Merge branches 'release', 'acpi_pm_device_sleep_state' and 'battery' into release
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with SELinux.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51
52 #include <linux/audit.h>
53
54 #include <net/sock.h>
55 #include <net/netlink.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/selinux.h>
59 #include <linux/inotify.h>
60 #include <linux/freezer.h>
61 #include <linux/tty.h>
62
63 #include "audit.h"
64
65 /* No auditing will take place until audit_initialized != 0.
66 * (Initialization happens after skb_init is called.) */
67 static int audit_initialized;
68
69 #define AUDIT_OFF 0
70 #define AUDIT_ON 1
71 #define AUDIT_LOCKED 2
72 int audit_enabled;
73 int audit_ever_enabled;
74
75 /* Default state when kernel boots without any parameters. */
76 static int audit_default;
77
78 /* If auditing cannot proceed, audit_failure selects what happens. */
79 static int audit_failure = AUDIT_FAIL_PRINTK;
80
81 /* If audit records are to be written to the netlink socket, audit_pid
82 * contains the (non-zero) pid. */
83 int audit_pid;
84
85 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
86 * to that number per second. This prevents DoS attacks, but results in
87 * audit records being dropped. */
88 static int audit_rate_limit;
89
90 /* Number of outstanding audit_buffers allowed. */
91 static int audit_backlog_limit = 64;
92 static int audit_backlog_wait_time = 60 * HZ;
93 static int audit_backlog_wait_overflow = 0;
94
95 /* The identity of the user shutting down the audit system. */
96 uid_t audit_sig_uid = -1;
97 pid_t audit_sig_pid = -1;
98 u32 audit_sig_sid = 0;
99
100 /* Records can be lost in several ways:
101 0) [suppressed in audit_alloc]
102 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
103 2) out of memory in audit_log_move [alloc_skb]
104 3) suppressed due to audit_rate_limit
105 4) suppressed due to audit_backlog_limit
106 */
107 static atomic_t audit_lost = ATOMIC_INIT(0);
108
109 /* The netlink socket. */
110 static struct sock *audit_sock;
111
112 /* Inotify handle. */
113 struct inotify_handle *audit_ih;
114
115 /* Hash for inode-based rules */
116 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
117
118 /* The audit_freelist is a list of pre-allocated audit buffers (if more
119 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
120 * being placed on the freelist). */
121 static DEFINE_SPINLOCK(audit_freelist_lock);
122 static int audit_freelist_count;
123 static LIST_HEAD(audit_freelist);
124
125 static struct sk_buff_head audit_skb_queue;
126 static struct task_struct *kauditd_task;
127 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
128 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
129
130 /* Serialize requests from userspace. */
131 static DEFINE_MUTEX(audit_cmd_mutex);
132
133 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
134 * audit records. Since printk uses a 1024 byte buffer, this buffer
135 * should be at least that large. */
136 #define AUDIT_BUFSIZ 1024
137
138 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
139 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
140 #define AUDIT_MAXFREE (2*NR_CPUS)
141
142 /* The audit_buffer is used when formatting an audit record. The caller
143 * locks briefly to get the record off the freelist or to allocate the
144 * buffer, and locks briefly to send the buffer to the netlink layer or
145 * to place it on a transmit queue. Multiple audit_buffers can be in
146 * use simultaneously. */
147 struct audit_buffer {
148 struct list_head list;
149 struct sk_buff *skb; /* formatted skb ready to send */
150 struct audit_context *ctx; /* NULL or associated context */
151 gfp_t gfp_mask;
152 };
153
154 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
155 {
156 if (ab) {
157 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
158 nlh->nlmsg_pid = pid;
159 }
160 }
161
162 void audit_panic(const char *message)
163 {
164 switch (audit_failure)
165 {
166 case AUDIT_FAIL_SILENT:
167 break;
168 case AUDIT_FAIL_PRINTK:
169 if (printk_ratelimit())
170 printk(KERN_ERR "audit: %s\n", message);
171 break;
172 case AUDIT_FAIL_PANIC:
173 panic("audit: %s\n", message);
174 break;
175 }
176 }
177
178 static inline int audit_rate_check(void)
179 {
180 static unsigned long last_check = 0;
181 static int messages = 0;
182 static DEFINE_SPINLOCK(lock);
183 unsigned long flags;
184 unsigned long now;
185 unsigned long elapsed;
186 int retval = 0;
187
188 if (!audit_rate_limit) return 1;
189
190 spin_lock_irqsave(&lock, flags);
191 if (++messages < audit_rate_limit) {
192 retval = 1;
193 } else {
194 now = jiffies;
195 elapsed = now - last_check;
196 if (elapsed > HZ) {
197 last_check = now;
198 messages = 0;
199 retval = 1;
200 }
201 }
202 spin_unlock_irqrestore(&lock, flags);
203
204 return retval;
205 }
206
207 /**
208 * audit_log_lost - conditionally log lost audit message event
209 * @message: the message stating reason for lost audit message
210 *
211 * Emit at least 1 message per second, even if audit_rate_check is
212 * throttling.
213 * Always increment the lost messages counter.
