Merge branch 'fixes' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71
72 #include "audit.h"
73
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES 5
83
84 /* Indicates that audit should log the full pathname. */
85 #define AUDIT_NAME_FULL -1
86
87 /* no execve audit message should be longer than this (userspace limits) */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* number of audit rules */
91 int audit_n_rules;
92
93 /* determines whether we collect data for signals sent */
94 int audit_signals;
95
96 struct audit_cap_data {
97 kernel_cap_t permitted;
98 kernel_cap_t inheritable;
99 union {
100 unsigned int fE; /* effective bit of a file capability */
101 kernel_cap_t effective; /* effective set of a process */
102 };
103 };
104
105 /* When fs/namei.c:getname() is called, we store the pointer in name and
106 * we don't let putname() free it (instead we free all of the saved
107 * pointers at syscall exit time).
108 *
109 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
110 struct audit_names {
111 struct list_head list; /* audit_context->names_list */
112 const char *name;
113 unsigned long ino;
114 dev_t dev;
115 umode_t mode;
116 kuid_t uid;
117 kgid_t gid;
118 dev_t rdev;
119 u32 osid;
120 struct audit_cap_data fcap;
121 unsigned int fcap_ver;
122 int name_len; /* number of name's characters to log */
123 bool name_put; /* call __putname() for this name */
124 /*
125 * This was an allocated audit_names and not from the array of
126 * names allocated in the task audit context. Thus this name
127 * should be freed on syscall exit
128 */
129 bool should_free;
130 };
131
132 struct audit_aux_data {
133 struct audit_aux_data *next;
134 int type;
135 };
136
137 #define AUDIT_AUX_IPCPERM 0
138
139 /* Number of target pids per aux struct. */
140 #define AUDIT_AUX_PIDS 16
141
142 struct audit_aux_data_execve {
143 struct audit_aux_data d;
144 int argc;
145 int envc;
146 struct mm_struct *mm;
147 };
148
149 struct audit_aux_data_pids {
150 struct audit_aux_data d;
151 pid_t target_pid[AUDIT_AUX_PIDS];
152 kuid_t target_auid[AUDIT_AUX_PIDS];
153 kuid_t target_uid[AUDIT_AUX_PIDS];
154 unsigned int target_sessionid[AUDIT_AUX_PIDS];
155 u32 target_sid[AUDIT_AUX_PIDS];
156 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
157 int pid_count;
158 };
159
160 struct audit_aux_data_bprm_fcaps {
161 struct audit_aux_data d;
162 struct audit_cap_data fcap;
163 unsigned int fcap_ver;
164 struct audit_cap_data old_pcap;
165 struct audit_cap_data new_pcap;
166 };
167
168 struct audit_aux_data_capset {
169 struct audit_aux_data d;
170 pid_t pid;
171 struct audit_cap_data cap;
172 };
173
174 struct audit_tree_refs {
175 struct audit_tree_refs *next;
176 struct audit_chunk *c[31];
177 };
178
179 /* The per-task audit context. */
180 struct audit_context {
181 int dummy; /* must be the first element */
182 int in_syscall; /* 1 if task is in a syscall */
183 enum audit_state state, current_state;
184 unsigned int serial; /* serial number for record */
185 int major; /* syscall number */
186 struct timespec ctime; /* time of syscall entry */
187 unsigned long argv[4]; /* syscall arguments */
188 long return_code;/* syscall return code */
189 u64 prio;
190 int return_valid; /* return code is valid */
191 /*
192 * The names_list is the list of all audit_names collected during this
193 * syscall. The first AUDIT_NAMES entries in the names_list will
194 * actually be from the preallocated_names array for performance
195 * reasons. Except during allocation they should never be referenced
196 * through the preallocated_names array and should only be found/used
197 * by running the names_list.
198 */
199 struct audit_names preallocated_names[AUDIT_NAMES];
200 int name_count; /* total records in names_list */
201 struct list_head names_list; /* anchor for struct audit_names->list */
202 char * filterkey; /* key for rule that triggered record */
203 struct path pwd;
204 struct audit_context *previous; /* For nested syscalls */
205 struct audit_aux_data *aux;
206 struct audit_aux_data *aux_pids;
207 struct sockaddr_storage *sockaddr;
208 size_t sockaddr_len;
209 /* Save things to print about task_struct */
210 pid_t pid, ppid;
211 kuid_t uid, euid, suid, fsuid;
212 kgid_t gid, egid, sgid, fsgid;
213 unsigned long personality;
214 int arch;
215
216 pid_t target_pid;
217 kuid_t target_auid;
218 kuid_t target_uid;
219 unsigned int target_sessionid;
220 u32 target_sid;
221 char target_comm[TASK_COMM_LEN];
222
223 struct audit_tree_refs *trees, *first_trees;
224 struct list_head killed_trees;
225 int tree_count;
226
227 int type;
228 union {
229 struct {
230 int nargs;
231 long args[6];
232 } socketcall;
233 struct {
234 kuid_t uid;
235 kgid_t gid;
236 umode_t mode;
237 u32 osid;
238 int has_perm;
239 uid_t perm_uid;
240 gid_t perm_gid;
241 umode_t perm_mode;
242 unsigned long qbytes;
243 } ipc;
244 struct {
245 mqd_t mqdes;
246 struct mq_attr mqstat;
247 } mq_getsetattr;
248 struct {
249 mqd_t mqdes;
250 int sigev_signo;
251 } mq_notify;
252 struct {
253 mqd_t mqdes;
254 size_t msg_len;
255 unsigned int msg_prio;
256 struct timespec abs_timeout;
257 } mq_sendrecv;
258 struct {
259 int oflag;
260 umode_t mode;
261 struct mq_attr attr;
262 } mq_open;
263 struct {
264 pid_t pid;
265 struct audit_cap_data cap;
266 } capset;
267 struct {
268 int fd;
269 int flags;
270 } mmap;
271 };
272 int fds[2];
273
274 #if AUDIT_DEBUG
275 int put_count;
276 int ino_count;
277 #endif
278 };
279
280 static inline int open_arg(int flags, int mask)
281 {
282 int n = ACC_MODE(flags);
283 if (flags & (O_TRUNC | O_CREAT))
284 n |= AUDIT_PERM_WRITE;
285 return n & mask;
286 }
287
288 static int audit_match_perm(struct audit_context *ctx, int mask)
289 {
290 unsigned n;
291 if (unlikely(!ctx))
292 return 0;
293 n = ctx->major;
294
295 switch (audit_classify_syscall(ctx->arch, n)) {
296 case 0: /* native */
297 if ((mask & AUDIT_PERM_WRITE) &&
298 audit_match_class(AUDIT_CLASS_WRITE, n))
299 return 1;
300 if ((mask & AUDIT_PERM_READ) &&
301 audit_match_class(AUDIT_CLASS_READ, n))
302 return 1;
303 if ((mask & AUDIT_PERM_ATTR) &&
304 audit_match_class(AUDIT_CLASS_CHATTR, n))
305 return 1;
306 return 0;
307 case 1: /* 32bit on biarch */
308 if ((mask & AUDIT_PERM_WRITE) &&
309 audit_match_class(AUDIT_CLASS_WRITE_32, n))
310 return 1;
311 if ((mask & AUDIT_PERM_READ) &&
312 audit_match_class(AUDIT_CLASS_READ_32, n))
313 return 1;
314 if ((mask & AUDIT_PERM_ATTR) &&
315 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
316 return 1;
317 return 0;
318 case 2: /* open */
319 return mask & ACC_MODE(ctx->argv[1]);
320 case 3: /* openat */
321 return mask & ACC_MODE(ctx->argv[2]);
322 case 4: /* socketcall */
323 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
324 case 5: /* execve */
325 return mask & AUDIT_PERM_EXEC;
326 default:
327 return 0;
328 }
329 }
330
331 static int audit_match_filetype(struct audit_context *ctx, int val)
332 {
333 struct audit_names *n;
334 umode_t mode = (umode_t)val;
335
336 if (unlikely(!ctx))
337 return 0;
338
339 list_for_each_entry(n, &ctx->names_list, list) {
340 if ((n->ino != -1) &&
341 ((n->mode & S_IFMT) == mode))
342 return 1;
343 }
344
345 return 0;
346 }
347
348 /*
349 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
350 * ->first_trees points to its beginning, ->trees - to the current end of data.
351 * ->tree_count is the number of free entries in array pointed to by ->trees.
352 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
353 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
354 * it's going to remain 1-element for almost any setup) until we free context itself.
355 * References in it _are_ dropped - at the same time we free/drop aux stuff.
