USB: serial: safe_serial: fix information leak in completion handler
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/tty.h>
67 #include <linux/binfmts.h>
68 #include <linux/highmem.h>
69 #include <linux/syscalls.h>
70 #include <asm/syscall.h>
71 #include <linux/capability.h>
72 #include <linux/fs_struct.h>
73 #include <linux/compat.h>
74 #include <linux/ctype.h>
75 #include <linux/string.h>
76 #include <linux/uaccess.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 #ifdef CONFIG_AUDIT_TREE
204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206 if (!ctx->prio) {
207 ctx->prio = 1;
208 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 }
210 }
211
212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214 struct audit_tree_refs *p = ctx->trees;
215 int left = ctx->tree_count;
216 if (likely(left)) {
217 p->c[--left] = chunk;
218 ctx->tree_count = left;
219 return 1;
220 }
221 if (!p)
222 return 0;
223 p = p->next;
224 if (p) {
225 p->c[30] = chunk;
226 ctx->trees = p;
227 ctx->tree_count = 30;
228 return 1;
229 }
230 return 0;
231 }
232
233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235 struct audit_tree_refs *p = ctx->trees;
236 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 if (!ctx->trees) {
238 ctx->trees = p;
239 return 0;
240 }
241 if (p)
242 p->next = ctx->trees;
243 else
244 ctx->first_trees = ctx->trees;
245 ctx->tree_count = 31;
246 return 1;
247 }
248 #endif
249
250 static void unroll_tree_refs(struct audit_context *ctx,
251 struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254 struct audit_tree_refs *q;
255 int n;
256 if (!p) {
257 /* we started with empty chain */
258 p = ctx->first_trees;
259 count = 31;
260 /* if the very first allocation has failed, nothing to do */
261 if (!p)
262 return;
263 }
264 n = count;
265 for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 while (n--) {
267 audit_put_chunk(q->c[n]);
268 q->c[n] = NULL;
269 }
270 }
271 while (n-- > ctx->tree_count) {
272 audit_put_chunk(q->c[n]);
273 q->c[n] = NULL;
274 }
275 ctx->trees = p;
276 ctx->tree_count = count;
277 #endif
278 }
279
280 static void free_tree_refs(struct audit_context *ctx)
281 {
282 struct audit_tree_refs *p, *q;
283 for (p = ctx->first_trees; p; p = q) {
284 q = p->next;
285 kfree(p);
286 }
287 }
288
289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292 struct audit_tree_refs *p;
293 int n;
294 if (!tree)
295 return 0;
296 /* full ones */
297 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 for (n = 0; n < 31; n++)
299 if (audit_tree_match(p->c[n], tree))
300 return 1;
301 }
302 /* partial */
303 if (p) {
304 for (n = ctx->tree_count; n < 31; n++)
305 if (audit_tree_match(p->c[n], tree))
306 return 1;
307 }
308 #endif
309 return 0;
310 }
311
312 static int audit_compare_uid(kuid_t uid,
313 struct audit_names *name,
314 struct audit_field *f,
315 struct audit_context *ctx)
316 {
317 struct audit_names *n;
318 int rc;
319
320 if (name) {
321 rc = audit_uid_comparator(uid, f->op, name->uid);
322 if (rc)
323 return rc;
324 }
325
326 if (ctx) {
327 list_for_each_entry(n, &ctx->names_list, list) {
328 rc = audit_uid_comparator(uid, f->op, n->uid);
329 if (rc)
330 return rc;
331 }
332 }
333 return 0;
334 }
335
336 static int audit_compare_gid(kgid_t gid,
337 struct audit_names *name,
338 struct audit_field *f,
339 struct audit_context *ctx)
340 {
341 struct audit_names *n;
342 int rc;
343
344 if (name) {
345 rc = audit_gid_comparator(gid, f->op, name->gid);
346 if (rc)
347 return rc;
348 }
349
350 if (ctx) {
351 list_for_each_entry(n, &ctx->names_list, list) {
352 rc = audit_gid_comparator(gid, f->op, n->gid);
353 if (rc)
354 return rc;
355 }
356 }
357 return 0;
358 }
359
360 static int audit_field_compare(struct task_struct *tsk,
361 const struct cred *cred,
362 struct audit_field *f,
363 struct audit_context *ctx,
364 struct audit_names *name)
365 {
366 switch (f->val) {
367 /* process to file object comparisons */
368 case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 return audit_compare_uid(cred->uid, name, f, ctx);
370 case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 return audit_compare_gid(cred->gid, name, f, ctx);
372 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->euid, name, f, ctx);
374 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->egid, name, f, ctx);
376 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 return audit_compare_uid(tsk->loginuid, name, f, ctx);
378 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 return audit_compare_uid(cred->suid, name, f, ctx);
380 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 return audit_compare_gid(cred->sgid, name, f, ctx);
382 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 return audit_compare_uid(cred->fsuid, name, f, ctx);
384 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 return audit_compare_gid(cred->fsgid, name, f, ctx);
386 /* uid comparisons */
387 case AUDIT_COMPARE_UID_TO_AUID:
388 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
389 case AUDIT_COMPARE_UID_TO_EUID:
390 return audit_uid_comparator(cred->uid, f->op, cred->euid);
391 case AUDIT_COMPARE_UID_TO_SUID:
392 return audit_uid_comparator(cred->uid, f->op, cred->suid);
393 case AUDIT_COMPARE_UID_TO_FSUID:
394 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
395 /* auid comparisons */
396 case AUDIT_COMPARE_AUID_TO_EUID:
397 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
398 case AUDIT_COMPARE_AUID_TO_SUID:
399 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
400 case AUDIT_COMPARE_AUID_TO_FSUID:
401 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
402 /* euid comparisons */
403 case AUDIT_COMPARE_EUID_TO_SUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->suid);
405 case AUDIT_COMPARE_EUID_TO_FSUID:
406 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
407 /* suid comparisons */
408 case AUDIT_COMPARE_SUID_TO_FSUID:
409 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
410 /* gid comparisons */
411 case AUDIT_COMPARE_GID_TO_EGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->egid);
413 case AUDIT_COMPARE_GID_TO_SGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
415 case AUDIT_COMPARE_GID_TO_FSGID:
416 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
417 /* egid comparisons */
418 case AUDIT_COMPARE_EGID_TO_SGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
420 case AUDIT_COMPARE_EGID_TO_FSGID:
421 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
422 /* sgid comparison */
423 case AUDIT_COMPARE_SGID_TO_FSGID:
424 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
425 default:
426 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
427 return 0;
428 }
429 return 0;
430 }
431
432 /* Determine if any context name data matches a rule's watch data */
433 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
434 * otherwise.
435 *
436 * If task_creation is true, this is an explicit indication that we are
437 * filtering a task rule at task creation time. This and tsk == current are
438 * the only situations where tsk->cred may be accessed without an rcu read lock.
