[PATCH] SE Linux audit events
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / audit.c
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with SELinux.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <asm/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/module.h>
49 #include <linux/err.h>
50 #include <linux/kthread.h>
51
52 #include <linux/audit.h>
53
54 #include <net/sock.h>
55 #include <linux/skbuff.h>
56 #include <linux/netlink.h>
57
58 /* No auditing will take place until audit_initialized != 0.
59 * (Initialization happens after skb_init is called.) */
60 static int audit_initialized;
61
62 /* No syscall auditing will take place unless audit_enabled != 0. */
63 int audit_enabled;
64
65 /* Default state when kernel boots without any parameters. */
66 static int audit_default;
67
68 /* If auditing cannot proceed, audit_failure selects what happens. */
69 static int audit_failure = AUDIT_FAIL_PRINTK;
70
71 /* If audit records are to be written to the netlink socket, audit_pid
72 * contains the (non-zero) pid. */
73 int audit_pid;
74
75 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
76 * to that number per second. This prevents DoS attacks, but results in
77 * audit records being dropped. */
78 static int audit_rate_limit;
79
80 /* Number of outstanding audit_buffers allowed. */
81 static int audit_backlog_limit = 64;
82 static int audit_backlog_wait_time = 60 * HZ;
83 static int audit_backlog_wait_overflow = 0;
84
85 /* The identity of the user shutting down the audit system. */
86 uid_t audit_sig_uid = -1;
87 pid_t audit_sig_pid = -1;
88
89 /* Records can be lost in several ways:
90 0) [suppressed in audit_alloc]
91 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
92 2) out of memory in audit_log_move [alloc_skb]
93 3) suppressed due to audit_rate_limit
94 4) suppressed due to audit_backlog_limit
95 */
96 static atomic_t audit_lost = ATOMIC_INIT(0);
97
98 /* The netlink socket. */
99 static struct sock *audit_sock;
100
101 /* The audit_freelist is a list of pre-allocated audit buffers (if more
102 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
103 * being placed on the freelist). */
104 static DEFINE_SPINLOCK(audit_freelist_lock);
105 static int audit_freelist_count;
106 static LIST_HEAD(audit_freelist);
107
108 static struct sk_buff_head audit_skb_queue;
109 static struct task_struct *kauditd_task;
110 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
111 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
112
113 /* The netlink socket is only to be read by 1 CPU, which lets us assume
114 * that list additions and deletions never happen simultaneously in
115 * auditsc.c */
116 DECLARE_MUTEX(audit_netlink_sem);
117
118 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
119 * audit records. Since printk uses a 1024 byte buffer, this buffer
120 * should be at least that large. */
121 #define AUDIT_BUFSIZ 1024
122
123 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
124 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
125 #define AUDIT_MAXFREE (2*NR_CPUS)
126
127 /* The audit_buffer is used when formatting an audit record. The caller
128 * locks briefly to get the record off the freelist or to allocate the
129 * buffer, and locks briefly to send the buffer to the netlink layer or
130 * to place it on a transmit queue. Multiple audit_buffers can be in
131 * use simultaneously. */
132 struct audit_buffer {
133 struct list_head list;
134 struct sk_buff *skb; /* formatted skb ready to send */
135 struct audit_context *ctx; /* NULL or associated context */
136 gfp_t gfp_mask;
137 };
138
139 static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
140 {
141 struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
142 nlh->nlmsg_pid = pid;
143 }
144
145 void audit_panic(const char *message)
146 {
147 switch (audit_failure)
148 {
149 case AUDIT_FAIL_SILENT:
150 break;
151 case AUDIT_FAIL_PRINTK:
152 printk(KERN_ERR "audit: %s\n", message);
153 break;
154 case AUDIT_FAIL_PANIC:
155 panic("audit: %s\n", message);
156 break;
157 }
158 }
159
160 static inline int audit_rate_check(void)
161 {
162 static unsigned long last_check = 0;
163 static int messages = 0;
164 static DEFINE_SPINLOCK(lock);
165 unsigned long flags;
166 unsigned long now;
167 unsigned long elapsed;
168 int retval = 0;
169
170 if (!audit_rate_limit) return 1;
171
172 spin_lock_irqsave(&lock, flags);
173 if (++messages < audit_rate_limit) {
174 retval = 1;
175 } else {
176 now = jiffies;
177 elapsed = now - last_check;
178 if (elapsed > HZ) {
179 last_check = now;
180 messages = 0;
181 retval = 1;
182 }
183 }
184 spin_unlock_irqrestore(&lock, flags);
185
186 return retval;
187 }
188
189 /**
190 * audit_log_lost - conditionally log lost audit message event
191 * @message: the message stating reason for lost audit message
192 *
193 * Emit at least 1 message per second, even if audit_rate_check is
194 * throttling.