356 */
357
358 #ifdef CONFIG_AUDIT_TREE
359 static void audit_set_auditable(struct audit_context *ctx)
360 {
361 if (!ctx->prio) {
362 ctx->prio = 1;
363 ctx->current_state = AUDIT_RECORD_CONTEXT;
364 }
365 }
366
367 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
368 {
369 struct audit_tree_refs *p = ctx->trees;
370 int left = ctx->tree_count;
371 if (likely(left)) {
372 p->c[--left] = chunk;
373 ctx->tree_count = left;
374 return 1;
375 }
376 if (!p)
377 return 0;
378 p = p->next;
379 if (p) {
380 p->c[30] = chunk;
381 ctx->trees = p;
382 ctx->tree_count = 30;
383 return 1;
384 }
385 return 0;
386 }
387
388 static int grow_tree_refs(struct audit_context *ctx)
389 {
390 struct audit_tree_refs *p = ctx->trees;
391 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
392 if (!ctx->trees) {
393 ctx->trees = p;
394 return 0;
395 }
396 if (p)
397 p->next = ctx->trees;
398 else
399 ctx->first_trees = ctx->trees;
400 ctx->tree_count = 31;
401 return 1;
402 }
403 #endif
404
405 static void unroll_tree_refs(struct audit_context *ctx,
406 struct audit_tree_refs *p, int count)
407 {
408 #ifdef CONFIG_AUDIT_TREE
409 struct audit_tree_refs *q;
410 int n;
411 if (!p) {
412 /* we started with empty chain */
413 p = ctx->first_trees;
414 count = 31;
415 /* if the very first allocation has failed, nothing to do */
416 if (!p)
417 return;
418 }
419 n = count;
420 for (q = p; q != ctx->trees; q = q->next, n = 31) {
421 while (n--) {
422 audit_put_chunk(q->c[n]);
423 q->c[n] = NULL;
424 }
425 }
426 while (n-- > ctx->tree_count) {
427 audit_put_chunk(q->c[n]);
428 q->c[n] = NULL;
429 }
430 ctx->trees = p;
431 ctx->tree_count = count;
432 #endif
433 }
434
435 static void free_tree_refs(struct audit_context *ctx)
436 {
437 struct audit_tree_refs *p, *q;
438 for (p = ctx->first_trees; p; p = q) {
439 q = p->next;
440 kfree(p);
441 }
442 }
443
444 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
445 {
446 #ifdef CONFIG_AUDIT_TREE
447 struct audit_tree_refs *p;
448 int n;
449 if (!tree)
450 return 0;
451 /* full ones */
452 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
453 for (n = 0; n < 31; n++)
454 if (audit_tree_match(p->c[n], tree))
455 return 1;
456 }
457 /* partial */
458 if (p) {
459 for (n = ctx->tree_count; n < 31; n++)
460 if (audit_tree_match(p->c[n], tree))
461 return 1;
462 }
463 #endif
464 return 0;
465 }
466
467 static int audit_compare_uid(kuid_t uid,
468 struct audit_names *name,
469 struct audit_field *f,
470 struct audit_context *ctx)
471 {
472 struct audit_names *n;
473 int rc;
474
475 if (name) {
476 rc = audit_uid_comparator(uid, f->op, name->uid);
477 if (rc)
478 return rc;
479 }
480
481 if (ctx) {
482 list_for_each_entry(n, &ctx->names_list, list) {
483 rc = audit_uid_comparator(uid, f->op, n->uid);
484 if (rc)
485 return rc;
486 }
487 }
488 return 0;
489 }
490
491 static int audit_compare_gid(kgid_t gid,
492 struct audit_names *name,
493 struct audit_field *f,
494 struct audit_context *ctx)
495 {
496 struct audit_names *n;
497 int rc;
498
499 if (name) {
500 rc = audit_gid_comparator(gid, f->op, name->gid);
501 if (rc)
502 return rc;
503 }
504
505 if (ctx) {
506 list_for_each_entry(n, &ctx->names_list, list) {
507 rc = audit_gid_comparator(gid, f->op, n->gid);
508 if (rc)
509 return rc;
510 }
511 }
512 return 0;
513 }
514
515 static int audit_field_compare(struct task_struct *tsk,
516 const struct cred *cred,
517 struct audit_field *f,
518 struct audit_context *ctx,
519 struct audit_names *name)
520 {
521 switch (f->val) {
522 /* process to file object comparisons */
523 case AUDIT_COMPARE_UID_TO_OBJ_UID:
524 return audit_compare_uid(cred->uid, name, f, ctx);
525 case AUDIT_COMPARE_GID_TO_OBJ_GID:
526 return audit_compare_gid(cred->gid, name, f, ctx);
527 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
528 return audit_compare_uid(cred->euid, name, f, ctx);
529 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
530 return audit_compare_gid(cred->egid, name, f, ctx);
531 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
532 return audit_compare_uid(tsk->loginuid, name, f, ctx);
533 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
534 return audit_compare_uid(cred->suid, name, f, ctx);
535 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
536 return audit_compare_gid(cred->sgid, name, f, ctx);
537 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
538 return audit_compare_uid(cred->fsuid, name, f, ctx);
539 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
540 return audit_compare_gid(cred->fsgid, name, f, ctx);
541 /* uid comparisons */
542 case AUDIT_COMPARE_UID_TO_AUID:
543 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
544 case AUDIT_COMPARE_UID_TO_EUID:
545 return audit_uid_comparator(cred->uid, f->op, cred->euid);
546 case AUDIT_COMPARE_UID_TO_SUID:
547 return audit_uid_comparator(cred->uid, f->op, cred->suid);
548 case AUDIT_COMPARE_UID_TO_FSUID:
549 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
550 /* auid comparisons */
551 case AUDIT_COMPARE_AUID_TO_EUID:
552 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
553 case AUDIT_COMPARE_AUID_TO_SUID:
554 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
555 case AUDIT_COMPARE_AUID_TO_FSUID:
556 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
557 /* euid comparisons */
558 case AUDIT_COMPARE_EUID_TO_SUID:
559 return audit_uid_comparator(cred->euid, f->op, cred->suid);
560 case AUDIT_COMPARE_EUID_TO_FSUID:
561 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
562 /* suid comparisons */
563 case AUDIT_COMPARE_SUID_TO_FSUID:
564 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
565 /* gid comparisons */
566 case AUDIT_COMPARE_GID_TO_EGID:
567 return audit_gid_comparator(cred->gid, f->op, cred->egid);
568 case AUDIT_COMPARE_GID_TO_SGID:
569 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
570 case AUDIT_COMPARE_GID_TO_FSGID:
571 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
572 /* egid comparisons */
573 case AUDIT_COMPARE_EGID_TO_SGID:
574 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
575 case AUDIT_COMPARE_EGID_TO_FSGID:
576 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
577 /* sgid comparison */
578 case AUDIT_COMPARE_SGID_TO_FSGID:
579 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
580 default:
581 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
582 return 0;
583 }
584 return 0;
585 }
586
587 /* Determine if any context name data matches a rule's watch data */
588 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
589 * otherwise.
590 *
591 * If task_creation is true, this is an explicit indication that we are
592 * filtering a task rule at task creation time. This and tsk == current are
593 * the only situations where tsk->cred may be accessed without an rcu read lock.
594 */
595 static int audit_filter_rules(struct task_struct *tsk,
596 struct audit_krule *rule,
597 struct audit_context *ctx,
598 struct audit_names *name,
599 enum audit_state *state,
600 bool task_creation)
601 {
602 const struct cred *cred;
603 int i, need_sid = 1;
604 u32 sid;
605
606 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
607
608 for (i = 0; i < rule->field_count; i++) {
609 struct audit_field *f = &rule->fields[i];
610 struct audit_names *n;
611 int result = 0;
612
613 switch (f->type) {
614 case AUDIT_PID:
615 result = audit_comparator(tsk->pid, f->op, f->val);
616 break;
617 case AUDIT_PPID:
618 if (ctx) {
619 if (!ctx->ppid)
620 ctx->ppid = sys_getppid();
621 result = audit_comparator(ctx->ppid, f->op, f->val);
622 }
623 break;
624 case AUDIT_UID:
625 result = audit_uid_comparator(cred->uid, f->op, f->uid);
626 break;
627 case AUDIT_EUID:
628 result = audit_uid_comparator(cred->euid, f->op, f->uid);
629 break;
630 case AUDIT_SUID:
631 result = audit_uid_comparator(cred->suid, f->op, f->uid);
632 break;
633 case AUDIT_FSUID:
634 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
635 break;
636 case AUDIT_GID:
637 result = audit_gid_comparator(cred->gid, f->op, f->gid);
638 break;
639 case AUDIT_EGID:
640 result = audit_gid_comparator(cred->egid, f->op, f->gid);
641 break;
642 case AUDIT_SGID:
643 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
644 break;
645 case AUDIT_FSGID:
646 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
647 break;
648 case AUDIT_PERS:
649 result = audit_comparator(tsk->personality, f->op, f->val);
650 break;
651 case AUDIT_ARCH:
652 if (ctx)
653 result = audit_comparator(ctx->arch, f->op, f->val);
654 break;
655
656 case AUDIT_EXIT:
657 if (ctx && ctx->return_valid)
658 result = audit_comparator(ctx->return_code, f->op, f->val);
659 break;
660 case AUDIT_SUCCESS:
661 if (ctx && ctx->return_valid) {
662 if (f->val)
663 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
664 else
665 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
666 }
667 break;
668 case AUDIT_DEVMAJOR:
669 if (name) {
670 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
671 audit_comparator(MAJOR(name->rdev), f->op, f->val))
672 ++result;
673 } else if (ctx) {
674 list_for_each_entry(n, &ctx->names_list, list) {
675 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
676 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
677 ++result;
678 break;
679 }
680 }
681 }
682 break;
683 case AUDIT_DEVMINOR:
684 if (name) {
685 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
686 audit_comparator(MINOR(name->rdev), f->op, f->val))
687 ++result;
688 } else if (ctx) {
689 list_for_each_entry(n, &ctx->names_list, list) {
690 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
691 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
692 ++result;
693 break;
694 }
695 }
696 }
697 break;
698 case AUDIT_INODE:
699 if (name)
700 result = (name->ino == f->val);
701 else if (ctx) {
702 list_for_each_entry(n, &ctx->names_list, list) {
703 if (audit_comparator(n->ino, f->op, f->val)) {
704 ++result;
705 break;
706 }
707 }
708 }
709 break;
710 case AUDIT_OBJ_UID:
711 if (name) {
712 result = audit_uid_comparator(name->uid, f->op, f->uid);
713 } else if (ctx) {
714 list_for_each_entry(n, &ctx->names_list, list) {
715 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
716 ++result;
717 break;
718 }
719 }
720 }
721 break;
722 case AUDIT_OBJ_GID:
723 if (name) {
724 result = audit_gid_comparator(name->gid, f->op, f->gid);
725 } else if (ctx) {
726 list_for_each_entry(n, &ctx->names_list, list) {
727 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
728 ++result;
729 break;
730 }
731 }
732 }
733 break;
734 case AUDIT_WATCH:
735 if (name)
736 result = audit_watch_compare(rule->watch, name->ino, name->dev);
737 break;
738 case AUDIT_DIR:
739 if (ctx)
740 result = match_tree_refs(ctx, rule->tree);
741 break;
742 case AUDIT_LOGINUID:
743 result = 0;
744 if (ctx)
745 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
746 break;
747 case AUDIT_SUBJ_USER:
748 case AUDIT_SUBJ_ROLE:
749 case AUDIT_SUBJ_TYPE:
750 case AUDIT_SUBJ_SEN:
751 case AUDIT_SUBJ_CLR:
752 /* NOTE: this may return negative values indicating
753 a temporary error. We simply treat this as a
754 match for now to avoid losing information that
755 may be wanted. An error message will also be
756 logged upon error */
757 if (f->lsm_rule) {
758 if (need_sid) {
759 security_task_getsecid(tsk, &sid);
760 need_sid = 0;
761 }
762 result = security_audit_rule_match(sid, f->type,
763 f->op,
764 f->lsm_rule,
765 ctx);
766 }
767 break;
768 case AUDIT_OBJ_USER:
769 case AUDIT_OBJ_ROLE:
770 case AUDIT_OBJ_TYPE:
771 case AUDIT_OBJ_LEV_LOW:
772 case AUDIT_OBJ_LEV_HIGH:
773 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
774 also applies here */
775 if (f->lsm_rule) {
776 /* Find files that match */
777 if (name) {
778 result = security_audit_rule_match(
779 name->osid, f->type, f->op,
780 f->lsm_rule, ctx);
781 } else if (ctx) {
782 list_for_each_entry(n, &ctx->names_list, list) {
783 if (security_audit_rule_match(n->osid, f->type,
784 f->op, f->lsm_rule,
785 ctx)) {
786 ++result;
787 break;
788 }
789 }
790 }
791 /* Find ipc objects that match */
792 if (!ctx || ctx->type != AUDIT_IPC)
793 break;
794 if (security_audit_rule_match(ctx->ipc.osid,
795 f->type, f->op,
796 f->lsm_rule, ctx))
797 ++result;
798 }
799 break;
800 case AUDIT_ARG0:
801 case AUDIT_ARG1:
802 case AUDIT_ARG2:
803 case AUDIT_ARG3:
804 if (ctx)
805 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
806 break;
807 case AUDIT_FILTERKEY:
808 /* ignore this field for filtering */
809 result = 1;
810 break;
811 case AUDIT_PERM:
812 result = audit_match_perm(ctx, f->val);
813 break;
814 case AUDIT_FILETYPE:
815 result = audit_match_filetype(ctx, f->val);
816 break;
817 case AUDIT_FIELD_COMPARE:
818 result = audit_field_compare(tsk, cred, f, ctx, name);
819 break;
820 }
821 if (!result)
822 return 0;
823 }
824
825 if (ctx) {
826 if (rule->prio <= ctx->prio)
827 return 0;
828 if (rule->filterkey) {
829 kfree(ctx->filterkey);
830 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
831 }
832 ctx->prio = rule->prio;
833 }
834 switch (rule->action) {
835 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
836 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
837 }
838 return 1;
839 }
840
841 /* At process creation time, we can determine if system-call auditing is
842 * completely disabled for this task. Since we only have the task
843 * structure at this point, we can only check uid and gid.
