Merge tag 'boards-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
71
72 #include "audit.h"
73
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
78
79 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
80 * for saving names from getname(). If we get more names we will allocate
81 * a name dynamically and also add those to the list anchored by names_list. */
82 #define AUDIT_NAMES 5
83
84 /* no execve audit message should be longer than this (userspace limits) */
85 #define MAX_EXECVE_AUDIT_LEN 7500
86
87 /* number of audit rules */
88 int audit_n_rules;
89
90 /* determines whether we collect data for signals sent */
91 int audit_signals;
92
93 struct audit_cap_data {
94 kernel_cap_t permitted;
95 kernel_cap_t inheritable;
96 union {
97 unsigned int fE; /* effective bit of a file capability */
98 kernel_cap_t effective; /* effective set of a process */
99 };
100 };
101
102 /* When fs/namei.c:getname() is called, we store the pointer in name and
103 * we don't let putname() free it (instead we free all of the saved
104 * pointers at syscall exit time).
105 *
106 * Further, in fs/namei.c:path_lookup() we store the inode and device.
107 */
108 struct audit_names {
109 struct list_head list; /* audit_context->names_list */
110 struct filename *name;
111 unsigned long ino;
112 dev_t dev;
113 umode_t mode;
114 kuid_t uid;
115 kgid_t gid;
116 dev_t rdev;
117 u32 osid;
118 struct audit_cap_data fcap;
119 unsigned int fcap_ver;
120 int name_len; /* number of name's characters to log */
121 unsigned char type; /* record type */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
129 };
130
131 struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134 };
135
136 #define AUDIT_AUX_IPCPERM 0
137
138 /* Number of target pids per aux struct. */
139 #define AUDIT_AUX_PIDS 16
140
141 struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
145 struct mm_struct *mm;
146 };
147
148 struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
151 kuid_t target_auid[AUDIT_AUX_PIDS];
152 kuid_t target_uid[AUDIT_AUX_PIDS];
153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
154 u32 target_sid[AUDIT_AUX_PIDS];
155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
156 int pid_count;
157 };
158
159 struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165 };
166
167 struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171 };
172
173 struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176 };
177
178 /* The per-task audit context. */
179 struct audit_context {
180 int dummy; /* must be the first element */
181 int in_syscall; /* 1 if task is in a syscall */
182 enum audit_state state, current_state;
183 unsigned int serial; /* serial number for record */
184 int major; /* syscall number */
185 struct timespec ctime; /* time of syscall entry */
186 unsigned long argv[4]; /* syscall arguments */
187 long return_code;/* syscall return code */
188 u64 prio;
189 int return_valid; /* return code is valid */
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
201 char * filterkey; /* key for rule that triggered record */
202 struct path pwd;
203 struct audit_aux_data *aux;
204 struct audit_aux_data *aux_pids;
205 struct sockaddr_storage *sockaddr;
206 size_t sockaddr_len;
207 /* Save things to print about task_struct */
208 pid_t pid, ppid;
209 kuid_t uid, euid, suid, fsuid;
210 kgid_t gid, egid, sgid, fsgid;
211 unsigned long personality;
212 int arch;
213
214 pid_t target_pid;
215 kuid_t target_auid;
216 kuid_t target_uid;
217 unsigned int target_sessionid;
218 u32 target_sid;
219 char target_comm[TASK_COMM_LEN];
220
221 struct audit_tree_refs *trees, *first_trees;
222 struct list_head killed_trees;
223 int tree_count;
224
225 int type;
226 union {
227 struct {
228 int nargs;
229 long args[6];
230 } socketcall;
231 struct {
232 kuid_t uid;
233 kgid_t gid;
234 umode_t mode;
235 u32 osid;
236 int has_perm;
237 uid_t perm_uid;
238 gid_t perm_gid;
239 umode_t perm_mode;
240 unsigned long qbytes;
241 } ipc;
242 struct {
243 mqd_t mqdes;
244 struct mq_attr mqstat;
245 } mq_getsetattr;
246 struct {
247 mqd_t mqdes;
248 int sigev_signo;
249 } mq_notify;
250 struct {
251 mqd_t mqdes;
252 size_t msg_len;
253 unsigned int msg_prio;
254 struct timespec abs_timeout;
255 } mq_sendrecv;
256 struct {
257 int oflag;
258 umode_t mode;
259 struct mq_attr attr;
260 } mq_open;
261 struct {
262 pid_t pid;
263 struct audit_cap_data cap;
264 } capset;
265 struct {
266 int fd;
267 int flags;
268 } mmap;
269 };
270 int fds[2];
271
272 #if AUDIT_DEBUG
273 int put_count;
274 int ino_count;
275 #endif
276 };
277
278 static inline int open_arg(int flags, int mask)
279 {
280 int n = ACC_MODE(flags);
281 if (flags & (O_TRUNC | O_CREAT))
282 n |= AUDIT_PERM_WRITE;
283 return n & mask;
284 }
285
286 static int audit_match_perm(struct audit_context *ctx, int mask)
287 {
288 unsigned n;
289 if (unlikely(!ctx))
290 return 0;
291 n = ctx->major;
292
293 switch (audit_classify_syscall(ctx->arch, n)) {
294 case 0: /* native */
295 if ((mask & AUDIT_PERM_WRITE) &&
296 audit_match_class(AUDIT_CLASS_WRITE, n))
297 return 1;
298 if ((mask & AUDIT_PERM_READ) &&
299 audit_match_class(AUDIT_CLASS_READ, n))
300 return 1;
301 if ((mask & AUDIT_PERM_ATTR) &&
302 audit_match_class(AUDIT_CLASS_CHATTR, n))
303 return 1;
304 return 0;
305 case 1: /* 32bit on biarch */
306 if ((mask & AUDIT_PERM_WRITE) &&
307 audit_match_class(AUDIT_CLASS_WRITE_32, n))
308 return 1;
309 if ((mask & AUDIT_PERM_READ) &&
310 audit_match_class(AUDIT_CLASS_READ_32, n))
311 return 1;
312 if ((mask & AUDIT_PERM_ATTR) &&
313 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
314 return 1;
315 return 0;
316 case 2: /* open */
317 return mask & ACC_MODE(ctx->argv[1]);
318 case 3: /* openat */
319 return mask & ACC_MODE(ctx->argv[2]);
320 case 4: /* socketcall */
321 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
322 case 5: /* execve */
323 return mask & AUDIT_PERM_EXEC;
324 default:
325 return 0;
326 }
327 }
328
329 static int audit_match_filetype(struct audit_context *ctx, int val)
330 {
331 struct audit_names *n;
332 umode_t mode = (umode_t)val;
333
334 if (unlikely(!ctx))
335 return 0;
336
337 list_for_each_entry(n, &ctx->names_list, list) {
338 if ((n->ino != -1) &&
339 ((n->mode & S_IFMT) == mode))
340 return 1;
341 }
342
343 return 0;
344 }
345
346 /*
347 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
348 * ->first_trees points to its beginning, ->trees - to the current end of data.
349 * ->tree_count is the number of free entries in array pointed to by ->trees.
350 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
351 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
352 * it's going to remain 1-element for almost any setup) until we free context itself.
353 * References in it _are_ dropped - at the same time we free/drop aux stuff.