214 */
215 void audit_log_lost(const char *message)
216 {
217 static unsigned long last_msg = 0;
218 static DEFINE_SPINLOCK(lock);
219 unsigned long flags;
220 unsigned long now;
221 int print;
222
223 atomic_inc(&audit_lost);
224
225 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
226
227 if (!print) {
228 spin_lock_irqsave(&lock, flags);
229 now = jiffies;
230 if (now - last_msg > HZ) {
231 print = 1;
232 last_msg = now;
233 }
234 spin_unlock_irqrestore(&lock, flags);
235 }
236
237 if (print) {
238 if (printk_ratelimit())
239 printk(KERN_WARNING
240 "audit: audit_lost=%d audit_rate_limit=%d "
241 "audit_backlog_limit=%d\n",
242 atomic_read(&audit_lost),
243 audit_rate_limit,
244 audit_backlog_limit);
245 audit_panic(message);
246 }
247 }
248
249 static int audit_log_config_change(char *function_name, int new, int old,
250 uid_t loginuid, u32 sid, int allow_changes)
251 {
252 struct audit_buffer *ab;
253 int rc = 0;
254
255 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
256 audit_log_format(ab, "%s=%d old=%d by auid=%u", function_name, new,
257 old, loginuid);
258 if (sid) {
259 char *ctx = NULL;
260 u32 len;
261
262 rc = selinux_sid_to_string(sid, &ctx, &len);
263 if (rc) {
264 audit_log_format(ab, " sid=%u", sid);
265 allow_changes = 0; /* Something weird, deny request */
266 } else {
267 audit_log_format(ab, " subj=%s", ctx);
268 kfree(ctx);
269 }
270 }
271 audit_log_format(ab, " res=%d", allow_changes);
272 audit_log_end(ab);
273 return rc;
274 }
275
276 static int audit_do_config_change(char *function_name, int *to_change,
277 int new, uid_t loginuid, u32 sid)
278 {
279 int allow_changes, rc = 0, old = *to_change;
280
281 /* check if we are locked */
282 if (audit_enabled == AUDIT_LOCKED)
283 allow_changes = 0;
284 else
285 allow_changes = 1;
286
287 if (audit_enabled != AUDIT_OFF) {
288 rc = audit_log_config_change(function_name, new, old,
289 loginuid, sid, allow_changes);
290 if (rc)
291 allow_changes = 0;
292 }
293
294 /* If we are allowed, make the change */
295 if (allow_changes == 1)
296 *to_change = new;
297 /* Not allowed, update reason */
298 else if (rc == 0)
299 rc = -EPERM;
300 return rc;
301 }
302
303 static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sid)
304 {
305 return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
306 limit, loginuid, sid);
307 }
308
309 static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sid)
310 {
311 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
312 limit, loginuid, sid);
313 }
314
315 static int audit_set_enabled(int state, uid_t loginuid, u32 sid)
316 {
317 int rc;
318 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
319 return -EINVAL;
320
321 rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
322 loginuid, sid);
323
324 if (!rc)
325 audit_ever_enabled |= !!state;
326
327 return rc;
328 }
329
330 static int audit_set_failure(int state, uid_t loginuid, u32 sid)
331 {
332 if (state != AUDIT_FAIL_SILENT
333 && state != AUDIT_FAIL_PRINTK
334 && state != AUDIT_FAIL_PANIC)
335 return -EINVAL;
336
337 return audit_do_config_change("audit_failure", &audit_failure, state,
338 loginuid, sid);
339 }
340
341 static int kauditd_thread(void *dummy)
342 {
343 struct sk_buff *skb;
344
345 set_freezable();
346 while (!kthread_should_stop()) {
347 skb = skb_dequeue(&audit_skb_queue);
348 wake_up(&audit_backlog_wait);
349 if (skb) {
350 if (audit_pid) {
351 int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
352 if (err < 0) {
353 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
354 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
355 audit_pid = 0;
356 }
357 } else {
358 if (printk_ratelimit())
359 printk(KERN_NOTICE "%s\n", skb->data +
360 NLMSG_SPACE(0));
361 else
362 audit_log_lost("printk limit exceeded\n");
363 kfree_skb(skb);
364 }
365 } else {
366 DECLARE_WAITQUEUE(wait, current);
367 set_current_state(TASK_INTERRUPTIBLE);
368 add_wait_queue(&kauditd_wait, &wait);
369
370 if (!skb_queue_len(&audit_skb_queue)) {
371 try_to_freeze();
372 schedule();
373 }
374
375 __set_current_state(TASK_RUNNING);
376 remove_wait_queue(&kauditd_wait, &wait);
377 }
378 }
379 return 0;
380 }
381
382 static int audit_prepare_user_tty(pid_t pid, uid_t loginuid)
383 {
384 struct task_struct *tsk;
385 int err;
386
387 read_lock(&tasklist_lock);
388 tsk = find_task_by_pid(pid);
389 err = -ESRCH;
390 if (!tsk)
391 goto out;
392 err = 0;
393
394 spin_lock_irq(&tsk->sighand->siglock);