844 */
845 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
846 {
847 struct audit_entry *e;
848 enum audit_state state;
849
850 rcu_read_lock();
851 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
852 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
853 &state, true)) {
854 if (state == AUDIT_RECORD_CONTEXT)
855 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
856 rcu_read_unlock();
857 return state;
858 }
859 }
860 rcu_read_unlock();
861 return AUDIT_BUILD_CONTEXT;
862 }
863
864 /* At syscall entry and exit time, this filter is called if the
865 * audit_state is not low enough that auditing cannot take place, but is
866 * also not high enough that we already know we have to write an audit
867 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
868 */
869 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
870 struct audit_context *ctx,
871 struct list_head *list)
872 {
873 struct audit_entry *e;
874 enum audit_state state;
875
876 if (audit_pid && tsk->tgid == audit_pid)
877 return AUDIT_DISABLED;
878
879 rcu_read_lock();
880 if (!list_empty(list)) {
881 int word = AUDIT_WORD(ctx->major);
882 int bit = AUDIT_BIT(ctx->major);
883
884 list_for_each_entry_rcu(e, list, list) {
885 if ((e->rule.mask[word] & bit) == bit &&
886 audit_filter_rules(tsk, &e->rule, ctx, NULL,
887 &state, false)) {
888 rcu_read_unlock();
889 ctx->current_state = state;
890 return state;
891 }
892 }
893 }
894 rcu_read_unlock();
895 return AUDIT_BUILD_CONTEXT;
896 }
897
898 /*
899 * Given an audit_name check the inode hash table to see if they match.
900 * Called holding the rcu read lock to protect the use of audit_inode_hash
901 */
902 static int audit_filter_inode_name(struct task_struct *tsk,
903 struct audit_names *n,
904 struct audit_context *ctx) {
905 int word, bit;
906 int h = audit_hash_ino((u32)n->ino);
907 struct list_head *list = &audit_inode_hash[h];
908 struct audit_entry *e;
909 enum audit_state state;
910
911 word = AUDIT_WORD(ctx->major);
912 bit = AUDIT_BIT(ctx->major);
913
914 if (list_empty(list))
915 return 0;
916
917 list_for_each_entry_rcu(e, list, list) {
918 if ((e->rule.mask[word] & bit) == bit &&
919 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
920 ctx->current_state = state;
921 return 1;
922 }
923 }
924
925 return 0;
926 }
927
928 /* At syscall exit time, this filter is called if any audit_names have been
929 * collected during syscall processing. We only check rules in sublists at hash
930 * buckets applicable to the inode numbers in audit_names.
931 * Regarding audit_state, same rules apply as for audit_filter_syscall().
932 */
933 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
934 {
935 struct audit_names *n;
936
937 if (audit_pid && tsk->tgid == audit_pid)
938 return;
939
940 rcu_read_lock();
941
942 list_for_each_entry(n, &ctx->names_list, list) {
943 if (audit_filter_inode_name(tsk, n, ctx))
944 break;
945 }
946 rcu_read_unlock();
947 }
948
949 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
950 int return_valid,
951 long return_code)
952 {
953 struct audit_context *context = tsk->audit_context;
954
955 if (!context)
956 return NULL;
957 context->return_valid = return_valid;
958
959 /*
960 * we need to fix up the return code in the audit logs if the actual
961 * return codes are later going to be fixed up by the arch specific
962 * signal handlers
963 *
964 * This is actually a test for:
965 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
966 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
967 *
968 * but is faster than a bunch of ||
969 */
970 if (unlikely(return_code <= -ERESTARTSYS) &&
971 (return_code >= -ERESTART_RESTARTBLOCK) &&
972 (return_code != -ENOIOCTLCMD))
973 context->return_code = -EINTR;
974 else
975 context->return_code = return_code;
976
977 if (context->in_syscall && !context->dummy) {
978 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
979 audit_filter_inodes(tsk, context);
980 }
981
982 tsk->audit_context = NULL;
983 return context;
984 }
985
986 static inline void audit_free_names(struct audit_context *context)
987 {
988 struct audit_names *n, *next;
989
990 #if AUDIT_DEBUG == 2
991 if (context->put_count + context->ino_count != context->name_count) {
992 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
993 " name_count=%d put_count=%d"
994 " ino_count=%d [NOT freeing]\n",
995 __FILE__, __LINE__,
996 context->serial, context->major, context->in_syscall,
997 context->name_count, context->put_count,
998 context->ino_count);
999 list_for_each_entry(n, &context->names_list, list) {
1000 printk(KERN_ERR "names[%d] = %p = %s\n", i,
1001 n->name, n->name ?: "(null)");
1002 }
1003 dump_stack();
1004 return;
1005 }
1006 #endif
1007 #if AUDIT_DEBUG
1008 context->put_count = 0;
1009 context->ino_count = 0;
1010 #endif
1011
1012 list_for_each_entry_safe(n, next, &context->names_list, list) {
1013 list_del(&n->list);
1014 if (n->name && n->name_put)
1015 __putname(n->name);
1016 if (n->should_free)
1017 kfree(n);
1018 }
1019 context->name_count = 0;
1020 path_put(&context->pwd);
1021 context->pwd.dentry = NULL;
1022 context->pwd.mnt = NULL;
1023 }
1024
1025 static inline void audit_free_aux(struct audit_context *context)
1026 {
1027 struct audit_aux_data *aux;
1028
1029 while ((aux = context->aux)) {
1030 context->aux = aux->next;
1031 kfree(aux);
1032 }
1033 while ((aux = context->aux_pids)) {
1034 context->aux_pids = aux->next;
1035 kfree(aux);
1036 }
1037 }
1038
1039 static inline void audit_zero_context(struct audit_context *context,
1040 enum audit_state state)
1041 {
1042 memset(context, 0, sizeof(*context));
1043 context->state = state;
1044 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1045 }
1046
1047 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1048 {
1049 struct audit_context *context;
1050
1051 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1052 return NULL;
1053 audit_zero_context(context, state);
1054 INIT_LIST_HEAD(&context->killed_trees);
1055 INIT_LIST_HEAD(&context->names_list);
1056 return context;
1057 }
1058
1059 /**
1060 * audit_alloc - allocate an audit context block for a task
1061 * @tsk: task
1062 *
1063 * Filter on the task information and allocate a per-task audit context
1064 * if necessary. Doing so turns on system call auditing for the
1065 * specified task. This is called from copy_process, so no lock is
1066 * needed.