354 */
355
356 #ifdef CONFIG_AUDIT_TREE
357 static void audit_set_auditable(struct audit_context *ctx)
358 {
359 if (!ctx->prio) {
360 ctx->prio = 1;
361 ctx->current_state = AUDIT_RECORD_CONTEXT;
362 }
363 }
364
365 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
366 {
367 struct audit_tree_refs *p = ctx->trees;
368 int left = ctx->tree_count;
369 if (likely(left)) {
370 p->c[--left] = chunk;
371 ctx->tree_count = left;
372 return 1;
373 }
374 if (!p)
375 return 0;
376 p = p->next;
377 if (p) {
378 p->c[30] = chunk;
379 ctx->trees = p;
380 ctx->tree_count = 30;
381 return 1;
382 }
383 return 0;
384 }
385
386 static int grow_tree_refs(struct audit_context *ctx)
387 {
388 struct audit_tree_refs *p = ctx->trees;
389 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
390 if (!ctx->trees) {
391 ctx->trees = p;
392 return 0;
393 }
394 if (p)
395 p->next = ctx->trees;
396 else
397 ctx->first_trees = ctx->trees;
398 ctx->tree_count = 31;
399 return 1;
400 }
401 #endif
402
403 static void unroll_tree_refs(struct audit_context *ctx,
404 struct audit_tree_refs *p, int count)
405 {
406 #ifdef CONFIG_AUDIT_TREE
407 struct audit_tree_refs *q;
408 int n;
409 if (!p) {
410 /* we started with empty chain */
411 p = ctx->first_trees;
412 count = 31;
413 /* if the very first allocation has failed, nothing to do */
414 if (!p)
415 return;
416 }
417 n = count;
418 for (q = p; q != ctx->trees; q = q->next, n = 31) {
419 while (n--) {
420 audit_put_chunk(q->c[n]);
421 q->c[n] = NULL;
422 }
423 }
424 while (n-- > ctx->tree_count) {
425 audit_put_chunk(q->c[n]);
426 q->c[n] = NULL;
427 }
428 ctx->trees = p;
429 ctx->tree_count = count;
430 #endif
431 }
432
433 static void free_tree_refs(struct audit_context *ctx)
434 {
435 struct audit_tree_refs *p, *q;
436 for (p = ctx->first_trees; p; p = q) {
437 q = p->next;
438 kfree(p);
439 }
440 }
441
442 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
443 {
444 #ifdef CONFIG_AUDIT_TREE
445 struct audit_tree_refs *p;
446 int n;
447 if (!tree)
448 return 0;
449 /* full ones */
450 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
451 for (n = 0; n < 31; n++)
452 if (audit_tree_match(p->c[n], tree))
453 return 1;
454 }
455 /* partial */
456 if (p) {
457 for (n = ctx->tree_count; n < 31; n++)
458 if (audit_tree_match(p->c[n], tree))
459 return 1;
460 }
461 #endif
462 return 0;
463 }
464
465 static int audit_compare_uid(kuid_t uid,
466 struct audit_names *name,
467 struct audit_field *f,
468 struct audit_context *ctx)
469 {
470 struct audit_names *n;
471 int rc;
472
473 if (name) {
474 rc = audit_uid_comparator(uid, f->op, name->uid);
475 if (rc)
476 return rc;
477 }
478
479 if (ctx) {
480 list_for_each_entry(n, &ctx->names_list, list) {
481 rc = audit_uid_comparator(uid, f->op, n->uid);
482 if (rc)
483 return rc;
484 }
485 }
486 return 0;
487 }
488
489 static int audit_compare_gid(kgid_t gid,
490 struct audit_names *name,
491 struct audit_field *f,
492 struct audit_context *ctx)
493 {
494 struct audit_names *n;
495 int rc;
496
497 if (name) {
498 rc = audit_gid_comparator(gid, f->op, name->gid);
499 if (rc)
500 return rc;
501 }
502
503 if (ctx) {
504 list_for_each_entry(n, &ctx->names_list, list) {
505 rc = audit_gid_comparator(gid, f->op, n->gid);
506 if (rc)
507 return rc;
508 }
509 }
510 return 0;
511 }
512
513 static int audit_field_compare(struct task_struct *tsk,
514 const struct cred *cred,
515 struct audit_field *f,
516 struct audit_context *ctx,
517 struct audit_names *name)
518 {
519 switch (f->val) {
520 /* process to file object comparisons */
521 case AUDIT_COMPARE_UID_TO_OBJ_UID:
522 return audit_compare_uid(cred->uid, name, f, ctx);
523 case AUDIT_COMPARE_GID_TO_OBJ_GID:
524 return audit_compare_gid(cred->gid, name, f, ctx);
525 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
526 return audit_compare_uid(cred->euid, name, f, ctx);
527 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
528 return audit_compare_gid(cred->egid, name, f, ctx);
529 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
530 return audit_compare_uid(tsk->loginuid, name, f, ctx);
531 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
532 return audit_compare_uid(cred->suid, name, f, ctx);
533 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
534 return audit_compare_gid(cred->sgid, name, f, ctx);
535 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
536 return audit_compare_uid(cred->fsuid, name, f, ctx);
537 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
538 return audit_compare_gid(cred->fsgid, name, f, ctx);
539 /* uid comparisons */
540 case AUDIT_COMPARE_UID_TO_AUID:
541 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
542 case AUDIT_COMPARE_UID_TO_EUID:
543 return audit_uid_comparator(cred->uid, f->op, cred->euid);
544 case AUDIT_COMPARE_UID_TO_SUID:
545 return audit_uid_comparator(cred->uid, f->op, cred->suid);
546 case AUDIT_COMPARE_UID_TO_FSUID:
547 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
548 /* auid comparisons */
549 case AUDIT_COMPARE_AUID_TO_EUID:
550 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
551 case AUDIT_COMPARE_AUID_TO_SUID:
552 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
553 case AUDIT_COMPARE_AUID_TO_FSUID:
554 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
555 /* euid comparisons */
556 case AUDIT_COMPARE_EUID_TO_SUID:
557 return audit_uid_comparator(cred->euid, f->op, cred->suid);
558 case AUDIT_COMPARE_EUID_TO_FSUID:
559 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
560 /* suid comparisons */
561 case AUDIT_COMPARE_SUID_TO_FSUID:
562 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
563 /* gid comparisons */
564 case AUDIT_COMPARE_GID_TO_EGID:
565 return audit_gid_comparator(cred->gid, f->op, cred->egid);
566 case AUDIT_COMPARE_GID_TO_SGID:
567 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
568 case AUDIT_COMPARE_GID_TO_FSGID:
569 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
570 /* egid comparisons */
571 case AUDIT_COMPARE_EGID_TO_SGID:
572 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
573 case AUDIT_COMPARE_EGID_TO_FSGID:
574 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
575 /* sgid comparison */
576 case AUDIT_COMPARE_SGID_TO_FSGID:
577 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
578 default:
579 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
580 return 0;
581 }
582 return 0;
583 }
584
585 /* Determine if any context name data matches a rule's watch data */
586 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
587 * otherwise.
588 *
589 * If task_creation is true, this is an explicit indication that we are
590 * filtering a task rule at task creation time. This and tsk == current are
591 * the only situations where tsk->cred may be accessed without an rcu read lock.
592 */
593 static int audit_filter_rules(struct task_struct *tsk,
594 struct audit_krule *rule,
595 struct audit_context *ctx,
596 struct audit_names *name,
597 enum audit_state *state,
598 bool task_creation)
599 {
600 const struct cred *cred;
601 int i, need_sid = 1;
602 u32 sid;
603
604 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
605
606 for (i = 0; i < rule->field_count; i++) {
607 struct audit_field *f = &rule->fields[i];
608 struct audit_names *n;
609 int result = 0;
610
611 switch (f->type) {
612 case AUDIT_PID:
613 result = audit_comparator(tsk->pid, f->op, f->val);
614 break;
615 case AUDIT_PPID:
616 if (ctx) {
617 if (!ctx->ppid)
618 ctx->ppid = sys_getppid();
619 result = audit_comparator(ctx->ppid, f->op, f->val);
620 }
621 break;
622 case AUDIT_UID:
623 result = audit_uid_comparator(cred->uid, f->op, f->uid);
624 break;
625 case AUDIT_EUID:
626 result = audit_uid_comparator(cred->euid, f->op, f->uid);
627 break;
628 case AUDIT_SUID:
629 result = audit_uid_comparator(cred->suid, f->op, f->uid);
630 break;
631 case AUDIT_FSUID:
632 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
633 break;
634 case AUDIT_GID:
635 result = audit_gid_comparator(cred->gid, f->op, f->gid);
636 break;
637 case AUDIT_EGID:
638 result = audit_gid_comparator(cred->egid, f->op, f->gid);
639 break;
640 case AUDIT_SGID:
641 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
642 break;
643 case AUDIT_FSGID:
644 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
645 break;
646 case AUDIT_PERS:
647 result = audit_comparator(tsk->personality, f->op, f->val);
648 break;
649 case AUDIT_ARCH:
650 if (ctx)
651 result = audit_comparator(ctx->arch, f->op, f->val);
652 break;
653
654 case AUDIT_EXIT:
655 if (ctx && ctx->return_valid)
656 result = audit_comparator(ctx->return_code, f->op, f->val);
657 break;
658 case AUDIT_SUCCESS:
659 if (ctx && ctx->return_valid) {
660 if (f->val)
661 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
662 else
663 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
664 }
665 break;
666 case AUDIT_DEVMAJOR:
667 if (name) {
668 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
669 audit_comparator(MAJOR(name->rdev), f->op, f->val))
670 ++result;
671 } else if (ctx) {
672 list_for_each_entry(n, &ctx->names_list, list) {
673 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
674 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
675 ++result;
676 break;
677 }
678 }
679 }
680 break;
681 case AUDIT_DEVMINOR:
682 if (name) {
683 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
684 audit_comparator(MINOR(name->rdev), f->op, f->val))
685 ++result;
686 } else if (ctx) {
687 list_for_each_entry(n, &ctx->names_list, list) {
688 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
689 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
690 ++result;
691 break;
692 }
693 }
694 }
695 break;
696 case AUDIT_INODE:
697 if (name)
698 result = (name->ino == f->val);
699 else if (ctx) {
700 list_for_each_entry(n, &ctx->names_list, list) {
701 if (audit_comparator(n->ino, f->op, f->val)) {
702 ++result;
703 break;
704 }
705 }
706 }
707 break;
708 case AUDIT_OBJ_UID:
709 if (name) {
710 result = audit_uid_comparator(name->uid, f->op, f->uid);
711 } else if (ctx) {
712 list_for_each_entry(n, &ctx->names_list, list) {
713 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
714 ++result;
715 break;
716 }
717 }
718 }
719 break;
720 case AUDIT_OBJ_GID:
721 if (name) {
722 result = audit_gid_comparator(name->gid, f->op, f->gid);
723 } else if (ctx) {
724 list_for_each_entry(n, &ctx->names_list, list) {
725 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
726 ++result;
727 break;
728 }
729 }
730 }
731 break;
732 case AUDIT_WATCH:
733 if (name)
734 result = audit_watch_compare(rule->watch, name->ino, name->dev);
735 break;
736 case AUDIT_DIR:
737 if (ctx)
738 result = match_tree_refs(ctx, rule->tree);
739 break;
740 case AUDIT_LOGINUID:
741 result = 0;
742 if (ctx)
743 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
744 break;
745 case AUDIT_SUBJ_USER:
746 case AUDIT_SUBJ_ROLE:
747 case AUDIT_SUBJ_TYPE:
748 case AUDIT_SUBJ_SEN:
749 case AUDIT_SUBJ_CLR:
750 /* NOTE: this may return negative values indicating
751 a temporary error. We simply treat this as a
752 match for now to avoid losing information that
753 may be wanted. An error message will also be
754 logged upon error */
755 if (f->lsm_rule) {
756 if (need_sid) {
757 security_task_getsecid(tsk, &sid);
758 need_sid = 0;
759 }
760 result = security_audit_rule_match(sid, f->type,
761 f->op,
762 f->lsm_rule,
763 ctx);
764 }
765 break;
766 case AUDIT_OBJ_USER:
767 case AUDIT_OBJ_ROLE:
768 case AUDIT_OBJ_TYPE:
769 case AUDIT_OBJ_LEV_LOW:
770 case AUDIT_OBJ_LEV_HIGH:
771 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
772 also applies here */
773 if (f->lsm_rule) {
774 /* Find files that match */
775 if (name) {
776 result = security_audit_rule_match(
777 name->osid, f->type, f->op,
778 f->lsm_rule, ctx);
779 } else if (ctx) {
780 list_for_each_entry(n, &ctx->names_list, list) {
781 if (security_audit_rule_match(n->osid, f->type,
782 f->op, f->lsm_rule,
783 ctx)) {
784 ++result;
785 break;
786 }
787 }
788 }
789 /* Find ipc objects that match */
790 if (!ctx || ctx->type != AUDIT_IPC)
791 break;
792 if (security_audit_rule_match(ctx->ipc.osid,
793 f->type, f->op,
794 f->lsm_rule, ctx))
795 ++result;
796 }
797 break;
798 case AUDIT_ARG0:
799 case AUDIT_ARG1:
800 case AUDIT_ARG2:
801 case AUDIT_ARG3:
802 if (ctx)
803 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
804 break;
805 case AUDIT_FILTERKEY:
806 /* ignore this field for filtering */
807 result = 1;
808 break;
809 case AUDIT_PERM:
810 result = audit_match_perm(ctx, f->val);
811 break;
812 case AUDIT_FILETYPE:
813 result = audit_match_filetype(ctx, f->val);
814 break;
815 case AUDIT_FIELD_COMPARE:
816 result = audit_field_compare(tsk, cred, f, ctx, name);
817 break;
818 }
819 if (!result)
820 return 0;
821 }
822
823 if (ctx) {
824 if (rule->prio <= ctx->prio)
825 return 0;
826 if (rule->filterkey) {
827 kfree(ctx->filterkey);
828 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
829 }
830 ctx->prio = rule->prio;
831 }
832 switch (rule->action) {
833 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
834 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
835 }
836 return 1;
837 }
838
839 /* At process creation time, we can determine if system-call auditing is
840 * completely disabled for this task. Since we only have the task
841 * structure at this point, we can only check uid and gid.