195 * Always increment the lost messages counter.
196 */
197 void audit_log_lost(const char *message)
198 {
199 static unsigned long last_msg = 0;
200 static DEFINE_SPINLOCK(lock);
201 unsigned long flags;
202 unsigned long now;
203 int print;
204
205 atomic_inc(&audit_lost);
206
207 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
208
209 if (!print) {
210 spin_lock_irqsave(&lock, flags);
211 now = jiffies;
212 if (now - last_msg > HZ) {
213 print = 1;
214 last_msg = now;
215 }
216 spin_unlock_irqrestore(&lock, flags);
217 }
218
219 if (print) {
220 printk(KERN_WARNING
221 "audit: audit_lost=%d audit_rate_limit=%d audit_backlog_limit=%d\n",
222 atomic_read(&audit_lost),
223 audit_rate_limit,
224 audit_backlog_limit);
225 audit_panic(message);
226 }
227 }
228
229 static int audit_set_rate_limit(int limit, uid_t loginuid)
230 {
231 int old = audit_rate_limit;
232 audit_rate_limit = limit;
233 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
234 "audit_rate_limit=%d old=%d by auid=%u",
235 audit_rate_limit, old, loginuid);
236 return old;
237 }
238
239 static int audit_set_backlog_limit(int limit, uid_t loginuid)
240 {
241 int old = audit_backlog_limit;
242 audit_backlog_limit = limit;
243 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
244 "audit_backlog_limit=%d old=%d by auid=%u",
245 audit_backlog_limit, old, loginuid);
246 return old;
247 }
248
249 static int audit_set_enabled(int state, uid_t loginuid)
250 {
251 int old = audit_enabled;
252 if (state != 0 && state != 1)
253 return -EINVAL;
254 audit_enabled = state;
255 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
256 "audit_enabled=%d old=%d by auid=%u",
257 audit_enabled, old, loginuid);
258 return old;
259 }
260
261 static int audit_set_failure(int state, uid_t loginuid)
262 {
263 int old = audit_failure;
264 if (state != AUDIT_FAIL_SILENT
265 && state != AUDIT_FAIL_PRINTK
266 && state != AUDIT_FAIL_PANIC)
267 return -EINVAL;
268 audit_failure = state;
269 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
270 "audit_failure=%d old=%d by auid=%u",
271 audit_failure, old, loginuid);
272 return old;
273 }
274
275 static int kauditd_thread(void *dummy)
276 {
277 struct sk_buff *skb;
278
279 while (1) {
280 skb = skb_dequeue(&audit_skb_queue);
281 wake_up(&audit_backlog_wait);
282 if (skb) {
283 if (audit_pid) {
284 int err = netlink_unicast(audit_sock, skb, audit_pid, 0);
285 if (err < 0) {
286 BUG_ON(err != -ECONNREFUSED); /* Shoudn't happen */
287 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
288 audit_pid = 0;
289 }
290 } else {
291 printk(KERN_NOTICE "%s\n", skb->data + NLMSG_SPACE(0));
292 kfree_skb(skb);
293 }
294 } else {
295 DECLARE_WAITQUEUE(wait, current);
296 set_current_state(TASK_INTERRUPTIBLE);
297 add_wait_queue(&kauditd_wait, &wait);
298
299 if (!skb_queue_len(&audit_skb_queue)) {
300 try_to_freeze();
301 schedule();
302 }
303
304 __set_current_state(TASK_RUNNING);
305 remove_wait_queue(&kauditd_wait, &wait);
306 }
307 }
308 return 0;
309 }
310
311 /**
312 * audit_send_reply - send an audit reply message via netlink
313 * @pid: process id to send reply to
314 * @seq: sequence number
315 * @type: audit message type
316 * @done: done (last) flag
317 * @multi: multi-part message flag
318 * @payload: payload data
319 * @size: payload size
320 *
321 * Allocates an skb, builds the netlink message, and sends it to the pid.