439 */
440 static int audit_filter_rules(struct task_struct *tsk,
441 struct audit_krule *rule,
442 struct audit_context *ctx,
443 struct audit_names *name,
444 enum audit_state *state,
445 bool task_creation)
446 {
447 const struct cred *cred;
448 int i, need_sid = 1;
449 u32 sid;
450
451 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
452
453 for (i = 0; i < rule->field_count; i++) {
454 struct audit_field *f = &rule->fields[i];
455 struct audit_names *n;
456 int result = 0;
457 pid_t pid;
458
459 switch (f->type) {
460 case AUDIT_PID:
461 pid = task_tgid_nr(tsk);
462 result = audit_comparator(pid, f->op, f->val);
463 break;
464 case AUDIT_PPID:
465 if (ctx) {
466 if (!ctx->ppid)
467 ctx->ppid = task_ppid_nr(tsk);
468 result = audit_comparator(ctx->ppid, f->op, f->val);
469 }
470 break;
471 case AUDIT_EXE:
472 result = audit_exe_compare(tsk, rule->exe);
473 break;
474 case AUDIT_UID:
475 result = audit_uid_comparator(cred->uid, f->op, f->uid);
476 break;
477 case AUDIT_EUID:
478 result = audit_uid_comparator(cred->euid, f->op, f->uid);
479 break;
480 case AUDIT_SUID:
481 result = audit_uid_comparator(cred->suid, f->op, f->uid);
482 break;
483 case AUDIT_FSUID:
484 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
485 break;
486 case AUDIT_GID:
487 result = audit_gid_comparator(cred->gid, f->op, f->gid);
488 if (f->op == Audit_equal) {
489 if (!result)
490 result = in_group_p(f->gid);
491 } else if (f->op == Audit_not_equal) {
492 if (result)
493 result = !in_group_p(f->gid);
494 }
495 break;
496 case AUDIT_EGID:
497 result = audit_gid_comparator(cred->egid, f->op, f->gid);
498 if (f->op == Audit_equal) {
499 if (!result)
500 result = in_egroup_p(f->gid);
501 } else if (f->op == Audit_not_equal) {
502 if (result)
503 result = !in_egroup_p(f->gid);
504 }
505 break;
506 case AUDIT_SGID:
507 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
508 break;
509 case AUDIT_FSGID:
510 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
511 break;
512 case AUDIT_PERS:
513 result = audit_comparator(tsk->personality, f->op, f->val);
514 break;
515 case AUDIT_ARCH:
516 if (ctx)
517 result = audit_comparator(ctx->arch, f->op, f->val);
518 break;
519
520 case AUDIT_EXIT:
521 if (ctx && ctx->return_valid)
522 result = audit_comparator(ctx->return_code, f->op, f->val);
523 break;
524 case AUDIT_SUCCESS:
525 if (ctx && ctx->return_valid) {
526 if (f->val)
527 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
528 else
529 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
530 }
531 break;
532 case AUDIT_DEVMAJOR:
533 if (name) {
534 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
535 audit_comparator(MAJOR(name->rdev), f->op, f->val))
536 ++result;
537 } else if (ctx) {
538 list_for_each_entry(n, &ctx->names_list, list) {
539 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
541 ++result;
542 break;
543 }
544 }
545 }
546 break;
547 case AUDIT_DEVMINOR:
548 if (name) {
549 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
550 audit_comparator(MINOR(name->rdev), f->op, f->val))
551 ++result;
552 } else if (ctx) {
553 list_for_each_entry(n, &ctx->names_list, list) {
554 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
555 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_INODE:
563 if (name)
564 result = audit_comparator(name->ino, f->op, f->val);
565 else if (ctx) {
566 list_for_each_entry(n, &ctx->names_list, list) {
567 if (audit_comparator(n->ino, f->op, f->val)) {
568 ++result;
569 break;
570 }
571 }
572 }
573 break;
574 case AUDIT_OBJ_UID:
575 if (name) {
576 result = audit_uid_comparator(name->uid, f->op, f->uid);
577 } else if (ctx) {
578 list_for_each_entry(n, &ctx->names_list, list) {
579 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
580 ++result;
581 break;
582 }
583 }
584 }
585 break;
586 case AUDIT_OBJ_GID:
587 if (name) {
588 result = audit_gid_comparator(name->gid, f->op, f->gid);
589 } else if (ctx) {
590 list_for_each_entry(n, &ctx->names_list, list) {
591 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
592 ++result;
593 break;
594 }
595 }
596 }
597 break;
598 case AUDIT_WATCH:
599 if (name)
600 result = audit_watch_compare(rule->watch, name->ino, name->dev);
601 break;
602 case AUDIT_DIR:
603 if (ctx)
604 result = match_tree_refs(ctx, rule->tree);
605 break;
606 case AUDIT_LOGINUID:
607 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
608 break;
609 case AUDIT_LOGINUID_SET:
610 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
611 break;
612 case AUDIT_SUBJ_USER:
613 case AUDIT_SUBJ_ROLE:
614 case AUDIT_SUBJ_TYPE:
615 case AUDIT_SUBJ_SEN:
616 case AUDIT_SUBJ_CLR:
617 /* NOTE: this may return negative values indicating
618 a temporary error. We simply treat this as a
619 match for now to avoid losing information that
620 may be wanted. An error message will also be
621 logged upon error */
622 if (f->lsm_rule) {
623 if (need_sid) {
624 security_task_getsecid(tsk, &sid);
625 need_sid = 0;
626 }
627 result = security_audit_rule_match(sid, f->type,
628 f->op,
629 f->lsm_rule,
630 ctx);
631 }
632 break;
633 case AUDIT_OBJ_USER:
634 case AUDIT_OBJ_ROLE:
635 case AUDIT_OBJ_TYPE:
636 case AUDIT_OBJ_LEV_LOW:
637 case AUDIT_OBJ_LEV_HIGH:
638 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
639 also applies here */
640 if (f->lsm_rule) {
641 /* Find files that match */
642 if (name) {
643 result = security_audit_rule_match(
644 name->osid, f->type, f->op,
645 f->lsm_rule, ctx);
646 } else if (ctx) {
647 list_for_each_entry(n, &ctx->names_list, list) {
648 if (security_audit_rule_match(n->osid, f->type,
649 f->op, f->lsm_rule,
650 ctx)) {
651 ++result;
652 break;
653 }
654 }
655 }
656 /* Find ipc objects that match */
657 if (!ctx || ctx->type != AUDIT_IPC)
658 break;
659 if (security_audit_rule_match(ctx->ipc.osid,
660 f->type, f->op,
661 f->lsm_rule, ctx))
662 ++result;
663 }
664 break;
665 case AUDIT_ARG0:
666 case AUDIT_ARG1:
667 case AUDIT_ARG2:
668 case AUDIT_ARG3:
669 if (ctx)
670 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
671 break;
672 case AUDIT_FILTERKEY:
673 /* ignore this field for filtering */
674 result = 1;
675 break;
676 case AUDIT_PERM:
677 result = audit_match_perm(ctx, f->val);
678 break;
679 case AUDIT_FILETYPE:
680 result = audit_match_filetype(ctx, f->val);
681 break;
682 case AUDIT_FIELD_COMPARE:
683 result = audit_field_compare(tsk, cred, f, ctx, name);
684 break;
685 }
686 if (!result)
687 return 0;
688 }
689
690 if (ctx) {
691 if (rule->prio <= ctx->prio)
692 return 0;
693 if (rule->filterkey) {
694 kfree(ctx->filterkey);
695 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
696 }
697 ctx->prio = rule->prio;
698 }
699 switch (rule->action) {
700 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
701 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
702 }
703 return 1;
704 }
705
706 /* At process creation time, we can determine if system-call auditing is
707 * completely disabled for this task. Since we only have the task
708 * structure at this point, we can only check uid and gid.
709 */
710 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
711 {
712 struct audit_entry *e;
713 enum audit_state state;
714
715 rcu_read_lock();
716 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
717 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
718 &state, true)) {
719 if (state == AUDIT_RECORD_CONTEXT)
720 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
721 rcu_read_unlock();
722 return state;
723 }
724 }
725 rcu_read_unlock();
726 return AUDIT_BUILD_CONTEXT;
727 }
728
729 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
730 {
731 int word, bit;
732
733 if (val > 0xffffffff)
734 return false;
735
736 word = AUDIT_WORD(val);
737 if (word >= AUDIT_BITMASK_SIZE)
738 return false;
739
740 bit = AUDIT_BIT(val);
741
742 return rule->mask[word] & bit;
743 }
744
745 /* At syscall entry and exit time, this filter is called if the
746 * audit_state is not low enough that auditing cannot take place, but is
747 * also not high enough that we already know we have to write an audit
748 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
749 */
750 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
751 struct audit_context *ctx,
752 struct list_head *list)
753 {
754 struct audit_entry *e;
755 enum audit_state state;
756
757 if (audit_pid && tsk->tgid == audit_pid)
758 return AUDIT_DISABLED;
759
760 rcu_read_lock();
761 if (!list_empty(list)) {
762 list_for_each_entry_rcu(e, list, list) {
763 if (audit_in_mask(&e->rule, ctx->major) &&
764 audit_filter_rules(tsk, &e->rule, ctx, NULL,
765 &state, false)) {
766 rcu_read_unlock();
767 ctx->current_state = state;
768 return state;
769 }
770 }
771 }
772 rcu_read_unlock();
773 return AUDIT_BUILD_CONTEXT;
774 }
775
776 /*
777 * Given an audit_name check the inode hash table to see if they match.
778 * Called holding the rcu read lock to protect the use of audit_inode_hash
779 */
780 static int audit_filter_inode_name(struct task_struct *tsk,
781 struct audit_names *n,
782 struct audit_context *ctx) {
783 int h = audit_hash_ino((u32)n->ino);
784 struct list_head *list = &audit_inode_hash[h];
785 struct audit_entry *e;
786 enum audit_state state;
787
788 if (list_empty(list))
789 return 0;
790
791 list_for_each_entry_rcu(e, list, list) {
792 if (audit_in_mask(&e->rule, ctx->major) &&
793 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
794 ctx->current_state = state;
795 return 1;
796 }
797 }
798
799 return 0;
800 }
801
802 /* At syscall exit time, this filter is called if any audit_names have been
803 * collected during syscall processing. We only check rules in sublists at hash
804 * buckets applicable to the inode numbers in audit_names.
