IPVS: Extend scheduling functions for IPv6 support
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <asm/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/mount.h>
53 #include <linux/socket.h>
54 #include <linux/mqueue.h>
55 #include <linux/audit.h>
56 #include <linux/personality.h>
57 #include <linux/time.h>
58 #include <linux/netlink.h>
59 #include <linux/compiler.h>
60 #include <asm/unistd.h>
61 #include <linux/security.h>
62 #include <linux/list.h>
63 #include <linux/tty.h>
64 #include <linux/binfmts.h>
65 #include <linux/highmem.h>
66 #include <linux/syscalls.h>
67 #include <linux/inotify.h>
68
69 #include "audit.h"
70
71 /* AUDIT_NAMES is the number of slots we reserve in the audit_context
72 * for saving names from getname(). */
73 #define AUDIT_NAMES 20
74
75 /* Indicates that audit should log the full pathname. */
76 #define AUDIT_NAME_FULL -1
77
78 /* no execve audit message should be longer than this (userspace limits) */
79 #define MAX_EXECVE_AUDIT_LEN 7500
80
81 /* number of audit rules */
82 int audit_n_rules;
83
84 /* determines whether we collect data for signals sent */
85 int audit_signals;
86
87 /* When fs/namei.c:getname() is called, we store the pointer in name and
88 * we don't let putname() free it (instead we free all of the saved
89 * pointers at syscall exit time).
90 *
91 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
92 struct audit_names {
93 const char *name;
94 int name_len; /* number of name's characters to log */
95 unsigned name_put; /* call __putname() for this name */
96 unsigned long ino;
97 dev_t dev;
98 umode_t mode;
99 uid_t uid;
100 gid_t gid;
101 dev_t rdev;
102 u32 osid;
103 };
104
105 struct audit_aux_data {
106 struct audit_aux_data *next;
107 int type;
108 };
109
110 #define AUDIT_AUX_IPCPERM 0
111
112 /* Number of target pids per aux struct. */
113 #define AUDIT_AUX_PIDS 16
114
115 struct audit_aux_data_mq_open {
116 struct audit_aux_data d;
117 int oflag;
118 mode_t mode;
119 struct mq_attr attr;
120 };
121
122 struct audit_aux_data_mq_sendrecv {
123 struct audit_aux_data d;
124 mqd_t mqdes;
125 size_t msg_len;
126 unsigned int msg_prio;
127 struct timespec abs_timeout;
128 };
129
130 struct audit_aux_data_mq_notify {
131 struct audit_aux_data d;
132 mqd_t mqdes;
133 struct sigevent notification;
134 };
135
136 struct audit_aux_data_mq_getsetattr {
137 struct audit_aux_data d;
138 mqd_t mqdes;
139 struct mq_attr mqstat;
140 };
141
142 struct audit_aux_data_ipcctl {
143 struct audit_aux_data d;
144 struct ipc_perm p;
145 unsigned long qbytes;
146 uid_t uid;
147 gid_t gid;
148 mode_t mode;
149 u32 osid;
150 };
151
152 struct audit_aux_data_execve {
153 struct audit_aux_data d;
154 int argc;
155 int envc;
156 struct mm_struct *mm;
157 };
158
159 struct audit_aux_data_socketcall {
160 struct audit_aux_data d;
161 int nargs;
162 unsigned long args[0];
163 };
164
165 struct audit_aux_data_sockaddr {
166 struct audit_aux_data d;
167 int len;
168 char a[0];
169 };
170
171 struct audit_aux_data_fd_pair {
172 struct audit_aux_data d;
173 int fd[2];
174 };
175
176 struct audit_aux_data_pids {
177 struct audit_aux_data d;
178 pid_t target_pid[AUDIT_AUX_PIDS];
179 uid_t target_auid[AUDIT_AUX_PIDS];
180 uid_t target_uid[AUDIT_AUX_PIDS];
181 unsigned int target_sessionid[AUDIT_AUX_PIDS];
182 u32 target_sid[AUDIT_AUX_PIDS];
183 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
184 int pid_count;
185 };
186
187 struct audit_tree_refs {
188 struct audit_tree_refs *next;
189 struct audit_chunk *c[31];
190 };
191
192 /* The per-task audit context. */
193 struct audit_context {
194 int dummy; /* must be the first element */
195 int in_syscall; /* 1 if task is in a syscall */
196 enum audit_state state;
197 unsigned int serial; /* serial number for record */
198 struct timespec ctime; /* time of syscall entry */
199 int major; /* syscall number */
200 unsigned long argv[4]; /* syscall arguments */
201 int return_valid; /* return code is valid */
202 long return_code;/* syscall return code */
203 int auditable; /* 1 if record should be written */
204 int name_count;
205 struct audit_names names[AUDIT_NAMES];
206 char * filterkey; /* key for rule that triggered record */
207 struct path pwd;
208 struct audit_context *previous; /* For nested syscalls */
209 struct audit_aux_data *aux;
210 struct audit_aux_data *aux_pids;
211
212 /* Save things to print about task_struct */
213 pid_t pid, ppid;
214 uid_t uid, euid, suid, fsuid;
215 gid_t gid, egid, sgid, fsgid;
216 unsigned long personality;
217 int arch;
218
219 pid_t target_pid;
220 uid_t target_auid;
221 uid_t target_uid;
222 unsigned int target_sessionid;
223 u32 target_sid;
224 char target_comm[TASK_COMM_LEN];
225
226 struct audit_tree_refs *trees, *first_trees;
227 int tree_count;
228
229 #if AUDIT_DEBUG
230 int put_count;
231 int ino_count;
232 #endif
233 };
234
235 #define ACC_MODE(x) ("\004\002\006\006"[(x)&O_ACCMODE])
236 static inline int open_arg(int flags, int mask)
237 {
238 int n = ACC_MODE(flags);
239 if (flags & (O_TRUNC | O_CREAT))
240 n |= AUDIT_PERM_WRITE;
241 return n & mask;
242 }
243
244 static int audit_match_perm(struct audit_context *ctx, int mask)
245 {
246 if (unlikely(!ctx))
247 return 0;
248
249 unsigned n = ctx->major;
250 switch (audit_classify_syscall(ctx->arch, n)) {
251 case 0: /* native */
252 if ((mask & AUDIT_PERM_WRITE) &&
253 audit_match_class(AUDIT_CLASS_WRITE, n))
254 return 1;
255 if ((mask & AUDIT_PERM_READ) &&
256 audit_match_class(AUDIT_CLASS_READ, n))
257 return 1;
258 if ((mask & AUDIT_PERM_ATTR) &&
259 audit_match_class(AUDIT_CLASS_CHATTR, n))
260 return 1;
261 return 0;
262 case 1: /* 32bit on biarch */
263 if ((mask & AUDIT_PERM_WRITE) &&
264 audit_match_class(AUDIT_CLASS_WRITE_32, n))
265 return 1;
266 if ((mask & AUDIT_PERM_READ) &&
267 audit_match_class(AUDIT_CLASS_READ_32, n))
268 return 1;
269 if ((mask & AUDIT_PERM_ATTR) &&
270 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
271 return 1;
272 return 0;
273 case 2: /* open */
274 return mask & ACC_MODE(ctx->argv[1]);
275 case 3: /* openat */
276 return mask & ACC_MODE(ctx->argv[2]);
277 case 4: /* socketcall */
278 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
279 case 5: /* execve */
280 return mask & AUDIT_PERM_EXEC;
281 default:
282 return 0;
283 }
284 }
285
286 static int audit_match_filetype(struct audit_context *ctx, int which)
287 {
288 unsigned index = which & ~S_IFMT;
289 mode_t mode = which & S_IFMT;
290
291 if (unlikely(!ctx))
292 return 0;
293
294 if (index >= ctx->name_count)
295 return 0;
296 if (ctx->names[index].ino == -1)
297 return 0;
298 if ((ctx->names[index].mode ^ mode) & S_IFMT)
299 return 0;
300 return 1;
301 }
302
303 /*
304 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
305 * ->first_trees points to its beginning, ->trees - to the current end of data.
306 * ->tree_count is the number of free entries in array pointed to by ->trees.
307 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
308 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
309 * it's going to remain 1-element for almost any setup) until we free context itself.
310 * References in it _are_ dropped - at the same time we free/drop aux stuff.