395 if (!tsk->signal->audit_tty)
396 err = -EPERM;
397 spin_unlock_irq(&tsk->sighand->siglock);
398 if (err)
399 goto out;
400
401 tty_audit_push_task(tsk, loginuid);
402 out:
403 read_unlock(&tasklist_lock);
404 return err;
405 }
406
407 int audit_send_list(void *_dest)
408 {
409 struct audit_netlink_list *dest = _dest;
410 int pid = dest->pid;
411 struct sk_buff *skb;
412
413 /* wait for parent to finish and send an ACK */
414 mutex_lock(&audit_cmd_mutex);
415 mutex_unlock(&audit_cmd_mutex);
416
417 while ((skb = __skb_dequeue(&dest->q)) != NULL)
418 netlink_unicast(audit_sock, skb, pid, 0);
419
420 kfree(dest);
421
422 return 0;
423 }
424
425 #ifdef CONFIG_AUDIT_TREE
426 static int prune_tree_thread(void *unused)
427 {
428 mutex_lock(&audit_cmd_mutex);
429 audit_prune_trees();
430 mutex_unlock(&audit_cmd_mutex);
431 return 0;
432 }
433
434 void audit_schedule_prune(void)
435 {
436 kthread_run(prune_tree_thread, NULL, "audit_prune_tree");
437 }
438 #endif
439
440 struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
441 int multi, void *payload, int size)
442 {
443 struct sk_buff *skb;
444 struct nlmsghdr *nlh;
445 int len = NLMSG_SPACE(size);
446 void *data;
447 int flags = multi ? NLM_F_MULTI : 0;
448 int t = done ? NLMSG_DONE : type;
449
450 skb = alloc_skb(len, GFP_KERNEL);
451 if (!skb)
452 return NULL;
453
454 nlh = NLMSG_PUT(skb, pid, seq, t, size);
455 nlh->nlmsg_flags = flags;
456 data = NLMSG_DATA(nlh);
457 memcpy(data, payload, size);
458 return skb;
459
460 nlmsg_failure: /* Used by NLMSG_PUT */
461 if (skb)
462 kfree_skb(skb);
463 return NULL;
464 }
465
466 /**
467 * audit_send_reply - send an audit reply message via netlink
468 * @pid: process id to send reply to
469 * @seq: sequence number
470 * @type: audit message type
471 * @done: done (last) flag
472 * @multi: multi-part message flag
473 * @payload: payload data
474 * @size: payload size
475 *
476 * Allocates an skb, builds the netlink message, and sends it to the pid.
477 * No failure notifications.
478 */
479 void audit_send_reply(int pid, int seq, int type, int done, int multi,
480 void *payload, int size)
481 {
482 struct sk_buff *skb;
483 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
484 if (!skb)
485 return;
486 /* Ignore failure. It'll only happen if the sender goes away,
487 because our timeout is set to infinite. */
488 netlink_unicast(audit_sock, skb, pid, 0);
489 return;
490 }
491
492 /*
493 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
494 * control messages.
495 */
496 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
497 {
498 int err = 0;
499
500 switch (msg_type) {
501 case AUDIT_GET:
502 case AUDIT_LIST:
503 case AUDIT_LIST_RULES:
504 case AUDIT_SET:
505 case AUDIT_ADD:
506 case AUDIT_ADD_RULE:
507 case AUDIT_DEL:
508 case AUDIT_DEL_RULE:
509 case AUDIT_SIGNAL_INFO:
510 case AUDIT_TTY_GET:
511 case AUDIT_TTY_SET:
512 case AUDIT_TRIM:
513 case AUDIT_MAKE_EQUIV:
514 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
515 err = -EPERM;
516 break;
517 case AUDIT_USER:
518 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
519 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
520 if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
521 err = -EPERM;
522 break;
523 default: /* bad msg */
524 err = -EINVAL;
525 }
526
527 return err;
528 }
529
530 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
531 u32 pid, u32 uid, uid_t auid, u32 sid)
532 {
533 int rc = 0;
534 char *ctx = NULL;
535 u32 len;
536
537 if (!audit_enabled) {
538 *ab = NULL;
539 return rc;
540 }
541
542 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
543 audit_log_format(*ab, "user pid=%d uid=%u auid=%u",
544 pid, uid, auid);
545 if (sid) {
546 rc = selinux_sid_to_string(sid, &ctx, &len);
547 if (rc)
548 audit_log_format(*ab, " ssid=%u", sid);
549 else
550 audit_log_format(*ab, " subj=%s", ctx);
551 kfree(ctx);
552 }
553
554 return rc;
555 }
556
557 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
558 {
559 u32 uid, pid, seq, sid;
560 void *data;
561 struct audit_status *status_get, status_set;
562 int err;
563 struct audit_buffer *ab;
564 u16 msg_type = nlh->nlmsg_type;
565 uid_t loginuid; /* loginuid of sender */
566 struct audit_sig_info *sig_data;
567 char *ctx = NULL;
568 u32 len;
569
570 err = audit_netlink_ok(skb, msg_type);
571 if (err)
572 return err;
573
574 /* As soon as there's any sign of userspace auditd,