805 * Regarding audit_state, same rules apply as for audit_filter_syscall().
806 */
807 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
808 {
809 struct audit_names *n;
810
811 if (audit_pid && tsk->tgid == audit_pid)
812 return;
813
814 rcu_read_lock();
815
816 list_for_each_entry(n, &ctx->names_list, list) {
817 if (audit_filter_inode_name(tsk, n, ctx))
818 break;
819 }
820 rcu_read_unlock();
821 }
822
823 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
824 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
825 int return_valid,
826 long return_code)
827 {
828 struct audit_context *context = tsk->audit_context;
829
830 if (!context)
831 return NULL;
832 context->return_valid = return_valid;
833
834 /*
835 * we need to fix up the return code in the audit logs if the actual
836 * return codes are later going to be fixed up by the arch specific
837 * signal handlers
838 *
839 * This is actually a test for:
840 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
841 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
842 *
843 * but is faster than a bunch of ||
844 */
845 if (unlikely(return_code <= -ERESTARTSYS) &&
846 (return_code >= -ERESTART_RESTARTBLOCK) &&
847 (return_code != -ENOIOCTLCMD))
848 context->return_code = -EINTR;
849 else
850 context->return_code = return_code;
851
852 if (context->in_syscall && !context->dummy) {
853 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
854 audit_filter_inodes(tsk, context);
855 }
856
857 tsk->audit_context = NULL;
858 return context;
859 }
860
861 static inline void audit_proctitle_free(struct audit_context *context)
862 {
863 kfree(context->proctitle.value);
864 context->proctitle.value = NULL;
865 context->proctitle.len = 0;
866 }
867
868 static inline void audit_free_names(struct audit_context *context)
869 {
870 struct audit_names *n, *next;
871
872 list_for_each_entry_safe(n, next, &context->names_list, list) {
873 list_del(&n->list);
874 if (n->name)
875 putname(n->name);
876 if (n->should_free)
877 kfree(n);
878 }
879 context->name_count = 0;
880 path_put(&context->pwd);
881 context->pwd.dentry = NULL;
882 context->pwd.mnt = NULL;
883 }
884
885 static inline void audit_free_aux(struct audit_context *context)
886 {
887 struct audit_aux_data *aux;
888
889 while ((aux = context->aux)) {
890 context->aux = aux->next;
891 kfree(aux);
892 }
893 while ((aux = context->aux_pids)) {
894 context->aux_pids = aux->next;
895 kfree(aux);
896 }
897 }
898
899 static inline struct audit_context *audit_alloc_context(enum audit_state state)
900 {
901 struct audit_context *context;
902
903 context = kzalloc(sizeof(*context), GFP_KERNEL);
904 if (!context)
905 return NULL;
906 context->state = state;
907 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
908 INIT_LIST_HEAD(&context->killed_trees);
909 INIT_LIST_HEAD(&context->names_list);
910 return context;
911 }
912
913 /**
914 * audit_alloc - allocate an audit context block for a task
915 * @tsk: task
916 *
917 * Filter on the task information and allocate a per-task audit context
918 * if necessary. Doing so turns on system call auditing for the
919 * specified task. This is called from copy_process, so no lock is
920 * needed.
921 */
922 int audit_alloc(struct task_struct *tsk)
923 {
924 struct audit_context *context;
925 enum audit_state state;
926 char *key = NULL;
927
928 if (likely(!audit_ever_enabled))
929 return 0; /* Return if not auditing. */
930
931 state = audit_filter_task(tsk, &key);
932 if (state == AUDIT_DISABLED) {
933 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
934 return 0;
935 }
936
937 if (!(context = audit_alloc_context(state))) {
938 kfree(key);
939 audit_log_lost("out of memory in audit_alloc");
940 return -ENOMEM;
941 }
942 context->filterkey = key;
943
944 tsk->audit_context = context;
945 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
946 return 0;
947 }
948
949 static inline void audit_free_context(struct audit_context *context)
950 {
951 audit_free_names(context);
952 unroll_tree_refs(context, NULL, 0);
953 free_tree_refs(context);
954 audit_free_aux(context);
955 kfree(context->filterkey);
956 kfree(context->sockaddr);
957 audit_proctitle_free(context);
958 kfree(context);
959 }
960
961 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
962 kuid_t auid, kuid_t uid, unsigned int sessionid,
963 u32 sid, char *comm)
964 {
965 struct audit_buffer *ab;
966 char *ctx = NULL;
967 u32 len;
968 int rc = 0;
969
970 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
971 if (!ab)
972 return rc;
973
974 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
975 from_kuid(&init_user_ns, auid),
976 from_kuid(&init_user_ns, uid), sessionid);
977 if (sid) {
978 if (security_secid_to_secctx(sid, &ctx, &len)) {
979 audit_log_format(ab, " obj=(none)");
980 rc = 1;
981 } else {
982 audit_log_format(ab, " obj=%s", ctx);
983 security_release_secctx(ctx, len);
984 }
985 }
986 audit_log_format(ab, " ocomm=");
987 audit_log_untrustedstring(ab, comm);
988 audit_log_end(ab);
989
990 return rc;
991 }
992
993 static void audit_log_execve_info(struct audit_context *context,
994 struct audit_buffer **ab)
995 {
996 long len_max;
997 long len_rem;
998 long len_full;
999 long len_buf;
1000 long len_abuf;
1001 long len_tmp;
1002 bool require_data;
1003 bool encode;
1004 unsigned int iter;
1005 unsigned int arg;
1006 char *buf_head;
1007 char *buf;
1008 const char __user *p = (const char __user *)current->mm->arg_start;
1009
1010 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1011 * data we put in the audit record for this argument (see the
1012 * code below) ... at this point in time 96 is plenty */
1013 char abuf[96];
1014
1015 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1016 * current value of 7500 is not as important as the fact that it
1017 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1018 * room if we go over a little bit in the logging below */
1019 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1020 len_max = MAX_EXECVE_AUDIT_LEN;
1021
1022 /* scratch buffer to hold the userspace args */
1023 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1024 if (!buf_head) {
1025 audit_panic("out of memory for argv string");
1026 return;
1027 }
1028 buf = buf_head;
1029
1030 audit_log_format(*ab, "argc=%d", context->execve.argc);
1031
1032 len_rem = len_max;
1033 len_buf = 0;
1034 len_full = 0;
1035 require_data = true;
1036 encode = false;
1037 iter = 0;
1038 arg = 0;
1039 do {
1040 /* NOTE: we don't ever want to trust this value for anything
1041 * serious, but the audit record format insists we
1042 * provide an argument length for really long arguments,
1043 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1044 * to use strncpy_from_user() to obtain this value for
1045 * recording in the log, although we don't use it
1046 * anywhere here to avoid a double-fetch problem */
1047 if (len_full == 0)
1048 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1049
1050 /* read more data from userspace */
1051 if (require_data) {
1052 /* can we make more room in the buffer? */
1053 if (buf != buf_head) {
1054 memmove(buf_head, buf, len_buf);
1055 buf = buf_head;
1056 }
1057
1058 /* fetch as much as we can of the argument */
1059 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1060 len_max - len_buf);
1061 if (len_tmp == -EFAULT) {
1062 /* unable to copy from userspace */
1063 send_sig(SIGKILL, current, 0);
1064 goto out;
1065 } else if (len_tmp == (len_max - len_buf)) {
1066 /* buffer is not large enough */
1067 require_data = true;
1068 /* NOTE: if we are going to span multiple
1069 * buffers force the encoding so we stand
1070 * a chance at a sane len_full value and
1071 * consistent record encoding */
1072 encode = true;
1073 len_full = len_full * 2;
1074 p += len_tmp;
1075 } else {
1076 require_data = false;
1077 if (!encode)
1078 encode = audit_string_contains_control(
1079 buf, len_tmp);
1080 /* try to use a trusted value for len_full */
1081 if (len_full < len_max)
1082 len_full = (encode ?