842 */
843 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
844 {
845 struct audit_entry *e;
846 enum audit_state state;
847
848 rcu_read_lock();
849 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
850 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
851 &state, true)) {
852 if (state == AUDIT_RECORD_CONTEXT)
853 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
854 rcu_read_unlock();
855 return state;
856 }
857 }
858 rcu_read_unlock();
859 return AUDIT_BUILD_CONTEXT;
860 }
861
862 /* At syscall entry and exit time, this filter is called if the
863 * audit_state is not low enough that auditing cannot take place, but is
864 * also not high enough that we already know we have to write an audit
865 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
866 */
867 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
868 struct audit_context *ctx,
869 struct list_head *list)
870 {
871 struct audit_entry *e;
872 enum audit_state state;
873
874 if (audit_pid && tsk->tgid == audit_pid)
875 return AUDIT_DISABLED;
876
877 rcu_read_lock();
878 if (!list_empty(list)) {
879 int word = AUDIT_WORD(ctx->major);
880 int bit = AUDIT_BIT(ctx->major);
881
882 list_for_each_entry_rcu(e, list, list) {
883 if ((e->rule.mask[word] & bit) == bit &&
884 audit_filter_rules(tsk, &e->rule, ctx, NULL,
885 &state, false)) {
886 rcu_read_unlock();
887 ctx->current_state = state;
888 return state;
889 }
890 }
891 }
892 rcu_read_unlock();
893 return AUDIT_BUILD_CONTEXT;
894 }
895
896 /*
897 * Given an audit_name check the inode hash table to see if they match.
898 * Called holding the rcu read lock to protect the use of audit_inode_hash
899 */
900 static int audit_filter_inode_name(struct task_struct *tsk,
901 struct audit_names *n,
902 struct audit_context *ctx) {
903 int word, bit;
904 int h = audit_hash_ino((u32)n->ino);
905 struct list_head *list = &audit_inode_hash[h];
906 struct audit_entry *e;
907 enum audit_state state;
908
909 word = AUDIT_WORD(ctx->major);
910 bit = AUDIT_BIT(ctx->major);
911
912 if (list_empty(list))
913 return 0;
914
915 list_for_each_entry_rcu(e, list, list) {
916 if ((e->rule.mask[word] & bit) == bit &&
917 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
918 ctx->current_state = state;
919 return 1;
920 }
921 }
922
923 return 0;
924 }
925
926 /* At syscall exit time, this filter is called if any audit_names have been
927 * collected during syscall processing. We only check rules in sublists at hash
928 * buckets applicable to the inode numbers in audit_names.
929 * Regarding audit_state, same rules apply as for audit_filter_syscall().
930 */
931 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
932 {
933 struct audit_names *n;
934
935 if (audit_pid && tsk->tgid == audit_pid)
936 return;
937
938 rcu_read_lock();
939
940 list_for_each_entry(n, &ctx->names_list, list) {
941 if (audit_filter_inode_name(tsk, n, ctx))
942 break;
943 }
944 rcu_read_unlock();
945 }
946
947 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
948 int return_valid,
949 long return_code)
950 {
951 struct audit_context *context = tsk->audit_context;
952
953 if (!context)
954 return NULL;
955 context->return_valid = return_valid;
956
957 /*
958 * we need to fix up the return code in the audit logs if the actual
959 * return codes are later going to be fixed up by the arch specific
960 * signal handlers
961 *
962 * This is actually a test for:
963 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
964 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
965 *
966 * but is faster than a bunch of ||
967 */
968 if (unlikely(return_code <= -ERESTARTSYS) &&
969 (return_code >= -ERESTART_RESTARTBLOCK) &&
970 (return_code != -ENOIOCTLCMD))
971 context->return_code = -EINTR;
972 else
973 context->return_code = return_code;
974
975 if (context->in_syscall && !context->dummy) {
976 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
977 audit_filter_inodes(tsk, context);
978 }
979
980 tsk->audit_context = NULL;
981 return context;
982 }
983
984 static inline void audit_free_names(struct audit_context *context)
985 {
986 struct audit_names *n, *next;
987
988 #if AUDIT_DEBUG == 2
989 if (context->put_count + context->ino_count != context->name_count) {
990 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
991 " name_count=%d put_count=%d"
992 " ino_count=%d [NOT freeing]\n",
993 __FILE__, __LINE__,
994 context->serial, context->major, context->in_syscall,
995 context->name_count, context->put_count,
996 context->ino_count);
997 list_for_each_entry(n, &context->names_list, list) {
998 printk(KERN_ERR "names[%d] = %p = %s\n", i,
999 n->name, n->name->name ?: "(null)");
1000 }
1001 dump_stack();
1002 return;
1003 }
1004 #endif
1005 #if AUDIT_DEBUG
1006 context->put_count = 0;
1007 context->ino_count = 0;
1008 #endif
1009
1010 list_for_each_entry_safe(n, next, &context->names_list, list) {
1011 list_del(&n->list);
1012 if (n->name && n->name_put)
1013 __putname(n->name);
1014 if (n->should_free)
1015 kfree(n);
1016 }
1017 context->name_count = 0;
1018 path_put(&context->pwd);
1019 context->pwd.dentry = NULL;
1020 context->pwd.mnt = NULL;
1021 }
1022
1023 static inline void audit_free_aux(struct audit_context *context)
1024 {
1025 struct audit_aux_data *aux;
1026
1027 while ((aux = context->aux)) {
1028 context->aux = aux->next;
1029 kfree(aux);
1030 }
1031 while ((aux = context->aux_pids)) {
1032 context->aux_pids = aux->next;
1033 kfree(aux);
1034 }
1035 }
1036
1037 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1038 {
1039 struct audit_context *context;
1040
1041 context = kzalloc(sizeof(*context), GFP_KERNEL);
1042 if (!context)
1043 return NULL;
1044 context->state = state;
1045 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1046 INIT_LIST_HEAD(&context->killed_trees);
1047 INIT_LIST_HEAD(&context->names_list);
1048 return context;
1049 }
1050
1051 /**
1052 * audit_alloc - allocate an audit context block for a task
1053 * @tsk: task
1054 *
1055 * Filter on the task information and allocate a per-task audit context
1056 * if necessary. Doing so turns on system call auditing for the
1057 * specified task. This is called from copy_process, so no lock is
1058 * needed.