1067 */
1068 int audit_alloc(struct task_struct *tsk)
1069 {
1070 struct audit_context *context;
1071 enum audit_state state;
1072 char *key = NULL;
1073
1074 if (likely(!audit_ever_enabled))
1075 return 0; /* Return if not auditing. */
1076
1077 state = audit_filter_task(tsk, &key);
1078 if (state == AUDIT_DISABLED)
1079 return 0;
1080
1081 if (!(context = audit_alloc_context(state))) {
1082 kfree(key);
1083 audit_log_lost("out of memory in audit_alloc");
1084 return -ENOMEM;
1085 }
1086 context->filterkey = key;
1087
1088 tsk->audit_context = context;
1089 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1090 return 0;
1091 }
1092
1093 static inline void audit_free_context(struct audit_context *context)
1094 {
1095 struct audit_context *previous;
1096 int count = 0;
1097
1098 do {
1099 previous = context->previous;
1100 if (previous || (count && count < 10)) {
1101 ++count;
1102 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1103 " freeing multiple contexts (%d)\n",
1104 context->serial, context->major,
1105 context->name_count, count);
1106 }
1107 audit_free_names(context);
1108 unroll_tree_refs(context, NULL, 0);
1109 free_tree_refs(context);
1110 audit_free_aux(context);
1111 kfree(context->filterkey);
1112 kfree(context->sockaddr);
1113 kfree(context);
1114 context = previous;
1115 } while (context);
1116 if (count >= 10)
1117 printk(KERN_ERR "audit: freed %d contexts\n", count);
1118 }
1119
1120 void audit_log_task_context(struct audit_buffer *ab)
1121 {
1122 char *ctx = NULL;
1123 unsigned len;
1124 int error;
1125 u32 sid;
1126
1127 security_task_getsecid(current, &sid);
1128 if (!sid)
1129 return;
1130
1131 error = security_secid_to_secctx(sid, &ctx, &len);
1132 if (error) {
1133 if (error != -EINVAL)
1134 goto error_path;
1135 return;
1136 }
1137
1138 audit_log_format(ab, " subj=%s", ctx);
1139 security_release_secctx(ctx, len);
1140 return;
1141
1142 error_path:
1143 audit_panic("error in audit_log_task_context");
1144 return;
1145 }
1146
1147 EXPORT_SYMBOL(audit_log_task_context);
1148
1149 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1150 {
1151 const struct cred *cred;
1152 char name[sizeof(tsk->comm)];
1153 struct mm_struct *mm = tsk->mm;
1154 struct vm_area_struct *vma;
1155 char *tty;
1156
1157 if (!ab)
1158 return;
1159
1160 /* tsk == current */
1161 cred = current_cred();
1162
1163 spin_lock_irq(&tsk->sighand->siglock);
1164 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1165 tty = tsk->signal->tty->name;
1166 else
1167 tty = "(none)";
1168 spin_unlock_irq(&tsk->sighand->siglock);
1169
1170
1171 audit_log_format(ab,
1172 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1173 " euid=%u suid=%u fsuid=%u"
1174 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1175 sys_getppid(),
1176 tsk->pid,
1177 from_kuid(&init_user_ns, tsk->loginuid),
1178 from_kuid(&init_user_ns, cred->uid),
1179 from_kgid(&init_user_ns, cred->gid),
1180 from_kuid(&init_user_ns, cred->euid),
1181 from_kuid(&init_user_ns, cred->suid),
1182 from_kuid(&init_user_ns, cred->fsuid),
1183 from_kgid(&init_user_ns, cred->egid),
1184 from_kgid(&init_user_ns, cred->sgid),
1185 from_kgid(&init_user_ns, cred->fsgid),
1186 tsk->sessionid, tty);
1187
1188 get_task_comm(name, tsk);
1189 audit_log_format(ab, " comm=");
1190 audit_log_untrustedstring(ab, name);
1191
1192 if (mm) {
1193 down_read(&mm->mmap_sem);
1194 vma = mm->mmap;
1195 while (vma) {
1196 if ((vma->vm_flags & VM_EXECUTABLE) &&
1197 vma->vm_file) {
1198 audit_log_d_path(ab, " exe=",
1199 &vma->vm_file->f_path);
1200 break;
1201 }
1202 vma = vma->vm_next;
1203 }
1204 up_read(&mm->mmap_sem);
1205 }
1206 audit_log_task_context(ab);
1207 }
1208
1209 EXPORT_SYMBOL(audit_log_task_info);
1210
1211 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1212 kuid_t auid, kuid_t uid, unsigned int sessionid,
1213 u32 sid, char *comm)
1214 {
1215 struct audit_buffer *ab;
1216 char *ctx = NULL;
1217 u32 len;
1218 int rc = 0;
1219
1220 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1221 if (!ab)
1222 return rc;
1223
1224 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1225 from_kuid(&init_user_ns, auid),
1226 from_kuid(&init_user_ns, uid), sessionid);
1227 if (security_secid_to_secctx(sid, &ctx, &len)) {
1228 audit_log_format(ab, " obj=(none)");
1229 rc = 1;
1230 } else {
1231 audit_log_format(ab, " obj=%s", ctx);
1232 security_release_secctx(ctx, len);
1233 }
1234 audit_log_format(ab, " ocomm=");
1235 audit_log_untrustedstring(ab, comm);
1236 audit_log_end(ab);
1237
1238 return rc;
1239 }
1240
1241 /*
1242 * to_send and len_sent accounting are very loose estimates. We aren't
1243 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1244 * within about 500 bytes (next page boundary)
1245 *
1246 * why snprintf? an int is up to 12 digits long. if we just assumed when
1247 * logging that a[%d]= was going to be 16 characters long we would be wasting
1248 * space in every audit message. In one 7500 byte message we can log up to
1249 * about 1000 min size arguments. That comes down to about 50% waste of space
1250 * if we didn't do the snprintf to find out how long arg_num_len was.
1251 */
1252 static int audit_log_single_execve_arg(struct audit_context *context,
1253 struct audit_buffer **ab,
1254 int arg_num,
1255 size_t *len_sent,
1256 const char __user *p,
1257 char *buf)
1258 {
1259 char arg_num_len_buf[12];
1260 const char __user *tmp_p = p;
1261 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1262 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1263 size_t len, len_left, to_send;
1264 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1265 unsigned int i, has_cntl = 0, too_long = 0;
1266 int ret;
1267
1268 /* strnlen_user includes the null we don't want to send */
1269 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1270
1271 /*
1272 * We just created this mm, if we can't find the strings
1273 * we just copied into it something is _very_ wrong. Similar
1274 * for strings that are too long, we should not have created
1275 * any.
1276 */
1277 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1278 WARN_ON(1);
1279 send_sig(SIGKILL, current, 0);
1280 return -1;
1281 }
1282
1283 /* walk the whole argument looking for non-ascii chars */
1284 do {
1285 if (len_left > MAX_EXECVE_AUDIT_LEN)
1286 to_send = MAX_EXECVE_AUDIT_LEN;
1287 else
1288 to_send = len_left;
1289 ret = copy_from_user(buf, tmp_p, to_send);
1290 /*
1291 * There is no reason for this copy to be short. We just
1292 * copied them here, and the mm hasn't been exposed to user-
1293 * space yet.
1294 */
1295 if (ret) {
1296 WARN_ON(1);
1297 send_sig(SIGKILL, current, 0);
1298 return -1;
1299 }
1300 buf[to_send] = '\0';
1301 has_cntl = audit_string_contains_control(buf, to_send);
1302 if (has_cntl) {
1303 /*
1304 * hex messages get logged as 2 bytes, so we can only
1305 * send half as much in each message
1306 */
1307 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1308 break;
1309 }
1310 len_left -= to_send;
1311 tmp_p += to_send;
1312 } while (len_left > 0);
1313
1314 len_left = len;
1315
1316 if (len > max_execve_audit_len)
1317 too_long = 1;
1318
1319 /* rewalk the argument actually logging the message */
1320 for (i = 0; len_left > 0; i++) {
1321 int room_left;
1322
1323 if (len_left > max_execve_audit_len)
1324 to_send = max_execve_audit_len;
1325 else
1326 to_send = len_left;
1327
1328 /* do we have space left to send this argument in this ab? */
1329 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1330 if (has_cntl)
1331 room_left -= (to_send * 2);
1332 else
1333 room_left -= to_send;
1334 if (room_left < 0) {
1335 *len_sent = 0;
1336 audit_log_end(*ab);
1337 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1338 if (!*ab)
1339 return 0;
1340 }
1341
1342 /*
1343 * first record needs to say how long the original string was
1344 * so we can be sure nothing was lost.
1345 */
1346 if ((i == 0) && (too_long))
1347 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1348 has_cntl ? 2*len : len);
1349
1350 /*
1351 * normally arguments are small enough to fit and we already
1352 * filled buf above when we checked for control characters
1353 * so don't bother with another copy_from_user
1354 */
1355 if (len >= max_execve_audit_len)
1356 ret = copy_from_user(buf, p, to_send);
1357 else
1358 ret = 0;
1359 if (ret) {
1360 WARN_ON(1);
1361 send_sig(SIGKILL, current, 0);
1362 return -1;
1363 }
1364 buf[to_send] = '\0';
1365
1366 /* actually log it */
1367 audit_log_format(*ab, " a%d", arg_num);
1368 if (too_long)
1369 audit_log_format(*ab, "[%d]", i);
1370 audit_log_format(*ab, "=");
1371 if (has_cntl)
1372 audit_log_n_hex(*ab, buf, to_send);
1373 else
1374 audit_log_string(*ab, buf);
1375
1376 p += to_send;
1377 len_left -= to_send;
1378 *len_sent += arg_num_len;
1379 if (has_cntl)
1380 *len_sent += to_send * 2;
1381 else
1382 *len_sent += to_send;
1383 }
1384 /* include the null we didn't log */
1385 return len + 1;
1386 }
1387
1388 static void audit_log_execve_info(struct audit_context *context,
1389 struct audit_buffer **ab,
1390 struct audit_aux_data_execve *axi)
1391 {
1392 int i, len;
1393 size_t len_sent = 0;
1394 const char __user *p;
1395 char *buf;
1396
1397 if (axi->mm != current->mm)
1398 return; /* execve failed, no additional info */
1399
1400 p = (const char __user *)axi->mm->arg_start;
1401
1402 audit_log_format(*ab, "argc=%d", axi->argc);
1403
1404 /*
1405 * we need some kernel buffer to hold the userspace args. Just
1406 * allocate one big one rather than allocating one of the right size
1407 * for every single argument inside audit_log_single_execve_arg()
1408 * should be <8k allocation so should be pretty safe.