322 * No failure notifications.
323 */
324 void audit_send_reply(int pid, int seq, int type, int done, int multi,
325 void *payload, int size)
326 {
327 struct sk_buff *skb;
328 struct nlmsghdr *nlh;
329 int len = NLMSG_SPACE(size);
330 void *data;
331 int flags = multi ? NLM_F_MULTI : 0;
332 int t = done ? NLMSG_DONE : type;
333
334 skb = alloc_skb(len, GFP_KERNEL);
335 if (!skb)
336 return;
337
338 nlh = NLMSG_PUT(skb, pid, seq, t, size);
339 nlh->nlmsg_flags = flags;
340 data = NLMSG_DATA(nlh);
341 memcpy(data, payload, size);
342
343 /* Ignore failure. It'll only happen if the sender goes away,
344 because our timeout is set to infinite. */
345 netlink_unicast(audit_sock, skb, pid, 0);
346 return;
347
348 nlmsg_failure: /* Used by NLMSG_PUT */
349 if (skb)
350 kfree_skb(skb);
351 }
352
353 /*
354 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
355 * control messages.
356 */
357 static int audit_netlink_ok(kernel_cap_t eff_cap, u16 msg_type)
358 {
359 int err = 0;
360
361 switch (msg_type) {
362 case AUDIT_GET:
363 case AUDIT_LIST:
364 case AUDIT_SET:
365 case AUDIT_ADD:
366 case AUDIT_DEL:
367 case AUDIT_SIGNAL_INFO:
368 if (!cap_raised(eff_cap, CAP_AUDIT_CONTROL))
369 err = -EPERM;
370 break;
371 case AUDIT_USER:
372 case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
373 case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
374 if (!cap_raised(eff_cap, CAP_AUDIT_WRITE))
375 err = -EPERM;
376 break;
377 default: /* bad msg */
378 err = -EINVAL;
379 }
380
381 return err;
382 }
383
384 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
385 {
386 u32 uid, pid, seq;
387 void *data;
388 struct audit_status *status_get, status_set;
389 int err;
390 struct audit_buffer *ab;
391 u16 msg_type = nlh->nlmsg_type;
392 uid_t loginuid; /* loginuid of sender */
393 struct audit_sig_info sig_data;
394
395 err = audit_netlink_ok(NETLINK_CB(skb).eff_cap, msg_type);
396 if (err)
397 return err;
398
399 /* As soon as there's any sign of userspace auditd,
400 * start kauditd to talk to it */
401 if (!kauditd_task)
402 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
403 if (IS_ERR(kauditd_task)) {
404 err = PTR_ERR(kauditd_task);
405 kauditd_task = NULL;
406 return err;
407 }
408
409 pid = NETLINK_CREDS(skb)->pid;
410 uid = NETLINK_CREDS(skb)->uid;
411 loginuid = NETLINK_CB(skb).loginuid;
412 seq = nlh->nlmsg_seq;
413 data = NLMSG_DATA(nlh);
414
415 switch (msg_type) {
416 case AUDIT_GET:
417 status_set.enabled = audit_enabled;
418 status_set.failure = audit_failure;
419 status_set.pid = audit_pid;