1059 */
1060 int audit_alloc(struct task_struct *tsk)
1061 {
1062 struct audit_context *context;
1063 enum audit_state state;
1064 char *key = NULL;
1065
1066 if (likely(!audit_ever_enabled))
1067 return 0; /* Return if not auditing. */
1068
1069 state = audit_filter_task(tsk, &key);
1070 if (state == AUDIT_DISABLED)
1071 return 0;
1072
1073 if (!(context = audit_alloc_context(state))) {
1074 kfree(key);
1075 audit_log_lost("out of memory in audit_alloc");
1076 return -ENOMEM;
1077 }
1078 context->filterkey = key;
1079
1080 tsk->audit_context = context;
1081 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1082 return 0;
1083 }
1084
1085 static inline void audit_free_context(struct audit_context *context)
1086 {
1087 audit_free_names(context);
1088 unroll_tree_refs(context, NULL, 0);
1089 free_tree_refs(context);
1090 audit_free_aux(context);
1091 kfree(context->filterkey);
1092 kfree(context->sockaddr);
1093 kfree(context);
1094 }
1095
1096 void audit_log_task_context(struct audit_buffer *ab)
1097 {
1098 char *ctx = NULL;
1099 unsigned len;
1100 int error;
1101 u32 sid;
1102
1103 security_task_getsecid(current, &sid);
1104 if (!sid)
1105 return;
1106
1107 error = security_secid_to_secctx(sid, &ctx, &len);
1108 if (error) {
1109 if (error != -EINVAL)
1110 goto error_path;
1111 return;
1112 }
1113
1114 audit_log_format(ab, " subj=%s", ctx);
1115 security_release_secctx(ctx, len);
1116 return;
1117
1118 error_path:
1119 audit_panic("error in audit_log_task_context");
1120 return;
1121 }
1122
1123 EXPORT_SYMBOL(audit_log_task_context);
1124
1125 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1126 {
1127 const struct cred *cred;
1128 char name[sizeof(tsk->comm)];
1129 struct mm_struct *mm = tsk->mm;
1130 char *tty;
1131
1132 if (!ab)
1133 return;
1134
1135 /* tsk == current */
1136 cred = current_cred();
1137
1138 spin_lock_irq(&tsk->sighand->siglock);
1139 if (tsk->signal && tsk->signal->tty)
1140 tty = tsk->signal->tty->name;
1141 else
1142 tty = "(none)";
1143 spin_unlock_irq(&tsk->sighand->siglock);
1144
1145
1146 audit_log_format(ab,
1147 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1148 " euid=%u suid=%u fsuid=%u"
1149 " egid=%u sgid=%u fsgid=%u ses=%u tty=%s",
1150 sys_getppid(),
1151 tsk->pid,
1152 from_kuid(&init_user_ns, tsk->loginuid),
1153 from_kuid(&init_user_ns, cred->uid),
1154 from_kgid(&init_user_ns, cred->gid),
1155 from_kuid(&init_user_ns, cred->euid),
1156 from_kuid(&init_user_ns, cred->suid),
1157 from_kuid(&init_user_ns, cred->fsuid),
1158 from_kgid(&init_user_ns, cred->egid),
1159 from_kgid(&init_user_ns, cred->sgid),
1160 from_kgid(&init_user_ns, cred->fsgid),
1161 tsk->sessionid, tty);
1162
1163 get_task_comm(name, tsk);
1164 audit_log_format(ab, " comm=");
1165 audit_log_untrustedstring(ab, name);
1166
1167 if (mm) {
1168 down_read(&mm->mmap_sem);
1169 if (mm->exe_file)
1170 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1171 up_read(&mm->mmap_sem);
1172 }
1173 audit_log_task_context(ab);
1174 }
1175
1176 EXPORT_SYMBOL(audit_log_task_info);
1177
1178 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1179 kuid_t auid, kuid_t uid, unsigned int sessionid,
1180 u32 sid, char *comm)
1181 {
1182 struct audit_buffer *ab;
1183 char *ctx = NULL;
1184 u32 len;
1185 int rc = 0;
1186
1187 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1188 if (!ab)
1189 return rc;
1190
1191 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1192 from_kuid(&init_user_ns, auid),
1193 from_kuid(&init_user_ns, uid), sessionid);
1194 if (security_secid_to_secctx(sid, &ctx, &len)) {
1195 audit_log_format(ab, " obj=(none)");
1196 rc = 1;
1197 } else {
1198 audit_log_format(ab, " obj=%s", ctx);
1199 security_release_secctx(ctx, len);
1200 }
1201 audit_log_format(ab, " ocomm=");
1202 audit_log_untrustedstring(ab, comm);
1203 audit_log_end(ab);
1204
1205 return rc;
1206 }
1207
1208 /*
1209 * to_send and len_sent accounting are very loose estimates. We aren't
1210 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1211 * within about 500 bytes (next page boundary)
1212 *
1213 * why snprintf? an int is up to 12 digits long. if we just assumed when
1214 * logging that a[%d]= was going to be 16 characters long we would be wasting
1215 * space in every audit message. In one 7500 byte message we can log up to
1216 * about 1000 min size arguments. That comes down to about 50% waste of space
1217 * if we didn't do the snprintf to find out how long arg_num_len was.
1218 */
1219 static int audit_log_single_execve_arg(struct audit_context *context,
1220 struct audit_buffer **ab,
1221 int arg_num,
1222 size_t *len_sent,
1223 const char __user *p,
1224 char *buf)
1225 {
1226 char arg_num_len_buf[12];
1227 const char __user *tmp_p = p;
1228 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1229 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1230 size_t len, len_left, to_send;
1231 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1232 unsigned int i, has_cntl = 0, too_long = 0;
1233 int ret;
1234
1235 /* strnlen_user includes the null we don't want to send */
1236 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1237
1238 /*
1239 * We just created this mm, if we can't find the strings
1240 * we just copied into it something is _very_ wrong. Similar
1241 * for strings that are too long, we should not have created
1242 * any.
1243 */
1244 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1245 WARN_ON(1);
1246 send_sig(SIGKILL, current, 0);
1247 return -1;
1248 }
1249
1250 /* walk the whole argument looking for non-ascii chars */
1251 do {
1252 if (len_left > MAX_EXECVE_AUDIT_LEN)
1253 to_send = MAX_EXECVE_AUDIT_LEN;
1254 else
1255 to_send = len_left;
1256 ret = copy_from_user(buf, tmp_p, to_send);
1257 /*
1258 * There is no reason for this copy to be short. We just
1259 * copied them here, and the mm hasn't been exposed to user-
1260 * space yet.
1261 */
1262 if (ret) {
1263 WARN_ON(1);
1264 send_sig(SIGKILL, current, 0);
1265 return -1;
1266 }
1267 buf[to_send] = '\0';
1268 has_cntl = audit_string_contains_control(buf, to_send);
1269 if (has_cntl) {
1270 /*
1271 * hex messages get logged as 2 bytes, so we can only
1272 * send half as much in each message
1273 */
1274 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1275 break;
1276 }
1277 len_left -= to_send;
1278 tmp_p += to_send;
1279 } while (len_left > 0);
1280
1281 len_left = len;
1282
1283 if (len > max_execve_audit_len)
1284 too_long = 1;
1285
1286 /* rewalk the argument actually logging the message */
1287 for (i = 0; len_left > 0; i++) {
1288 int room_left;
1289
1290 if (len_left > max_execve_audit_len)
1291 to_send = max_execve_audit_len;
1292 else
1293 to_send = len_left;
1294
1295 /* do we have space left to send this argument in this ab? */
1296 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1297 if (has_cntl)
1298 room_left -= (to_send * 2);
1299 else
1300 room_left -= to_send;
1301 if (room_left < 0) {
1302 *len_sent = 0;
1303 audit_log_end(*ab);
1304 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1305 if (!*ab)
1306 return 0;
1307 }
1308
1309 /*
1310 * first record needs to say how long the original string was
1311 * so we can be sure nothing was lost.
1312 */
1313 if ((i == 0) && (too_long))
1314 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1315 has_cntl ? 2*len : len);
1316
1317 /*
1318 * normally arguments are small enough to fit and we already
1319 * filled buf above when we checked for control characters
1320 * so don't bother with another copy_from_user
1321 */
1322 if (len >= max_execve_audit_len)
1323 ret = copy_from_user(buf, p, to_send);
1324 else
1325 ret = 0;
1326 if (ret) {
1327 WARN_ON(1);
1328 send_sig(SIGKILL, current, 0);
1329 return -1;
1330 }
1331 buf[to_send] = '\0';
1332
1333 /* actually log it */
1334 audit_log_format(*ab, " a%d", arg_num);
1335 if (too_long)
1336 audit_log_format(*ab, "[%d]", i);
1337 audit_log_format(*ab, "=");
1338 if (has_cntl)
1339 audit_log_n_hex(*ab, buf, to_send);
1340 else
1341 audit_log_string(*ab, buf);
1342
1343 p += to_send;
1344 len_left -= to_send;
1345 *len_sent += arg_num_len;
1346 if (has_cntl)
1347 *len_sent += to_send * 2;
1348 else
1349 *len_sent += to_send;
1350 }
1351 /* include the null we didn't log */
1352 return len + 1;
1353 }
1354
1355 static void audit_log_execve_info(struct audit_context *context,
1356 struct audit_buffer **ab,
1357 struct audit_aux_data_execve *axi)
1358 {
1359 int i, len;
1360 size_t len_sent = 0;
1361 const char __user *p;
1362 char *buf;
1363
1364 if (axi->mm != current->mm)
1365 return; /* execve failed, no additional info */
1366
1367 p = (const char __user *)axi->mm->arg_start;
1368
1369 audit_log_format(*ab, "argc=%d", axi->argc);
1370
1371 /*
1372 * we need some kernel buffer to hold the userspace args. Just
1373 * allocate one big one rather than allocating one of the right size
1374 * for every single argument inside audit_log_single_execve_arg()
1375 * should be <8k allocation so should be pretty safe.