1409 */
1410 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1411 if (!buf) {
1412 audit_panic("out of memory for argv string\n");
1413 return;
1414 }
1415
1416 for (i = 0; i < axi->argc; i++) {
1417 len = audit_log_single_execve_arg(context, ab, i,
1418 &len_sent, p, buf);
1419 if (len <= 0)
1420 break;
1421 p += len;
1422 }
1423 kfree(buf);
1424 }
1425
1426 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1427 {
1428 int i;
1429
1430 audit_log_format(ab, " %s=", prefix);
1431 CAP_FOR_EACH_U32(i) {
1432 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1433 }
1434 }
1435
1436 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1437 {
1438 kernel_cap_t *perm = &name->fcap.permitted;
1439 kernel_cap_t *inh = &name->fcap.inheritable;
1440 int log = 0;
1441
1442 if (!cap_isclear(*perm)) {
1443 audit_log_cap(ab, "cap_fp", perm);
1444 log = 1;
1445 }
1446 if (!cap_isclear(*inh)) {
1447 audit_log_cap(ab, "cap_fi", inh);
1448 log = 1;
1449 }
1450
1451 if (log)
1452 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1453 }
1454
1455 static void show_special(struct audit_context *context, int *call_panic)
1456 {
1457 struct audit_buffer *ab;
1458 int i;
1459
1460 ab = audit_log_start(context, GFP_KERNEL, context->type);
1461 if (!ab)
1462 return;
1463
1464 switch (context->type) {
1465 case AUDIT_SOCKETCALL: {
1466 int nargs = context->socketcall.nargs;
1467 audit_log_format(ab, "nargs=%d", nargs);
1468 for (i = 0; i < nargs; i++)
1469 audit_log_format(ab, " a%d=%lx", i,
1470 context->socketcall.args[i]);
1471 break; }
1472 case AUDIT_IPC: {
1473 u32 osid = context->ipc.osid;
1474
1475 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1476 from_kuid(&init_user_ns, context->ipc.uid),
1477 from_kgid(&init_user_ns, context->ipc.gid),
1478 context->ipc.mode);
1479 if (osid) {
1480 char *ctx = NULL;
1481 u32 len;
1482 if (security_secid_to_secctx(osid, &ctx, &len)) {
1483 audit_log_format(ab, " osid=%u", osid);
1484 *call_panic = 1;
1485 } else {
1486 audit_log_format(ab, " obj=%s", ctx);
1487 security_release_secctx(ctx, len);
1488 }
1489 }
1490 if (context->ipc.has_perm) {
1491 audit_log_end(ab);
1492 ab = audit_log_start(context, GFP_KERNEL,
1493 AUDIT_IPC_SET_PERM);
1494 audit_log_format(ab,
1495 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1496 context->ipc.qbytes,
1497 context->ipc.perm_uid,
1498 context->ipc.perm_gid,
1499 context->ipc.perm_mode);
1500 if (!ab)
1501 return;
1502 }
1503 break; }
1504 case AUDIT_MQ_OPEN: {
1505 audit_log_format(ab,
1506 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1507 "mq_msgsize=%ld mq_curmsgs=%ld",
1508 context->mq_open.oflag, context->mq_open.mode,
1509 context->mq_open.attr.mq_flags,
1510 context->mq_open.attr.mq_maxmsg,
1511 context->mq_open.attr.mq_msgsize,
1512 context->mq_open.attr.mq_curmsgs);
1513 break; }
1514 case AUDIT_MQ_SENDRECV: {
1515 audit_log_format(ab,
1516 "mqdes=%d msg_len=%zd msg_prio=%u "
1517 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1518 context->mq_sendrecv.mqdes,
1519 context->mq_sendrecv.msg_len,
1520 context->mq_sendrecv.msg_prio,
1521 context->mq_sendrecv.abs_timeout.tv_sec,
1522 context->mq_sendrecv.abs_timeout.tv_nsec);
1523 break; }
1524 case AUDIT_MQ_NOTIFY: {
1525 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1526 context->mq_notify.mqdes,
1527 context->mq_notify.sigev_signo);
1528 break; }
1529 case AUDIT_MQ_GETSETATTR: {
1530 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1531 audit_log_format(ab,
1532 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1533 "mq_curmsgs=%ld ",
1534 context->mq_getsetattr.mqdes,
1535 attr->mq_flags, attr->mq_maxmsg,
1536 attr->mq_msgsize, attr->mq_curmsgs);
1537 break; }
1538 case AUDIT_CAPSET: {
1539 audit_log_format(ab, "pid=%d", context->capset.pid);
1540 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1541 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1542 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1543 break; }
1544 case AUDIT_MMAP: {
1545 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1546 context->mmap.flags);
1547 break; }
1548 }
1549 audit_log_end(ab);
1550 }
1551
1552 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1553 int record_num, int *call_panic)
1554 {
1555 struct audit_buffer *ab;
1556 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1557 if (!ab)
1558 return; /* audit_panic has been called */
1559
1560 audit_log_format(ab, "item=%d", record_num);
1561
1562 if (n->name) {
1563 switch (n->name_len) {
1564 case AUDIT_NAME_FULL:
1565 /* log the full path */
1566 audit_log_format(ab, " name=");
1567 audit_log_untrustedstring(ab, n->name);
1568 break;
1569 case 0:
1570 /* name was specified as a relative path and the
1571 * directory component is the cwd */
1572 audit_log_d_path(ab, " name=", &context->pwd);
1573 break;
1574 default:
1575 /* log the name's directory component */
1576 audit_log_format(ab, " name=");
1577 audit_log_n_untrustedstring(ab, n->name,
1578 n->name_len);
1579 }
1580 } else
1581 audit_log_format(ab, " name=(null)");
1582
1583 if (n->ino != (unsigned long)-1) {
1584 audit_log_format(ab, " inode=%lu"
1585 " dev=%02x:%02x mode=%#ho"
1586 " ouid=%u ogid=%u rdev=%02x:%02x",
1587 n->ino,
1588 MAJOR(n->dev),
1589 MINOR(n->dev),
1590 n->mode,
1591 from_kuid(&init_user_ns, n->uid),
1592 from_kgid(&init_user_ns, n->gid),
1593 MAJOR(n->rdev),
1594 MINOR(n->rdev));
1595 }
1596 if (n->osid != 0) {
1597 char *ctx = NULL;
1598 u32 len;
1599 if (security_secid_to_secctx(
1600 n->osid, &ctx, &len)) {
1601 audit_log_format(ab, " osid=%u", n->osid);
1602 *call_panic = 2;
1603 } else {
1604 audit_log_format(ab, " obj=%s", ctx);
1605 security_release_secctx(ctx, len);
1606 }
1607 }
1608
1609 audit_log_fcaps(ab, n);
1610
1611 audit_log_end(ab);
1612 }
1613
1614 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1615 {
1616 int i, call_panic = 0;
1617 struct audit_buffer *ab;
1618 struct audit_aux_data *aux;
1619 struct audit_names *n;
1620
1621 /* tsk == current */
1622 context->personality = tsk->personality;
1623
1624 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1625 if (!ab)
1626 return; /* audit_panic has been called */
1627 audit_log_format(ab, "arch=%x syscall=%d",
1628 context->arch, context->major);
1629 if (context->personality != PER_LINUX)
1630 audit_log_format(ab, " per=%lx", context->personality);
1631 if (context->return_valid)
1632 audit_log_format(ab, " success=%s exit=%ld",
1633 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1634 context->return_code);
1635
1636 audit_log_format(ab,
1637 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1638 context->argv[0],
1639 context->argv[1],
1640 context->argv[2],
1641 context->argv[3],
1642 context->name_count);
1643
1644 audit_log_task_info(ab, tsk);
1645 audit_log_key(ab, context->filterkey);
1646 audit_log_end(ab);
1647
1648 for (aux = context->aux; aux; aux = aux->next) {
1649
1650 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1651 if (!ab)
1652 continue; /* audit_panic has been called */
1653
1654 switch (aux->type) {
1655
1656 case AUDIT_EXECVE: {
1657 struct audit_aux_data_execve *axi = (void *)aux;
1658 audit_log_execve_info(context, &ab, axi);
1659 break; }
1660
1661 case AUDIT_BPRM_FCAPS: {
1662 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1663 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1664 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1665 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1666 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1667 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1668 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1669 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1670 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1671 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1672 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1673 break; }
1674
1675 }
1676 audit_log_end(ab);
1677 }
1678
1679 if (context->type)
1680 show_special(context, &call_panic);
1681
1682 if (context->fds[0] >= 0) {
1683 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1684 if (ab) {
1685 audit_log_format(ab, "fd0=%d fd1=%d",
1686 context->fds[0], context->fds[1]);
1687 audit_log_end(ab);
1688 }
1689 }
1690
1691 if (context->sockaddr_len) {
1692 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1693 if (ab) {
1694 audit_log_format(ab, "saddr=");
1695 audit_log_n_hex(ab, (void *)context->sockaddr,
1696 context->sockaddr_len);
1697 audit_log_end(ab);
1698 }
1699 }
1700
1701 for (aux = context->aux_pids; aux; aux = aux->next) {
1702 struct audit_aux_data_pids *axs = (void *)aux;
1703
1704 for (i = 0; i < axs->pid_count; i++)
1705 if (audit_log_pid_context(context, axs->target_pid[i],
1706 axs->target_auid[i],
1707 axs->target_uid[i],
1708 axs->target_sessionid[i],
1709 axs->target_sid[i],
1710 axs->target_comm[i]))
1711 call_panic = 1;
1712 }
1713
1714 if (context->target_pid &&
1715 audit_log_pid_context(context, context->target_pid,
1716 context->target_auid, context->target_uid,
1717 context->target_sessionid,
1718 context->target_sid, context->target_comm))
1719 call_panic = 1;
1720
1721 if (context->pwd.dentry && context->pwd.mnt) {
1722 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1723 if (ab) {
1724 audit_log_d_path(ab, " cwd=", &context->pwd);
1725 audit_log_end(ab);
1726 }
1727 }
1728
1729 i = 0;
1730 list_for_each_entry(n, &context->names_list, list)
1731 audit_log_name(context, n, i++, &call_panic);
1732
1733 /* Send end of event record to help user space know we are finished */
1734 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1735 if (ab)
1736 audit_log_end(ab);
1737 if (call_panic)
1738 audit_panic("error converting sid to string");
1739 }
1740
1741 /**
1742 * audit_free - free a per-task audit context
1743 * @tsk: task whose audit context block to free
1744 *
1745 * Called from copy_process and do_exit
1746 */
1747 void __audit_free(struct task_struct *tsk)
1748 {
1749 struct audit_context *context;
1750
1751 context = audit_get_context(tsk, 0, 0);
1752 if (!context)
1753 return;
1754
1755 /* Check for system calls that do not go through the exit
1756 * function (e.g., exit_group), then free context block.