1083 len_tmp * 2 : len_tmp);
1084 p += len_tmp + 1;
1085 }
1086 len_buf += len_tmp;
1087 buf_head[len_buf] = '\0';
1088
1089 /* length of the buffer in the audit record? */
1090 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1091 }
1092
1093 /* write as much as we can to the audit log */
1094 if (len_buf > 0) {
1095 /* NOTE: some magic numbers here - basically if we
1096 * can't fit a reasonable amount of data into the
1097 * existing audit buffer, flush it and start with
1098 * a new buffer */
1099 if ((sizeof(abuf) + 8) > len_rem) {
1100 len_rem = len_max;
1101 audit_log_end(*ab);
1102 *ab = audit_log_start(context,
1103 GFP_KERNEL, AUDIT_EXECVE);
1104 if (!*ab)
1105 goto out;
1106 }
1107
1108 /* create the non-arg portion of the arg record */
1109 len_tmp = 0;
1110 if (require_data || (iter > 0) ||
1111 ((len_abuf + sizeof(abuf)) > len_rem)) {
1112 if (iter == 0) {
1113 len_tmp += snprintf(&abuf[len_tmp],
1114 sizeof(abuf) - len_tmp,
1115 " a%d_len=%lu",
1116 arg, len_full);
1117 }
1118 len_tmp += snprintf(&abuf[len_tmp],
1119 sizeof(abuf) - len_tmp,
1120 " a%d[%d]=", arg, iter++);
1121 } else
1122 len_tmp += snprintf(&abuf[len_tmp],
1123 sizeof(abuf) - len_tmp,
1124 " a%d=", arg);
1125 WARN_ON(len_tmp >= sizeof(abuf));
1126 abuf[sizeof(abuf) - 1] = '\0';
1127
1128 /* log the arg in the audit record */
1129 audit_log_format(*ab, "%s", abuf);
1130 len_rem -= len_tmp;
1131 len_tmp = len_buf;
1132 if (encode) {
1133 if (len_abuf > len_rem)
1134 len_tmp = len_rem / 2; /* encoding */
1135 audit_log_n_hex(*ab, buf, len_tmp);
1136 len_rem -= len_tmp * 2;
1137 len_abuf -= len_tmp * 2;
1138 } else {
1139 if (len_abuf > len_rem)
1140 len_tmp = len_rem - 2; /* quotes */
1141 audit_log_n_string(*ab, buf, len_tmp);
1142 len_rem -= len_tmp + 2;
1143 /* don't subtract the "2" because we still need
1144 * to add quotes to the remaining string */
1145 len_abuf -= len_tmp;
1146 }
1147 len_buf -= len_tmp;
1148 buf += len_tmp;
1149 }
1150
1151 /* ready to move to the next argument? */
1152 if ((len_buf == 0) && !require_data) {
1153 arg++;
1154 iter = 0;
1155 len_full = 0;
1156 require_data = true;
1157 encode = false;
1158 }
1159 } while (arg < context->execve.argc);
1160
1161 /* NOTE: the caller handles the final audit_log_end() call */
1162
1163 out:
1164 kfree(buf_head);
1165 }
1166
1167 static void show_special(struct audit_context *context, int *call_panic)
1168 {
1169 struct audit_buffer *ab;
1170 int i;
1171
1172 ab = audit_log_start(context, GFP_KERNEL, context->type);
1173 if (!ab)
1174 return;
1175
1176 switch (context->type) {
1177 case AUDIT_SOCKETCALL: {
1178 int nargs = context->socketcall.nargs;
1179 audit_log_format(ab, "nargs=%d", nargs);
1180 for (i = 0; i < nargs; i++)
1181 audit_log_format(ab, " a%d=%lx", i,
1182 context->socketcall.args[i]);
1183 break; }
1184 case AUDIT_IPC: {
1185 u32 osid = context->ipc.osid;
1186
1187 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1188 from_kuid(&init_user_ns, context->ipc.uid),
1189 from_kgid(&init_user_ns, context->ipc.gid),
1190 context->ipc.mode);
1191 if (osid) {
1192 char *ctx = NULL;
1193 u32 len;
1194 if (security_secid_to_secctx(osid, &ctx, &len)) {
1195 audit_log_format(ab, " osid=%u", osid);
1196 *call_panic = 1;
1197 } else {
1198 audit_log_format(ab, " obj=%s", ctx);
1199 security_release_secctx(ctx, len);
1200 }
1201 }
1202 if (context->ipc.has_perm) {
1203 audit_log_end(ab);
1204 ab = audit_log_start(context, GFP_KERNEL,
1205 AUDIT_IPC_SET_PERM);
1206 if (unlikely(!ab))
1207 return;
1208 audit_log_format(ab,
1209 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1210 context->ipc.qbytes,
1211 context->ipc.perm_uid,
1212 context->ipc.perm_gid,
1213 context->ipc.perm_mode);
1214 }
1215 break; }
1216 case AUDIT_MQ_OPEN: {
1217 audit_log_format(ab,
1218 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1219 "mq_msgsize=%ld mq_curmsgs=%ld",
1220 context->mq_open.oflag, context->mq_open.mode,
1221 context->mq_open.attr.mq_flags,
1222 context->mq_open.attr.mq_maxmsg,
1223 context->mq_open.attr.mq_msgsize,
1224 context->mq_open.attr.mq_curmsgs);
1225 break; }
1226 case AUDIT_MQ_SENDRECV: {
1227 audit_log_format(ab,
1228 "mqdes=%d msg_len=%zd msg_prio=%u "
1229 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1230 context->mq_sendrecv.mqdes,
1231 context->mq_sendrecv.msg_len,
1232 context->mq_sendrecv.msg_prio,
1233 context->mq_sendrecv.abs_timeout.tv_sec,
1234 context->mq_sendrecv.abs_timeout.tv_nsec);
1235 break; }
1236 case AUDIT_MQ_NOTIFY: {
1237 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1238 context->mq_notify.mqdes,
1239 context->mq_notify.sigev_signo);
1240 break; }
1241 case AUDIT_MQ_GETSETATTR: {
1242 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1243 audit_log_format(ab,
1244 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1245 "mq_curmsgs=%ld ",
1246 context->mq_getsetattr.mqdes,
1247 attr->mq_flags, attr->mq_maxmsg,
1248 attr->mq_msgsize, attr->mq_curmsgs);
1249 break; }
1250 case AUDIT_CAPSET: {
1251 audit_log_format(ab, "pid=%d", context->capset.pid);
1252 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1253 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1254 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1255 break; }
1256 case AUDIT_MMAP: {
1257 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1258 context->mmap.flags);
1259 break; }
1260 case AUDIT_EXECVE: {
1261 audit_log_execve_info(context, &ab);
1262 break; }
1263 }
1264 audit_log_end(ab);
1265 }
1266
1267 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1268 {
1269 char *end = proctitle + len - 1;
1270 while (end > proctitle && !isprint(*end))
1271 end--;
1272
1273 /* catch the case where proctitle is only 1 non-print character */
1274 len = end - proctitle + 1;
1275 len -= isprint(proctitle[len-1]) == 0;
1276 return len;
1277 }
1278
1279 static void audit_log_proctitle(struct task_struct *tsk,
1280 struct audit_context *context)
1281 {
1282 int res;
1283 char *buf;
1284 char *msg = "(null)";
1285 int len = strlen(msg);
1286 struct audit_buffer *ab;
1287
1288 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1289 if (!ab)
1290 return; /* audit_panic or being filtered */
1291
1292 audit_log_format(ab, "proctitle=");
1293
1294 /* Not cached */
1295 if (!context->proctitle.value) {
1296 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1297 if (!buf)
1298 goto out;
1299 /* Historically called this from procfs naming */
1300 res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1301 if (res == 0) {
1302 kfree(buf);
1303 goto out;
1304 }
1305 res = audit_proctitle_rtrim(buf, res);
1306 if (res == 0) {
1307 kfree(buf);
1308 goto out;
1309 }
1310 context->proctitle.value = buf;
1311 context->proctitle.len = res;
1312 }
1313 msg = context->proctitle.value;
1314 len = context->proctitle.len;
1315 out:
1316 audit_log_n_untrustedstring(ab, msg, len);
1317 audit_log_end(ab);
1318 }
1319
1320 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1321 {