575 * start kauditd to talk to it */
576 if (!kauditd_task)
577 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
578 if (IS_ERR(kauditd_task)) {
579 err = PTR_ERR(kauditd_task);
580 kauditd_task = NULL;
581 return err;
582 }
583
584 pid = NETLINK_CREDS(skb)->pid;
585 uid = NETLINK_CREDS(skb)->uid;
586 loginuid = NETLINK_CB(skb).loginuid;
587 sid = NETLINK_CB(skb).sid;
588 seq = nlh->nlmsg_seq;
589 data = NLMSG_DATA(nlh);
590
591 switch (msg_type) {
592 case AUDIT_GET:
593 status_set.enabled = audit_enabled;
594 status_set.failure = audit_failure;
595 status_set.pid = audit_pid;
596 status_set.rate_limit = audit_rate_limit;
597 status_set.backlog_limit = audit_backlog_limit;
598 status_set.lost = atomic_read(&audit_lost);
599 status_set.backlog = skb_queue_len(&audit_skb_queue);
600 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
601 &status_set, sizeof(status_set));
602 break;
603 case AUDIT_SET:
604 if (nlh->nlmsg_len < sizeof(struct audit_status))
605 return -EINVAL;
606 status_get = (struct audit_status *)data;
607 if (status_get->mask & AUDIT_STATUS_ENABLED) {
608 err = audit_set_enabled(status_get->enabled,
609 loginuid, sid);
610 if (err < 0) return err;
611 }
612 if (status_get->mask & AUDIT_STATUS_FAILURE) {
613 err = audit_set_failure(status_get->failure,
614 loginuid, sid);
615 if (err < 0) return err;
616 }
617 if (status_get->mask & AUDIT_STATUS_PID) {
618 int new_pid = status_get->pid;
619
620 if (audit_enabled != AUDIT_OFF)
621 audit_log_config_change("audit_pid", new_pid,
622 audit_pid, loginuid,
623 sid, 1);
624
625 audit_pid = new_pid;
626 }
627 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
628 err = audit_set_rate_limit(status_get->rate_limit,
629 loginuid, sid);
630 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
631 err = audit_set_backlog_limit(status_get->backlog_limit,
632 loginuid, sid);
633 break;
634 case AUDIT_USER:
635 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
636 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
637 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
638 return 0;
639
640 err = audit_filter_user(&NETLINK_CB(skb), msg_type);
641 if (err == 1) {
642 err = 0;
643 if (msg_type == AUDIT_USER_TTY) {
644 err = audit_prepare_user_tty(pid, loginuid);
645 if (err)
646 break;
647 }
648 audit_log_common_recv_msg(&ab, msg_type, pid, uid,
649 loginuid, sid);
650
651 if (msg_type != AUDIT_USER_TTY)
652 audit_log_format(ab, " msg='%.1024s'",
653 (char *)data);
654 else {
655 int size;
656
657 audit_log_format(ab, " msg=");
658 size = nlmsg_len(nlh);
659 audit_log_n_untrustedstring(ab, size,
660 data);
661 }
662 audit_set_pid(ab, pid);
663 audit_log_end(ab);
664 }
665 break;
666 case AUDIT_ADD:
667 case AUDIT_DEL:
668 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
669 return -EINVAL;
670 if (audit_enabled == AUDIT_LOCKED) {
671 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
672 uid, loginuid, sid);
673
674 audit_log_format(ab, " audit_enabled=%d res=0",
675 audit_enabled);
676 audit_log_end(ab);
677 return -EPERM;
678 }
679 /* fallthrough */
680 case AUDIT_LIST:
681 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
682 uid, seq, data, nlmsg_len(nlh),
683 loginuid, sid);
684 break;
685 case AUDIT_ADD_RULE:
686 case AUDIT_DEL_RULE:
687 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
688 return -EINVAL;
689 if (audit_enabled == AUDIT_LOCKED) {
690 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
691 uid, loginuid, sid);
692
693 audit_log_format(ab, " audit_enabled=%d res=0",
694 audit_enabled);
695 audit_log_end(ab);
696 return -EPERM;
697 }
698 /* fallthrough */
699 case AUDIT_LIST_RULES:
700 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
701 uid, seq, data, nlmsg_len(nlh),
702 loginuid, sid);
703 break;
704 case AUDIT_TRIM:
705 audit_trim_trees();
706
707 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
708 uid, loginuid, sid);
709
710 audit_log_format(ab, " op=trim res=1");
711 audit_log_end(ab);
712 break;
713 case AUDIT_MAKE_EQUIV: {
714 void *bufp = data;
715 u32 sizes[2];
716 size_t len = nlmsg_len(nlh);
717 char *old, *new;
718
719 err = -EINVAL;
720 if (len < 2 * sizeof(u32))
721 break;
722 memcpy(sizes, bufp, 2 * sizeof(u32));
723 bufp += 2 * sizeof(u32);
724 len -= 2 * sizeof(u32);
725 old = audit_unpack_string(&bufp, &len, sizes[0]);
726 if (IS_ERR(old)) {
727 err = PTR_ERR(old);
728 break;
729 }
730 new = audit_unpack_string(&bufp, &len, sizes[1]);
