4820 * referenced cgroup group to be removed and freed.
4821 *
4822 * At the point that cgroup_fork() is called, 'current' is the parent
4823 * task, and the passed argument 'child' points to the child task.
4824 */
4825 void cgroup_fork(struct task_struct *child)
4826 {
4827 task_lock(current);
4828 child->cgroups = current->cgroups;
4829 get_css_set(child->cgroups);
4830 task_unlock(current);
4831 INIT_LIST_HEAD(&child->cg_list);
4832 }
4833
4834 /**
4835 * cgroup_fork_callbacks - run fork callbacks
4836 * @child: the new task
4837 *
4838 * Called on a new task very soon before adding it to the
4839 * tasklist. No need to take any locks since no-one can
4840 * be operating on this task.
4841 */
4842 void cgroup_fork_callbacks(struct task_struct *child)
4843 {
4844 if (need_forkexit_callback) {
4845 int i;
4846 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4847 struct cgroup_subsys *ss = subsys[i];
4848
4849 /*
4850 * forkexit callbacks are only supported for
4851 * builtin subsystems.
4852 */
4853 if (!ss || ss->module)
4854 continue;
4855
4856 if (ss->fork)
4857 ss->fork(child);
4858 }
4859 }
4860 }
4861
4862 /**
4863 * cgroup_post_fork - called on a new task after adding it to the task list
4864 * @child: the task in question
4865 *
4866 * Adds the task to the list running through its css_set if necessary.
4867 * Has to be after the task is visible on the task list in case we race
4868 * with the first call to cgroup_iter_start() - to guarantee that the
4869 * new task ends up on its list.
4870 */
4871 void cgroup_post_fork(struct task_struct *child)
4872 {
4873 /*
4874 * use_task_css_set_links is set to 1 before we walk the tasklist
4875 * under the tasklist_lock and we read it here after we added the child
4876 * to the tasklist under the tasklist_lock as well. If the child wasn't
4877 * yet in the tasklist when we walked through it from
4878 * cgroup_enable_task_cg_lists(), then use_task_css_set_links value
4879 * should be visible now due to the paired locking and barriers implied
4880 * by LOCK/UNLOCK: it is written before the tasklist_lock unlock
4881 * in cgroup_enable_task_cg_lists() and read here after the tasklist_lock
4882 * lock on fork.
4883 */
4884 if (use_task_css_set_links) {
4885 write_lock(&css_set_lock);
4886 task_lock(child);
4887 if (list_empty(&child->cg_list))
4888 list_add(&child->cg_list, &child->cgroups->tasks);
4889 task_unlock(child);
4890 write_unlock(&css_set_lock);
4891 }
4892 }
4893 /**
4894 * cgroup_exit - detach cgroup from exiting task
4895 * @tsk: pointer to task_struct of exiting process
4896 * @run_callback: run exit callbacks?
4897 *
4898 * Description: Detach cgroup from @tsk and release it.
4899 *
4900 * Note that cgroups marked notify_on_release force every task in
4901 * them to take the global cgroup_mutex mutex when exiting.
4902 * This could impact scaling on very large systems. Be reluctant to
4903 * use notify_on_release cgroups where very high task exit scaling
4904 * is required on large systems.
4905 *
4906 * the_top_cgroup_hack:
4907 *
4908 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4909 *
4910 * We call cgroup_exit() while the task is still competent to
4911 * handle notify_on_release(), then leave the task attached to the
4912 * root cgroup in each hierarchy for the remainder of its exit.
4913 *
4914 * To do this properly, we would increment the reference count on
4915 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4916 * code we would add a second cgroup function call, to drop that
4917 * reference. This would just create an unnecessary hot spot on
4918 * the top_cgroup reference count, to no avail.
4919 *
4920 * Normally, holding a reference to a cgroup without bumping its
4921 * count is unsafe. The cgroup could go away, or someone could
4922 * attach us to a different cgroup, decrementing the count on
4923 * the first cgroup that we never incremented. But in this case,
4924 * top_cgroup isn't going away, and either task has PF_EXITING set,
4925 * which wards off any cgroup_attach_task() attempts, or task is a failed
4926 * fork, never visible to cgroup_attach_task.