1322 int i, call_panic = 0;
1323 struct audit_buffer *ab;
1324 struct audit_aux_data *aux;
1325 struct audit_names *n;
1326
1327 /* tsk == current */
1328 context->personality = tsk->personality;
1329
1330 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1331 if (!ab)
1332 return; /* audit_panic has been called */
1333 audit_log_format(ab, "arch=%x syscall=%d",
1334 context->arch, context->major);
1335 if (context->personality != PER_LINUX)
1336 audit_log_format(ab, " per=%lx", context->personality);
1337 if (context->return_valid)
1338 audit_log_format(ab, " success=%s exit=%ld",
1339 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1340 context->return_code);
1341
1342 audit_log_format(ab,
1343 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1344 context->argv[0],
1345 context->argv[1],
1346 context->argv[2],
1347 context->argv[3],
1348 context->name_count);
1349
1350 audit_log_task_info(ab, tsk);
1351 audit_log_key(ab, context->filterkey);
1352 audit_log_end(ab);
1353
1354 for (aux = context->aux; aux; aux = aux->next) {
1355
1356 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1357 if (!ab)
1358 continue; /* audit_panic has been called */
1359
1360 switch (aux->type) {
1361
1362 case AUDIT_BPRM_FCAPS: {
1363 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1364 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1365 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1366 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1367 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1368 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1369 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1370 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1371 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1372 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1373 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1374 break; }
1375
1376 }
1377 audit_log_end(ab);
1378 }
1379
1380 if (context->type)
1381 show_special(context, &call_panic);
1382
1383 if (context->fds[0] >= 0) {
1384 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1385 if (ab) {
1386 audit_log_format(ab, "fd0=%d fd1=%d",
1387 context->fds[0], context->fds[1]);
1388 audit_log_end(ab);
1389 }
1390 }
1391
1392 if (context->sockaddr_len) {
1393 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1394 if (ab) {
1395 audit_log_format(ab, "saddr=");
1396 audit_log_n_hex(ab, (void *)context->sockaddr,
1397 context->sockaddr_len);
1398 audit_log_end(ab);
1399 }
1400 }
1401
1402 for (aux = context->aux_pids; aux; aux = aux->next) {
1403 struct audit_aux_data_pids *axs = (void *)aux;
1404
1405 for (i = 0; i < axs->pid_count; i++)
1406 if (audit_log_pid_context(context, axs->target_pid[i],
1407 axs->target_auid[i],
1408 axs->target_uid[i],
1409 axs->target_sessionid[i],
1410 axs->target_sid[i],
1411 axs->target_comm[i]))
1412 call_panic = 1;
1413 }
1414
1415 if (context->target_pid &&
1416 audit_log_pid_context(context, context->target_pid,
1417 context->target_auid, context->target_uid,
1418 context->target_sessionid,
1419 context->target_sid, context->target_comm))
1420 call_panic = 1;
1421
1422 if (context->pwd.dentry && context->pwd.mnt) {
1423 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1424 if (ab) {
1425 audit_log_d_path(ab, " cwd=", &context->pwd);
1426 audit_log_end(ab);
1427 }
1428 }
1429
1430 i = 0;
1431 list_for_each_entry(n, &context->names_list, list) {
1432 if (n->hidden)
1433 continue;
1434 audit_log_name(context, n, NULL, i++, &call_panic);
1435 }
1436
1437 audit_log_proctitle(tsk, context);
1438
1439 /* Send end of event record to help user space know we are finished */
1440 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1441 if (ab)
1442 audit_log_end(ab);
1443 if (call_panic)
1444 audit_panic("error converting sid to string");
1445 }
1446
1447 /**
1448 * audit_free - free a per-task audit context
1449 * @tsk: task whose audit context block to free
1450 *
1451 * Called from copy_process and do_exit
1452 */
1453 void __audit_free(struct task_struct *tsk)
1454 {
1455 struct audit_context *context;
1456
1457 context = audit_take_context(tsk, 0, 0);
1458 if (!context)
1459 return;
1460
1461 /* Check for system calls that do not go through the exit
1462 * function (e.g., exit_group), then free context block.
1463 * We use GFP_ATOMIC here because we might be doing this
1464 * in the context of the idle thread */
1465 /* that can happen only if we are called from do_exit() */
1466 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1467 audit_log_exit(context, tsk);
1468 if (!list_empty(&context->killed_trees))
1469 audit_kill_trees(&context->killed_trees);
1470
1471 audit_free_context(context);
1472 }
1473
1474 /**
1475 * audit_syscall_entry - fill in an audit record at syscall entry
1476 * @major: major syscall type (function)
1477 * @a1: additional syscall register 1
1478 * @a2: additional syscall register 2
1479 * @a3: additional syscall register 3
1480 * @a4: additional syscall register 4
1481 *
1482 * Fill in audit context at syscall entry. This only happens if the
1483 * audit context was created when the task was created and the state or
1484 * filters demand the audit context be built. If the state from the
1485 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1486 * then the record will be written at syscall exit time (otherwise, it
1487 * will only be written if another part of the kernel requests that it
1488 * be written).
1489 */
1490 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1491 unsigned long a3, unsigned long a4)
1492 {
1493 struct task_struct *tsk = current;
1494 struct audit_context *context = tsk->audit_context;
1495 enum audit_state state;
1496
1497 if (!context)
1498 return;
1499
1500 BUG_ON(context->in_syscall || context->name_count);
1501
1502 if (!audit_enabled)
1503 return;
1504
1505 context->arch = syscall_get_arch();
1506 context->major = major;
1507 context->argv[0] = a1;
1508 context->argv[1] = a2;
1509 context->argv[2] = a3;
1510 context->argv[3] = a4;
1511
1512 state = context->state;
1513 context->dummy = !audit_n_rules;
1514 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1515 context->prio = 0;
1516 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1517 }
1518 if (state == AUDIT_DISABLED)
1519 return;
1520
1521 context->serial = 0;
1522 context->ctime = CURRENT_TIME;
1523 context->in_syscall = 1;
1524 context->current_state = state;
1525 context->ppid = 0;
1526 }
1527
1528 /**
1529 * audit_syscall_exit - deallocate audit context after a system call
1530 * @success: success value of the syscall
1531 * @return_code: return value of the syscall
1532 *
1533 * Tear down after system call. If the audit context has been marked as
1534 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1535 * filtering, or because some other part of the kernel wrote an audit
1536 * message), then write out the syscall information. In call cases,
1537 * free the names stored from getname().