1376 */
1377 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1378 if (!buf) {
1379 audit_panic("out of memory for argv string\n");
1380 return;
1381 }
1382
1383 for (i = 0; i < axi->argc; i++) {
1384 len = audit_log_single_execve_arg(context, ab, i,
1385 &len_sent, p, buf);
1386 if (len <= 0)
1387 break;
1388 p += len;
1389 }
1390 kfree(buf);
1391 }
1392
1393 static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1394 {
1395 int i;
1396
1397 audit_log_format(ab, " %s=", prefix);
1398 CAP_FOR_EACH_U32(i) {
1399 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1400 }
1401 }
1402
1403 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1404 {
1405 kernel_cap_t *perm = &name->fcap.permitted;
1406 kernel_cap_t *inh = &name->fcap.inheritable;
1407 int log = 0;
1408
1409 if (!cap_isclear(*perm)) {
1410 audit_log_cap(ab, "cap_fp", perm);
1411 log = 1;
1412 }
1413 if (!cap_isclear(*inh)) {
1414 audit_log_cap(ab, "cap_fi", inh);
1415 log = 1;
1416 }
1417
1418 if (log)
1419 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1420 }
1421
1422 static void show_special(struct audit_context *context, int *call_panic)
1423 {
1424 struct audit_buffer *ab;
1425 int i;
1426
1427 ab = audit_log_start(context, GFP_KERNEL, context->type);
1428 if (!ab)
1429 return;
1430
1431 switch (context->type) {
1432 case AUDIT_SOCKETCALL: {
1433 int nargs = context->socketcall.nargs;
1434 audit_log_format(ab, "nargs=%d", nargs);
1435 for (i = 0; i < nargs; i++)
1436 audit_log_format(ab, " a%d=%lx", i,
1437 context->socketcall.args[i]);
1438 break; }
1439 case AUDIT_IPC: {
1440 u32 osid = context->ipc.osid;
1441
1442 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1443 from_kuid(&init_user_ns, context->ipc.uid),
1444 from_kgid(&init_user_ns, context->ipc.gid),
1445 context->ipc.mode);
1446 if (osid) {
1447 char *ctx = NULL;
1448 u32 len;
1449 if (security_secid_to_secctx(osid, &ctx, &len)) {
1450 audit_log_format(ab, " osid=%u", osid);
1451 *call_panic = 1;
1452 } else {
1453 audit_log_format(ab, " obj=%s", ctx);
1454 security_release_secctx(ctx, len);
1455 }
1456 }
1457 if (context->ipc.has_perm) {
1458 audit_log_end(ab);
1459 ab = audit_log_start(context, GFP_KERNEL,
1460 AUDIT_IPC_SET_PERM);
1461 if (unlikely(!ab))
1462 return;
1463 audit_log_format(ab,
1464 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1465 context->ipc.qbytes,
1466 context->ipc.perm_uid,
1467 context->ipc.perm_gid,
1468 context->ipc.perm_mode);
1469 }
1470 break; }
1471 case AUDIT_MQ_OPEN: {
1472 audit_log_format(ab,
1473 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1474 "mq_msgsize=%ld mq_curmsgs=%ld",
1475 context->mq_open.oflag, context->mq_open.mode,
1476 context->mq_open.attr.mq_flags,
1477 context->mq_open.attr.mq_maxmsg,
1478 context->mq_open.attr.mq_msgsize,
1479 context->mq_open.attr.mq_curmsgs);
1480 break; }
1481 case AUDIT_MQ_SENDRECV: {
1482 audit_log_format(ab,
1483 "mqdes=%d msg_len=%zd msg_prio=%u "
1484 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1485 context->mq_sendrecv.mqdes,
1486 context->mq_sendrecv.msg_len,
1487 context->mq_sendrecv.msg_prio,
1488 context->mq_sendrecv.abs_timeout.tv_sec,
1489 context->mq_sendrecv.abs_timeout.tv_nsec);
1490 break; }
1491 case AUDIT_MQ_NOTIFY: {
1492 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1493 context->mq_notify.mqdes,
1494 context->mq_notify.sigev_signo);
1495 break; }
1496 case AUDIT_MQ_GETSETATTR: {
1497 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1498 audit_log_format(ab,
1499 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1500 "mq_curmsgs=%ld ",
1501 context->mq_getsetattr.mqdes,
1502 attr->mq_flags, attr->mq_maxmsg,
1503 attr->mq_msgsize, attr->mq_curmsgs);
1504 break; }
1505 case AUDIT_CAPSET: {
1506 audit_log_format(ab, "pid=%d", context->capset.pid);
1507 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1508 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1509 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1510 break; }
1511 case AUDIT_MMAP: {
1512 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1513 context->mmap.flags);
1514 break; }
1515 }
1516 audit_log_end(ab);
1517 }
1518
1519 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1520 int record_num, int *call_panic)
1521 {
1522 struct audit_buffer *ab;
1523 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1524 if (!ab)
1525 return; /* audit_panic has been called */
1526
1527 audit_log_format(ab, "item=%d", record_num);
1528
1529 if (n->name) {
1530 switch (n->name_len) {
1531 case AUDIT_NAME_FULL:
1532 /* log the full path */
1533 audit_log_format(ab, " name=");
1534 audit_log_untrustedstring(ab, n->name->name);
1535 break;
1536 case 0:
1537 /* name was specified as a relative path and the
1538 * directory component is the cwd */
1539 audit_log_d_path(ab, " name=", &context->pwd);
1540 break;
1541 default:
1542 /* log the name's directory component */
1543 audit_log_format(ab, " name=");
1544 audit_log_n_untrustedstring(ab, n->name->name,
1545 n->name_len);
1546 }
1547 } else
1548 audit_log_format(ab, " name=(null)");
1549
1550 if (n->ino != (unsigned long)-1) {
1551 audit_log_format(ab, " inode=%lu"
1552 " dev=%02x:%02x mode=%#ho"
1553 " ouid=%u ogid=%u rdev=%02x:%02x",
1554 n->ino,
1555 MAJOR(n->dev),
1556 MINOR(n->dev),
1557 n->mode,
1558 from_kuid(&init_user_ns, n->uid),
1559 from_kgid(&init_user_ns, n->gid),
1560 MAJOR(n->rdev),
1561 MINOR(n->rdev));
1562 }
1563 if (n->osid != 0) {
1564 char *ctx = NULL;
1565 u32 len;
1566 if (security_secid_to_secctx(
1567 n->osid, &ctx, &len)) {
1568 audit_log_format(ab, " osid=%u", n->osid);
1569 *call_panic = 2;
1570 } else {
1571 audit_log_format(ab, " obj=%s", ctx);
1572 security_release_secctx(ctx, len);
1573 }
1574 }
1575
1576 audit_log_fcaps(ab, n);
1577
1578 audit_log_end(ab);
1579 }
1580
1581 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1582 {
1583 int i, call_panic = 0;
1584 struct audit_buffer *ab;
1585 struct audit_aux_data *aux;
1586 struct audit_names *n;
1587
1588 /* tsk == current */
1589 context->personality = tsk->personality;
1590
1591 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1592 if (!ab)
1593 return; /* audit_panic has been called */
1594 audit_log_format(ab, "arch=%x syscall=%d",
1595 context->arch, context->major);
1596 if (context->personality != PER_LINUX)
1597 audit_log_format(ab, " per=%lx", context->personality);
1598 if (context->return_valid)
1599 audit_log_format(ab, " success=%s exit=%ld",
1600 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1601 context->return_code);
1602
1603 audit_log_format(ab,
1604 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1605 context->argv[0],
1606 context->argv[1],
1607 context->argv[2],
1608 context->argv[3],
1609 context->name_count);
1610
1611 audit_log_task_info(ab, tsk);
1612 audit_log_key(ab, context->filterkey);
1613 audit_log_end(ab);
1614
1615 for (aux = context->aux; aux; aux = aux->next) {
1616
1617 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1618 if (!ab)
1619 continue; /* audit_panic has been called */
1620
1621 switch (aux->type) {
1622
1623 case AUDIT_EXECVE: {
1624 struct audit_aux_data_execve *axi = (void *)aux;
1625 audit_log_execve_info(context, &ab, axi);
1626 break; }
1627
1628 case AUDIT_BPRM_FCAPS: {
1629 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1630 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1631 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1632 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1633 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1634 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1635 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1636 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1637 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1638 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1639 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1640 break; }
1641
1642 }
1643 audit_log_end(ab);
1644 }
1645
1646 if (context->type)
1647 show_special(context, &call_panic);
1648
1649 if (context->fds[0] >= 0) {
1650 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1651 if (ab) {
1652 audit_log_format(ab, "fd0=%d fd1=%d",
1653 context->fds[0], context->fds[1]);
1654 audit_log_end(ab);
1655 }
1656 }
1657
1658 if (context->sockaddr_len) {
1659 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1660 if (ab) {
1661 audit_log_format(ab, "saddr=");
1662 audit_log_n_hex(ab, (void *)context->sockaddr,
1663 context->sockaddr_len);
1664 audit_log_end(ab);
1665 }
1666 }
1667
1668 for (aux = context->aux_pids; aux; aux = aux->next) {
1669 struct audit_aux_data_pids *axs = (void *)aux;
1670
1671 for (i = 0; i < axs->pid_count; i++)
1672 if (audit_log_pid_context(context, axs->target_pid[i],
1673 axs->target_auid[i],
1674 axs->target_uid[i],
1675 axs->target_sessionid[i],
1676 axs->target_sid[i],
1677 axs->target_comm[i]))
1678 call_panic = 1;
1679 }
1680
1681 if (context->target_pid &&
1682 audit_log_pid_context(context, context->target_pid,
1683 context->target_auid, context->target_uid,
1684 context->target_sessionid,
1685 context->target_sid, context->target_comm))
1686 call_panic = 1;
1687
1688 if (context->pwd.dentry && context->pwd.mnt) {
1689 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1690 if (ab) {
1691 audit_log_d_path(ab, " cwd=", &context->pwd);
1692 audit_log_end(ab);
1693 }
1694 }
1695
1696 i = 0;
1697 list_for_each_entry(n, &context->names_list, list)
1698 audit_log_name(context, n, i++, &call_panic);
1699
1700 /* Send end of event record to help user space know we are finished */
1701 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1702 if (ab)
1703 audit_log_end(ab);
1704 if (call_panic)
1705 audit_panic("error converting sid to string");
1706 }
1707
1708 /**
1709 * audit_free - free a per-task audit context
1710 * @tsk: task whose audit context block to free
1711 *
1712 * Called from copy_process and do_exit
1713 */
1714 void __audit_free(struct task_struct *tsk)
1715 {
1716 struct audit_context *context;
1717
1718 context = audit_get_context(tsk, 0, 0);
1719 if (!context)
1720 return;
1721
1722 /* Check for system calls that do not go through the exit
1723 * function (e.g., exit_group), then free context block.
1724 * We use GFP_ATOMIC here because we might be doing this
1725 * in the context of the idle thread */
1726 /* that can happen only if we are called from do_exit() */
1727 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1728 audit_log_exit(context, tsk);
1729 if (!list_empty(&context->killed_trees))
1730 audit_kill_trees(&context->killed_trees);
1731
1732 audit_free_context(context);
1733 }
1734
1735 /**
1736 * audit_syscall_entry - fill in an audit record at syscall entry
1737 * @arch: architecture type
1738 * @major: major syscall type (function)
1739 * @a1: additional syscall register 1
1740 * @a2: additional syscall register 2
1741 * @a3: additional syscall register 3
1742 * @a4: additional syscall register 4
1743 *
1744 * Fill in audit context at syscall entry. This only happens if the
1745 * audit context was created when the task was created and the state or
1746 * filters demand the audit context be built. If the state from the
1747 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1748 * then the record will be written at syscall exit time (otherwise, it
1749 * will only be written if another part of the kernel requests that it
1750 * be written).