311 */
312
313 #ifdef CONFIG_AUDIT_TREE
314 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
315 {
316 struct audit_tree_refs *p = ctx->trees;
317 int left = ctx->tree_count;
318 if (likely(left)) {
319 p->c[--left] = chunk;
320 ctx->tree_count = left;
321 return 1;
322 }
323 if (!p)
324 return 0;
325 p = p->next;
326 if (p) {
327 p->c[30] = chunk;
328 ctx->trees = p;
329 ctx->tree_count = 30;
330 return 1;
331 }
332 return 0;
333 }
334
335 static int grow_tree_refs(struct audit_context *ctx)
336 {
337 struct audit_tree_refs *p = ctx->trees;
338 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
339 if (!ctx->trees) {
340 ctx->trees = p;
341 return 0;
342 }
343 if (p)
344 p->next = ctx->trees;
345 else
346 ctx->first_trees = ctx->trees;
347 ctx->tree_count = 31;
348 return 1;
349 }
350 #endif
351
352 static void unroll_tree_refs(struct audit_context *ctx,
353 struct audit_tree_refs *p, int count)
354 {
355 #ifdef CONFIG_AUDIT_TREE
356 struct audit_tree_refs *q;
357 int n;
358 if (!p) {
359 /* we started with empty chain */
360 p = ctx->first_trees;
361 count = 31;
362 /* if the very first allocation has failed, nothing to do */
363 if (!p)
364 return;
365 }
366 n = count;
367 for (q = p; q != ctx->trees; q = q->next, n = 31) {
368 while (n--) {
369 audit_put_chunk(q->c[n]);
370 q->c[n] = NULL;
371 }
372 }
373 while (n-- > ctx->tree_count) {
374 audit_put_chunk(q->c[n]);
375 q->c[n] = NULL;
376 }
377 ctx->trees = p;
378 ctx->tree_count = count;
379 #endif
380 }
381
382 static void free_tree_refs(struct audit_context *ctx)
383 {
384 struct audit_tree_refs *p, *q;
385 for (p = ctx->first_trees; p; p = q) {
386 q = p->next;
387 kfree(p);
388 }
389 }
390
391 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
392 {
393 #ifdef CONFIG_AUDIT_TREE
394 struct audit_tree_refs *p;
395 int n;
396 if (!tree)
397 return 0;
398 /* full ones */
399 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
400 for (n = 0; n < 31; n++)
401 if (audit_tree_match(p->c[n], tree))
402 return 1;
403 }
404 /* partial */
405 if (p) {
406 for (n = ctx->tree_count; n < 31; n++)
407 if (audit_tree_match(p->c[n], tree))
408 return 1;
409 }
410 #endif
411 return 0;
412 }
413
414 /* Determine if any context name data matches a rule's watch data */
415 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
416 * otherwise. */
417 static int audit_filter_rules(struct task_struct *tsk,
418 struct audit_krule *rule,
419 struct audit_context *ctx,
420 struct audit_names *name,
421 enum audit_state *state)
422 {
423 int i, j, need_sid = 1;
424 u32 sid;
425
426 for (i = 0; i < rule->field_count; i++) {
427 struct audit_field *f = &rule->fields[i];
428 int result = 0;
429
430 switch (f->type) {
431 case AUDIT_PID:
432 result = audit_comparator(tsk->pid, f->op, f->val);
433 break;
434 case AUDIT_PPID:
435 if (ctx) {
436 if (!ctx->ppid)
437 ctx->ppid = sys_getppid();
438 result = audit_comparator(ctx->ppid, f->op, f->val);
439 }
440 break;
441 case AUDIT_UID:
442 result = audit_comparator(tsk->uid, f->op, f->val);
443 break;
444 case AUDIT_EUID:
445 result = audit_comparator(tsk->euid, f->op, f->val);
446 break;
447 case AUDIT_SUID:
448 result = audit_comparator(tsk->suid, f->op, f->val);
449 break;
450 case AUDIT_FSUID:
451 result = audit_comparator(tsk->fsuid, f->op, f->val);
452 break;
453 case AUDIT_GID:
454 result = audit_comparator(tsk->gid, f->op, f->val);
455 break;
456 case AUDIT_EGID:
457 result = audit_comparator(tsk->egid, f->op, f->val);
458 break;
459 case AUDIT_SGID:
460 result = audit_comparator(tsk->sgid, f->op, f->val);
461 break;
462 case AUDIT_FSGID:
463 result = audit_comparator(tsk->fsgid, f->op, f->val);
464 break;
465 case AUDIT_PERS:
466 result = audit_comparator(tsk->personality, f->op, f->val);
467 break;
468 case AUDIT_ARCH:
469 if (ctx)
470 result = audit_comparator(ctx->arch, f->op, f->val);
471 break;
472
473 case AUDIT_EXIT:
474 if (ctx && ctx->return_valid)
475 result = audit_comparator(ctx->return_code, f->op, f->val);
476 break;
477 case AUDIT_SUCCESS:
478 if (ctx && ctx->return_valid) {
479 if (f->val)
480 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
481 else
482 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
483 }
484 break;
485 case AUDIT_DEVMAJOR:
486 if (name)
487 result = audit_comparator(MAJOR(name->dev),
488 f->op, f->val);
489 else if (ctx) {
490 for (j = 0; j < ctx->name_count; j++) {
491 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
492 ++result;
493 break;
494 }
495 }
496 }
497 break;
498 case AUDIT_DEVMINOR:
499 if (name)
500 result = audit_comparator(MINOR(name->dev),
501 f->op, f->val);
502 else if (ctx) {
503 for (j = 0; j < ctx->name_count; j++) {
504 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
505 ++result;
506 break;
507 }
508 }
509 }
510 break;
511 case AUDIT_INODE:
512 if (name)
513 result = (name->ino == f->val);
514 else if (ctx) {
515 for (j = 0; j < ctx->name_count; j++) {
516 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
517 ++result;
518 break;
519 }
520 }
521 }
522 break;
523 case AUDIT_WATCH:
524 if (name && rule->watch->ino != (unsigned long)-1)
525 result = (name->dev == rule->watch->dev &&
526 name->ino == rule->watch->ino);
527 break;
528 case AUDIT_DIR:
529 if (ctx)
530 result = match_tree_refs(ctx, rule->tree);
531 break;
532 case AUDIT_LOGINUID:
533 result = 0;
534 if (ctx)
535 result = audit_comparator(tsk->loginuid, f->op, f->val);
536 break;
537 case AUDIT_SUBJ_USER:
538 case AUDIT_SUBJ_ROLE:
539 case AUDIT_SUBJ_TYPE:
540 case AUDIT_SUBJ_SEN:
541 case AUDIT_SUBJ_CLR:
542 /* NOTE: this may return negative values indicating
543 a temporary error. We simply treat this as a
544 match for now to avoid losing information that
545 may be wanted. An error message will also be
546 logged upon error */
547 if (f->lsm_rule) {
548 if (need_sid) {
549 security_task_getsecid(tsk, &sid);
550 need_sid = 0;
551 }
552 result = security_audit_rule_match(sid, f->type,
553 f->op,
554 f->lsm_rule,
555 ctx);
556 }
557 break;
558 case AUDIT_OBJ_USER:
559 case AUDIT_OBJ_ROLE:
560 case AUDIT_OBJ_TYPE:
561 case AUDIT_OBJ_LEV_LOW:
562 case AUDIT_OBJ_LEV_HIGH:
563 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
564 also applies here */
565 if (f->lsm_rule) {
566 /* Find files that match */
567 if (name) {
568 result = security_audit_rule_match(
569 name->osid, f->type, f->op,
570 f->lsm_rule, ctx);
571 } else if (ctx) {
572 for (j = 0; j < ctx->name_count; j++) {
573 if (security_audit_rule_match(
574 ctx->names[j].osid,
575 f->type, f->op,
576 f->lsm_rule, ctx)) {
577 ++result;
578 break;
579 }
580 }
581 }
582 /* Find ipc objects that match */
583 if (ctx) {
584 struct audit_aux_data *aux;
585 for (aux = ctx->aux; aux;
586 aux = aux->next) {
587 if (aux->type == AUDIT_IPC) {
588 struct audit_aux_data_ipcctl *axi = (void *)aux;
589 if (security_audit_rule_match(axi->osid, f->type, f->op, f->lsm_rule, ctx)) {
590 ++result;
591 break;
592 }
593 }
594 }
595 }
596 }
597 break;
598 case AUDIT_ARG0:
599 case AUDIT_ARG1:
600 case AUDIT_ARG2:
601 case AUDIT_ARG3:
602 if (ctx)
603 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
604 break;
605 case AUDIT_FILTERKEY:
606 /* ignore this field for filtering */
607 result = 1;
608 break;
609 case AUDIT_PERM:
610 result = audit_match_perm(ctx, f->val);
611 break;
612 case AUDIT_FILETYPE:
613 result = audit_match_filetype(ctx, f->val);
614 break;
615 }
616
617 if (!result)
618 return 0;
619 }
620 if (rule->filterkey && ctx)
621 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
622 switch (rule->action) {
623 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
624 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
625 }
626 return 1;
627 }
628
629 /* At process creation time, we can determine if system-call auditing is
630 * completely disabled for this task. Since we only have the task
631 * structure at this point, we can only check uid and gid.
632 */
633 static enum audit_state audit_filter_task(struct task_struct *tsk)
634 {
635 struct audit_entry *e;
636 enum audit_state state;
637
638 rcu_read_lock();
639 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
640 if (audit_filter_rules(tsk, &e->rule, NULL, NULL, &state)) {
641 rcu_read_unlock();
642 return state;
643 }
644 }
645 rcu_read_unlock();
646 return AUDIT_BUILD_CONTEXT;
647 }
648
649 /* At syscall entry and exit time, this filter is called if the
650 * audit_state is not low enough that auditing cannot take place, but is
651 * also not high enough that we already know we have to write an audit
652 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
653 */
654 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
655 struct audit_context *ctx,
656 struct list_head *list)
657 {
658 struct audit_entry *e;
659 enum audit_state state;
660
661 if (audit_pid && tsk->tgid == audit_pid)
662 return AUDIT_DISABLED;
663
664 rcu_read_lock();
665 if (!list_empty(list)) {
666 int word = AUDIT_WORD(ctx->major);
667 int bit = AUDIT_BIT(ctx->major);
668
669 list_for_each_entry_rcu(e, list, list) {
670 if ((e->rule.mask[word] & bit) == bit &&
671 audit_filter_rules(tsk, &e->rule, ctx, NULL,
672 &state)) {
673 rcu_read_unlock();
674 return state;
675 }
676 }
677 }
678 rcu_read_unlock();
679 return AUDIT_BUILD_CONTEXT;
680 }
681
682 /* At syscall exit time, this filter is called if any audit_names[] have been
683 * collected during syscall processing. We only check rules in sublists at hash
684 * buckets applicable to the inode numbers in audit_names[].