1538 */
1539 void __audit_syscall_exit(int success, long return_code)
1540 {
1541 struct task_struct *tsk = current;
1542 struct audit_context *context;
1543
1544 if (success)
1545 success = AUDITSC_SUCCESS;
1546 else
1547 success = AUDITSC_FAILURE;
1548
1549 context = audit_take_context(tsk, success, return_code);
1550 if (!context)
1551 return;
1552
1553 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1554 audit_log_exit(context, tsk);
1555
1556 context->in_syscall = 0;
1557 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1558
1559 if (!list_empty(&context->killed_trees))
1560 audit_kill_trees(&context->killed_trees);
1561
1562 audit_free_names(context);
1563 unroll_tree_refs(context, NULL, 0);
1564 audit_free_aux(context);
1565 context->aux = NULL;
1566 context->aux_pids = NULL;
1567 context->target_pid = 0;
1568 context->target_sid = 0;
1569 context->sockaddr_len = 0;
1570 context->type = 0;
1571 context->fds[0] = -1;
1572 if (context->state != AUDIT_RECORD_CONTEXT) {
1573 kfree(context->filterkey);
1574 context->filterkey = NULL;
1575 }
1576 tsk->audit_context = context;
1577 }
1578
1579 static inline void handle_one(const struct inode *inode)
1580 {
1581 #ifdef CONFIG_AUDIT_TREE
1582 struct audit_context *context;
1583 struct audit_tree_refs *p;
1584 struct audit_chunk *chunk;
1585 int count;
1586 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1587 return;
1588 context = current->audit_context;
1589 p = context->trees;
1590 count = context->tree_count;
1591 rcu_read_lock();
1592 chunk = audit_tree_lookup(inode);
1593 rcu_read_unlock();
1594 if (!chunk)
1595 return;
1596 if (likely(put_tree_ref(context, chunk)))
1597 return;
1598 if (unlikely(!grow_tree_refs(context))) {
1599 pr_warn("out of memory, audit has lost a tree reference\n");
1600 audit_set_auditable(context);
1601 audit_put_chunk(chunk);
1602 unroll_tree_refs(context, p, count);
1603 return;
1604 }
1605 put_tree_ref(context, chunk);
1606 #endif
1607 }
1608
1609 static void handle_path(const struct dentry *dentry)
1610 {
1611 #ifdef CONFIG_AUDIT_TREE
1612 struct audit_context *context;
1613 struct audit_tree_refs *p;
1614 const struct dentry *d, *parent;
1615 struct audit_chunk *drop;
1616 unsigned long seq;
1617 int count;
1618
1619 context = current->audit_context;
1620 p = context->trees;
1621 count = context->tree_count;
1622 retry:
1623 drop = NULL;
1624 d = dentry;
1625 rcu_read_lock();
1626 seq = read_seqbegin(&rename_lock);
1627 for(;;) {
1628 struct inode *inode = d_backing_inode(d);
1629 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1630 struct audit_chunk *chunk;
1631 chunk = audit_tree_lookup(inode);
1632 if (chunk) {
1633 if (unlikely(!put_tree_ref(context, chunk))) {
1634 drop = chunk;
1635 break;
1636 }
1637 }
1638 }
1639 parent = d->d_parent;
1640 if (parent == d)
1641 break;
1642 d = parent;
1643 }
1644 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1645 rcu_read_unlock();
1646 if (!drop) {
1647 /* just a race with rename */
1648 unroll_tree_refs(context, p, count);
1649 goto retry;
1650 }
1651 audit_put_chunk(drop);
1652 if (grow_tree_refs(context)) {
1653 /* OK, got more space */
1654 unroll_tree_refs(context, p, count);
1655 goto retry;
1656 }
1657 /* too bad */
1658 pr_warn("out of memory, audit has lost a tree reference\n");
1659 unroll_tree_refs(context, p, count);
1660 audit_set_auditable(context);
1661 return;
1662 }
1663 rcu_read_unlock();
1664 #endif
1665 }
1666
1667 static struct audit_names *audit_alloc_name(struct audit_context *context,
1668 unsigned char type)
1669 {
1670 struct audit_names *aname;
1671
1672 if (context->name_count < AUDIT_NAMES) {
1673 aname = &context->preallocated_names[context->name_count];
1674 memset(aname, 0, sizeof(*aname));
1675 } else {
1676 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1677 if (!aname)
1678 return NULL;
1679 aname->should_free = true;
1680 }
1681
1682 aname->ino = AUDIT_INO_UNSET;
1683 aname->type = type;
1684 list_add_tail(&aname->list, &context->names_list);
1685
1686 context->name_count++;
1687 return aname;
1688 }
1689
1690 /**
1691 * audit_reusename - fill out filename with info from existing entry
1692 * @uptr: userland ptr to pathname
1693 *
1694 * Search the audit_names list for the current audit context. If there is an
1695 * existing entry with a matching "uptr" then return the filename
1696 * associated with that audit_name. If not, return NULL.
1697 */
1698 struct filename *
1699 __audit_reusename(const __user char *uptr)
1700 {
1701 struct audit_context *context = current->audit_context;
1702 struct audit_names *n;
1703
1704 list_for_each_entry(n, &context->names_list, list) {
1705 if (!n->name)
1706 continue;
1707 if (n->name->uptr == uptr) {
1708 n->name->refcnt++;
1709 return n->name;
1710 }
1711 }
1712 return NULL;
1713 }
1714
1715 /**
1716 * audit_getname - add a name to the list
1717 * @name: name to add
1718 *
1719 * Add a name to the list of audit names for this context.
1720 * Called from fs/namei.c:getname().
1721 */
1722 void __audit_getname(struct filename *name)
1723 {
1724 struct audit_context *context = current->audit_context;
1725 struct audit_names *n;
1726
1727 if (!context->in_syscall)
1728 return;
1729
1730 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1731 if (!n)
1732 return;
1733
1734 n->name = name;
1735 n->name_len = AUDIT_NAME_FULL;
1736 name->aname = n;
1737 name->refcnt++;
1738
1739 if (!context->pwd.dentry)
1740 get_fs_pwd(current->fs, &context->pwd);
1741 }
1742
1743 /**
1744 * __audit_inode - store the inode and device from a lookup
1745 * @name: name being audited
1746 * @dentry: dentry being audited
1747 * @flags: attributes for this particular entry
1748 */
1749 void __audit_inode(struct filename *name, const struct dentry *dentry,
1750 unsigned int flags)
1751 {
1752 struct audit_context *context = current->audit_context;
1753 const struct inode *inode = d_backing_inode(dentry);
1754 struct audit_names *n;
1755 bool parent = flags & AUDIT_INODE_PARENT;
1756
1757 if (!context->in_syscall)
1758 return;
1759
1760 if (!name)
1761 goto out_alloc;
1762
1763 /*
1764 * If we have a pointer to an audit_names entry already, then we can
1765 * just use it directly if the type is correct.
1766 */
1767 n = name->aname;
1768 if (n) {
1769 if (parent) {
1770 if (n->type == AUDIT_TYPE_PARENT ||
1771 n->type == AUDIT_TYPE_UNKNOWN)
1772 goto out;
1773 } else {
1774 if (n->type != AUDIT_TYPE_PARENT)
1775 goto out;
1776 }
1777 }
1778
1779 list_for_each_entry_reverse(n, &context->names_list, list) {
1780 if (n->ino) {
1781 /* valid inode number, use that for the comparison */
1782 if (n->ino != inode->i_ino ||
1783 n->dev != inode->i_sb->s_dev)
1784 continue;
1785 } else if (n->name) {
1786 /* inode number has not been set, check the name */
1787 if (strcmp(n->name->name, name->name))
1788 continue;
1789 } else
1790 /* no inode and no name (?!) ... this is odd ... */
1791 continue;
1792
1793 /* match the correct record type */
1794 if (parent) {
1795 if (n->type == AUDIT_TYPE_PARENT ||
1796 n->type == AUDIT_TYPE_UNKNOWN)
1797 goto out;
1798 } else {
1799 if (n->type != AUDIT_TYPE_PARENT)
1800 goto out;
1801 }
1802 }
1803
1804 out_alloc:
1805 /* unable to find an entry with both a matching name and type */
1806 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1807 if (!n)
1808 return;
1809 if (name) {
1810 n->name = name;
1811 name->refcnt++;
1812 }
1813
1814 out:
1815 if (parent) {
1816 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1817 n->type = AUDIT_TYPE_PARENT;
1818 if (flags & AUDIT_INODE_HIDDEN)
1819 n->hidden = true;
1820 } else {
1821 n->name_len = AUDIT_NAME_FULL;
1822 n->type = AUDIT_TYPE_NORMAL;
1823 }
1824 handle_path(dentry);
1825 audit_copy_inode(n, dentry, inode);
1826 }
1827
1828 void __audit_file(const struct file *file)
1829 {
1830 __audit_inode(NULL, file->f_path.dentry, 0);
1831 }
1832
1833 /**
1834 * __audit_inode_child - collect inode info for created/removed objects
1835 * @parent: inode of dentry parent
1836 * @dentry: dentry being audited
1837 * @type: AUDIT_TYPE_* value that we're looking for
1838 *
1839 * For syscalls that create or remove filesystem objects, audit_inode
1840 * can only collect information for the filesystem object's parent.
1841 * This call updates the audit context with the child's information.
1842 * Syscalls that create a new filesystem object must be hooked after
1843 * the object is created. Syscalls that remove a filesystem object
1844 * must be hooked prior, in order to capture the target inode during
1845 * unsuccessful attempts.
1846 */
1847 void __audit_inode_child(const struct inode *parent,
1848 const struct dentry *dentry,
1849 const unsigned char type)
1850 {
1851 struct audit_context *context = current->audit_context;
1852 const struct inode *inode = d_backing_inode(dentry);
1853 const char *dname = dentry->d_name.name;
1854 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1855
1856 if (!context->in_syscall)
1857 return;
1858
1859 if (inode)
1860 handle_one(inode);
1861
1862 /* look for a parent entry first */
1863 list_for_each_entry(n, &context->names_list, list) {
1864 if (!n->name ||
1865 (n->type != AUDIT_TYPE_PARENT &&
1866 n->type != AUDIT_TYPE_UNKNOWN))
1867 continue;
1868
1869 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1870 !audit_compare_dname_path(dname,
1871 n->name->name, n->name_len)) {
1872 if (n->type == AUDIT_TYPE_UNKNOWN)
1873 n->type = AUDIT_TYPE_PARENT;
1874 found_parent = n;
1875 break;
1876 }
1877 }
1878
1879 /* is there a matching child entry? */
1880 list_for_each_entry(n, &context->names_list, list) {
1881 /* can only match entries that have a name */
1882 if (!n->name ||
1883 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1884 continue;
1885
1886 if (!strcmp(dname, n->name->name) ||
1887 !audit_compare_dname_path(dname, n->name->name,
1888 found_parent ?