731 if (IS_ERR(new)) {
732 err = PTR_ERR(new);
733 kfree(old);
734 break;
735 }
736 /* OK, here comes... */
737 err = audit_tag_tree(old, new);
738
739 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
740 uid, loginuid, sid);
741
742 audit_log_format(ab, " op=make_equiv old=");
743 audit_log_untrustedstring(ab, old);
744 audit_log_format(ab, " new=");
745 audit_log_untrustedstring(ab, new);
746 audit_log_format(ab, " res=%d", !err);
747 audit_log_end(ab);
748 kfree(old);
749 kfree(new);
750 break;
751 }
752 case AUDIT_SIGNAL_INFO:
753 err = selinux_sid_to_string(audit_sig_sid, &ctx, &len);
754 if (err)
755 return err;
756 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
757 if (!sig_data) {
758 kfree(ctx);
759 return -ENOMEM;
760 }
761 sig_data->uid = audit_sig_uid;
762 sig_data->pid = audit_sig_pid;
763 memcpy(sig_data->ctx, ctx, len);
764 kfree(ctx);
765 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
766 0, 0, sig_data, sizeof(*sig_data) + len);
767 kfree(sig_data);
768 break;
769 case AUDIT_TTY_GET: {
770 struct audit_tty_status s;
771 struct task_struct *tsk;
772
773 read_lock(&tasklist_lock);
774 tsk = find_task_by_pid(pid);
775 if (!tsk)
776 err = -ESRCH;
777 else {
778 spin_lock_irq(&tsk->sighand->siglock);
779 s.enabled = tsk->signal->audit_tty != 0;
780 spin_unlock_irq(&tsk->sighand->siglock);
781 }
782 read_unlock(&tasklist_lock);
783 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_TTY_GET, 0, 0,
784 &s, sizeof(s));
785 break;
786 }
787 case AUDIT_TTY_SET: {
788 struct audit_tty_status *s;
789 struct task_struct *tsk;
790
791 if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
792 return -EINVAL;
793 s = data;
794 if (s->enabled != 0 && s->enabled != 1)
795 return -EINVAL;
796 read_lock(&tasklist_lock);
797 tsk = find_task_by_pid(pid);
798 if (!tsk)
799 err = -ESRCH;
800 else {
801 spin_lock_irq(&tsk->sighand->siglock);
802 tsk->signal->audit_tty = s->enabled != 0;
803 spin_unlock_irq(&tsk->sighand->siglock);
804 }
805 read_unlock(&tasklist_lock);
806 break;
807 }
808 default:
809 err = -EINVAL;
810 break;
811 }
812
813 return err < 0 ? err : 0;
814 }
815
816 /*
817 * Get message from skb (based on rtnetlink_rcv_skb). Each message is
818 * processed by audit_receive_msg. Malformed skbs with wrong length are
819 * discarded silently.
820 */
821 static void audit_receive_skb(struct sk_buff *skb)
822 {
823 int err;
824 struct nlmsghdr *nlh;
825 u32 rlen;
826
827 while (skb->len >= NLMSG_SPACE(0)) {
828 nlh = nlmsg_hdr(skb);
829 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
830 return;
831 rlen = NLMSG_ALIGN(nlh->nlmsg_len);
832 if (rlen > skb->len)
833 rlen = skb->len;
834 if ((err = audit_receive_msg(skb, nlh))) {
835 netlink_ack(skb, nlh, err);
836 } else if (nlh->nlmsg_flags & NLM_F_ACK)
837 netlink_ack(skb, nlh, 0);
838 skb_pull(skb, rlen);
839 }
840 }
841
842 /* Receive messages from netlink socket. */
843 static void audit_receive(struct sk_buff *skb)
844 {
845 mutex_lock(&audit_cmd_mutex);
846 audit_receive_skb(skb);
847 mutex_unlock(&audit_cmd_mutex);
848 }
849
850 #ifdef CONFIG_AUDITSYSCALL
851 static const struct inotify_operations audit_inotify_ops = {
852 .handle_event = audit_handle_ievent,
853 .destroy_watch = audit_free_parent,
854 };
855 #endif
856
857 /* Initialize audit support at boot time. */
858 static int __init audit_init(void)
859 {
860 int i;
861
862 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
863 audit_default ? "enabled" : "disabled");
864 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
865 audit_receive, NULL, THIS_MODULE);
866 if (!audit_sock)
867 audit_panic("cannot initialize netlink socket");
868 else
869 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
870
871 skb_queue_head_init(&audit_skb_queue);
872 audit_initialized = 1;
873 audit_enabled = audit_default;
874 audit_ever_enabled |= !!audit_default;
875
876 /* Register the callback with selinux. This callback will be invoked
877 * when a new policy is loaded. */
878 selinux_audit_set_callback(&selinux_audit_rule_update);
879
880 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
881
882 #ifdef CONFIG_AUDITSYSCALL
883 audit_ih = inotify_init(&audit_inotify_ops);
884 if (IS_ERR(audit_ih))
885 audit_panic("cannot initialize inotify handle");
886 #endif
887
888 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
889 INIT_LIST_HEAD(&audit_inode_hash[i]);
890
891 return 0;