4927 */
4928 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4929 {
4930 struct css_set *cg;
4931 int i;
4932
4933 /*
4934 * Unlink from the css_set task list if necessary.
4935 * Optimistically check cg_list before taking
4936 * css_set_lock
4937 */
4938 if (!list_empty(&tsk->cg_list)) {
4939 write_lock(&css_set_lock);
4940 if (!list_empty(&tsk->cg_list))
4941 list_del_init(&tsk->cg_list);
4942 write_unlock(&css_set_lock);
4943 }
4944
4945 /* Reassign the task to the init_css_set. */
4946 task_lock(tsk);
4947 cg = tsk->cgroups;
4948 tsk->cgroups = &init_css_set;
4949
4950 if (run_callbacks && need_forkexit_callback) {
4951 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4952 struct cgroup_subsys *ss = subsys[i];
4953
4954 /* modular subsystems can't use callbacks */
4955 if (!ss || ss->module)
4956 continue;
4957
4958 if (ss->exit) {
4959 struct cgroup *old_cgrp =
4960 rcu_dereference_raw(cg->subsys[i])->cgroup;
4961 struct cgroup *cgrp = task_cgroup(tsk, i);
4962 ss->exit(cgrp, old_cgrp, tsk);
4963 }
4964 }
4965 }
4966 task_unlock(tsk);
4967
4968 if (cg)
4969 put_css_set_taskexit(cg);
4970 }
4971
4972 /**
4973 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4974 * @cgrp: the cgroup in question
4975 * @task: the task in question
4976 *
4977 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4978 * hierarchy.
4979 *
4980 * If we are sending in dummytop, then presumably we are creating
4981 * the top cgroup in the subsystem.
4982 *
4983 * Called only by the ns (nsproxy) cgroup.
4984 */
4985 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4986 {
4987 int ret;
4988 struct cgroup *target;
4989
4990 if (cgrp == dummytop)
4991 return 1;
4992
4993 target = task_cgroup_from_root(task, cgrp->root);
4994 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4995 cgrp = cgrp->parent;
4996 ret = (cgrp == target);
4997 return ret;
4998 }
4999
5000 static void check_for_release(struct cgroup *cgrp)
5001 {
5002 /* All of these checks rely on RCU to keep the cgroup
5003 * structure alive */
5004 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
5005 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
5006 /* Control Group is currently removeable. If it's not
5007 * already queued for a userspace notification, queue
5008 * it now */
5009 int need_schedule_work = 0;
5010 raw_spin_lock(&release_list_lock);
5011 if (!cgroup_is_removed(cgrp) &&
5012 list_empty(&cgrp->release_list)) {
5013 list_add(&cgrp->release_list, &release_list);
5014 need_schedule_work = 1;
5015 }
5016 raw_spin_unlock(&release_list_lock);
5017 if (need_schedule_work)
5018 schedule_work(&release_agent_work);
5019 }
5020 }
5021
5022 /* Caller must verify that the css is not for root cgroup */
5023 bool __css_tryget(struct cgroup_subsys_state *css)
5024 {
5025 do {
5026 int v = css_refcnt(css);
5027
5028 if (atomic_cmpxchg(&css->refcnt, v, v + 1) == v)
5029 return true;
5030 cpu_relax();
5031 } while (!test_bit(CSS_REMOVED, &css->flags));
5032
5033 return false;
5034 }
5035 EXPORT_SYMBOL_GPL(__css_tryget);
5036
5037 /* Caller must verify that the css is not for root cgroup */
5038 void __css_put(struct cgroup_subsys_state *css)
5039 {
5040 struct cgroup *cgrp = css->cgroup;
5041 int v;
5042
5043 rcu_read_lock();
5044 v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
5045
5046 switch (v) {
5047 case 1:
5048 if (notify_on_release(cgrp)) {
5049 set_bit(CGRP_RELEASABLE, &cgrp->flags);
5050 check_for_release(cgrp);
5051 }
5052 cgroup_wakeup_rmdir_waiter(cgrp);
5053 break;
5054 case 0:
5055 if (!test_bit(CSS_CLEAR_CSS_REFS, &css->flags))
5056 schedule_work(&css->dput_work);
5057 break;
5058 }
5059 rcu_read_unlock();
5060 }
5061 EXPORT_SYMBOL_GPL(__css_put);
5062
5063 /*
5064 * Notify userspace when a cgroup is released, by running the
5065 * configured release agent with the name of the cgroup (path
5066 * relative to the root of cgroup file system) as the argument.