685 * Regarding audit_state, same rules apply as for audit_filter_syscall().
686 */
687 enum audit_state audit_filter_inodes(struct task_struct *tsk,
688 struct audit_context *ctx)
689 {
690 int i;
691 struct audit_entry *e;
692 enum audit_state state;
693
694 if (audit_pid && tsk->tgid == audit_pid)
695 return AUDIT_DISABLED;
696
697 rcu_read_lock();
698 for (i = 0; i < ctx->name_count; i++) {
699 int word = AUDIT_WORD(ctx->major);
700 int bit = AUDIT_BIT(ctx->major);
701 struct audit_names *n = &ctx->names[i];
702 int h = audit_hash_ino((u32)n->ino);
703 struct list_head *list = &audit_inode_hash[h];
704
705 if (list_empty(list))
706 continue;
707
708 list_for_each_entry_rcu(e, list, list) {
709 if ((e->rule.mask[word] & bit) == bit &&
710 audit_filter_rules(tsk, &e->rule, ctx, n, &state)) {
711 rcu_read_unlock();
712 return state;
713 }
714 }
715 }
716 rcu_read_unlock();
717 return AUDIT_BUILD_CONTEXT;
718 }
719
720 void audit_set_auditable(struct audit_context *ctx)
721 {
722 ctx->auditable = 1;
723 }
724
725 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
726 int return_valid,
727 int return_code)
728 {
729 struct audit_context *context = tsk->audit_context;
730
731 if (likely(!context))
732 return NULL;
733 context->return_valid = return_valid;
734
735 /*
736 * we need to fix up the return code in the audit logs if the actual
737 * return codes are later going to be fixed up by the arch specific
738 * signal handlers
739 *
740 * This is actually a test for:
741 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
742 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
743 *
744 * but is faster than a bunch of ||
745 */
746 if (unlikely(return_code <= -ERESTARTSYS) &&
747 (return_code >= -ERESTART_RESTARTBLOCK) &&
748 (return_code != -ENOIOCTLCMD))
749 context->return_code = -EINTR;
750 else
751 context->return_code = return_code;
752
753 if (context->in_syscall && !context->dummy && !context->auditable) {
754 enum audit_state state;
755
756 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
757 if (state == AUDIT_RECORD_CONTEXT) {
758 context->auditable = 1;
759 goto get_context;
760 }
761
762 state = audit_filter_inodes(tsk, context);
763 if (state == AUDIT_RECORD_CONTEXT)
764 context->auditable = 1;
765
766 }
767
768 get_context:
769
770 tsk->audit_context = NULL;
771 return context;
772 }
773
774 static inline void audit_free_names(struct audit_context *context)
775 {
776 int i;
777
778 #if AUDIT_DEBUG == 2
779 if (context->auditable
780 ||context->put_count + context->ino_count != context->name_count) {
781 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
782 " name_count=%d put_count=%d"
783 " ino_count=%d [NOT freeing]\n",
784 __FILE__, __LINE__,
785 context->serial, context->major, context->in_syscall,
786 context->name_count, context->put_count,
787 context->ino_count);
788 for (i = 0; i < context->name_count; i++) {
789 printk(KERN_ERR "names[%d] = %p = %s\n", i,
790 context->names[i].name,
791 context->names[i].name ?: "(null)");
792 }
793 dump_stack();
794 return;
795 }
796 #endif
797 #if AUDIT_DEBUG
798 context->put_count = 0;
799 context->ino_count = 0;
800 #endif
801
802 for (i = 0; i < context->name_count; i++) {
803 if (context->names[i].name && context->names[i].name_put)
804 __putname(context->names[i].name);
805 }
806 context->name_count = 0;
807 path_put(&context->pwd);
808 context->pwd.dentry = NULL;
809 context->pwd.mnt = NULL;
810 }
811
812 static inline void audit_free_aux(struct audit_context *context)
813 {
814 struct audit_aux_data *aux;
815
816 while ((aux = context->aux)) {
817 context->aux = aux->next;
818 kfree(aux);
819 }
820 while ((aux = context->aux_pids)) {
821 context->aux_pids = aux->next;
822 kfree(aux);
823 }
824 }
825
826 static inline void audit_zero_context(struct audit_context *context,
827 enum audit_state state)
828 {
829 memset(context, 0, sizeof(*context));
830 context->state = state;
831 }
832
833 static inline struct audit_context *audit_alloc_context(enum audit_state state)
834 {
835 struct audit_context *context;
836
837 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
838 return NULL;
839 audit_zero_context(context, state);
840 return context;
841 }
842
843 /**
844 * audit_alloc - allocate an audit context block for a task
845 * @tsk: task
846 *
847 * Filter on the task information and allocate a per-task audit context
848 * if necessary. Doing so turns on system call auditing for the
849 * specified task. This is called from copy_process, so no lock is
850 * needed.
851 */
852 int audit_alloc(struct task_struct *tsk)
853 {
854 struct audit_context *context;
855 enum audit_state state;
856
857 if (likely(!audit_ever_enabled))
858 return 0; /* Return if not auditing. */
859
860 state = audit_filter_task(tsk);
861 if (likely(state == AUDIT_DISABLED))
862 return 0;
863
864 if (!(context = audit_alloc_context(state))) {
865 audit_log_lost("out of memory in audit_alloc");
866 return -ENOMEM;
867 }
868
869 tsk->audit_context = context;
870 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
871 return 0;
872 }
873
874 static inline void audit_free_context(struct audit_context *context)
875 {
876 struct audit_context *previous;
877 int count = 0;
878
879 do {
880 previous = context->previous;
881 if (previous || (count && count < 10)) {
882 ++count;
883 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
884 " freeing multiple contexts (%d)\n",
885 context->serial, context->major,
886 context->name_count, count);
887 }
888 audit_free_names(context);
889 unroll_tree_refs(context, NULL, 0);
890 free_tree_refs(context);
891 audit_free_aux(context);
892 kfree(context->filterkey);
893 kfree(context);
894 context = previous;
895 } while (context);
896 if (count >= 10)
897 printk(KERN_ERR "audit: freed %d contexts\n", count);
898 }
899
900 void audit_log_task_context(struct audit_buffer *ab)
901 {
902 char *ctx = NULL;
903 unsigned len;
904 int error;
905 u32 sid;
906
907 security_task_getsecid(current, &sid);
908 if (!sid)
909 return;
910
911 error = security_secid_to_secctx(sid, &ctx, &len);
912 if (error) {
913 if (error != -EINVAL)
914 goto error_path;
915 return;
916 }
917
918 audit_log_format(ab, " subj=%s", ctx);
919 security_release_secctx(ctx, len);
920 return;
921
922 error_path:
923 audit_panic("error in audit_log_task_context");
924 return;
925 }
926
927 EXPORT_SYMBOL(audit_log_task_context);
928
929 static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
930 {
931 char name[sizeof(tsk->comm)];
932 struct mm_struct *mm = tsk->mm;
933 struct vm_area_struct *vma;
934
935 /* tsk == current */
936
937 get_task_comm(name, tsk);
938 audit_log_format(ab, " comm=");
939 audit_log_untrustedstring(ab, name);
940
941 if (mm) {
942 down_read(&mm->mmap_sem);
943 vma = mm->mmap;
944 while (vma) {
945 if ((vma->vm_flags & VM_EXECUTABLE) &&
946 vma->vm_file) {
947 audit_log_d_path(ab, "exe=",
948 &vma->vm_file->f_path);
949 break;
950 }
951 vma = vma->vm_next;
952 }
953 up_read(&mm->mmap_sem);
954 }
955 audit_log_task_context(ab);
956 }
957
958 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
959 uid_t auid, uid_t uid, unsigned int sessionid,
960 u32 sid, char *comm)
961 {
962 struct audit_buffer *ab;
963 char *ctx = NULL;
964 u32 len;
965 int rc = 0;
966
967 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
968 if (!ab)
969 return rc;
970
971 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
972 uid, sessionid);
973 if (security_secid_to_secctx(sid, &ctx, &len)) {
974 audit_log_format(ab, " obj=(none)");
975 rc = 1;
976 } else {
977 audit_log_format(ab, " obj=%s", ctx);
978 security_release_secctx(ctx, len);
979 }
980 audit_log_format(ab, " ocomm=");
981 audit_log_untrustedstring(ab, comm);
982 audit_log_end(ab);
983
984 return rc;
985 }
986
987 /*
988 * to_send and len_sent accounting are very loose estimates. We aren't
989 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
990 * within about 500 bytes (next page boundry)
991 *
992 * why snprintf? an int is up to 12 digits long. if we just assumed when
993 * logging that a[%d]= was going to be 16 characters long we would be wasting
994 * space in every audit message. In one 7500 byte message we can log up to
995 * about 1000 min size arguments. That comes down to about 50% waste of space
996 * if we didn't do the snprintf to find out how long arg_num_len was.
997 */
998 static int audit_log_single_execve_arg(struct audit_context *context,
999 struct audit_buffer **ab,
1000 int arg_num,
1001 size_t *len_sent,
1002 const char __user *p,
1003 char *buf)
1004 {
1005 char arg_num_len_buf[12];
1006 const char __user *tmp_p = p;
1007 /* how many digits are in arg_num? 3 is the length of a=\n */
1008 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 3;
1009 size_t len, len_left, to_send;
1010 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1011 unsigned int i, has_cntl = 0, too_long = 0;
1012 int ret;
1013
1014 /* strnlen_user includes the null we don't want to send */
1015 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1016
1017 /*
1018 * We just created this mm, if we can't find the strings
1019 * we just copied into it something is _very_ wrong. Similar
1020 * for strings that are too long, we should not have created
1021 * any.