1889 found_parent->name_len :
1890 AUDIT_NAME_FULL)) {
1891 if (n->type == AUDIT_TYPE_UNKNOWN)
1892 n->type = type;
1893 found_child = n;
1894 break;
1895 }
1896 }
1897
1898 if (!found_parent) {
1899 /* create a new, "anonymous" parent record */
1900 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1901 if (!n)
1902 return;
1903 audit_copy_inode(n, NULL, parent);
1904 }
1905
1906 if (!found_child) {
1907 found_child = audit_alloc_name(context, type);
1908 if (!found_child)
1909 return;
1910
1911 /* Re-use the name belonging to the slot for a matching parent
1912 * directory. All names for this context are relinquished in
1913 * audit_free_names() */
1914 if (found_parent) {
1915 found_child->name = found_parent->name;
1916 found_child->name_len = AUDIT_NAME_FULL;
1917 found_child->name->refcnt++;
1918 }
1919 }
1920
1921 if (inode)
1922 audit_copy_inode(found_child, dentry, inode);
1923 else
1924 found_child->ino = AUDIT_INO_UNSET;
1925 }
1926 EXPORT_SYMBOL_GPL(__audit_inode_child);
1927
1928 /**
1929 * auditsc_get_stamp - get local copies of audit_context values
1930 * @ctx: audit_context for the task
1931 * @t: timespec to store time recorded in the audit_context
1932 * @serial: serial value that is recorded in the audit_context
1933 *
1934 * Also sets the context as auditable.
1935 */
1936 int auditsc_get_stamp(struct audit_context *ctx,
1937 struct timespec *t, unsigned int *serial)
1938 {
1939 if (!ctx->in_syscall)
1940 return 0;
1941 if (!ctx->serial)
1942 ctx->serial = audit_serial();
1943 t->tv_sec = ctx->ctime.tv_sec;
1944 t->tv_nsec = ctx->ctime.tv_nsec;
1945 *serial = ctx->serial;
1946 if (!ctx->prio) {
1947 ctx->prio = 1;
1948 ctx->current_state = AUDIT_RECORD_CONTEXT;
1949 }
1950 return 1;
1951 }
1952
1953 /* global counter which is incremented every time something logs in */
1954 static atomic_t session_id = ATOMIC_INIT(0);
1955
1956 static int audit_set_loginuid_perm(kuid_t loginuid)
1957 {
1958 /* if we are unset, we don't need privs */
1959 if (!audit_loginuid_set(current))
1960 return 0;
1961 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1962 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1963 return -EPERM;
1964 /* it is set, you need permission */
1965 if (!capable(CAP_AUDIT_CONTROL))
1966 return -EPERM;
1967 /* reject if this is not an unset and we don't allow that */
1968 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1969 return -EPERM;
1970 return 0;
1971 }
1972
1973 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1974 unsigned int oldsessionid, unsigned int sessionid,
1975 int rc)
1976 {
1977 struct audit_buffer *ab;
1978 uid_t uid, oldloginuid, loginuid;
1979
1980 if (!audit_enabled)
1981 return;
1982
1983 uid = from_kuid(&init_user_ns, task_uid(current));
1984 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1985 loginuid = from_kuid(&init_user_ns, kloginuid),
1986
1987 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1988 if (!ab)
1989 return;
1990 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
1991 audit_log_task_context(ab);
1992 audit_log_format(ab, " old-auid=%u auid=%u old-ses=%u ses=%u res=%d",
1993 oldloginuid, loginuid, oldsessionid, sessionid, !rc);
1994 audit_log_end(ab);
1995 }
1996
1997 /**
1998 * audit_set_loginuid - set current task's audit_context loginuid
1999 * @loginuid: loginuid value
2000 *
2001 * Returns 0.
2002 *
2003 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2004 */
2005 int audit_set_loginuid(kuid_t loginuid)
2006 {
2007 struct task_struct *task = current;
2008 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2009 kuid_t oldloginuid;
2010 int rc;
2011
2012 oldloginuid = audit_get_loginuid(current);
2013 oldsessionid = audit_get_sessionid(current);
2014
2015 rc = audit_set_loginuid_perm(loginuid);
2016 if (rc)
2017 goto out;
2018
2019 /* are we setting or clearing? */
2020 if (uid_valid(loginuid))
2021 sessionid = (unsigned int)atomic_inc_return(&session_id);
2022
2023 task->sessionid = sessionid;
2024 task->loginuid = loginuid;
2025 out:
2026 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2027 return rc;
2028 }
2029
2030 /**
2031 * __audit_mq_open - record audit data for a POSIX MQ open
2032 * @oflag: open flag
2033 * @mode: mode bits
2034 * @attr: queue attributes
2035 *
2036 */
2037 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2038 {
2039 struct audit_context *context = current->audit_context;
2040
2041 if (attr)
2042 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2043 else
2044 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2045
2046 context->mq_open.oflag = oflag;
2047 context->mq_open.mode = mode;
2048
2049 context->type = AUDIT_MQ_OPEN;
2050 }
2051
2052 /**
2053 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2054 * @mqdes: MQ descriptor
2055 * @msg_len: Message length
2056 * @msg_prio: Message priority
2057 * @abs_timeout: Message timeout in absolute time
2058 *
2059 */
2060 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2061 const struct timespec *abs_timeout)
2062 {
2063 struct audit_context *context = current->audit_context;
2064 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2065
2066 if (abs_timeout)
2067 memcpy(p, abs_timeout, sizeof(struct timespec));
2068 else
2069 memset(p, 0, sizeof(struct timespec));
2070
2071 context->mq_sendrecv.mqdes = mqdes;
2072 context->mq_sendrecv.msg_len = msg_len;
2073 context->mq_sendrecv.msg_prio = msg_prio;
2074
2075 context->type = AUDIT_MQ_SENDRECV;
2076 }
2077
2078 /**
2079 * __audit_mq_notify - record audit data for a POSIX MQ notify
2080 * @mqdes: MQ descriptor
2081 * @notification: Notification event
2082 *
2083 */
2084
2085 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2086 {
2087 struct audit_context *context = current->audit_context;
2088
2089 if (notification)
2090 context->mq_notify.sigev_signo = notification->sigev_signo;
2091 else
2092 context->mq_notify.sigev_signo = 0;
2093
2094 context->mq_notify.mqdes = mqdes;
2095 context->type = AUDIT_MQ_NOTIFY;
2096 }
2097
2098 /**
2099 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2100 * @mqdes: MQ descriptor
2101 * @mqstat: MQ flags
2102 *
2103 */
2104 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2105 {
2106 struct audit_context *context = current->audit_context;
2107 context->mq_getsetattr.mqdes = mqdes;
2108 context->mq_getsetattr.mqstat = *mqstat;
2109 context->type = AUDIT_MQ_GETSETATTR;
2110 }
2111
2112 /**
2113 * audit_ipc_obj - record audit data for ipc object
2114 * @ipcp: ipc permissions
2115 *
2116 */
2117 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2118 {
2119 struct audit_context *context = current->audit_context;
2120 context->ipc.uid = ipcp->uid;
2121 context->ipc.gid = ipcp->gid;
2122 context->ipc.mode = ipcp->mode;
2123 context->ipc.has_perm = 0;
2124 security_ipc_getsecid(ipcp, &context->ipc.osid);
2125 context->type = AUDIT_IPC;
2126 }
2127
2128 /**
2129 * audit_ipc_set_perm - record audit data for new ipc permissions
2130 * @qbytes: msgq bytes
2131 * @uid: msgq user id
2132 * @gid: msgq group id
2133 * @mode: msgq mode (permissions)
2134 *
2135 * Called only after audit_ipc_obj().