5067 *
5068 * Most likely, this user command will try to rmdir this cgroup.
5069 *
5070 * This races with the possibility that some other task will be
5071 * attached to this cgroup before it is removed, or that some other
5072 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5073 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5074 * unused, and this cgroup will be reprieved from its death sentence,
5075 * to continue to serve a useful existence. Next time it's released,
5076 * we will get notified again, if it still has 'notify_on_release' set.
5077 *
5078 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5079 * means only wait until the task is successfully execve()'d. The
5080 * separate release agent task is forked by call_usermodehelper(),
5081 * then control in this thread returns here, without waiting for the
5082 * release agent task. We don't bother to wait because the caller of
5083 * this routine has no use for the exit status of the release agent
5084 * task, so no sense holding our caller up for that.
5085 */
5086 static void cgroup_release_agent(struct work_struct *work)
5087 {
5088 BUG_ON(work != &release_agent_work);
5089 mutex_lock(&cgroup_mutex);
5090 raw_spin_lock(&release_list_lock);
5091 while (!list_empty(&release_list)) {
5092 char *argv[3], *envp[3];
5093 int i;
5094 char *pathbuf = NULL, *agentbuf = NULL;
5095 struct cgroup *cgrp = list_entry(release_list.next,
5096 struct cgroup,
5097 release_list);
5098 list_del_init(&cgrp->release_list);
5099 raw_spin_unlock(&release_list_lock);
5100 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
5101 if (!pathbuf)
5102 goto continue_free;
5103 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
5104 goto continue_free;
5105 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5106 if (!agentbuf)
5107 goto continue_free;
5108
5109 i = 0;
5110 argv[i++] = agentbuf;
5111 argv[i++] = pathbuf;
5112 argv[i] = NULL;
5113
5114 i = 0;
5115 /* minimal command environment */
5116 envp[i++] = "HOME=/";
5117 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5118 envp[i] = NULL;
5119
5120 /* Drop the lock while we invoke the usermode helper,
5121 * since the exec could involve hitting disk and hence
5122 * be a slow process */
5123 mutex_unlock(&cgroup_mutex);
5124 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5125 mutex_lock(&cgroup_mutex);
5126 continue_free:
5127 kfree(pathbuf);
5128 kfree(agentbuf);
5129 raw_spin_lock(&release_list_lock);
5130 }
5131 raw_spin_unlock(&release_list_lock);
5132 mutex_unlock(&cgroup_mutex);
5133 }
5134
5135 static int __init cgroup_disable(char *str)
5136 {
5137 int i;
5138 char *token;
5139
5140 while ((token = strsep(&str, ",")) != NULL) {
5141 if (!*token)
5142 continue;
5143 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
5144 struct cgroup_subsys *ss = subsys[i];
5145
5146 /*
5147 * cgroup_disable, being at boot time, can't
5148 * know about module subsystems, so we don't
5149 * worry about them.
5150 */
5151 if (!ss || ss->module)
5152 continue;
5153
5154 if (!strcmp(token, ss->name)) {
5155 ss->disabled = 1;
5156 printk(KERN_INFO "Disabling %s control group"
5157 " subsystem\n", ss->name);
5158 break;
5159 }
5160 }
5161 }
5162 return 1;
5163 }
5164 __setup("cgroup_disable=", cgroup_disable);
5165
5166 /*
5167 * Functons for CSS ID.
5168 */
5169
5170 /*
5171 *To get ID other than 0, this should be called when !cgroup_is_removed().
5172 */
5173 unsigned short css_id(struct cgroup_subsys_state *css)
5174 {
5175 struct css_id *cssid;
5176
5177 /*
5178 * This css_id() can return correct value when somone has refcnt
5179 * on this or this is under rcu_read_lock(). Once css->id is allocated,
5180 * it's unchanged until freed.