892 }
893 __initcall(audit_init);
894
895 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
896 static int __init audit_enable(char *str)
897 {
898 audit_default = !!simple_strtol(str, NULL, 0);
899 printk(KERN_INFO "audit: %s%s\n",
900 audit_default ? "enabled" : "disabled",
901 audit_initialized ? "" : " (after initialization)");
902 if (audit_initialized) {
903 audit_enabled = audit_default;
904 audit_ever_enabled |= !!audit_default;
905 }
906 return 1;
907 }
908
909 __setup("audit=", audit_enable);
910
911 static void audit_buffer_free(struct audit_buffer *ab)
912 {
913 unsigned long flags;
914
915 if (!ab)
916 return;
917
918 if (ab->skb)
919 kfree_skb(ab->skb);
920
921 spin_lock_irqsave(&audit_freelist_lock, flags);
922 if (audit_freelist_count > AUDIT_MAXFREE)
923 kfree(ab);
924 else {
925 audit_freelist_count++;
926 list_add(&ab->list, &audit_freelist);
927 }
928 spin_unlock_irqrestore(&audit_freelist_lock, flags);
929 }
930
931 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
932 gfp_t gfp_mask, int type)
933 {
934 unsigned long flags;
935 struct audit_buffer *ab = NULL;
936 struct nlmsghdr *nlh;
937
938 spin_lock_irqsave(&audit_freelist_lock, flags);
939 if (!list_empty(&audit_freelist)) {
940 ab = list_entry(audit_freelist.next,
941 struct audit_buffer, list);
942 list_del(&ab->list);
943 --audit_freelist_count;
944 }
945 spin_unlock_irqrestore(&audit_freelist_lock, flags);
946
947 if (!ab) {
948 ab = kmalloc(sizeof(*ab), gfp_mask);
949 if (!ab)
950 goto err;
951 }
952
953 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
954 if (!ab->skb)
955 goto err;
956
957 ab->ctx = ctx;
958 ab->gfp_mask = gfp_mask;
959 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
960 nlh->nlmsg_type = type;
961 nlh->nlmsg_flags = 0;
962 nlh->nlmsg_pid = 0;
963 nlh->nlmsg_seq = 0;
964 return ab;
965 err:
966 audit_buffer_free(ab);
967 return NULL;
968 }
969
970 /**
971 * audit_serial - compute a serial number for the audit record
972 *
973 * Compute a serial number for the audit record. Audit records are
974 * written to user-space as soon as they are generated, so a complete
975 * audit record may be written in several pieces. The timestamp of the
976 * record and this serial number are used by the user-space tools to
977 * determine which pieces belong to the same audit record. The
978 * (timestamp,serial) tuple is unique for each syscall and is live from
979 * syscall entry to syscall exit.
980 *
981 * NOTE: Another possibility is to store the formatted records off the
982 * audit context (for those records that have a context), and emit them
983 * all at syscall exit. However, this could delay the reporting of
984 * significant errors until syscall exit (or never, if the system
985 * halts).
986 */
987 unsigned int audit_serial(void)
988 {
989 static DEFINE_SPINLOCK(serial_lock);
990 static unsigned int serial = 0;
991
992 unsigned long flags;
993 unsigned int ret;
994
995 spin_lock_irqsave(&serial_lock, flags);
996 do {
997 ret = ++serial;
998 } while (unlikely(!ret));
999 spin_unlock_irqrestore(&serial_lock, flags);
1000
1001 return ret;
1002 }
1003
1004 static inline void audit_get_stamp(struct audit_context *ctx,
1005 struct timespec *t, unsigned int *serial)
1006 {
1007 if (ctx)
1008 auditsc_get_stamp(ctx, t, serial);
1009 else {
1010 *t = CURRENT_TIME;
1011 *serial = audit_serial();
1012 }
1013 }
1014
1015 /* Obtain an audit buffer. This routine does locking to obtain the
1016 * audit buffer, but then no locking is required for calls to
1017 * audit_log_*format. If the tsk is a task that is currently in a
1018 * syscall, then the syscall is marked as auditable and an audit record
1019 * will be written at syscall exit. If there is no associated task, tsk
1020 * should be NULL. */
1021
1022 /**
1023 * audit_log_start - obtain an audit buffer
1024 * @ctx: audit_context (may be NULL)
1025 * @gfp_mask: type of allocation
1026 * @type: audit message type
1027 *
1028 * Returns audit_buffer pointer on success or NULL on error.
1029 *
1030 * Obtain an audit buffer. This routine does locking to obtain the
1031 * audit buffer, but then no locking is required for calls to
1032 * audit_log_*format. If the task (ctx) is a task that is currently in a
1033 * syscall, then the syscall is marked as auditable and an audit record
1034 * will be written at syscall exit. If there is no associated task, then
1035 * task context (ctx) should be NULL.