1751 */
1752 void __audit_syscall_entry(int arch, int major,
1753 unsigned long a1, unsigned long a2,
1754 unsigned long a3, unsigned long a4)
1755 {
1756 struct task_struct *tsk = current;
1757 struct audit_context *context = tsk->audit_context;
1758 enum audit_state state;
1759
1760 if (!context)
1761 return;
1762
1763 BUG_ON(context->in_syscall || context->name_count);
1764
1765 if (!audit_enabled)
1766 return;
1767
1768 context->arch = arch;
1769 context->major = major;
1770 context->argv[0] = a1;
1771 context->argv[1] = a2;
1772 context->argv[2] = a3;
1773 context->argv[3] = a4;
1774
1775 state = context->state;
1776 context->dummy = !audit_n_rules;
1777 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1778 context->prio = 0;
1779 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1780 }
1781 if (state == AUDIT_DISABLED)
1782 return;
1783
1784 context->serial = 0;
1785 context->ctime = CURRENT_TIME;
1786 context->in_syscall = 1;
1787 context->current_state = state;
1788 context->ppid = 0;
1789 }
1790
1791 /**
1792 * audit_syscall_exit - deallocate audit context after a system call
1793 * @success: success value of the syscall
1794 * @return_code: return value of the syscall
1795 *
1796 * Tear down after system call. If the audit context has been marked as
1797 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1798 * filtering, or because some other part of the kernel wrote an audit
1799 * message), then write out the syscall information. In call cases,
1800 * free the names stored from getname().
1801 */
1802 void __audit_syscall_exit(int success, long return_code)
1803 {
1804 struct task_struct *tsk = current;
1805 struct audit_context *context;
1806
1807 if (success)
1808 success = AUDITSC_SUCCESS;
1809 else
1810 success = AUDITSC_FAILURE;
1811
1812 context = audit_get_context(tsk, success, return_code);
1813 if (!context)
1814 return;
1815
1816 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1817 audit_log_exit(context, tsk);
1818
1819 context->in_syscall = 0;
1820 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1821
1822 if (!list_empty(&context->killed_trees))
1823 audit_kill_trees(&context->killed_trees);
1824
1825 audit_free_names(context);
1826 unroll_tree_refs(context, NULL, 0);
1827 audit_free_aux(context);
1828 context->aux = NULL;
1829 context->aux_pids = NULL;
1830 context->target_pid = 0;
1831 context->target_sid = 0;
1832 context->sockaddr_len = 0;
1833 context->type = 0;
1834 context->fds[0] = -1;
1835 if (context->state != AUDIT_RECORD_CONTEXT) {
1836 kfree(context->filterkey);
1837 context->filterkey = NULL;
1838 }
1839 tsk->audit_context = context;
1840 }
1841
1842 static inline void handle_one(const struct inode *inode)
1843 {
1844 #ifdef CONFIG_AUDIT_TREE
1845 struct audit_context *context;
1846 struct audit_tree_refs *p;
1847 struct audit_chunk *chunk;
1848 int count;
1849 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1850 return;
1851 context = current->audit_context;
1852 p = context->trees;
1853 count = context->tree_count;
1854 rcu_read_lock();
1855 chunk = audit_tree_lookup(inode);
1856 rcu_read_unlock();
1857 if (!chunk)
1858 return;
1859 if (likely(put_tree_ref(context, chunk)))
1860 return;
1861 if (unlikely(!grow_tree_refs(context))) {
1862 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1863 audit_set_auditable(context);
1864 audit_put_chunk(chunk);
1865 unroll_tree_refs(context, p, count);
1866 return;
1867 }
1868 put_tree_ref(context, chunk);
1869 #endif
1870 }
1871
1872 static void handle_path(const struct dentry *dentry)
1873 {
1874 #ifdef CONFIG_AUDIT_TREE
1875 struct audit_context *context;
1876 struct audit_tree_refs *p;
1877 const struct dentry *d, *parent;
1878 struct audit_chunk *drop;
1879 unsigned long seq;
1880 int count;
1881
1882 context = current->audit_context;
1883 p = context->trees;
1884 count = context->tree_count;
1885 retry:
1886 drop = NULL;
1887 d = dentry;
1888 rcu_read_lock();
1889 seq = read_seqbegin(&rename_lock);
1890 for(;;) {
1891 struct inode *inode = d->d_inode;
1892 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1893 struct audit_chunk *chunk;
1894 chunk = audit_tree_lookup(inode);
1895 if (chunk) {
1896 if (unlikely(!put_tree_ref(context, chunk))) {
1897 drop = chunk;
1898 break;
1899 }
1900 }
1901 }
1902 parent = d->d_parent;
1903 if (parent == d)
1904 break;
1905 d = parent;
1906 }
1907 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1908 rcu_read_unlock();
1909 if (!drop) {
1910 /* just a race with rename */
1911 unroll_tree_refs(context, p, count);
1912 goto retry;
1913 }
1914 audit_put_chunk(drop);
1915 if (grow_tree_refs(context)) {
1916 /* OK, got more space */
1917 unroll_tree_refs(context, p, count);
1918 goto retry;
1919 }
1920 /* too bad */
1921 printk(KERN_WARNING
1922 "out of memory, audit has lost a tree reference\n");
1923 unroll_tree_refs(context, p, count);
1924 audit_set_auditable(context);
1925 return;
1926 }
1927 rcu_read_unlock();
1928 #endif
1929 }
1930
1931 static struct audit_names *audit_alloc_name(struct audit_context *context,
1932 unsigned char type)
1933 {
1934 struct audit_names *aname;
1935
1936 if (context->name_count < AUDIT_NAMES) {
1937 aname = &context->preallocated_names[context->name_count];
1938 memset(aname, 0, sizeof(*aname));
1939 } else {
1940 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1941 if (!aname)
1942 return NULL;
1943 aname->should_free = true;
1944 }
1945
1946 aname->ino = (unsigned long)-1;
1947 aname->type = type;
1948 list_add_tail(&aname->list, &context->names_list);
1949
1950 context->name_count++;
1951 #if AUDIT_DEBUG
1952 context->ino_count++;
1953 #endif
1954 return aname;
1955 }
1956
1957 /**
1958 * audit_reusename - fill out filename with info from existing entry
1959 * @uptr: userland ptr to pathname
1960 *
1961 * Search the audit_names list for the current audit context. If there is an
1962 * existing entry with a matching "uptr" then return the filename
1963 * associated with that audit_name. If not, return NULL.
1964 */
1965 struct filename *
1966 __audit_reusename(const __user char *uptr)
1967 {
1968 struct audit_context *context = current->audit_context;
1969 struct audit_names *n;
1970
1971 list_for_each_entry(n, &context->names_list, list) {
1972 if (!n->name)
1973 continue;
1974 if (n->name->uptr == uptr)
1975 return n->name;
1976 }
1977 return NULL;
1978 }
1979
1980 /**
1981 * audit_getname - add a name to the list
1982 * @name: name to add
1983 *
1984 * Add a name to the list of audit names for this context.
1985 * Called from fs/namei.c:getname().
1986 */
1987 void __audit_getname(struct filename *name)
1988 {
1989 struct audit_context *context = current->audit_context;
1990 struct audit_names *n;
1991
1992 if (!context->in_syscall) {
1993 #if AUDIT_DEBUG == 2
1994 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1995 __FILE__, __LINE__, context->serial, name);
1996 dump_stack();
1997 #endif
1998 return;
1999 }
2000
2001 #if AUDIT_DEBUG
2002 /* The filename _must_ have a populated ->name */
2003 BUG_ON(!name->name);
2004 #endif
2005
2006 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2007 if (!n)
2008 return;
2009
2010 n->name = name;
2011 n->name_len = AUDIT_NAME_FULL;
2012 n->name_put = true;
2013 name->aname = n;
2014
2015 if (!context->pwd.dentry)
2016 get_fs_pwd(current->fs, &context->pwd);
2017 }
2018
2019 /* audit_putname - intercept a putname request
2020 * @name: name to intercept and delay for putname
2021 *
2022 * If we have stored the name from getname in the audit context,
2023 * then we delay the putname until syscall exit.
2024 * Called from include/linux/fs.h:putname().
2025 */
2026 void audit_putname(struct filename *name)
2027 {
2028 struct audit_context *context = current->audit_context;
2029
2030 BUG_ON(!context);
2031 if (!context->in_syscall) {
2032 #if AUDIT_DEBUG == 2
2033 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2034 __FILE__, __LINE__, context->serial, name);
2035 if (context->name_count) {
2036 struct audit_names *n;
2037 int i;
2038
2039 list_for_each_entry(n, &context->names_list, list)
2040 printk(KERN_ERR "name[%d] = %p = %s\n", i,
2041 n->name, n->name->name ?: "(null)");
2042 }
2043 #endif
2044 __putname(name);
2045 }
2046 #if AUDIT_DEBUG
2047 else {
2048 ++context->put_count;
2049 if (context->put_count > context->name_count) {
2050 printk(KERN_ERR "%s:%d(:%d): major=%d"
2051 " in_syscall=%d putname(%p) name_count=%d"
2052 " put_count=%d\n",
2053 __FILE__, __LINE__,
2054 context->serial, context->major,
2055 context->in_syscall, name->name,
2056 context->name_count, context->put_count);
2057 dump_stack();
2058 }
2059 }
2060 #endif
2061 }
2062
2063 static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2064 {
2065 struct cpu_vfs_cap_data caps;
2066 int rc;
2067
2068 if (!dentry)
2069 return 0;
2070
2071 rc = get_vfs_caps_from_disk(dentry, &caps);
2072 if (rc)
2073 return rc;
2074
2075 name->fcap.permitted = caps.permitted;
2076 name->fcap.inheritable = caps.inheritable;
2077 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2078 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2079
2080 return 0;
2081 }
2082
2083
2084 /* Copy inode data into an audit_names. */
2085 static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2086 const struct inode *inode)
2087 {
2088 name->ino = inode->i_ino;
2089 name->dev = inode->i_sb->s_dev;
2090 name->mode = inode->i_mode;
2091 name->uid = inode->i_uid;
2092 name->gid = inode->i_gid;
2093 name->rdev = inode->i_rdev;
2094 security_inode_getsecid(inode, &name->osid);
2095 audit_copy_fcaps(name, dentry);
2096 }
2097
2098 /**
2099 * __audit_inode - store the inode and device from a lookup
2100 * @name: name being audited
2101 * @dentry: dentry being audited
2102 * @parent: does this dentry represent the parent?