5181 */
5182 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5183
5184 if (cssid)
5185 return cssid->id;
5186 return 0;
5187 }
5188 EXPORT_SYMBOL_GPL(css_id);
5189
5190 unsigned short css_depth(struct cgroup_subsys_state *css)
5191 {
5192 struct css_id *cssid;
5193
5194 cssid = rcu_dereference_check(css->id, css_refcnt(css));
5195
5196 if (cssid)
5197 return cssid->depth;
5198 return 0;
5199 }
5200 EXPORT_SYMBOL_GPL(css_depth);
5201
5202 /**
5203 * css_is_ancestor - test "root" css is an ancestor of "child"
5204 * @child: the css to be tested.
5205 * @root: the css supporsed to be an ancestor of the child.
5206 *
5207 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
5208 * this function reads css->id, the caller must hold rcu_read_lock().
5209 * But, considering usual usage, the csses should be valid objects after test.
5210 * Assuming that the caller will do some action to the child if this returns
5211 * returns true, the caller must take "child";s reference count.
5212 * If "child" is valid object and this returns true, "root" is valid, too.
5213 */
5214
5215 bool css_is_ancestor(struct cgroup_subsys_state *child,
5216 const struct cgroup_subsys_state *root)
5217 {
5218 struct css_id *child_id;
5219 struct css_id *root_id;
5220
5221 child_id = rcu_dereference(child->id);
5222 if (!child_id)
5223 return false;
5224 root_id = rcu_dereference(root->id);
5225 if (!root_id)
5226 return false;
5227 if (child_id->depth < root_id->depth)
5228 return false;
5229 if (child_id->stack[root_id->depth] != root_id->id)
5230 return false;
5231 return true;
5232 }
5233
5234 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
5235 {
5236 struct css_id *id = css->id;
5237 /* When this is called before css_id initialization, id can be NULL */
5238 if (!id)
5239 return;
5240
5241 BUG_ON(!ss->use_id);
5242
5243 rcu_assign_pointer(id->css, NULL);
5244 rcu_assign_pointer(css->id, NULL);
5245 spin_lock(&ss->id_lock);
5246 idr_remove(&ss->idr, id->id);
5247 spin_unlock(&ss->id_lock);
5248 kfree_rcu(id, rcu_head);
5249 }
5250 EXPORT_SYMBOL_GPL(free_css_id);
5251
5252 /*
5253 * This is called by init or create(). Then, calls to this function are
5254 * always serialized (By cgroup_mutex() at create()).
5255 */
5256
5257 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
5258 {
5259 struct css_id *newid;
5260 int myid, error, size;
5261
5262 BUG_ON(!ss->use_id);
5263
5264 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
5265 newid = kzalloc(size, GFP_KERNEL);
5266 if (!newid)
5267 return ERR_PTR(-ENOMEM);
5268 /* get id */
5269 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
5270 error = -ENOMEM;
5271 goto err_out;
5272 }
5273 spin_lock(&ss->id_lock);
5274 /* Don't use 0. allocates an ID of 1-65535 */
5275 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
5276 spin_unlock(&ss->id_lock);
5277
5278 /* Returns error when there are no free spaces for new ID.*/
5279 if (error) {
5280 error = -ENOSPC;
5281 goto err_out;
5282 }
5283 if (myid > CSS_ID_MAX)
5284 goto remove_idr;
5285
5286 newid->id = myid;