1022 */
1023 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1024 WARN_ON(1);
1025 send_sig(SIGKILL, current, 0);
1026 return -1;
1027 }
1028
1029 /* walk the whole argument looking for non-ascii chars */
1030 do {
1031 if (len_left > MAX_EXECVE_AUDIT_LEN)
1032 to_send = MAX_EXECVE_AUDIT_LEN;
1033 else
1034 to_send = len_left;
1035 ret = copy_from_user(buf, tmp_p, to_send);
1036 /*
1037 * There is no reason for this copy to be short. We just
1038 * copied them here, and the mm hasn't been exposed to user-
1039 * space yet.
1040 */
1041 if (ret) {
1042 WARN_ON(1);
1043 send_sig(SIGKILL, current, 0);
1044 return -1;
1045 }
1046 buf[to_send] = '\0';
1047 has_cntl = audit_string_contains_control(buf, to_send);
1048 if (has_cntl) {
1049 /*
1050 * hex messages get logged as 2 bytes, so we can only
1051 * send half as much in each message
1052 */
1053 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1054 break;
1055 }
1056 len_left -= to_send;
1057 tmp_p += to_send;
1058 } while (len_left > 0);
1059
1060 len_left = len;
1061
1062 if (len > max_execve_audit_len)
1063 too_long = 1;
1064
1065 /* rewalk the argument actually logging the message */
1066 for (i = 0; len_left > 0; i++) {
1067 int room_left;
1068
1069 if (len_left > max_execve_audit_len)
1070 to_send = max_execve_audit_len;
1071 else
1072 to_send = len_left;
1073
1074 /* do we have space left to send this argument in this ab? */
1075 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1076 if (has_cntl)
1077 room_left -= (to_send * 2);
1078 else
1079 room_left -= to_send;
1080 if (room_left < 0) {
1081 *len_sent = 0;
1082 audit_log_end(*ab);
1083 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1084 if (!*ab)
1085 return 0;
1086 }
1087
1088 /*
1089 * first record needs to say how long the original string was
1090 * so we can be sure nothing was lost.
1091 */
1092 if ((i == 0) && (too_long))
1093 audit_log_format(*ab, "a%d_len=%zu ", arg_num,
1094 has_cntl ? 2*len : len);
1095
1096 /*
1097 * normally arguments are small enough to fit and we already
1098 * filled buf above when we checked for control characters
1099 * so don't bother with another copy_from_user
1100 */
1101 if (len >= max_execve_audit_len)
1102 ret = copy_from_user(buf, p, to_send);
1103 else
1104 ret = 0;
1105 if (ret) {
1106 WARN_ON(1);
1107 send_sig(SIGKILL, current, 0);
1108 return -1;
1109 }
1110 buf[to_send] = '\0';
1111
1112 /* actually log it */
1113 audit_log_format(*ab, "a%d", arg_num);
1114 if (too_long)
1115 audit_log_format(*ab, "[%d]", i);
1116 audit_log_format(*ab, "=");
1117 if (has_cntl)
1118 audit_log_n_hex(*ab, buf, to_send);
1119 else
1120 audit_log_format(*ab, "\"%s\"", buf);
1121 audit_log_format(*ab, "\n");
1122
1123 p += to_send;
1124 len_left -= to_send;
1125 *len_sent += arg_num_len;
1126 if (has_cntl)
1127 *len_sent += to_send * 2;
1128 else
1129 *len_sent += to_send;
1130 }
1131 /* include the null we didn't log */
1132 return len + 1;
1133 }
1134
1135 static void audit_log_execve_info(struct audit_context *context,
1136 struct audit_buffer **ab,
1137 struct audit_aux_data_execve *axi)
1138 {
1139 int i;
1140 size_t len, len_sent = 0;
1141 const char __user *p;
1142 char *buf;
1143
1144 if (axi->mm != current->mm)
1145 return; /* execve failed, no additional info */
1146
1147 p = (const char __user *)axi->mm->arg_start;
1148
1149 audit_log_format(*ab, "argc=%d ", axi->argc);
1150
1151 /*
1152 * we need some kernel buffer to hold the userspace args. Just
1153 * allocate one big one rather than allocating one of the right size
1154 * for every single argument inside audit_log_single_execve_arg()
1155 * should be <8k allocation so should be pretty safe.
1156 */
1157 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1158 if (!buf) {
1159 audit_panic("out of memory for argv string\n");
1160 return;
1161 }
1162
1163 for (i = 0; i < axi->argc; i++) {
1164 len = audit_log_single_execve_arg(context, ab, i,
1165 &len_sent, p, buf);
1166 if (len <= 0)
1167 break;
1168 p += len;
1169 }
1170 kfree(buf);
1171 }
1172
1173 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1174 {
1175 int i, call_panic = 0;
1176 struct audit_buffer *ab;
1177 struct audit_aux_data *aux;
1178 const char *tty;
1179
1180 /* tsk == current */
1181 context->pid = tsk->pid;
1182 if (!context->ppid)
1183 context->ppid = sys_getppid();
1184 context->uid = tsk->uid;
1185 context->gid = tsk->gid;
1186 context->euid = tsk->euid;
1187 context->suid = tsk->suid;
1188 context->fsuid = tsk->fsuid;
1189 context->egid = tsk->egid;
1190 context->sgid = tsk->sgid;
1191 context->fsgid = tsk->fsgid;
1192 context->personality = tsk->personality;
1193
1194 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1195 if (!ab)
1196 return; /* audit_panic has been called */
1197 audit_log_format(ab, "arch=%x syscall=%d",
1198 context->arch, context->major);
1199 if (context->personality != PER_LINUX)
1200 audit_log_format(ab, " per=%lx", context->personality);
1201 if (context->return_valid)
1202 audit_log_format(ab, " success=%s exit=%ld",
1203 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1204 context->return_code);
1205
1206 mutex_lock(&tty_mutex);
1207 read_lock(&tasklist_lock);
1208 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1209 tty = tsk->signal->tty->name;
1210 else
1211 tty = "(none)";
1212 read_unlock(&tasklist_lock);
1213 audit_log_format(ab,
1214 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1215 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1216 " euid=%u suid=%u fsuid=%u"
1217 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1218 context->argv[0],
1219 context->argv[1],
1220 context->argv[2],
1221 context->argv[3],
1222 context->name_count,
1223 context->ppid,
1224 context->pid,
1225 tsk->loginuid,
1226 context->uid,
1227 context->gid,
1228 context->euid, context->suid, context->fsuid,
1229 context->egid, context->sgid, context->fsgid, tty,
1230 tsk->sessionid);
1231
1232 mutex_unlock(&tty_mutex);
1233
1234 audit_log_task_info(ab, tsk);
1235 if (context->filterkey) {
1236 audit_log_format(ab, " key=");
1237 audit_log_untrustedstring(ab, context->filterkey);
1238 } else
1239 audit_log_format(ab, " key=(null)");
1240 audit_log_end(ab);
1241
1242 for (aux = context->aux; aux; aux = aux->next) {
1243
1244 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1245 if (!ab)
1246 continue; /* audit_panic has been called */
1247
1248 switch (aux->type) {
1249 case AUDIT_MQ_OPEN: {
1250 struct audit_aux_data_mq_open *axi = (void *)aux;
1251 audit_log_format(ab,
1252 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1253 "mq_msgsize=%ld mq_curmsgs=%ld",
1254 axi->oflag, axi->mode, axi->attr.mq_flags,
1255 axi->attr.mq_maxmsg, axi->attr.mq_msgsize,
1256 axi->attr.mq_curmsgs);
1257 break; }
1258
1259 case AUDIT_MQ_SENDRECV: {
1260 struct audit_aux_data_mq_sendrecv *axi = (void *)aux;
1261 audit_log_format(ab,
1262 "mqdes=%d msg_len=%zd msg_prio=%u "
1263 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1264 axi->mqdes, axi->msg_len, axi->msg_prio,
1265 axi->abs_timeout.tv_sec, axi->abs_timeout.tv_nsec);
1266 break; }
1267
1268 case AUDIT_MQ_NOTIFY: {
1269 struct audit_aux_data_mq_notify *axi = (void *)aux;
1270 audit_log_format(ab,
1271 "mqdes=%d sigev_signo=%d",
1272 axi->mqdes,
1273 axi->notification.sigev_signo);
1274 break; }
1275
1276 case AUDIT_MQ_GETSETATTR: {
1277 struct audit_aux_data_mq_getsetattr *axi = (void *)aux;
1278 audit_log_format(ab,
1279 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1280 "mq_curmsgs=%ld ",
1281 axi->mqdes,
1282 axi->mqstat.mq_flags, axi->mqstat.mq_maxmsg,
1283 axi->mqstat.mq_msgsize, axi->mqstat.mq_curmsgs);
1284 break; }
1285
1286 case AUDIT_IPC: {
1287 struct audit_aux_data_ipcctl *axi = (void *)aux;
1288 audit_log_format(ab,
1289 "ouid=%u ogid=%u mode=%#o",
1290 axi->uid, axi->gid, axi->mode);
1291 if (axi->osid != 0) {
1292 char *ctx = NULL;
1293 u32 len;
1294 if (security_secid_to_secctx(
1295 axi->osid, &ctx, &len)) {
1296 audit_log_format(ab, " osid=%u",
1297 axi->osid);
1298 call_panic = 1;
1299 } else {
1300 audit_log_format(ab, " obj=%s", ctx);
1301 security_release_secctx(ctx, len);