1036 */
1037 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1038 int type)
1039 {
1040 struct audit_buffer *ab = NULL;
1041 struct timespec t;
1042 unsigned int uninitialized_var(serial);
1043 int reserve;
1044 unsigned long timeout_start = jiffies;
1045
1046 if (!audit_initialized)
1047 return NULL;
1048
1049 if (unlikely(audit_filter_type(type)))
1050 return NULL;
1051
1052 if (gfp_mask & __GFP_WAIT)
1053 reserve = 0;
1054 else
1055 reserve = 5; /* Allow atomic callers to go up to five
1056 entries over the normal backlog limit */
1057
1058 while (audit_backlog_limit
1059 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1060 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1061 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1062
1063 /* Wait for auditd to drain the queue a little */
1064 DECLARE_WAITQUEUE(wait, current);
1065 set_current_state(TASK_INTERRUPTIBLE);
1066 add_wait_queue(&audit_backlog_wait, &wait);
1067
1068 if (audit_backlog_limit &&
1069 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1070 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1071
1072 __set_current_state(TASK_RUNNING);
1073 remove_wait_queue(&audit_backlog_wait, &wait);
1074 continue;
1075 }
1076 if (audit_rate_check() && printk_ratelimit())
1077 printk(KERN_WARNING
1078 "audit: audit_backlog=%d > "
1079 "audit_backlog_limit=%d\n",
1080 skb_queue_len(&audit_skb_queue),
1081 audit_backlog_limit);
1082 audit_log_lost("backlog limit exceeded");
1083 audit_backlog_wait_time = audit_backlog_wait_overflow;
1084 wake_up(&audit_backlog_wait);
1085 return NULL;
1086 }
1087
1088 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1089 if (!ab) {
1090 audit_log_lost("out of memory in audit_log_start");
1091 return NULL;
1092 }
1093
1094 audit_get_stamp(ab->ctx, &t, &serial);
1095
1096 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1097 t.tv_sec, t.tv_nsec/1000000, serial);
1098 return ab;
1099 }
1100
1101 /**
1102 * audit_expand - expand skb in the audit buffer
1103 * @ab: audit_buffer
1104 * @extra: space to add at tail of the skb
1105 *
1106 * Returns 0 (no space) on failed expansion, or available space if
1107 * successful.
1108 */
1109 static inline int audit_expand(struct audit_buffer *ab, int extra)
1110 {
1111 struct sk_buff *skb = ab->skb;
1112 int oldtail = skb_tailroom(skb);
1113 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1114 int newtail = skb_tailroom(skb);
1115
1116 if (ret < 0) {
1117 audit_log_lost("out of memory in audit_expand");
1118 return 0;
1119 }
1120
1121 skb->truesize += newtail - oldtail;
1122 return newtail;
1123 }
1124
1125 /*
1126 * Format an audit message into the audit buffer. If there isn't enough
1127 * room in the audit buffer, more room will be allocated and vsnprint
1128 * will be called a second time. Currently, we assume that a printk
1129 * can't format message larger than 1024 bytes, so we don't either.
1130 */
1131 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1132 va_list args)
1133 {
1134 int len, avail;
1135 struct sk_buff *skb;
1136 va_list args2;
1137
1138 if (!ab)
1139 return;
1140
1141 BUG_ON(!ab->skb);
1142 skb = ab->skb;
1143 avail = skb_tailroom(skb);
1144 if (avail == 0) {
1145 avail = audit_expand(ab, AUDIT_BUFSIZ);
1146 if (!avail)
1147 goto out;
1148 }
1149 va_copy(args2, args);
1150 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1151 if (len >= avail) {
1152 /* The printk buffer is 1024 bytes long, so if we get
1153 * here and AUDIT_BUFSIZ is at least 1024, then we can
1154 * log everything that printk could have logged. */
1155 avail = audit_expand(ab,
1156 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1157 if (!avail)
1158 goto out;
1159 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1160 }
1161 va_end(args2);
1162 if (len > 0)
1163 skb_put(skb, len);
1164 out:
1165 return;
1166 }
1167
1168 /**
1169 * audit_log_format - format a message into the audit buffer.
1170 * @ab: audit_buffer
1171 * @fmt: format string
1172 * @...: optional parameters matching @fmt string
1173 *
1174 * All the work is done in audit_log_vformat.
1175 */
1176 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1177 {
1178 va_list args;
1179
1180 if (!ab)
1181 return;
1182 va_start(args, fmt);
1183 audit_log_vformat(ab, fmt, args);
1184 va_end(args);
1185 }
1186
1187 /**
1188 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1189 * @ab: the audit_buffer
1190 * @buf: buffer to convert to hex
1191 * @len: length of @buf to be converted
1192 *
1193 * No return value; failure to expand is silently ignored.
1194 *
1195 * This function will take the passed buf and convert it into a string of
1196 * ascii hex digits. The new string is placed onto the skb.
1197 */
1198 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
1199 size_t len)
1200 {
1201 int i, avail, new_len;
1202 unsigned char *ptr;
1203 struct sk_buff *skb;
1204 static const unsigned char *hex = "0123456789ABCDEF";
1205
1206 if (!ab)
1207 return;
1208
1209 BUG_ON(!ab->skb);
1210 skb = ab->skb;
1211 avail = skb_tailroom(skb);
1212 new_len = len<<1;
1213 if (new_len >= avail) {
1214 /* Round the buffer request up to the next multiple */
1215 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1216 avail = audit_expand(ab, new_len);
1217 if (!avail)
1218 return;
1219 }
1220
1221 ptr = skb_tail_pointer(skb);
1222 for (i=0; i<len; i++) {
1223 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1224 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1225 }
1226 *ptr = 0;
1227 skb_put(skb, len << 1); /* new string is twice the old string */
1228 }
1229
1230 /*
1231 * Format a string of no more than slen characters into the audit buffer,
1232 * enclosed in quote marks.