1757 * We use GFP_ATOMIC here because we might be doing this
1758 * in the context of the idle thread */
1759 /* that can happen only if we are called from do_exit() */
1760 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1761 audit_log_exit(context, tsk);
1762 if (!list_empty(&context->killed_trees))
1763 audit_kill_trees(&context->killed_trees);
1764
1765 audit_free_context(context);
1766 }
1767
1768 /**
1769 * audit_syscall_entry - fill in an audit record at syscall entry
1770 * @arch: architecture type
1771 * @major: major syscall type (function)
1772 * @a1: additional syscall register 1
1773 * @a2: additional syscall register 2
1774 * @a3: additional syscall register 3
1775 * @a4: additional syscall register 4
1776 *
1777 * Fill in audit context at syscall entry. This only happens if the
1778 * audit context was created when the task was created and the state or
1779 * filters demand the audit context be built. If the state from the
1780 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1781 * then the record will be written at syscall exit time (otherwise, it
1782 * will only be written if another part of the kernel requests that it
1783 * be written).
1784 */
1785 void __audit_syscall_entry(int arch, int major,
1786 unsigned long a1, unsigned long a2,
1787 unsigned long a3, unsigned long a4)
1788 {
1789 struct task_struct *tsk = current;
1790 struct audit_context *context = tsk->audit_context;
1791 enum audit_state state;
1792
1793 if (!context)
1794 return;
1795
1796 /*
1797 * This happens only on certain architectures that make system
1798 * calls in kernel_thread via the entry.S interface, instead of
1799 * with direct calls. (If you are porting to a new
1800 * architecture, hitting this condition can indicate that you
1801 * got the _exit/_leave calls backward in entry.S.)
1802 *
1803 * i386 no
1804 * x86_64 no
1805 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1806 *
1807 * This also happens with vm86 emulation in a non-nested manner
1808 * (entries without exits), so this case must be caught.
1809 */
1810 if (context->in_syscall) {
1811 struct audit_context *newctx;
1812
1813 #if AUDIT_DEBUG
1814 printk(KERN_ERR
1815 "audit(:%d) pid=%d in syscall=%d;"
1816 " entering syscall=%d\n",
1817 context->serial, tsk->pid, context->major, major);
1818 #endif
1819 newctx = audit_alloc_context(context->state);
1820 if (newctx) {
1821 newctx->previous = context;
1822 context = newctx;
1823 tsk->audit_context = newctx;
1824 } else {
1825 /* If we can't alloc a new context, the best we
1826 * can do is to leak memory (any pending putname
1827 * will be lost). The only other alternative is
1828 * to abandon auditing. */
1829 audit_zero_context(context, context->state);
1830 }
1831 }
1832 BUG_ON(context->in_syscall || context->name_count);
1833
1834 if (!audit_enabled)
1835 return;
1836
1837 context->arch = arch;
1838 context->major = major;
1839 context->argv[0] = a1;
1840 context->argv[1] = a2;
1841 context->argv[2] = a3;
1842 context->argv[3] = a4;
1843
1844 state = context->state;
1845 context->dummy = !audit_n_rules;
1846 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1847 context->prio = 0;
1848 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1849 }
1850 if (state == AUDIT_DISABLED)
1851 return;
1852
1853 context->serial = 0;
1854 context->ctime = CURRENT_TIME;
1855 context->in_syscall = 1;
1856 context->current_state = state;
1857 context->ppid = 0;
1858 }
1859
1860 /**
1861 * audit_syscall_exit - deallocate audit context after a system call
1862 * @success: success value of the syscall
1863 * @return_code: return value of the syscall
1864 *
1865 * Tear down after system call. If the audit context has been marked as
1866 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1867 * filtering, or because some other part of the kernel wrote an audit
1868 * message), then write out the syscall information. In call cases,
1869 * free the names stored from getname().
1870 */
1871 void __audit_syscall_exit(int success, long return_code)
1872 {
1873 struct task_struct *tsk = current;
1874 struct audit_context *context;
1875
1876 if (success)
1877 success = AUDITSC_SUCCESS;
1878 else
1879 success = AUDITSC_FAILURE;
1880
1881 context = audit_get_context(tsk, success, return_code);
1882 if (!context)
1883 return;
1884
1885 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1886 audit_log_exit(context, tsk);
1887
1888 context->in_syscall = 0;
1889 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1890
1891 if (!list_empty(&context->killed_trees))
1892 audit_kill_trees(&context->killed_trees);
1893
1894 if (context->previous) {
1895 struct audit_context *new_context = context->previous;
1896 context->previous = NULL;
1897 audit_free_context(context);
1898 tsk->audit_context = new_context;
1899 } else {
1900 audit_free_names(context);
1901 unroll_tree_refs(context, NULL, 0);
1902 audit_free_aux(context);
1903 context->aux = NULL;
1904 context->aux_pids = NULL;
1905 context->target_pid = 0;
1906 context->target_sid = 0;
1907 context->sockaddr_len = 0;
1908 context->type = 0;
1909 context->fds[0] = -1;
1910 if (context->state != AUDIT_RECORD_CONTEXT) {
1911 kfree(context->filterkey);
1912 context->filterkey = NULL;
1913 }
1914 tsk->audit_context = context;
1915 }
1916 }
1917
1918 static inline void handle_one(const struct inode *inode)
1919 {
1920 #ifdef CONFIG_AUDIT_TREE
1921 struct audit_context *context;
1922 struct audit_tree_refs *p;
1923 struct audit_chunk *chunk;
1924 int count;
1925 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1926 return;
1927 context = current->audit_context;
1928 p = context->trees;
1929 count = context->tree_count;
1930 rcu_read_lock();
1931 chunk = audit_tree_lookup(inode);
1932 rcu_read_unlock();
1933 if (!chunk)
1934 return;
1935 if (likely(put_tree_ref(context, chunk)))
1936 return;
1937 if (unlikely(!grow_tree_refs(context))) {
1938 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1939 audit_set_auditable(context);
1940 audit_put_chunk(chunk);
1941 unroll_tree_refs(context, p, count);
1942 return;
1943 }
1944 put_tree_ref(context, chunk);
1945 #endif
1946 }
1947
1948 static void handle_path(const struct dentry *dentry)
1949 {
1950 #ifdef CONFIG_AUDIT_TREE
1951 struct audit_context *context;
1952 struct audit_tree_refs *p;
1953 const struct dentry *d, *parent;
1954 struct audit_chunk *drop;
1955 unsigned long seq;
1956 int count;
1957
1958 context = current->audit_context;
1959 p = context->trees;
1960 count = context->tree_count;
1961 retry:
1962 drop = NULL;
1963 d = dentry;
1964 rcu_read_lock();
1965 seq = read_seqbegin(&rename_lock);
1966 for(;;) {
1967 struct inode *inode = d->d_inode;
1968 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1969 struct audit_chunk *chunk;
1970 chunk = audit_tree_lookup(inode);
1971 if (chunk) {
1972 if (unlikely(!put_tree_ref(context, chunk))) {
1973 drop = chunk;
1974 break;
1975 }
1976 }
1977 }
1978 parent = d->d_parent;
1979 if (parent == d)
1980 break;
1981 d = parent;
1982 }
1983 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1984 rcu_read_unlock();
1985 if (!drop) {
1986 /* just a race with rename */
1987 unroll_tree_refs(context, p, count);
1988 goto retry;
1989 }
1990 audit_put_chunk(drop);
1991 if (grow_tree_refs(context)) {
1992 /* OK, got more space */
1993 unroll_tree_refs(context, p, count);
1994 goto retry;
1995 }
1996 /* too bad */
1997 printk(KERN_WARNING
1998 "out of memory, audit has lost a tree reference\n");
1999 unroll_tree_refs(context, p, count);
2000 audit_set_auditable(context);
2001 return;
2002 }
2003 rcu_read_unlock();
2004 #endif
2005 }
2006
2007 static struct audit_names *audit_alloc_name(struct audit_context *context)
2008 {
2009 struct audit_names *aname;
2010
2011 if (context->name_count < AUDIT_NAMES) {
2012 aname = &context->preallocated_names[context->name_count];
2013 memset(aname, 0, sizeof(*aname));
2014 } else {
2015 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2016 if (!aname)
2017 return NULL;
2018 aname->should_free = true;
2019 }
2020
2021 aname->ino = (unsigned long)-1;
2022 list_add_tail(&aname->list, &context->names_list);
2023
2024 context->name_count++;
2025 #if AUDIT_DEBUG
2026 context->ino_count++;
2027 #endif
2028 return aname;
2029 }
2030
2031 /**
2032 * audit_getname - add a name to the list
2033 * @name: name to add
2034 *
2035 * Add a name to the list of audit names for this context.
2036 * Called from fs/namei.c:getname().
2037 */
2038 void __audit_getname(const char *name)
2039 {
2040 struct audit_context *context = current->audit_context;
2041 struct audit_names *n;
2042
2043 if (!context->in_syscall) {
2044 #if AUDIT_DEBUG == 2
2045 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2046 __FILE__, __LINE__, context->serial, name);
2047 dump_stack();
2048 #endif
2049 return;
2050 }
2051
2052 n = audit_alloc_name(context);
2053 if (!n)
2054 return;
2055
2056 n->name = name;
2057 n->name_len = AUDIT_NAME_FULL;
2058 n->name_put = true;
2059
2060 if (!context->pwd.dentry)
2061 get_fs_pwd(current->fs, &context->pwd);
2062 }
2063
2064 /* audit_putname - intercept a putname request
2065 * @name: name to intercept and delay for putname
2066 *
2067 * If we have stored the name from getname in the audit context,
2068 * then we delay the putname until syscall exit.
2069 * Called from include/linux/fs.h:putname().