1302 }
1303 }
1304 break; }
1305
1306 case AUDIT_IPC_SET_PERM: {
1307 struct audit_aux_data_ipcctl *axi = (void *)aux;
1308 audit_log_format(ab,
1309 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1310 axi->qbytes, axi->uid, axi->gid, axi->mode);
1311 break; }
1312
1313 case AUDIT_EXECVE: {
1314 struct audit_aux_data_execve *axi = (void *)aux;
1315 audit_log_execve_info(context, &ab, axi);
1316 break; }
1317
1318 case AUDIT_SOCKETCALL: {
1319 struct audit_aux_data_socketcall *axs = (void *)aux;
1320 audit_log_format(ab, "nargs=%d", axs->nargs);
1321 for (i=0; i<axs->nargs; i++)
1322 audit_log_format(ab, " a%d=%lx", i, axs->args[i]);
1323 break; }
1324
1325 case AUDIT_SOCKADDR: {
1326 struct audit_aux_data_sockaddr *axs = (void *)aux;
1327
1328 audit_log_format(ab, "saddr=");
1329 audit_log_n_hex(ab, axs->a, axs->len);
1330 break; }
1331
1332 case AUDIT_FD_PAIR: {
1333 struct audit_aux_data_fd_pair *axs = (void *)aux;
1334 audit_log_format(ab, "fd0=%d fd1=%d", axs->fd[0], axs->fd[1]);
1335 break; }
1336
1337 }
1338 audit_log_end(ab);
1339 }
1340
1341 for (aux = context->aux_pids; aux; aux = aux->next) {
1342 struct audit_aux_data_pids *axs = (void *)aux;
1343
1344 for (i = 0; i < axs->pid_count; i++)
1345 if (audit_log_pid_context(context, axs->target_pid[i],
1346 axs->target_auid[i],
1347 axs->target_uid[i],
1348 axs->target_sessionid[i],
1349 axs->target_sid[i],
1350 axs->target_comm[i]))
1351 call_panic = 1;
1352 }
1353
1354 if (context->target_pid &&
1355 audit_log_pid_context(context, context->target_pid,
1356 context->target_auid, context->target_uid,
1357 context->target_sessionid,
1358 context->target_sid, context->target_comm))
1359 call_panic = 1;
1360
1361 if (context->pwd.dentry && context->pwd.mnt) {
1362 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1363 if (ab) {
1364 audit_log_d_path(ab, "cwd=", &context->pwd);
1365 audit_log_end(ab);
1366 }
1367 }
1368 for (i = 0; i < context->name_count; i++) {
1369 struct audit_names *n = &context->names[i];
1370
1371 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1372 if (!ab)
1373 continue; /* audit_panic has been called */
1374
1375 audit_log_format(ab, "item=%d", i);
1376
1377 if (n->name) {
1378 switch(n->name_len) {
1379 case AUDIT_NAME_FULL:
1380 /* log the full path */
1381 audit_log_format(ab, " name=");
1382 audit_log_untrustedstring(ab, n->name);
1383 break;
1384 case 0:
1385 /* name was specified as a relative path and the
1386 * directory component is the cwd */
1387 audit_log_d_path(ab, " name=", &context->pwd);
1388 break;
1389 default:
1390 /* log the name's directory component */
1391 audit_log_format(ab, " name=");
1392 audit_log_n_untrustedstring(ab, n->name,
1393 n->name_len);
1394 }
1395 } else
1396 audit_log_format(ab, " name=(null)");
1397
1398 if (n->ino != (unsigned long)-1) {
1399 audit_log_format(ab, " inode=%lu"
1400 " dev=%02x:%02x mode=%#o"
1401 " ouid=%u ogid=%u rdev=%02x:%02x",
1402 n->ino,
1403 MAJOR(n->dev),
1404 MINOR(n->dev),
1405 n->mode,
1406 n->uid,
1407 n->gid,
1408 MAJOR(n->rdev),
1409 MINOR(n->rdev));
1410 }
1411 if (n->osid != 0) {
1412 char *ctx = NULL;
1413 u32 len;
1414 if (security_secid_to_secctx(
1415 n->osid, &ctx, &len)) {
1416 audit_log_format(ab, " osid=%u", n->osid);
1417 call_panic = 2;
1418 } else {
1419 audit_log_format(ab, " obj=%s", ctx);
1420 security_release_secctx(ctx, len);
1421 }
1422 }
1423
1424 audit_log_end(ab);
1425 }
1426
1427 /* Send end of event record to help user space know we are finished */
1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1429 if (ab)
1430 audit_log_end(ab);
1431 if (call_panic)
1432 audit_panic("error converting sid to string");
1433 }
1434
1435 /**
1436 * audit_free - free a per-task audit context
1437 * @tsk: task whose audit context block to free
1438 *
1439 * Called from copy_process and do_exit
1440 */
1441 void audit_free(struct task_struct *tsk)
1442 {
1443 struct audit_context *context;
1444
1445 context = audit_get_context(tsk, 0, 0);
1446 if (likely(!context))
1447 return;
1448
1449 /* Check for system calls that do not go through the exit
1450 * function (e.g., exit_group), then free context block.
1451 * We use GFP_ATOMIC here because we might be doing this
1452 * in the context of the idle thread */
1453 /* that can happen only if we are called from do_exit() */
1454 if (context->in_syscall && context->auditable)
1455 audit_log_exit(context, tsk);
1456
1457 audit_free_context(context);
1458 }
1459
1460 /**
1461 * audit_syscall_entry - fill in an audit record at syscall entry
1462 * @tsk: task being audited
1463 * @arch: architecture type
1464 * @major: major syscall type (function)
1465 * @a1: additional syscall register 1
1466 * @a2: additional syscall register 2
1467 * @a3: additional syscall register 3
1468 * @a4: additional syscall register 4
1469 *
1470 * Fill in audit context at syscall entry. This only happens if the
1471 * audit context was created when the task was created and the state or
1472 * filters demand the audit context be built. If the state from the
1473 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1474 * then the record will be written at syscall exit time (otherwise, it
1475 * will only be written if another part of the kernel requests that it
1476 * be written).
1477 */
1478 void audit_syscall_entry(int arch, int major,
1479 unsigned long a1, unsigned long a2,
1480 unsigned long a3, unsigned long a4)
1481 {
1482 struct task_struct *tsk = current;
1483 struct audit_context *context = tsk->audit_context;
1484 enum audit_state state;
1485
1486 if (unlikely(!context))
1487 return;
1488
1489 /*
1490 * This happens only on certain architectures that make system
1491 * calls in kernel_thread via the entry.S interface, instead of
1492 * with direct calls. (If you are porting to a new
1493 * architecture, hitting this condition can indicate that you
1494 * got the _exit/_leave calls backward in entry.S.)
1495 *
1496 * i386 no
1497 * x86_64 no
1498 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1499 *
1500 * This also happens with vm86 emulation in a non-nested manner
1501 * (entries without exits), so this case must be caught.
1502 */
1503 if (context->in_syscall) {
1504 struct audit_context *newctx;
1505
1506 #if AUDIT_DEBUG
1507 printk(KERN_ERR
1508 "audit(:%d) pid=%d in syscall=%d;"
1509 " entering syscall=%d\n",
1510 context->serial, tsk->pid, context->major, major);
1511 #endif
1512 newctx = audit_alloc_context(context->state);
1513 if (newctx) {
1514 newctx->previous = context;
1515 context = newctx;
1516 tsk->audit_context = newctx;
1517 } else {
1518 /* If we can't alloc a new context, the best we
1519 * can do is to leak memory (any pending putname
1520 * will be lost). The only other alternative is
1521 * to abandon auditing. */
1522 audit_zero_context(context, context->state);
1523 }
1524 }
1525 BUG_ON(context->in_syscall || context->name_count);
1526
1527 if (!audit_enabled)
1528 return;
1529
1530 context->arch = arch;
1531 context->major = major;
1532 context->argv[0] = a1;
1533 context->argv[1] = a2;
1534 context->argv[2] = a3;
1535 context->argv[3] = a4;
1536
1537 state = context->state;
1538 context->dummy = !audit_n_rules;
1539 if (!context->dummy && (state == AUDIT_SETUP_CONTEXT || state == AUDIT_BUILD_CONTEXT))
1540 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1541 if (likely(state == AUDIT_DISABLED))
1542 return;
1543
1544 context->serial = 0;
1545 context->ctime = CURRENT_TIME;
1546 context->in_syscall = 1;
1547 context->auditable = !!(state == AUDIT_RECORD_CONTEXT);
1548 context->ppid = 0;
1549 }
1550
1551 /**
1552 * audit_syscall_exit - deallocate audit context after a system call
1553 * @tsk: task being audited
1554 * @valid: success/failure flag
1555 * @return_code: syscall return value
1556 *
1557 * Tear down after system call. If the audit context has been marked as
1558 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1559 * filtering, or because some other part of the kernel write an audit
1560 * message), then write out the syscall information. In call cases,
1561 * free the names stored from getname().