1233 */
1234 static void audit_log_n_string(struct audit_buffer *ab, size_t slen,
1235 const char *string)
1236 {
1237 int avail, new_len;
1238 unsigned char *ptr;
1239 struct sk_buff *skb;
1240
1241 if (!ab)
1242 return;
1243
1244 BUG_ON(!ab->skb);
1245 skb = ab->skb;
1246 avail = skb_tailroom(skb);
1247 new_len = slen + 3; /* enclosing quotes + null terminator */
1248 if (new_len > avail) {
1249 avail = audit_expand(ab, new_len);
1250 if (!avail)
1251 return;
1252 }
1253 ptr = skb_tail_pointer(skb);
1254 *ptr++ = '"';
1255 memcpy(ptr, string, slen);
1256 ptr += slen;
1257 *ptr++ = '"';
1258 *ptr = 0;
1259 skb_put(skb, slen + 2); /* don't include null terminator */
1260 }
1261
1262 /**
1263 * audit_string_contains_control - does a string need to be logged in hex
1264 * @string - string to be checked
1265 * @len - max length of the string to check
1266 */
1267 int audit_string_contains_control(const char *string, size_t len)
1268 {
1269 const unsigned char *p;
1270 for (p = string; p < (const unsigned char *)string + len && *p; p++) {
1271 if (*p == '"' || *p < 0x21 || *p > 0x7f)
1272 return 1;
1273 }
1274 return 0;
1275 }
1276
1277 /**
1278 * audit_log_n_untrustedstring - log a string that may contain random characters
1279 * @ab: audit_buffer
1280 * @len: lenth of string (not including trailing null)
1281 * @string: string to be logged
1282 *
1283 * This code will escape a string that is passed to it if the string
1284 * contains a control character, unprintable character, double quote mark,
1285 * or a space. Unescaped strings will start and end with a double quote mark.
1286 * Strings that are escaped are printed in hex (2 digits per char).
1287 *
1288 * The caller specifies the number of characters in the string to log, which may
1289 * or may not be the entire string.
1290 */
1291 void audit_log_n_untrustedstring(struct audit_buffer *ab, size_t len,
1292 const char *string)
1293 {
1294 if (audit_string_contains_control(string, len))
1295 audit_log_hex(ab, string, len);
1296 else
1297 audit_log_n_string(ab, len, string);
1298 }
1299
1300 /**
1301 * audit_log_untrustedstring - log a string that may contain random characters
1302 * @ab: audit_buffer
1303 * @string: string to be logged
1304 *
1305 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1306 * determine string length.
1307 */
1308 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1309 {
1310 audit_log_n_untrustedstring(ab, strlen(string), string);
1311 }
1312
1313 /* This is a helper-function to print the escaped d_path */
1314 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1315 struct dentry *dentry, struct vfsmount *vfsmnt)
1316 {
1317 char *p, *path;
1318
1319 if (prefix)
1320 audit_log_format(ab, " %s", prefix);
1321
1322 /* We will allow 11 spaces for ' (deleted)' to be appended */
1323 path = kmalloc(PATH_MAX+11, ab->gfp_mask);
1324 if (!path) {
1325 audit_log_format(ab, "<no memory>");
1326 return;
1327 }
1328 p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
1329 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1330 /* FIXME: can we save some information here? */
1331 audit_log_format(ab, "<too long>");
1332 } else
1333 audit_log_untrustedstring(ab, p);
1334 kfree(path);
1335 }
1336
1337 /**
1338 * audit_log_end - end one audit record
1339 * @ab: the audit_buffer
1340 *
1341 * The netlink_* functions cannot be called inside an irq context, so
1342 * the audit buffer is placed on a queue and a tasklet is scheduled to
1343 * remove them from the queue outside the irq context. May be called in
1344 * any context.
1345 */
1346 void audit_log_end(struct audit_buffer *ab)
1347 {
1348 if (!ab)
1349 return;
1350 if (!audit_rate_check()) {
1351 audit_log_lost("rate limit exceeded");
1352 } else {
1353 if (audit_pid) {
1354 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1355 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1356 skb_queue_tail(&audit_skb_queue, ab->skb);
1357 ab->skb = NULL;
1358 wake_up_interruptible(&kauditd_wait);
1359 } else if (printk_ratelimit()) {
1360 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1361 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, ab->skb->data + NLMSG_SPACE(0));
1362 } else {
1363 audit_log_lost("printk limit exceeded\n");
1364 }
1365 }
1366 audit_buffer_free(ab);
1367 }
1368
1369 /**
1370 * audit_log - Log an audit record
1371 * @ctx: audit context
1372 * @gfp_mask: type of allocation
1373 * @type: audit message type
1374 * @fmt: format string to use
1375 * @...: variable parameters matching the format string
1376 *
1377 * This is a convenience function that calls audit_log_start,
1378 * audit_log_vformat, and audit_log_end. It may be called
1379 * in any context.
1380 */
1381 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1382 const char *fmt, ...)
1383 {
1384 struct audit_buffer *ab;
1385 va_list args;
1386
1387 ab = audit_log_start(ctx, gfp_mask, type);
1388 if (ab) {
1389 va_start(args, fmt);
1390 audit_log_vformat(ab, fmt, args);
1391 va_end(args);
1392 audit_log_end(ab);
1393 }
1394 }
1395
1396 EXPORT_SYMBOL(audit_log_start);
1397 EXPORT_SYMBOL(audit_log_end);
1398 EXPORT_SYMBOL(audit_log_format);
1399 EXPORT_SYMBOL(audit_log);