420 status_set.rate_limit = audit_rate_limit;
421 status_set.backlog_limit = audit_backlog_limit;
422 status_set.lost = atomic_read(&audit_lost);
423 status_set.backlog = skb_queue_len(&audit_skb_queue);
424 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
425 &status_set, sizeof(status_set));
426 break;
427 case AUDIT_SET:
428 if (nlh->nlmsg_len < sizeof(struct audit_status))
429 return -EINVAL;
430 status_get = (struct audit_status *)data;
431 if (status_get->mask & AUDIT_STATUS_ENABLED) {
432 err = audit_set_enabled(status_get->enabled, loginuid);
433 if (err < 0) return err;
434 }
435 if (status_get->mask & AUDIT_STATUS_FAILURE) {
436 err = audit_set_failure(status_get->failure, loginuid);
437 if (err < 0) return err;
438 }
439 if (status_get->mask & AUDIT_STATUS_PID) {
440 int old = audit_pid;
441 audit_pid = status_get->pid;
442 audit_log(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE,
443 "audit_pid=%d old=%d by auid=%u",
444 audit_pid, old, loginuid);
445 }
446 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT)
447 audit_set_rate_limit(status_get->rate_limit, loginuid);
448 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
449 audit_set_backlog_limit(status_get->backlog_limit,
450 loginuid);
451 break;
452 case AUDIT_USER:
453 case AUDIT_FIRST_USER_MSG...AUDIT_LAST_USER_MSG:
454 case AUDIT_FIRST_USER_MSG2...AUDIT_LAST_USER_MSG2:
455 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
456 return 0;
457
458 err = audit_filter_user(&NETLINK_CB(skb), msg_type);
459 if (err == 1) {
460 err = 0;
461 ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
462 if (ab) {
463 audit_log_format(ab,
464 "user pid=%d uid=%u auid=%u msg='%.1024s'",
465 pid, uid, loginuid, (char *)data);
466 audit_set_pid(ab, pid);
467 audit_log_end(ab);
468 }
469 }
470 break;
471 case AUDIT_ADD:
472 case AUDIT_DEL:
473 if (nlh->nlmsg_len < sizeof(struct audit_rule))
474 return -EINVAL;
475 /* fallthrough */
476 case AUDIT_LIST:
477 err = audit_receive_filter(nlh->nlmsg_type, NETLINK_CB(skb).pid,
478 uid, seq, data, loginuid);
479 break;
480 case AUDIT_SIGNAL_INFO:
481 sig_data.uid = audit_sig_uid;
482 sig_data.pid = audit_sig_pid;
483 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
484 0, 0, &sig_data, sizeof(sig_data));
485 break;
486 default:
487 err = -EINVAL;
488 break;
489 }
490
491 return err < 0 ? err : 0;
492 }
493
494 /*
495 * Get message from skb (based on rtnetlink_rcv_skb). Each message is
496 * processed by audit_receive_msg. Malformed skbs with wrong length are
497 * discarded silently.