5287 newid->depth = depth;
5288 return newid;
5289 remove_idr:
5290 error = -ENOSPC;
5291 spin_lock(&ss->id_lock);
5292 idr_remove(&ss->idr, myid);
5293 spin_unlock(&ss->id_lock);
5294 err_out:
5295 kfree(newid);
5296 return ERR_PTR(error);
5297
5298 }
5299
5300 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
5301 struct cgroup_subsys_state *rootcss)
5302 {
5303 struct css_id *newid;
5304
5305 spin_lock_init(&ss->id_lock);
5306 idr_init(&ss->idr);
5307
5308 newid = get_new_cssid(ss, 0);
5309 if (IS_ERR(newid))
5310 return PTR_ERR(newid);
5311
5312 newid->stack[0] = newid->id;
5313 newid->css = rootcss;
5314 rootcss->id = newid;
5315 return 0;
5316 }
5317
5318 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
5319 struct cgroup *child)
5320 {
5321 int subsys_id, i, depth = 0;
5322 struct cgroup_subsys_state *parent_css, *child_css;
5323 struct css_id *child_id, *parent_id;
5324
5325 subsys_id = ss->subsys_id;
5326 parent_css = parent->subsys[subsys_id];
5327 child_css = child->subsys[subsys_id];
5328 parent_id = parent_css->id;
5329 depth = parent_id->depth + 1;
5330
5331 child_id = get_new_cssid(ss, depth);
5332 if (IS_ERR(child_id))
5333 return PTR_ERR(child_id);
5334
5335 for (i = 0; i < depth; i++)
5336 child_id->stack[i] = parent_id->stack[i];
5337 child_id->stack[depth] = child_id->id;
5338 /*
5339 * child_id->css pointer will be set after this cgroup is available
5340 * see cgroup_populate_dir()
5341 */
5342 rcu_assign_pointer(child_css->id, child_id);
5343
5344 return 0;
5345 }
5346
5347 /**
5348 * css_lookup - lookup css by id
5349 * @ss: cgroup subsys to be looked into.
5350 * @id: the id
5351 *
5352 * Returns pointer to cgroup_subsys_state if there is valid one with id.
5353 * NULL if not. Should be called under rcu_read_lock()
5354 */
5355 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
5356 {
5357 struct css_id *cssid = NULL;
5358
5359 BUG_ON(!ss->use_id);
5360 cssid = idr_find(&ss->idr, id);
5361
5362 if (unlikely(!cssid))
5363 return NULL;
5364
5365 return rcu_dereference(cssid->css);
5366 }
5367 EXPORT_SYMBOL_GPL(css_lookup);
5368
5369 /**
5370 * css_get_next - lookup next cgroup under specified hierarchy.
5371 * @ss: pointer to subsystem
5372 * @id: current position of iteration.
5373 * @root: pointer to css. search tree under this.
5374 * @foundid: position of found object.
5375 *
5376 * Search next css under the specified hierarchy of rootid. Calling under
5377 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5378 */
5379 struct cgroup_subsys_state *
5380 css_get_next(struct cgroup_subsys *ss, int id,
5381 struct cgroup_subsys_state *root, int *foundid)
5382 {
5383 struct cgroup_subsys_state *ret = NULL;
5384 struct css_id *tmp;
5385 int tmpid;
5386 int rootid = css_id(root);
5387 int depth = css_depth(root);
5388
5389 if (!rootid)
5390 return NULL;
5391
5392 BUG_ON(!ss->use_id);
5393 WARN_ON_ONCE(!rcu_read_lock_held());
5394
5395 /* fill start point for scan */
5396 tmpid = id;
5397 while (1) {
5398 /*
5399 * scan next entry from bitmap(tree), tmpid is updated after
5400 * idr_get_next().