2103 */
2104 void __audit_inode(struct filename *name, const struct dentry *dentry,
2105 unsigned int parent)
2106 {
2107 struct audit_context *context = current->audit_context;
2108 const struct inode *inode = dentry->d_inode;
2109 struct audit_names *n;
2110
2111 if (!context->in_syscall)
2112 return;
2113
2114 if (!name)
2115 goto out_alloc;
2116
2117 #if AUDIT_DEBUG
2118 /* The struct filename _must_ have a populated ->name */
2119 BUG_ON(!name->name);
2120 #endif
2121 /*
2122 * If we have a pointer to an audit_names entry already, then we can
2123 * just use it directly if the type is correct.
2124 */
2125 n = name->aname;
2126 if (n) {
2127 if (parent) {
2128 if (n->type == AUDIT_TYPE_PARENT ||
2129 n->type == AUDIT_TYPE_UNKNOWN)
2130 goto out;
2131 } else {
2132 if (n->type != AUDIT_TYPE_PARENT)
2133 goto out;
2134 }
2135 }
2136
2137 list_for_each_entry_reverse(n, &context->names_list, list) {
2138 /* does the name pointer match? */
2139 if (!n->name || n->name->name != name->name)
2140 continue;
2141
2142 /* match the correct record type */
2143 if (parent) {
2144 if (n->type == AUDIT_TYPE_PARENT ||
2145 n->type == AUDIT_TYPE_UNKNOWN)
2146 goto out;
2147 } else {
2148 if (n->type != AUDIT_TYPE_PARENT)
2149 goto out;
2150 }
2151 }
2152
2153 out_alloc:
2154 /* unable to find the name from a previous getname(). Allocate a new
2155 * anonymous entry.
2156 */
2157 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
2158 if (!n)
2159 return;
2160 out:
2161 if (parent) {
2162 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2163 n->type = AUDIT_TYPE_PARENT;
2164 } else {
2165 n->name_len = AUDIT_NAME_FULL;
2166 n->type = AUDIT_TYPE_NORMAL;
2167 }
2168 handle_path(dentry);
2169 audit_copy_inode(n, dentry, inode);
2170 }
2171
2172 /**
2173 * __audit_inode_child - collect inode info for created/removed objects
2174 * @parent: inode of dentry parent
2175 * @dentry: dentry being audited
2176 * @type: AUDIT_TYPE_* value that we're looking for
2177 *
2178 * For syscalls that create or remove filesystem objects, audit_inode
2179 * can only collect information for the filesystem object's parent.
2180 * This call updates the audit context with the child's information.
2181 * Syscalls that create a new filesystem object must be hooked after
2182 * the object is created. Syscalls that remove a filesystem object
2183 * must be hooked prior, in order to capture the target inode during
2184 * unsuccessful attempts.
2185 */
2186 void __audit_inode_child(const struct inode *parent,
2187 const struct dentry *dentry,
2188 const unsigned char type)
2189 {
2190 struct audit_context *context = current->audit_context;
2191 const struct inode *inode = dentry->d_inode;
2192 const char *dname = dentry->d_name.name;
2193 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2194
2195 if (!context->in_syscall)
2196 return;
2197
2198 if (inode)
2199 handle_one(inode);
2200
2201 /* look for a parent entry first */
2202 list_for_each_entry(n, &context->names_list, list) {
2203 if (!n->name || n->type != AUDIT_TYPE_PARENT)
2204 continue;
2205
2206 if (n->ino == parent->i_ino &&
2207 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
2208 found_parent = n;
2209 break;
2210 }
2211 }
2212
2213 /* is there a matching child entry? */
2214 list_for_each_entry(n, &context->names_list, list) {
2215 /* can only match entries that have a name */
2216 if (!n->name || n->type != type)
2217 continue;
2218
2219 /* if we found a parent, make sure this one is a child of it */
2220 if (found_parent && (n->name != found_parent->name))
2221 continue;
2222
2223 if (!strcmp(dname, n->name->name) ||
2224 !audit_compare_dname_path(dname, n->name->name,
2225 found_parent ?
2226 found_parent->name_len :
2227 AUDIT_NAME_FULL)) {
2228 found_child = n;
2229 break;
2230 }
2231 }
2232
2233 if (!found_parent) {
2234 /* create a new, "anonymous" parent record */
2235 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2236 if (!n)
2237 return;
2238 audit_copy_inode(n, NULL, parent);
2239 }
2240
2241 if (!found_child) {
2242 found_child = audit_alloc_name(context, type);
2243 if (!found_child)
2244 return;
2245
2246 /* Re-use the name belonging to the slot for a matching parent
2247 * directory. All names for this context are relinquished in
2248 * audit_free_names() */
2249 if (found_parent) {
2250 found_child->name = found_parent->name;
2251 found_child->name_len = AUDIT_NAME_FULL;
2252 /* don't call __putname() */
2253 found_child->name_put = false;
2254 }
2255 }
2256 if (inode)
2257 audit_copy_inode(found_child, dentry, inode);
2258 else
2259 found_child->ino = (unsigned long)-1;
2260 }
2261 EXPORT_SYMBOL_GPL(__audit_inode_child);
2262
2263 /**
2264 * auditsc_get_stamp - get local copies of audit_context values
2265 * @ctx: audit_context for the task
2266 * @t: timespec to store time recorded in the audit_context
2267 * @serial: serial value that is recorded in the audit_context
2268 *
2269 * Also sets the context as auditable.
2270 */
2271 int auditsc_get_stamp(struct audit_context *ctx,
2272 struct timespec *t, unsigned int *serial)
2273 {
2274 if (!ctx->in_syscall)
2275 return 0;
2276 if (!ctx->serial)
2277 ctx->serial = audit_serial();
2278 t->tv_sec = ctx->ctime.tv_sec;
2279 t->tv_nsec = ctx->ctime.tv_nsec;
2280 *serial = ctx->serial;
2281 if (!ctx->prio) {
2282 ctx->prio = 1;
2283 ctx->current_state = AUDIT_RECORD_CONTEXT;
2284 }
2285 return 1;
2286 }
2287
2288 /* global counter which is incremented every time something logs in */
2289 static atomic_t session_id = ATOMIC_INIT(0);
2290
2291 /**
2292 * audit_set_loginuid - set current task's audit_context loginuid
2293 * @loginuid: loginuid value
2294 *
2295 * Returns 0.
2296 *
2297 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2298 */
2299 int audit_set_loginuid(kuid_t loginuid)
2300 {
2301 struct task_struct *task = current;
2302 struct audit_context *context = task->audit_context;
2303 unsigned int sessionid;
2304
2305 #ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2306 if (uid_valid(task->loginuid))
2307 return -EPERM;
2308 #else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2309 if (!capable(CAP_AUDIT_CONTROL))
2310 return -EPERM;
2311 #endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2312
2313 sessionid = atomic_inc_return(&session_id);
2314 if (context && context->in_syscall) {
2315 struct audit_buffer *ab;
2316
2317 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2318 if (ab) {
2319 audit_log_format(ab, "login pid=%d uid=%u "
2320 "old auid=%u new auid=%u"
2321 " old ses=%u new ses=%u",
2322 task->pid,
2323 from_kuid(&init_user_ns, task_uid(task)),
2324 from_kuid(&init_user_ns, task->loginuid),
2325 from_kuid(&init_user_ns, loginuid),
2326 task->sessionid, sessionid);
2327 audit_log_end(ab);
2328 }
2329 }
2330 task->sessionid = sessionid;
2331 task->loginuid = loginuid;
2332 return 0;
2333 }
2334
2335 /**
2336 * __audit_mq_open - record audit data for a POSIX MQ open
2337 * @oflag: open flag
2338 * @mode: mode bits
2339 * @attr: queue attributes
2340 *
2341 */
2342 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2343 {
2344 struct audit_context *context = current->audit_context;
2345
2346 if (attr)
2347 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2348 else
2349 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2350
2351 context->mq_open.oflag = oflag;
2352 context->mq_open.mode = mode;
2353
2354 context->type = AUDIT_MQ_OPEN;
2355 }
2356
2357 /**
2358 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2359 * @mqdes: MQ descriptor
2360 * @msg_len: Message length
2361 * @msg_prio: Message priority
2362 * @abs_timeout: Message timeout in absolute time
2363 *
2364 */
2365 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2366 const struct timespec *abs_timeout)
2367 {
2368 struct audit_context *context = current->audit_context;
2369 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2370
2371 if (abs_timeout)
2372 memcpy(p, abs_timeout, sizeof(struct timespec));
2373 else
2374 memset(p, 0, sizeof(struct timespec));
2375
2376 context->mq_sendrecv.mqdes = mqdes;
2377 context->mq_sendrecv.msg_len = msg_len;
2378 context->mq_sendrecv.msg_prio = msg_prio;
2379
2380 context->type = AUDIT_MQ_SENDRECV;
2381 }
2382
2383 /**
2384 * __audit_mq_notify - record audit data for a POSIX MQ notify
2385 * @mqdes: MQ descriptor
2386 * @notification: Notification event
2387 *
2388 */
2389
2390 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2391 {
2392 struct audit_context *context = current->audit_context;
2393
2394 if (notification)
2395 context->mq_notify.sigev_signo = notification->sigev_signo;
2396 else
2397 context->mq_notify.sigev_signo = 0;
2398
2399 context->mq_notify.mqdes = mqdes;
2400 context->type = AUDIT_MQ_NOTIFY;
2401 }
2402
2403 /**
2404 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2405 * @mqdes: MQ descriptor
2406 * @mqstat: MQ flags
2407 *
2408 */
2409 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2410 {
2411 struct audit_context *context = current->audit_context;
2412 context->mq_getsetattr.mqdes = mqdes;
2413 context->mq_getsetattr.mqstat = *mqstat;
2414 context->type = AUDIT_MQ_GETSETATTR;
2415 }
2416
2417 /**
2418 * audit_ipc_obj - record audit data for ipc object
2419 * @ipcp: ipc permissions
2420 *
2421 */
2422 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2423 {
2424 struct audit_context *context = current->audit_context;
2425 context->ipc.uid = ipcp->uid;
2426 context->ipc.gid = ipcp->gid;
2427 context->ipc.mode = ipcp->mode;
2428 context->ipc.has_perm = 0;
2429 security_ipc_getsecid(ipcp, &context->ipc.osid);
2430 context->type = AUDIT_IPC;
2431 }
2432
2433 /**
2434 * audit_ipc_set_perm - record audit data for new ipc permissions
2435 * @qbytes: msgq bytes
2436 * @uid: msgq user id
2437 * @gid: msgq group id
2438 * @mode: msgq mode (permissions)
2439 *
2440 * Called only after audit_ipc_obj().