1562 */
1563 void audit_syscall_exit(int valid, long return_code)
1564 {
1565 struct task_struct *tsk = current;
1566 struct audit_context *context;
1567
1568 context = audit_get_context(tsk, valid, return_code);
1569
1570 if (likely(!context))
1571 return;
1572
1573 if (context->in_syscall && context->auditable)
1574 audit_log_exit(context, tsk);
1575
1576 context->in_syscall = 0;
1577 context->auditable = 0;
1578
1579 if (context->previous) {
1580 struct audit_context *new_context = context->previous;
1581 context->previous = NULL;
1582 audit_free_context(context);
1583 tsk->audit_context = new_context;
1584 } else {
1585 audit_free_names(context);
1586 unroll_tree_refs(context, NULL, 0);
1587 audit_free_aux(context);
1588 context->aux = NULL;
1589 context->aux_pids = NULL;
1590 context->target_pid = 0;
1591 context->target_sid = 0;
1592 kfree(context->filterkey);
1593 context->filterkey = NULL;
1594 tsk->audit_context = context;
1595 }
1596 }
1597
1598 static inline void handle_one(const struct inode *inode)
1599 {
1600 #ifdef CONFIG_AUDIT_TREE
1601 struct audit_context *context;
1602 struct audit_tree_refs *p;
1603 struct audit_chunk *chunk;
1604 int count;
1605 if (likely(list_empty(&inode->inotify_watches)))
1606 return;
1607 context = current->audit_context;
1608 p = context->trees;
1609 count = context->tree_count;
1610 rcu_read_lock();
1611 chunk = audit_tree_lookup(inode);
1612 rcu_read_unlock();
1613 if (!chunk)
1614 return;
1615 if (likely(put_tree_ref(context, chunk)))
1616 return;
1617 if (unlikely(!grow_tree_refs(context))) {
1618 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1619 audit_set_auditable(context);
1620 audit_put_chunk(chunk);
1621 unroll_tree_refs(context, p, count);
1622 return;
1623 }
1624 put_tree_ref(context, chunk);
1625 #endif
1626 }
1627
1628 static void handle_path(const struct dentry *dentry)
1629 {
1630 #ifdef CONFIG_AUDIT_TREE
1631 struct audit_context *context;
1632 struct audit_tree_refs *p;
1633 const struct dentry *d, *parent;
1634 struct audit_chunk *drop;
1635 unsigned long seq;
1636 int count;
1637
1638 context = current->audit_context;
1639 p = context->trees;
1640 count = context->tree_count;
1641 retry:
1642 drop = NULL;
1643 d = dentry;
1644 rcu_read_lock();
1645 seq = read_seqbegin(&rename_lock);
1646 for(;;) {
1647 struct inode *inode = d->d_inode;
1648 if (inode && unlikely(!list_empty(&inode->inotify_watches))) {
1649 struct audit_chunk *chunk;
1650 chunk = audit_tree_lookup(inode);
1651 if (chunk) {
1652 if (unlikely(!put_tree_ref(context, chunk))) {
1653 drop = chunk;
1654 break;
1655 }
1656 }
1657 }
1658 parent = d->d_parent;
1659 if (parent == d)
1660 break;
1661 d = parent;
1662 }
1663 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1664 rcu_read_unlock();
1665 if (!drop) {
1666 /* just a race with rename */
1667 unroll_tree_refs(context, p, count);
1668 goto retry;
1669 }
1670 audit_put_chunk(drop);
1671 if (grow_tree_refs(context)) {
1672 /* OK, got more space */
1673 unroll_tree_refs(context, p, count);
1674 goto retry;
1675 }
1676 /* too bad */
1677 printk(KERN_WARNING
1678 "out of memory, audit has lost a tree reference\n");
1679 unroll_tree_refs(context, p, count);
1680 audit_set_auditable(context);
1681 return;
1682 }
1683 rcu_read_unlock();
1684 #endif
1685 }
1686
1687 /**
1688 * audit_getname - add a name to the list
1689 * @name: name to add
1690 *
1691 * Add a name to the list of audit names for this context.
1692 * Called from fs/namei.c:getname().
1693 */
1694 void __audit_getname(const char *name)
1695 {
1696 struct audit_context *context = current->audit_context;
1697
1698 if (IS_ERR(name) || !name)
1699 return;
1700
1701 if (!context->in_syscall) {
1702 #if AUDIT_DEBUG == 2
1703 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1704 __FILE__, __LINE__, context->serial, name);
1705 dump_stack();
1706 #endif
1707 return;
1708 }
1709 BUG_ON(context->name_count >= AUDIT_NAMES);
1710 context->names[context->name_count].name = name;
1711 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1712 context->names[context->name_count].name_put = 1;
1713 context->names[context->name_count].ino = (unsigned long)-1;
1714 context->names[context->name_count].osid = 0;
1715 ++context->name_count;
1716 if (!context->pwd.dentry) {
1717 read_lock(&current->fs->lock);
1718 context->pwd = current->fs->pwd;
1719 path_get(&current->fs->pwd);
1720 read_unlock(&current->fs->lock);
1721 }
1722
1723 }
1724
1725 /* audit_putname - intercept a putname request
1726 * @name: name to intercept and delay for putname
1727 *
1728 * If we have stored the name from getname in the audit context,
1729 * then we delay the putname until syscall exit.
1730 * Called from include/linux/fs.h:putname().
1731 */
1732 void audit_putname(const char *name)
1733 {
1734 struct audit_context *context = current->audit_context;
1735
1736 BUG_ON(!context);
1737 if (!context->in_syscall) {
1738 #if AUDIT_DEBUG == 2
1739 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1740 __FILE__, __LINE__, context->serial, name);
1741 if (context->name_count) {
1742 int i;
1743 for (i = 0; i < context->name_count; i++)
1744 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1745 context->names[i].name,
1746 context->names[i].name ?: "(null)");
1747 }
1748 #endif
1749 __putname(name);
1750 }
1751 #if AUDIT_DEBUG
1752 else {
1753 ++context->put_count;
1754 if (context->put_count > context->name_count) {
1755 printk(KERN_ERR "%s:%d(:%d): major=%d"
1756 " in_syscall=%d putname(%p) name_count=%d"
1757 " put_count=%d\n",
1758 __FILE__, __LINE__,
1759 context->serial, context->major,
1760 context->in_syscall, name, context->name_count,
1761 context->put_count);
1762 dump_stack();
1763 }
1764 }
1765 #endif
1766 }
1767
1768 static int audit_inc_name_count(struct audit_context *context,
1769 const struct inode *inode)
1770 {
1771 if (context->name_count >= AUDIT_NAMES) {
1772 if (inode)
1773 printk(KERN_DEBUG "name_count maxed, losing inode data: "
1774 "dev=%02x:%02x, inode=%lu\n",
1775 MAJOR(inode->i_sb->s_dev),
1776 MINOR(inode->i_sb->s_dev),
1777 inode->i_ino);
1778
1779 else
1780 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1781 return 1;
1782 }
1783 context->name_count++;
1784 #if AUDIT_DEBUG
1785 context->ino_count++;
1786 #endif
1787 return 0;
1788 }
1789
1790 /* Copy inode data into an audit_names. */
1791 static void audit_copy_inode(struct audit_names *name, const struct inode *inode)
1792 {
1793 name->ino = inode->i_ino;
1794 name->dev = inode->i_sb->s_dev;
1795 name->mode = inode->i_mode;
1796 name->uid = inode->i_uid;
1797 name->gid = inode->i_gid;
1798 name->rdev = inode->i_rdev;
1799 security_inode_getsecid(inode, &name->osid);
1800 }
1801
1802 /**
1803 * audit_inode - store the inode and device from a lookup
1804 * @name: name being audited
1805 * @dentry: dentry being audited
1806 *
1807 * Called from fs/namei.c:path_lookup().
1808 */
1809 void __audit_inode(const char *name, const struct dentry *dentry)
1810 {
1811 int idx;
1812 struct audit_context *context = current->audit_context;
1813 const struct inode *inode = dentry->d_inode;
1814
1815 if (!context->in_syscall)
1816 return;
1817 if (context->name_count
1818 && context->names[context->name_count-1].name
1819 && context->names[context->name_count-1].name == name)
1820 idx = context->name_count - 1;
1821 else if (context->name_count > 1
1822 && context->names[context->name_count-2].name
1823 && context->names[context->name_count-2].name == name)
1824 idx = context->name_count - 2;
1825 else {
1826 /* FIXME: how much do we care about inodes that have no
1827 * associated name? */
1828 if (audit_inc_name_count(context, inode))
1829 return;
1830 idx = context->name_count - 1;
1831 context->names[idx].name = NULL;
1832 }
1833 handle_path(dentry);
1834 audit_copy_inode(&context->names[idx], inode);
1835 }
1836
1837 /**
1838 * audit_inode_child - collect inode info for created/removed objects
1839 * @dname: inode's dentry name
1840 * @dentry: dentry being audited
1841 * @parent: inode of dentry parent
1842 *
1843 * For syscalls that create or remove filesystem objects, audit_inode
1844 * can only collect information for the filesystem object's parent.
1845 * This call updates the audit context with the child's information.
1846 * Syscalls that create a new filesystem object must be hooked after
1847 * the object is created. Syscalls that remove a filesystem object
1848 * must be hooked prior, in order to capture the target inode during
1849 * unsuccessful attempts.