5401 */
5402 tmp = idr_get_next(&ss->idr, &tmpid);
5403 if (!tmp)
5404 break;
5405 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5406 ret = rcu_dereference(tmp->css);
5407 if (ret) {
5408 *foundid = tmpid;
5409 break;
5410 }
5411 }
5412 /* continue to scan from next id */
5413 tmpid = tmpid + 1;
5414 }
5415 return ret;
5416 }
5417
5418 /*
5419 * get corresponding css from file open on cgroupfs directory
5420 */
5421 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5422 {
5423 struct cgroup *cgrp;
5424 struct inode *inode;
5425 struct cgroup_subsys_state *css;
5426
5427 inode = f->f_dentry->d_inode;
5428 /* check in cgroup filesystem dir */
5429 if (inode->i_op != &cgroup_dir_inode_operations)
5430 return ERR_PTR(-EBADF);
5431
5432 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5433 return ERR_PTR(-EINVAL);
5434
5435 /* get cgroup */
5436 cgrp = __d_cgrp(f->f_dentry);
5437 css = cgrp->subsys[id];
5438 return css ? css : ERR_PTR(-ENOENT);
5439 }
5440
5441 #ifdef CONFIG_CGROUP_DEBUG
5442 static struct cgroup_subsys_state *debug_create(struct cgroup *cont)
5443 {
5444 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5445
5446 if (!css)
5447 return ERR_PTR(-ENOMEM);
5448
5449 return css;
5450 }
5451
5452 static void debug_destroy(struct cgroup *cont)
5453 {
5454 kfree(cont->subsys[debug_subsys_id]);
5455 }
5456
5457 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5458 {
5459 return atomic_read(&cont->count);
5460 }
5461
5462 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5463 {
5464 return cgroup_task_count(cont);
5465 }
5466
5467 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5468 {
5469 return (u64)(unsigned long)current->cgroups;
5470 }
5471
5472 static u64 current_css_set_refcount_read(struct cgroup *cont,
5473 struct cftype *cft)
5474 {
5475 u64 count;
5476
5477 rcu_read_lock();
5478 count = atomic_read(&current->cgroups->refcount);
5479 rcu_read_unlock();
5480 return count;
5481 }
5482
5483 static int current_css_set_cg_links_read(struct cgroup *cont,
5484 struct cftype *cft,
5485 struct seq_file *seq)
5486 {
5487 struct cg_cgroup_link *link;
5488 struct css_set *cg;
5489
5490 read_lock(&css_set_lock);
5491 rcu_read_lock();
5492 cg = rcu_dereference(current->cgroups);
5493 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5494 struct cgroup *c = link->cgrp;
5495 const char *name;
5496
5497 if (c->dentry)
5498 name = c->dentry->d_name.name;
5499 else
5500 name = "?";
5501 seq_printf(seq, "Root %d group %s\n",
5502 c->root->hierarchy_id, name);
5503 }
5504 rcu_read_unlock();
5505 read_unlock(&css_set_lock);
5506 return 0;
5507 }
5508
5509 #define MAX_TASKS_SHOWN_PER_CSS 25
5510 static int cgroup_css_links_read(struct cgroup *cont,
5511 struct cftype *cft,
5512 struct seq_file *seq)
5513 {
5514 struct cg_cgroup_link *link;
5515
5516 read_lock(&css_set_lock);
5517 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5518 struct css_set *cg = link->cg;
5519 struct task_struct *task;
5520 int count = 0;
5521 seq_printf(seq, "css_set %p\n", cg);
5522 list_for_each_entry(task, &cg->tasks, cg_list) {
5523 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5524 seq_puts(seq, " ...\n");
5525 break;
5526 } else {
5527 seq_printf(seq, " task %d\n",
5528 task_pid_vnr(task));
5529 }
5530 }
5531 }
5532 read_unlock(&css_set_lock);
5533 return 0;
5534 }
5535
5536 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5537 {
5538 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5539 }
5540
5541 static struct cftype debug_files[] = {
5542 {
5543 .name = "cgroup_refcount",
5544 .read_u64 = cgroup_refcount_read,
5545 },
5546 {
5547 .name = "taskcount",
5548 .read_u64 = debug_taskcount_read,
5549 },
5550
5551 {
5552 .name = "current_css_set",
5553 .read_u64 = current_css_set_read,
5554 },
5555
5556 {
5557 .name = "current_css_set_refcount",
5558 .read_u64 = current_css_set_refcount_read,
5559 },
5560
5561 {
5562 .name = "current_css_set_cg_links",
5563 .read_seq_string = current_css_set_cg_links_read,
5564 },
5565
5566 {
5567 .name = "cgroup_css_links",
5568 .read_seq_string = cgroup_css_links_read,
5569 },
5570
5571 {
5572 .name = "releasable",
5573 .read_u64 = releasable_read,
5574 },
5575
5576 { } /* terminate */
5577 };
5578
5579 struct cgroup_subsys debug_subsys = {
5580 .name = "debug",
5581 .create = debug_create,
5582 .destroy = debug_destroy,
5583 .subsys_id = debug_subsys_id,
5584 .base_cftypes = debug_files,
5585 };
5586 #endif /* CONFIG_CGROUP_DEBUG */