2070 */
2071 void audit_putname(const char *name)
2072 {
2073 struct audit_context *context = current->audit_context;
2074
2075 BUG_ON(!context);
2076 if (!context->in_syscall) {
2077 #if AUDIT_DEBUG == 2
2078 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2079 __FILE__, __LINE__, context->serial, name);
2080 if (context->name_count) {
2081 struct audit_names *n;
2082 int i;
2083
2084 list_for_each_entry(n, &context->names_list, list)
2085 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2086 n->name, n->name ?: "(null)");
2087 }
2088 #endif
2089 __putname(name);
2090 }
2091 #if AUDIT_DEBUG
2092 else {
2093 ++context->put_count;
2094 if (context->put_count > context->name_count) {
2095 printk(KERN_ERR "%s:%d(:%d): major=%d"
2096 " in_syscall=%d putname(%p) name_count=%d"
2097 " put_count=%d\n",
2098 __FILE__, __LINE__,
2099 context->serial, context->major,
2100 context->in_syscall, name, context->name_count,
2101 context->put_count);
2102 dump_stack();
2103 }
2104 }
2105 #endif
2106 }
2107
2108 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2109 {
2110 struct cpu_vfs_cap_data caps;
2111 int rc;
2112
2113 if (!dentry)
2114 return 0;
2115
2116 rc = get_vfs_caps_from_disk(dentry, &caps);
2117 if (rc)
2118 return rc;
2119
2120 name->fcap.permitted = caps.permitted;
2121 name->fcap.inheritable = caps.inheritable;
2122 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2123 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2124
2125 return 0;
2126 }
2127
2128
2129 /* Copy inode data into an audit_names. */
2130 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2131 const struct inode *inode)
2132 {
2133 name->ino = inode->i_ino;
2134 name->dev = inode->i_sb->s_dev;
2135 name->mode = inode->i_mode;
2136 name->uid = inode->i_uid;
2137 name->gid = inode->i_gid;
2138 name->rdev = inode->i_rdev;
2139 security_inode_getsecid(inode, &name->osid);
2140 audit_copy_fcaps(name, dentry);
2141 }
2142
2143 /**
2144 * audit_inode - store the inode and device from a lookup
2145 * @name: name being audited
2146 * @dentry: dentry being audited
2147 *
2148 * Called from fs/namei.c:path_lookup().
2149 */
2150 void __audit_inode(const char *name, const struct dentry *dentry)
2151 {
2152 struct audit_context *context = current->audit_context;
2153 const struct inode *inode = dentry->d_inode;
2154 struct audit_names *n;
2155
2156 if (!context->in_syscall)
2157 return;
2158
2159 list_for_each_entry_reverse(n, &context->names_list, list) {
2160 if (n->name && (n->name == name))
2161 goto out;
2162 }
2163
2164 /* unable to find the name from a previous getname() */
2165 n = audit_alloc_name(context);
2166 if (!n)
2167 return;
2168 out:
2169 handle_path(dentry);
2170 audit_copy_inode(n, dentry, inode);
2171 }
2172
2173 /**
2174 * audit_inode_child - collect inode info for created/removed objects
2175 * @dentry: dentry being audited
2176 * @parent: inode of dentry parent
2177 *
2178 * For syscalls that create or remove filesystem objects, audit_inode
2179 * can only collect information for the filesystem object's parent.
2180 * This call updates the audit context with the child's information.
2181 * Syscalls that create a new filesystem object must be hooked after
2182 * the object is created. Syscalls that remove a filesystem object
2183 * must be hooked prior, in order to capture the target inode during
2184 * unsuccessful attempts.
2185 */
2186 void __audit_inode_child(const struct dentry *dentry,
2187 const struct inode *parent)
2188 {
2189 struct audit_context *context = current->audit_context;
2190 const char *found_parent = NULL, *found_child = NULL;
2191 const struct inode *inode = dentry->d_inode;
2192 const char *dname = dentry->d_name.name;
2193 struct audit_names *n;
2194 int dirlen = 0;
2195
2196 if (!context->in_syscall)
2197 return;
2198
2199 if (inode)
2200 handle_one(inode);
2201
2202 /* parent is more likely, look for it first */
2203 list_for_each_entry(n, &context->names_list, list) {
2204 if (!n->name)
2205 continue;
2206
2207 if (n->ino == parent->i_ino &&
2208 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2209 n->name_len = dirlen; /* update parent data in place */
2210 found_parent = n->name;
2211 goto add_names;
2212 }
2213 }
2214
2215 /* no matching parent, look for matching child */
2216 list_for_each_entry(n, &context->names_list, list) {
2217 if (!n->name)
2218 continue;
2219
2220 /* strcmp() is the more likely scenario */
2221 if (!strcmp(dname, n->name) ||
2222 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2223 if (inode)
2224 audit_copy_inode(n, NULL, inode);
2225 else
2226 n->ino = (unsigned long)-1;
2227 found_child = n->name;
2228 goto add_names;
2229 }
2230 }
2231
2232 add_names:
2233 if (!found_parent) {
2234 n = audit_alloc_name(context);
2235 if (!n)
2236 return;
2237 audit_copy_inode(n, NULL, parent);
2238 }
2239
2240 if (!found_child) {
2241 n = audit_alloc_name(context);
2242 if (!n)
2243 return;
2244
2245 /* Re-use the name belonging to the slot for a matching parent
2246 * directory. All names for this context are relinquished in
2247 * audit_free_names() */
2248 if (found_parent) {
2249 n->name = found_parent;
2250 n->name_len = AUDIT_NAME_FULL;
2251 /* don't call __putname() */
2252 n->name_put = false;
2253 }
2254
2255 if (inode)
2256 audit_copy_inode(n, NULL, inode);
2257 }
2258 }
2259 EXPORT_SYMBOL_GPL(__audit_inode_child);
2260
2261 /**
2262 * auditsc_get_stamp - get local copies of audit_context values
2263 * @ctx: audit_context for the task
2264 * @t: timespec to store time recorded in the audit_context
2265 * @serial: serial value that is recorded in the audit_context
2266 *
2267 * Also sets the context as auditable.
2268 */
2269 int auditsc_get_stamp(struct audit_context *ctx,
2270 struct timespec *t, unsigned int *serial)
2271 {
2272 if (!ctx->in_syscall)
2273 return 0;
2274 if (!ctx->serial)
2275 ctx->serial = audit_serial();
2276 t->tv_sec = ctx->ctime.tv_sec;
2277 t->tv_nsec = ctx->ctime.tv_nsec;
2278 *serial = ctx->serial;
2279 if (!ctx->prio) {
2280 ctx->prio = 1;
2281 ctx->current_state = AUDIT_RECORD_CONTEXT;
2282 }
2283 return 1;
2284 }
2285
2286 /* global counter which is incremented every time something logs in */
2287 static atomic_t session_id = ATOMIC_INIT(0);
2288
2289 /**
2290 * audit_set_loginuid - set current task's audit_context loginuid
2291 * @loginuid: loginuid value
2292 *
2293 * Returns 0.
2294 *
2295 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2296 */
2297 int audit_set_loginuid(kuid_t loginuid)
2298 {
2299 struct task_struct *task = current;
2300 struct audit_context *context = task->audit_context;
2301 unsigned int sessionid;
2302
2303 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2304 if (uid_valid(task->loginuid))
2305 return -EPERM;
2306 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2307 if (!capable(CAP_AUDIT_CONTROL))
2308 return -EPERM;
2309 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2310
2311 sessionid = atomic_inc_return(&session_id);
2312 if (context && context->in_syscall) {
2313 struct audit_buffer *ab;
2314
2315 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2316 if (ab) {
2317 audit_log_format(ab, "login pid=%d uid=%u "
2318 "old auid=%u new auid=%u"
2319 " old ses=%u new ses=%u",
2320 task->pid,
2321 from_kuid(&init_user_ns, task_uid(task)),
2322 from_kuid(&init_user_ns, task->loginuid),
2323 from_kuid(&init_user_ns, loginuid),
2324 task->sessionid, sessionid);
2325 audit_log_end(ab);
2326 }
2327 }
2328 task->sessionid = sessionid;
2329 task->loginuid = loginuid;
2330 return 0;
2331 }
2332
2333 /**
2334 * __audit_mq_open - record audit data for a POSIX MQ open
2335 * @oflag: open flag
2336 * @mode: mode bits
2337 * @attr: queue attributes
2338 *
2339 */
2340 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2341 {
2342 struct audit_context *context = current->audit_context;
2343
2344 if (attr)
2345 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2346 else
2347 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2348
2349 context->mq_open.oflag = oflag;
2350 context->mq_open.mode = mode;
2351
2352 context->type = AUDIT_MQ_OPEN;
2353 }
2354
2355 /**
2356 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2357 * @mqdes: MQ descriptor
2358 * @msg_len: Message length
2359 * @msg_prio: Message priority
2360 * @abs_timeout: Message timeout in absolute time
2361 *
2362 */
2363 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2364 const struct timespec *abs_timeout)
2365 {
2366 struct audit_context *context = current->audit_context;
2367 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2368
2369 if (abs_timeout)
2370 memcpy(p, abs_timeout, sizeof(struct timespec));
2371 else
2372 memset(p, 0, sizeof(struct timespec));
2373
2374 context->mq_sendrecv.mqdes = mqdes;
2375 context->mq_sendrecv.msg_len = msg_len;
2376 context->mq_sendrecv.msg_prio = msg_prio;
2377
2378 context->type = AUDIT_MQ_SENDRECV;
2379 }
2380
2381 /**
2382 * __audit_mq_notify - record audit data for a POSIX MQ notify
2383 * @mqdes: MQ descriptor
2384 * @notification: Notification event
2385 *
2386 */
2387
2388 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2389 {
2390 struct audit_context *context = current->audit_context;
2391
2392 if (notification)
2393 context->mq_notify.sigev_signo = notification->sigev_signo;
2394 else
2395 context->mq_notify.sigev_signo = 0;
2396
2397 context->mq_notify.mqdes = mqdes;
2398 context->type = AUDIT_MQ_NOTIFY;
2399 }
2400
2401 /**
2402 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2403 * @mqdes: MQ descriptor
2404 * @mqstat: MQ flags
2405 *
2406 */
2407 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2408 {
2409 struct audit_context *context = current->audit_context;
2410 context->mq_getsetattr.mqdes = mqdes;
2411 context->mq_getsetattr.mqstat = *mqstat;
2412 context->type = AUDIT_MQ_GETSETATTR;
2413 }
2414
2415 /**
2416 * audit_ipc_obj - record audit data for ipc object
2417 * @ipcp: ipc permissions
2418 *
2419 */
2420 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2421 {
2422 struct audit_context *context = current->audit_context;
2423 context->ipc.uid = ipcp->uid;
2424 context->ipc.gid = ipcp->gid;
2425 context->ipc.mode = ipcp->mode;
2426 context->ipc.has_perm = 0;
2427 security_ipc_getsecid(ipcp, &context->ipc.osid);
2428 context->type = AUDIT_IPC;
2429 }
2430
2431 /**
2432 * audit_ipc_set_perm - record audit data for new ipc permissions
2433 * @qbytes: msgq bytes
2434 * @uid: msgq user id
2435 * @gid: msgq group id
2436 * @mode: msgq mode (permissions)
2437 *
2438 * Called only after audit_ipc_obj().