1850 */
1851 void __audit_inode_child(const char *dname, const struct dentry *dentry,
1852 const struct inode *parent)
1853 {
1854 int idx;
1855 struct audit_context *context = current->audit_context;
1856 const char *found_parent = NULL, *found_child = NULL;
1857 const struct inode *inode = dentry->d_inode;
1858 int dirlen = 0;
1859
1860 if (!context->in_syscall)
1861 return;
1862
1863 if (inode)
1864 handle_one(inode);
1865 /* determine matching parent */
1866 if (!dname)
1867 goto add_names;
1868
1869 /* parent is more likely, look for it first */
1870 for (idx = 0; idx < context->name_count; idx++) {
1871 struct audit_names *n = &context->names[idx];
1872
1873 if (!n->name)
1874 continue;
1875
1876 if (n->ino == parent->i_ino &&
1877 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1878 n->name_len = dirlen; /* update parent data in place */
1879 found_parent = n->name;
1880 goto add_names;
1881 }
1882 }
1883
1884 /* no matching parent, look for matching child */
1885 for (idx = 0; idx < context->name_count; idx++) {
1886 struct audit_names *n = &context->names[idx];
1887
1888 if (!n->name)
1889 continue;
1890
1891 /* strcmp() is the more likely scenario */
1892 if (!strcmp(dname, n->name) ||
1893 !audit_compare_dname_path(dname, n->name, &dirlen)) {
1894 if (inode)
1895 audit_copy_inode(n, inode);
1896 else
1897 n->ino = (unsigned long)-1;
1898 found_child = n->name;
1899 goto add_names;
1900 }
1901 }
1902
1903 add_names:
1904 if (!found_parent) {
1905 if (audit_inc_name_count(context, parent))
1906 return;
1907 idx = context->name_count - 1;
1908 context->names[idx].name = NULL;
1909 audit_copy_inode(&context->names[idx], parent);
1910 }
1911
1912 if (!found_child) {
1913 if (audit_inc_name_count(context, inode))
1914 return;
1915 idx = context->name_count - 1;
1916
1917 /* Re-use the name belonging to the slot for a matching parent
1918 * directory. All names for this context are relinquished in
1919 * audit_free_names() */
1920 if (found_parent) {
1921 context->names[idx].name = found_parent;
1922 context->names[idx].name_len = AUDIT_NAME_FULL;
1923 /* don't call __putname() */
1924 context->names[idx].name_put = 0;
1925 } else {
1926 context->names[idx].name = NULL;
1927 }
1928
1929 if (inode)
1930 audit_copy_inode(&context->names[idx], inode);
1931 else
1932 context->names[idx].ino = (unsigned long)-1;
1933 }
1934 }
1935 EXPORT_SYMBOL_GPL(__audit_inode_child);
1936
1937 /**
1938 * auditsc_get_stamp - get local copies of audit_context values
1939 * @ctx: audit_context for the task
1940 * @t: timespec to store time recorded in the audit_context
1941 * @serial: serial value that is recorded in the audit_context
1942 *
1943 * Also sets the context as auditable.
1944 */
1945 void auditsc_get_stamp(struct audit_context *ctx,
1946 struct timespec *t, unsigned int *serial)
1947 {
1948 if (!ctx->serial)
1949 ctx->serial = audit_serial();
1950 t->tv_sec = ctx->ctime.tv_sec;
1951 t->tv_nsec = ctx->ctime.tv_nsec;
1952 *serial = ctx->serial;
1953 ctx->auditable = 1;
1954 }
1955
1956 /* global counter which is incremented every time something logs in */
1957 static atomic_t session_id = ATOMIC_INIT(0);
1958
1959 /**
1960 * audit_set_loginuid - set a task's audit_context loginuid
1961 * @task: task whose audit context is being modified
1962 * @loginuid: loginuid value
1963 *
1964 * Returns 0.
1965 *
1966 * Called (set) from fs/proc/base.c::proc_loginuid_write().
1967 */
1968 int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1969 {
1970 unsigned int sessionid = atomic_inc_return(&session_id);
1971 struct audit_context *context = task->audit_context;
1972
1973 if (context && context->in_syscall) {
1974 struct audit_buffer *ab;
1975
1976 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1977 if (ab) {
1978 audit_log_format(ab, "login pid=%d uid=%u "
1979 "old auid=%u new auid=%u"
1980 " old ses=%u new ses=%u",
1981 task->pid, task->uid,
1982 task->loginuid, loginuid,
1983 task->sessionid, sessionid);
1984 audit_log_end(ab);
1985 }
1986 }
1987 task->sessionid = sessionid;
1988 task->loginuid = loginuid;
1989 return 0;
1990 }
1991
1992 /**
1993 * __audit_mq_open - record audit data for a POSIX MQ open
1994 * @oflag: open flag
1995 * @mode: mode bits
1996 * @u_attr: queue attributes
1997 *
1998 * Returns 0 for success or NULL context or < 0 on error.
1999 */
2000 int __audit_mq_open(int oflag, mode_t mode, struct mq_attr __user *u_attr)
2001 {
2002 struct audit_aux_data_mq_open *ax;
2003 struct audit_context *context = current->audit_context;
2004
2005 if (!audit_enabled)
2006 return 0;
2007
2008 if (likely(!context))
2009 return 0;
2010
2011 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2012 if (!ax)
2013 return -ENOMEM;
2014
2015 if (u_attr != NULL) {
2016 if (copy_from_user(&ax->attr, u_attr, sizeof(ax->attr))) {
2017 kfree(ax);
2018 return -EFAULT;
2019 }
2020 } else
2021 memset(&ax->attr, 0, sizeof(ax->attr));
2022
2023 ax->oflag = oflag;
2024 ax->mode = mode;
2025
2026 ax->d.type = AUDIT_MQ_OPEN;
2027 ax->d.next = context->aux;
2028 context->aux = (void *)ax;
2029 return 0;
2030 }
2031
2032 /**
2033 * __audit_mq_timedsend - record audit data for a POSIX MQ timed send
2034 * @mqdes: MQ descriptor
2035 * @msg_len: Message length
2036 * @msg_prio: Message priority
2037 * @u_abs_timeout: Message timeout in absolute time
2038 *
2039 * Returns 0 for success or NULL context or < 0 on error.
2040 */
2041 int __audit_mq_timedsend(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2042 const struct timespec __user *u_abs_timeout)
2043 {
2044 struct audit_aux_data_mq_sendrecv *ax;
2045 struct audit_context *context = current->audit_context;
2046
2047 if (!audit_enabled)
2048 return 0;
2049
2050 if (likely(!context))
2051 return 0;
2052
2053 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2054 if (!ax)
2055 return -ENOMEM;
2056
2057 if (u_abs_timeout != NULL) {
2058 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2059 kfree(ax);
2060 return -EFAULT;
2061 }
2062 } else
2063 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2064
2065 ax->mqdes = mqdes;
2066 ax->msg_len = msg_len;
2067 ax->msg_prio = msg_prio;
2068
2069 ax->d.type = AUDIT_MQ_SENDRECV;
2070 ax->d.next = context->aux;
2071 context->aux = (void *)ax;
2072 return 0;
2073 }
2074
2075 /**
2076 * __audit_mq_timedreceive - record audit data for a POSIX MQ timed receive
2077 * @mqdes: MQ descriptor
2078 * @msg_len: Message length
2079 * @u_msg_prio: Message priority
2080 * @u_abs_timeout: Message timeout in absolute time
2081 *
2082 * Returns 0 for success or NULL context or < 0 on error.
2083 */
2084 int __audit_mq_timedreceive(mqd_t mqdes, size_t msg_len,
2085 unsigned int __user *u_msg_prio,
2086 const struct timespec __user *u_abs_timeout)
2087 {
2088 struct audit_aux_data_mq_sendrecv *ax;
2089 struct audit_context *context = current->audit_context;
2090
2091 if (!audit_enabled)
2092 return 0;
2093
2094 if (likely(!context))
2095 return 0;
2096
2097 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2098 if (!ax)
2099 return -ENOMEM;
2100
2101 if (u_msg_prio != NULL) {
2102 if (get_user(ax->msg_prio, u_msg_prio)) {
2103 kfree(ax);
2104 return -EFAULT;
2105 }
2106 } else
2107 ax->msg_prio = 0;
2108
2109 if (u_abs_timeout != NULL) {
2110 if (copy_from_user(&ax->abs_timeout, u_abs_timeout, sizeof(ax->abs_timeout))) {
2111 kfree(ax);
2112 return -EFAULT;
2113 }
2114 } else
2115 memset(&ax->abs_timeout, 0, sizeof(ax->abs_timeout));
2116
2117 ax->mqdes = mqdes;
2118 ax->msg_len = msg_len;
2119
2120 ax->d.type = AUDIT_MQ_SENDRECV;
2121 ax->d.next = context->aux;
2122 context->aux = (void *)ax;
2123 return 0;
2124 }
2125
2126 /**
2127 * __audit_mq_notify - record audit data for a POSIX MQ notify
2128 * @mqdes: MQ descriptor
2129 * @u_notification: Notification event
2130 *
2131 * Returns 0 for success or NULL context or < 0 on error.
2132 */
2133
2134 int __audit_mq_notify(mqd_t mqdes, const struct sigevent __user *u_notification)
2135 {
2136 struct audit_aux_data_mq_notify *ax;
2137 struct audit_context *context = current->audit_context;
2138
2139 if (!audit_enabled)
2140 return 0;
2141
2142 if (likely(!context))
2143 return 0;
2144
2145 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2146 if (!ax)
2147 return -ENOMEM;
2148
2149 if (u_notification != NULL) {
2150 if (copy_from_user(&ax->notification, u_notification, sizeof(ax->notification))) {
2151 kfree(ax);
2152 return -EFAULT;
2153 }
2154 } else
2155 memset(&ax->notification, 0, sizeof(ax->notification));
2156
2157 ax->mqdes = mqdes;
2158
2159 ax->d.type = AUDIT_MQ_NOTIFY;
2160 ax->d.next = context->aux;
2161 context->aux = (void *)ax;
2162 return 0;
2163 }
2164
2165 /**
2166 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2167 * @mqdes: MQ descriptor
2168 * @mqstat: MQ flags
2169 *
2170 * Returns 0 for success or NULL context or < 0 on error.