2136 */
2137 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2138 {
2139 struct audit_context *context = current->audit_context;
2140
2141 context->ipc.qbytes = qbytes;
2142 context->ipc.perm_uid = uid;
2143 context->ipc.perm_gid = gid;
2144 context->ipc.perm_mode = mode;
2145 context->ipc.has_perm = 1;
2146 }
2147
2148 void __audit_bprm(struct linux_binprm *bprm)
2149 {
2150 struct audit_context *context = current->audit_context;
2151
2152 context->type = AUDIT_EXECVE;
2153 context->execve.argc = bprm->argc;
2154 }
2155
2156
2157 /**
2158 * audit_socketcall - record audit data for sys_socketcall
2159 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2160 * @args: args array
2161 *
2162 */
2163 int __audit_socketcall(int nargs, unsigned long *args)
2164 {
2165 struct audit_context *context = current->audit_context;
2166
2167 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2168 return -EINVAL;
2169 context->type = AUDIT_SOCKETCALL;
2170 context->socketcall.nargs = nargs;
2171 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2172 return 0;
2173 }
2174
2175 /**
2176 * __audit_fd_pair - record audit data for pipe and socketpair
2177 * @fd1: the first file descriptor
2178 * @fd2: the second file descriptor
2179 *
2180 */
2181 void __audit_fd_pair(int fd1, int fd2)
2182 {
2183 struct audit_context *context = current->audit_context;
2184 context->fds[0] = fd1;
2185 context->fds[1] = fd2;
2186 }
2187
2188 /**
2189 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2190 * @len: data length in user space
2191 * @a: data address in kernel space
2192 *
2193 * Returns 0 for success or NULL context or < 0 on error.
2194 */
2195 int __audit_sockaddr(int len, void *a)
2196 {
2197 struct audit_context *context = current->audit_context;
2198
2199 if (!context->sockaddr) {
2200 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2201 if (!p)
2202 return -ENOMEM;
2203 context->sockaddr = p;
2204 }
2205
2206 context->sockaddr_len = len;
2207 memcpy(context->sockaddr, a, len);
2208 return 0;
2209 }
2210
2211 void __audit_ptrace(struct task_struct *t)
2212 {
2213 struct audit_context *context = current->audit_context;
2214
2215 context->target_pid = task_tgid_nr(t);
2216 context->target_auid = audit_get_loginuid(t);
2217 context->target_uid = task_uid(t);
2218 context->target_sessionid = audit_get_sessionid(t);
2219 security_task_getsecid(t, &context->target_sid);
2220 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2221 }
2222
2223 /**
2224 * audit_signal_info - record signal info for shutting down audit subsystem
2225 * @sig: signal value
2226 * @t: task being signaled
2227 *
2228 * If the audit subsystem is being terminated, record the task (pid)
2229 * and uid that is doing that.
2230 */
2231 int __audit_signal_info(int sig, struct task_struct *t)
2232 {
2233 struct audit_aux_data_pids *axp;
2234 struct task_struct *tsk = current;
2235 struct audit_context *ctx = tsk->audit_context;
2236 kuid_t uid = current_uid(), t_uid = task_uid(t);
2237
2238 if (audit_pid && t->tgid == audit_pid) {
2239 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2240 audit_sig_pid = task_tgid_nr(tsk);
2241 if (uid_valid(tsk->loginuid))
2242 audit_sig_uid = tsk->loginuid;
2243 else
2244 audit_sig_uid = uid;
2245 security_task_getsecid(tsk, &audit_sig_sid);
2246 }
2247 if (!audit_signals || audit_dummy_context())
2248 return 0;
2249 }
2250
2251 /* optimize the common case by putting first signal recipient directly
2252 * in audit_context */
2253 if (!ctx->target_pid) {
2254 ctx->target_pid = task_tgid_nr(t);
2255 ctx->target_auid = audit_get_loginuid(t);
2256 ctx->target_uid = t_uid;
2257 ctx->target_sessionid = audit_get_sessionid(t);
2258 security_task_getsecid(t, &ctx->target_sid);
2259 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2260 return 0;
2261 }
2262
2263 axp = (void *)ctx->aux_pids;
2264 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2265 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2266 if (!axp)
2267 return -ENOMEM;
2268
2269 axp->d.type = AUDIT_OBJ_PID;
2270 axp->d.next = ctx->aux_pids;
2271 ctx->aux_pids = (void *)axp;
2272 }
2273 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2274
2275 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2276 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2277 axp->target_uid[axp->pid_count] = t_uid;
2278 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2279 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2280 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2281 axp->pid_count++;
2282
2283 return 0;
2284 }
2285
2286 /**
2287 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2288 * @bprm: pointer to the bprm being processed
2289 * @new: the proposed new credentials
2290 * @old: the old credentials
2291 *
2292 * Simply check if the proc already has the caps given by the file and if not
2293 * store the priv escalation info for later auditing at the end of the syscall
2294 *
2295 * -Eric
2296 */
2297 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2298 const struct cred *new, const struct cred *old)
2299 {
2300 struct audit_aux_data_bprm_fcaps *ax;
2301 struct audit_context *context = current->audit_context;
2302 struct cpu_vfs_cap_data vcaps;
2303
2304 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2305 if (!ax)
2306 return -ENOMEM;
2307
2308 ax->d.type = AUDIT_BPRM_FCAPS;
2309 ax->d.next = context->aux;
2310 context->aux = (void *)ax;
2311
2312 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2313
2314 ax->fcap.permitted = vcaps.permitted;
2315 ax->fcap.inheritable = vcaps.inheritable;
2316 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2317 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2318
2319 ax->old_pcap.permitted = old->cap_permitted;
2320 ax->old_pcap.inheritable = old->cap_inheritable;
2321 ax->old_pcap.effective = old->cap_effective;
2322
2323 ax->new_pcap.permitted = new->cap_permitted;
2324 ax->new_pcap.inheritable = new->cap_inheritable;
2325 ax->new_pcap.effective = new->cap_effective;
2326 return 0;
2327 }
2328
2329 /**
2330 * __audit_log_capset - store information about the arguments to the capset syscall
2331 * @new: the new credentials
2332 * @old: the old (current) credentials
2333 *
2334 * Record the arguments userspace sent to sys_capset for later printing by the
2335 * audit system if applicable
2336 */
2337 void __audit_log_capset(const struct cred *new, const struct cred *old)
2338 {
2339 struct audit_context *context = current->audit_context;
2340 context->capset.pid = task_tgid_nr(current);
2341 context->capset.cap.effective = new->cap_effective;
2342 context->capset.cap.inheritable = new->cap_effective;
2343 context->capset.cap.permitted = new->cap_permitted;
2344 context->type = AUDIT_CAPSET;
2345 }
2346
2347 void __audit_mmap_fd(int fd, int flags)
2348 {
2349 struct audit_context *context = current->audit_context;
2350 context->mmap.fd = fd;
2351 context->mmap.flags = flags;
2352 context->type = AUDIT_MMAP;
2353 }
2354
2355 static void audit_log_task(struct audit_buffer *ab)
2356 {
2357 kuid_t auid, uid;
2358 kgid_t gid;
2359 unsigned int sessionid;
2360 char comm[sizeof(current->comm)];
2361
2362 auid = audit_get_loginuid(current);
2363 sessionid = audit_get_sessionid(current);
2364 current_uid_gid(&uid, &gid);
2365
2366 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2367 from_kuid(&init_user_ns, auid),
2368 from_kuid(&init_user_ns, uid),
2369 from_kgid(&init_user_ns, gid),
2370 sessionid);
2371 audit_log_task_context(ab);
2372 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2373 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2374 audit_log_d_path_exe(ab, current->mm);
2375 }
2376
2377 /**
2378 * audit_core_dumps - record information about processes that end abnormally
2379 * @signr: signal value
2380 *
2381 * If a process ends with a core dump, something fishy is going on and we
2382 * should record the event for investigation.
2383 */
2384 void audit_core_dumps(long signr)
2385 {
2386 struct audit_buffer *ab;
2387
2388 if (!audit_enabled)
2389 return;
2390
2391 if (signr == SIGQUIT) /* don't care for those */
2392 return;
2393
2394 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2395 if (unlikely(!ab))
2396 return;
2397 audit_log_task(ab);
2398 audit_log_format(ab, " sig=%ld", signr);
2399 audit_log_end(ab);
2400 }
2401
2402 void __audit_seccomp(unsigned long syscall, long signr, int code)
2403 {
2404 struct audit_buffer *ab;
2405
2406 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2407 if (unlikely(!ab))
2408 return;
2409 audit_log_task(ab);
2410 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2411 signr, syscall_get_arch(), syscall, is_compat_task(),
2412 KSTK_EIP(current), code);
2413 audit_log_end(ab);
2414 }
2415
2416 struct list_head *audit_killed_trees(void)
2417 {
2418 struct audit_context *ctx = current->audit_context;
2419 if (likely(!ctx || !ctx->in_syscall))
2420 return NULL;
2421 return &ctx->killed_trees;
2422 }