2439 */
2440 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2441 {
2442 struct audit_context *context = current->audit_context;
2443
2444 context->ipc.qbytes = qbytes;
2445 context->ipc.perm_uid = uid;
2446 context->ipc.perm_gid = gid;
2447 context->ipc.perm_mode = mode;
2448 context->ipc.has_perm = 1;
2449 }
2450
2451 int __audit_bprm(struct linux_binprm *bprm)
2452 {
2453 struct audit_aux_data_execve *ax;
2454 struct audit_context *context = current->audit_context;
2455
2456 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2457 if (!ax)
2458 return -ENOMEM;
2459
2460 ax->argc = bprm->argc;
2461 ax->envc = bprm->envc;
2462 ax->mm = bprm->mm;
2463 ax->d.type = AUDIT_EXECVE;
2464 ax->d.next = context->aux;
2465 context->aux = (void *)ax;
2466 return 0;
2467 }
2468
2469
2470 /**
2471 * audit_socketcall - record audit data for sys_socketcall
2472 * @nargs: number of args
2473 * @args: args array
2474 *
2475 */
2476 void __audit_socketcall(int nargs, unsigned long *args)
2477 {
2478 struct audit_context *context = current->audit_context;
2479
2480 context->type = AUDIT_SOCKETCALL;
2481 context->socketcall.nargs = nargs;
2482 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2483 }
2484
2485 /**
2486 * __audit_fd_pair - record audit data for pipe and socketpair
2487 * @fd1: the first file descriptor
2488 * @fd2: the second file descriptor
2489 *
2490 */
2491 void __audit_fd_pair(int fd1, int fd2)
2492 {
2493 struct audit_context *context = current->audit_context;
2494 context->fds[0] = fd1;
2495 context->fds[1] = fd2;
2496 }
2497
2498 /**
2499 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2500 * @len: data length in user space
2501 * @a: data address in kernel space
2502 *
2503 * Returns 0 for success or NULL context or < 0 on error.
2504 */
2505 int __audit_sockaddr(int len, void *a)
2506 {
2507 struct audit_context *context = current->audit_context;
2508
2509 if (!context->sockaddr) {
2510 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2511 if (!p)
2512 return -ENOMEM;
2513 context->sockaddr = p;
2514 }
2515
2516 context->sockaddr_len = len;
2517 memcpy(context->sockaddr, a, len);
2518 return 0;
2519 }
2520
2521 void __audit_ptrace(struct task_struct *t)
2522 {
2523 struct audit_context *context = current->audit_context;
2524
2525 context->target_pid = t->pid;
2526 context->target_auid = audit_get_loginuid(t);
2527 context->target_uid = task_uid(t);
2528 context->target_sessionid = audit_get_sessionid(t);
2529 security_task_getsecid(t, &context->target_sid);
2530 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2531 }
2532
2533 /**
2534 * audit_signal_info - record signal info for shutting down audit subsystem
2535 * @sig: signal value
2536 * @t: task being signaled
2537 *
2538 * If the audit subsystem is being terminated, record the task (pid)
2539 * and uid that is doing that.
2540 */
2541 int __audit_signal_info(int sig, struct task_struct *t)
2542 {
2543 struct audit_aux_data_pids *axp;
2544 struct task_struct *tsk = current;
2545 struct audit_context *ctx = tsk->audit_context;
2546 kuid_t uid = current_uid(), t_uid = task_uid(t);
2547
2548 if (audit_pid && t->tgid == audit_pid) {
2549 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2550 audit_sig_pid = tsk->pid;
2551 if (uid_valid(tsk->loginuid))
2552 audit_sig_uid = tsk->loginuid;
2553 else
2554 audit_sig_uid = uid;
2555 security_task_getsecid(tsk, &audit_sig_sid);
2556 }
2557 if (!audit_signals || audit_dummy_context())
2558 return 0;
2559 }
2560
2561 /* optimize the common case by putting first signal recipient directly
2562 * in audit_context */
2563 if (!ctx->target_pid) {
2564 ctx->target_pid = t->tgid;
2565 ctx->target_auid = audit_get_loginuid(t);
2566 ctx->target_uid = t_uid;
2567 ctx->target_sessionid = audit_get_sessionid(t);
2568 security_task_getsecid(t, &ctx->target_sid);
2569 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2570 return 0;
2571 }
2572
2573 axp = (void *)ctx->aux_pids;
2574 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2575 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2576 if (!axp)
2577 return -ENOMEM;
2578
2579 axp->d.type = AUDIT_OBJ_PID;
2580 axp->d.next = ctx->aux_pids;
2581 ctx->aux_pids = (void *)axp;
2582 }
2583 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2584
2585 axp->target_pid[axp->pid_count] = t->tgid;
2586 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2587 axp->target_uid[axp->pid_count] = t_uid;
2588 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2589 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2590 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2591 axp->pid_count++;
2592
2593 return 0;
2594 }
2595
2596 /**
2597 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2598 * @bprm: pointer to the bprm being processed
2599 * @new: the proposed new credentials
2600 * @old: the old credentials
2601 *
2602 * Simply check if the proc already has the caps given by the file and if not
2603 * store the priv escalation info for later auditing at the end of the syscall
2604 *
2605 * -Eric
2606 */
2607 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2608 const struct cred *new, const struct cred *old)
2609 {
2610 struct audit_aux_data_bprm_fcaps *ax;
2611 struct audit_context *context = current->audit_context;
2612 struct cpu_vfs_cap_data vcaps;
2613 struct dentry *dentry;
2614
2615 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2616 if (!ax)
2617 return -ENOMEM;
2618
2619 ax->d.type = AUDIT_BPRM_FCAPS;
2620 ax->d.next = context->aux;
2621 context->aux = (void *)ax;
2622
2623 dentry = dget(bprm->file->f_dentry);
2624 get_vfs_caps_from_disk(dentry, &vcaps);
2625 dput(dentry);
2626
2627 ax->fcap.permitted = vcaps.permitted;
2628 ax->fcap.inheritable = vcaps.inheritable;
2629 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2630 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2631
2632 ax->old_pcap.permitted = old->cap_permitted;
2633 ax->old_pcap.inheritable = old->cap_inheritable;
2634 ax->old_pcap.effective = old->cap_effective;
2635
2636 ax->new_pcap.permitted = new->cap_permitted;
2637 ax->new_pcap.inheritable = new->cap_inheritable;
2638 ax->new_pcap.effective = new->cap_effective;
2639 return 0;
2640 }
2641
2642 /**
2643 * __audit_log_capset - store information about the arguments to the capset syscall
2644 * @pid: target pid of the capset call
2645 * @new: the new credentials
2646 * @old: the old (current) credentials
2647 *
2648 * Record the aguments userspace sent to sys_capset for later printing by the
2649 * audit system if applicable
2650 */
2651 void __audit_log_capset(pid_t pid,
2652 const struct cred *new, const struct cred *old)
2653 {
2654 struct audit_context *context = current->audit_context;
2655 context->capset.pid = pid;
2656 context->capset.cap.effective = new->cap_effective;
2657 context->capset.cap.inheritable = new->cap_effective;
2658 context->capset.cap.permitted = new->cap_permitted;
2659 context->type = AUDIT_CAPSET;
2660 }
2661
2662 void __audit_mmap_fd(int fd, int flags)
2663 {
2664 struct audit_context *context = current->audit_context;
2665 context->mmap.fd = fd;
2666 context->mmap.flags = flags;
2667 context->type = AUDIT_MMAP;
2668 }
2669
2670 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2671 {
2672 kuid_t auid, uid;
2673 kgid_t gid;
2674 unsigned int sessionid;
2675
2676 auid = audit_get_loginuid(current);
2677 sessionid = audit_get_sessionid(current);
2678 current_uid_gid(&uid, &gid);
2679
2680 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2681 from_kuid(&init_user_ns, auid),
2682 from_kuid(&init_user_ns, uid),
2683 from_kgid(&init_user_ns, gid),
2684 sessionid);
2685 audit_log_task_context(ab);
2686 audit_log_format(ab, " pid=%d comm=", current->pid);
2687 audit_log_untrustedstring(ab, current->comm);
2688 audit_log_format(ab, " reason=");
2689 audit_log_string(ab, reason);
2690 audit_log_format(ab, " sig=%ld", signr);
2691 }
2692 /**
2693 * audit_core_dumps - record information about processes that end abnormally
2694 * @signr: signal value
2695 *
2696 * If a process ends with a core dump, something fishy is going on and we
2697 * should record the event for investigation.
2698 */
2699 void audit_core_dumps(long signr)
2700 {
2701 struct audit_buffer *ab;
2702
2703 if (!audit_enabled)
2704 return;
2705
2706 if (signr == SIGQUIT) /* don't care for those */
2707 return;
2708
2709 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2710 audit_log_abend(ab, "memory violation", signr);
2711 audit_log_end(ab);
2712 }
2713
2714 void __audit_seccomp(unsigned long syscall, long signr, int code)
2715 {
2716 struct audit_buffer *ab;
2717
2718 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2719 audit_log_abend(ab, "seccomp", signr);
2720 audit_log_format(ab, " syscall=%ld", syscall);
2721 audit_log_format(ab, " compat=%d", is_compat_task());
2722 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2723 audit_log_format(ab, " code=0x%x", code);
2724 audit_log_end(ab);
2725 }
2726
2727 struct list_head *audit_killed_trees(void)
2728 {
2729 struct audit_context *ctx = current->audit_context;
2730 if (likely(!ctx || !ctx->in_syscall))
2731 return NULL;
2732 return &ctx->killed_trees;
2733 }