2441 */
2442 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2443 {
2444 struct audit_context *context = current->audit_context;
2445
2446 context->ipc.qbytes = qbytes;
2447 context->ipc.perm_uid = uid;
2448 context->ipc.perm_gid = gid;
2449 context->ipc.perm_mode = mode;
2450 context->ipc.has_perm = 1;
2451 }
2452
2453 int __audit_bprm(struct linux_binprm *bprm)
2454 {
2455 struct audit_aux_data_execve *ax;
2456 struct audit_context *context = current->audit_context;
2457
2458 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2459 if (!ax)
2460 return -ENOMEM;
2461
2462 ax->argc = bprm->argc;
2463 ax->envc = bprm->envc;
2464 ax->mm = bprm->mm;
2465 ax->d.type = AUDIT_EXECVE;
2466 ax->d.next = context->aux;
2467 context->aux = (void *)ax;
2468 return 0;
2469 }
2470
2471
2472 /**
2473 * audit_socketcall - record audit data for sys_socketcall
2474 * @nargs: number of args
2475 * @args: args array
2476 *
2477 */
2478 void __audit_socketcall(int nargs, unsigned long *args)
2479 {
2480 struct audit_context *context = current->audit_context;
2481
2482 context->type = AUDIT_SOCKETCALL;
2483 context->socketcall.nargs = nargs;
2484 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2485 }
2486
2487 /**
2488 * __audit_fd_pair - record audit data for pipe and socketpair
2489 * @fd1: the first file descriptor
2490 * @fd2: the second file descriptor
2491 *
2492 */
2493 void __audit_fd_pair(int fd1, int fd2)
2494 {
2495 struct audit_context *context = current->audit_context;
2496 context->fds[0] = fd1;
2497 context->fds[1] = fd2;
2498 }
2499
2500 /**
2501 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2502 * @len: data length in user space
2503 * @a: data address in kernel space
2504 *
2505 * Returns 0 for success or NULL context or < 0 on error.
2506 */
2507 int __audit_sockaddr(int len, void *a)
2508 {
2509 struct audit_context *context = current->audit_context;
2510
2511 if (!context->sockaddr) {
2512 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2513 if (!p)
2514 return -ENOMEM;
2515 context->sockaddr = p;
2516 }
2517
2518 context->sockaddr_len = len;
2519 memcpy(context->sockaddr, a, len);
2520 return 0;
2521 }
2522
2523 void __audit_ptrace(struct task_struct *t)
2524 {
2525 struct audit_context *context = current->audit_context;
2526
2527 context->target_pid = t->pid;
2528 context->target_auid = audit_get_loginuid(t);
2529 context->target_uid = task_uid(t);
2530 context->target_sessionid = audit_get_sessionid(t);
2531 security_task_getsecid(t, &context->target_sid);
2532 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2533 }
2534
2535 /**
2536 * audit_signal_info - record signal info for shutting down audit subsystem
2537 * @sig: signal value
2538 * @t: task being signaled
2539 *
2540 * If the audit subsystem is being terminated, record the task (pid)
2541 * and uid that is doing that.
2542 */
2543 int __audit_signal_info(int sig, struct task_struct *t)
2544 {
2545 struct audit_aux_data_pids *axp;
2546 struct task_struct *tsk = current;
2547 struct audit_context *ctx = tsk->audit_context;
2548 kuid_t uid = current_uid(), t_uid = task_uid(t);
2549
2550 if (audit_pid && t->tgid == audit_pid) {
2551 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2552 audit_sig_pid = tsk->pid;
2553 if (uid_valid(tsk->loginuid))
2554 audit_sig_uid = tsk->loginuid;
2555 else
2556 audit_sig_uid = uid;
2557 security_task_getsecid(tsk, &audit_sig_sid);
2558 }
2559 if (!audit_signals || audit_dummy_context())
2560 return 0;
2561 }
2562
2563 /* optimize the common case by putting first signal recipient directly
2564 * in audit_context */
2565 if (!ctx->target_pid) {
2566 ctx->target_pid = t->tgid;
2567 ctx->target_auid = audit_get_loginuid(t);
2568 ctx->target_uid = t_uid;
2569 ctx->target_sessionid = audit_get_sessionid(t);
2570 security_task_getsecid(t, &ctx->target_sid);
2571 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2572 return 0;
2573 }
2574
2575 axp = (void *)ctx->aux_pids;
2576 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2577 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2578 if (!axp)
2579 return -ENOMEM;
2580
2581 axp->d.type = AUDIT_OBJ_PID;
2582 axp->d.next = ctx->aux_pids;
2583 ctx->aux_pids = (void *)axp;
2584 }
2585 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2586
2587 axp->target_pid[axp->pid_count] = t->tgid;
2588 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2589 axp->target_uid[axp->pid_count] = t_uid;
2590 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2591 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2592 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2593 axp->pid_count++;
2594
2595 return 0;
2596 }
2597
2598 /**
2599 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2600 * @bprm: pointer to the bprm being processed
2601 * @new: the proposed new credentials
2602 * @old: the old credentials
2603 *
2604 * Simply check if the proc already has the caps given by the file and if not
2605 * store the priv escalation info for later auditing at the end of the syscall
2606 *
2607 * -Eric
2608 */
2609 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2610 const struct cred *new, const struct cred *old)
2611 {
2612 struct audit_aux_data_bprm_fcaps *ax;
2613 struct audit_context *context = current->audit_context;
2614 struct cpu_vfs_cap_data vcaps;
2615 struct dentry *dentry;
2616
2617 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2618 if (!ax)
2619 return -ENOMEM;
2620
2621 ax->d.type = AUDIT_BPRM_FCAPS;
2622 ax->d.next = context->aux;
2623 context->aux = (void *)ax;
2624
2625 dentry = dget(bprm->file->f_dentry);
2626 get_vfs_caps_from_disk(dentry, &vcaps);
2627 dput(dentry);
2628
2629 ax->fcap.permitted = vcaps.permitted;
2630 ax->fcap.inheritable = vcaps.inheritable;
2631 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2632 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2633
2634 ax->old_pcap.permitted = old->cap_permitted;
2635 ax->old_pcap.inheritable = old->cap_inheritable;
2636 ax->old_pcap.effective = old->cap_effective;
2637
2638 ax->new_pcap.permitted = new->cap_permitted;
2639 ax->new_pcap.inheritable = new->cap_inheritable;
2640 ax->new_pcap.effective = new->cap_effective;
2641 return 0;
2642 }
2643
2644 /**
2645 * __audit_log_capset - store information about the arguments to the capset syscall
2646 * @pid: target pid of the capset call
2647 * @new: the new credentials
2648 * @old: the old (current) credentials
2649 *
2650 * Record the aguments userspace sent to sys_capset for later printing by the
2651 * audit system if applicable
2652 */
2653 void __audit_log_capset(pid_t pid,
2654 const struct cred *new, const struct cred *old)
2655 {
2656 struct audit_context *context = current->audit_context;
2657 context->capset.pid = pid;
2658 context->capset.cap.effective = new->cap_effective;
2659 context->capset.cap.inheritable = new->cap_effective;
2660 context->capset.cap.permitted = new->cap_permitted;
2661 context->type = AUDIT_CAPSET;
2662 }
2663
2664 void __audit_mmap_fd(int fd, int flags)
2665 {
2666 struct audit_context *context = current->audit_context;
2667 context->mmap.fd = fd;
2668 context->mmap.flags = flags;
2669 context->type = AUDIT_MMAP;
2670 }
2671
2672 static void audit_log_task(struct audit_buffer *ab)
2673 {
2674 kuid_t auid, uid;
2675 kgid_t gid;
2676 unsigned int sessionid;
2677
2678 auid = audit_get_loginuid(current);
2679 sessionid = audit_get_sessionid(current);
2680 current_uid_gid(&uid, &gid);
2681
2682 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2683 from_kuid(&init_user_ns, auid),
2684 from_kuid(&init_user_ns, uid),
2685 from_kgid(&init_user_ns, gid),
2686 sessionid);
2687 audit_log_task_context(ab);
2688 audit_log_format(ab, " pid=%d comm=", current->pid);
2689 audit_log_untrustedstring(ab, current->comm);
2690 }
2691
2692 static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2693 {
2694 audit_log_task(ab);
2695 audit_log_format(ab, " reason=");
2696 audit_log_string(ab, reason);
2697 audit_log_format(ab, " sig=%ld", signr);
2698 }
2699 /**
2700 * audit_core_dumps - record information about processes that end abnormally
2701 * @signr: signal value
2702 *
2703 * If a process ends with a core dump, something fishy is going on and we
2704 * should record the event for investigation.
2705 */
2706 void audit_core_dumps(long signr)
2707 {
2708 struct audit_buffer *ab;
2709
2710 if (!audit_enabled)
2711 return;
2712
2713 if (signr == SIGQUIT) /* don't care for those */
2714 return;
2715
2716 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2717 if (unlikely(!ab))
2718 return;
2719 audit_log_abend(ab, "memory violation", signr);
2720 audit_log_end(ab);
2721 }
2722
2723 void __audit_seccomp(unsigned long syscall, long signr, int code)
2724 {
2725 struct audit_buffer *ab;
2726
2727 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2728 if (unlikely(!ab))
2729 return;
2730 audit_log_task(ab);
2731 audit_log_format(ab, " sig=%ld", signr);
2732 audit_log_format(ab, " syscall=%ld", syscall);
2733 audit_log_format(ab, " compat=%d", is_compat_task());
2734 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2735 audit_log_format(ab, " code=0x%x", code);
2736 audit_log_end(ab);
2737 }
2738
2739 struct list_head *audit_killed_trees(void)
2740 {
2741 struct audit_context *ctx = current->audit_context;
2742 if (likely(!ctx || !ctx->in_syscall))
2743 return NULL;
2744 return &ctx->killed_trees;
2745 }