2171 */
2172 int __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2173 {
2174 struct audit_aux_data_mq_getsetattr *ax;
2175 struct audit_context *context = current->audit_context;
2176
2177 if (!audit_enabled)
2178 return 0;
2179
2180 if (likely(!context))
2181 return 0;
2182
2183 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2184 if (!ax)
2185 return -ENOMEM;
2186
2187 ax->mqdes = mqdes;
2188 ax->mqstat = *mqstat;
2189
2190 ax->d.type = AUDIT_MQ_GETSETATTR;
2191 ax->d.next = context->aux;
2192 context->aux = (void *)ax;
2193 return 0;
2194 }
2195
2196 /**
2197 * audit_ipc_obj - record audit data for ipc object
2198 * @ipcp: ipc permissions
2199 *
2200 * Returns 0 for success or NULL context or < 0 on error.
2201 */
2202 int __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2203 {
2204 struct audit_aux_data_ipcctl *ax;
2205 struct audit_context *context = current->audit_context;
2206
2207 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2208 if (!ax)
2209 return -ENOMEM;
2210
2211 ax->uid = ipcp->uid;
2212 ax->gid = ipcp->gid;
2213 ax->mode = ipcp->mode;
2214 security_ipc_getsecid(ipcp, &ax->osid);
2215 ax->d.type = AUDIT_IPC;
2216 ax->d.next = context->aux;
2217 context->aux = (void *)ax;
2218 return 0;
2219 }
2220
2221 /**
2222 * audit_ipc_set_perm - record audit data for new ipc permissions
2223 * @qbytes: msgq bytes
2224 * @uid: msgq user id
2225 * @gid: msgq group id
2226 * @mode: msgq mode (permissions)
2227 *
2228 * Returns 0 for success or NULL context or < 0 on error.
2229 */
2230 int __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2231 {
2232 struct audit_aux_data_ipcctl *ax;
2233 struct audit_context *context = current->audit_context;
2234
2235 ax = kmalloc(sizeof(*ax), GFP_ATOMIC);
2236 if (!ax)
2237 return -ENOMEM;
2238
2239 ax->qbytes = qbytes;
2240 ax->uid = uid;
2241 ax->gid = gid;
2242 ax->mode = mode;
2243
2244 ax->d.type = AUDIT_IPC_SET_PERM;
2245 ax->d.next = context->aux;
2246 context->aux = (void *)ax;
2247 return 0;
2248 }
2249
2250 int audit_bprm(struct linux_binprm *bprm)
2251 {
2252 struct audit_aux_data_execve *ax;
2253 struct audit_context *context = current->audit_context;
2254
2255 if (likely(!audit_enabled || !context || context->dummy))
2256 return 0;
2257
2258 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2259 if (!ax)
2260 return -ENOMEM;
2261
2262 ax->argc = bprm->argc;
2263 ax->envc = bprm->envc;
2264 ax->mm = bprm->mm;
2265 ax->d.type = AUDIT_EXECVE;
2266 ax->d.next = context->aux;
2267 context->aux = (void *)ax;
2268 return 0;
2269 }
2270
2271
2272 /**
2273 * audit_socketcall - record audit data for sys_socketcall
2274 * @nargs: number of args
2275 * @args: args array
2276 *
2277 * Returns 0 for success or NULL context or < 0 on error.
2278 */
2279 int audit_socketcall(int nargs, unsigned long *args)
2280 {
2281 struct audit_aux_data_socketcall *ax;
2282 struct audit_context *context = current->audit_context;
2283
2284 if (likely(!context || context->dummy))
2285 return 0;
2286
2287 ax = kmalloc(sizeof(*ax) + nargs * sizeof(unsigned long), GFP_KERNEL);
2288 if (!ax)
2289 return -ENOMEM;
2290
2291 ax->nargs = nargs;
2292 memcpy(ax->args, args, nargs * sizeof(unsigned long));
2293
2294 ax->d.type = AUDIT_SOCKETCALL;
2295 ax->d.next = context->aux;
2296 context->aux = (void *)ax;
2297 return 0;
2298 }
2299
2300 /**
2301 * __audit_fd_pair - record audit data for pipe and socketpair
2302 * @fd1: the first file descriptor
2303 * @fd2: the second file descriptor
2304 *
2305 * Returns 0 for success or NULL context or < 0 on error.
2306 */
2307 int __audit_fd_pair(int fd1, int fd2)
2308 {
2309 struct audit_context *context = current->audit_context;
2310 struct audit_aux_data_fd_pair *ax;
2311
2312 if (likely(!context)) {
2313 return 0;
2314 }
2315
2316 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2317 if (!ax) {
2318 return -ENOMEM;
2319 }
2320
2321 ax->fd[0] = fd1;
2322 ax->fd[1] = fd2;
2323
2324 ax->d.type = AUDIT_FD_PAIR;
2325 ax->d.next = context->aux;
2326 context->aux = (void *)ax;
2327 return 0;
2328 }
2329
2330 /**
2331 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2332 * @len: data length in user space
2333 * @a: data address in kernel space
2334 *
2335 * Returns 0 for success or NULL context or < 0 on error.
2336 */
2337 int audit_sockaddr(int len, void *a)
2338 {
2339 struct audit_aux_data_sockaddr *ax;
2340 struct audit_context *context = current->audit_context;
2341
2342 if (likely(!context || context->dummy))
2343 return 0;
2344
2345 ax = kmalloc(sizeof(*ax) + len, GFP_KERNEL);
2346 if (!ax)
2347 return -ENOMEM;
2348
2349 ax->len = len;
2350 memcpy(ax->a, a, len);
2351
2352 ax->d.type = AUDIT_SOCKADDR;
2353 ax->d.next = context->aux;
2354 context->aux = (void *)ax;
2355 return 0;
2356 }
2357
2358 void __audit_ptrace(struct task_struct *t)
2359 {
2360 struct audit_context *context = current->audit_context;
2361
2362 context->target_pid = t->pid;
2363 context->target_auid = audit_get_loginuid(t);
2364 context->target_uid = t->uid;
2365 context->target_sessionid = audit_get_sessionid(t);
2366 security_task_getsecid(t, &context->target_sid);
2367 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2368 }
2369
2370 /**
2371 * audit_signal_info - record signal info for shutting down audit subsystem
2372 * @sig: signal value
2373 * @t: task being signaled
2374 *
2375 * If the audit subsystem is being terminated, record the task (pid)
2376 * and uid that is doing that.
2377 */
2378 int __audit_signal_info(int sig, struct task_struct *t)
2379 {
2380 struct audit_aux_data_pids *axp;
2381 struct task_struct *tsk = current;
2382 struct audit_context *ctx = tsk->audit_context;
2383
2384 if (audit_pid && t->tgid == audit_pid) {
2385 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2386 audit_sig_pid = tsk->pid;
2387 if (tsk->loginuid != -1)
2388 audit_sig_uid = tsk->loginuid;
2389 else
2390 audit_sig_uid = tsk->uid;
2391 security_task_getsecid(tsk, &audit_sig_sid);
2392 }
2393 if (!audit_signals || audit_dummy_context())
2394 return 0;
2395 }
2396
2397 /* optimize the common case by putting first signal recipient directly
2398 * in audit_context */
2399 if (!ctx->target_pid) {
2400 ctx->target_pid = t->tgid;
2401 ctx->target_auid = audit_get_loginuid(t);
2402 ctx->target_uid = t->uid;
2403 ctx->target_sessionid = audit_get_sessionid(t);
2404 security_task_getsecid(t, &ctx->target_sid);
2405 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2406 return 0;
2407 }
2408
2409 axp = (void *)ctx->aux_pids;
2410 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2411 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2412 if (!axp)
2413 return -ENOMEM;
2414
2415 axp->d.type = AUDIT_OBJ_PID;
2416 axp->d.next = ctx->aux_pids;
2417 ctx->aux_pids = (void *)axp;
2418 }
2419 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2420
2421 axp->target_pid[axp->pid_count] = t->tgid;
2422 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2423 axp->target_uid[axp->pid_count] = t->uid;
2424 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2425 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2426 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2427 axp->pid_count++;
2428
2429 return 0;
2430 }
2431
2432 /**
2433 * audit_core_dumps - record information about processes that end abnormally
2434 * @signr: signal value
2435 *
2436 * If a process ends with a core dump, something fishy is going on and we
2437 * should record the event for investigation.
2438 */
2439 void audit_core_dumps(long signr)
2440 {
2441 struct audit_buffer *ab;
2442 u32 sid;
2443 uid_t auid = audit_get_loginuid(current);
2444 unsigned int sessionid = audit_get_sessionid(current);
2445
2446 if (!audit_enabled)
2447 return;
2448
2449 if (signr == SIGQUIT) /* don't care for those */
2450 return;
2451
2452 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2453 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2454 auid, current->uid, current->gid, sessionid);
2455 security_task_getsecid(current, &sid);
2456 if (sid) {
2457 char *ctx = NULL;
2458 u32 len;
2459
2460 if (security_secid_to_secctx(sid, &ctx, &len))
2461 audit_log_format(ab, " ssid=%u", sid);
2462 else {
2463 audit_log_format(ab, " subj=%s", ctx);
2464 security_release_secctx(ctx, len);
2465 }
2466 }
2467 audit_log_format(ab, " pid=%d comm=", current->pid);
2468 audit_log_untrustedstring(ab, current->comm);
2469 audit_log_format(ab, " sig=%ld", signr);
2470 audit_log_end(ab);
2471 }