498 */
499 static void audit_receive_skb(struct sk_buff *skb)
500 {
501 int err;
502 struct nlmsghdr *nlh;
503 u32 rlen;
504
505 while (skb->len >= NLMSG_SPACE(0)) {
506 nlh = (struct nlmsghdr *)skb->data;
507 if (nlh->nlmsg_len < sizeof(*nlh) || skb->len < nlh->nlmsg_len)
508 return;
509 rlen = NLMSG_ALIGN(nlh->nlmsg_len);
510 if (rlen > skb->len)
511 rlen = skb->len;
512 if ((err = audit_receive_msg(skb, nlh))) {
513 netlink_ack(skb, nlh, err);
514 } else if (nlh->nlmsg_flags & NLM_F_ACK)
515 netlink_ack(skb, nlh, 0);
516 skb_pull(skb, rlen);
517 }
518 }
519
520 /* Receive messages from netlink socket. */
521 static void audit_receive(struct sock *sk, int length)
522 {
523 struct sk_buff *skb;
524 unsigned int qlen;
525
526 down(&audit_netlink_sem);
527
528 for (qlen = skb_queue_len(&sk->sk_receive_queue); qlen; qlen--) {
529 skb = skb_dequeue(&sk->sk_receive_queue);
530 audit_receive_skb(skb);
531 kfree_skb(skb);
532 }
533 up(&audit_netlink_sem);
534 }
535
536
537 /* Initialize audit support at boot time. */
538 static int __init audit_init(void)
539 {
540 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
541 audit_default ? "enabled" : "disabled");
542 audit_sock = netlink_kernel_create(NETLINK_AUDIT, 0, audit_receive,
543 THIS_MODULE);
544 if (!audit_sock)
545 audit_panic("cannot initialize netlink socket");
546
547 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
548 skb_queue_head_init(&audit_skb_queue);
549 audit_initialized = 1;
550 audit_enabled = audit_default;
551 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
552 return 0;
553 }
554 __initcall(audit_init);
555
556 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
557 static int __init audit_enable(char *str)
558 {
559 audit_default = !!simple_strtol(str, NULL, 0);
560 printk(KERN_INFO "audit: %s%s\n",
561 audit_default ? "enabled" : "disabled",
562 audit_initialized ? "" : " (after initialization)");
563 if (audit_initialized)
564 audit_enabled = audit_default;
565 return 0;
566 }
567
568 __setup("audit=", audit_enable);
569
570 static void audit_buffer_free(struct audit_buffer *ab)
571 {
572 unsigned long flags;
573
574 if (!ab)
575 return;
576
577 if (ab->skb)
578 kfree_skb(ab->skb);
579
580 spin_lock_irqsave(&audit_freelist_lock, flags);
581 if (++audit_freelist_count > AUDIT_MAXFREE)
582 kfree(ab);
583 else
584 list_add(&ab->list, &audit_freelist);
585 spin_unlock_irqrestore(&audit_freelist_lock, flags);
586 }
587
588 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
589 gfp_t gfp_mask, int type)
590 {
591 unsigned long flags;
592 struct audit_buffer *ab = NULL;
593 struct nlmsghdr *nlh;
594
595 spin_lock_irqsave(&audit_freelist_lock, flags);
596 if (!list_empty(&audit_freelist)) {
597 ab = list_entry(audit_freelist.next,
598 struct audit_buffer, list);
599 list_del(&ab->list);
600 --audit_freelist_count;
601 }
602 spin_unlock_irqrestore(&audit_freelist_lock, flags);
603
604 if (!ab) {
605 ab = kmalloc(sizeof(*ab), gfp_mask);
606 if (!ab)
607 goto err;
608 }
609
610 ab->skb = alloc_skb(AUDIT_BUFSIZ, gfp_mask);
611 if (!ab->skb)
612 goto err;
613
614 ab->ctx = ctx;
615 ab->gfp_mask = gfp_mask;
616 nlh = (struct nlmsghdr *)skb_put(ab->skb, NLMSG_SPACE(0));
617 nlh->nlmsg_type = type;
618 nlh->nlmsg_flags = 0;
619 nlh->nlmsg_pid = 0;
620 nlh->nlmsg_seq = 0;
621 return ab;
622 err:
623 audit_buffer_free(ab);
624 return NULL;
625 }
626
627 /**
628 * audit_serial - compute a serial number for the audit record
629 *
630 * Compute a serial number for the audit record. Audit records are
631 * written to user-space as soon as they are generated, so a complete
632 * audit record may be written in several pieces. The timestamp of the
633 * record and this serial number are used by the user-space tools to
634 * determine which pieces belong to the same audit record. The
635 * (timestamp,serial) tuple is unique for each syscall and is live from
636 * syscall entry to syscall exit.
637 *
638 * NOTE: Another possibility is to store the formatted records off the
639 * audit context (for those records that have a context), and emit them
640 * all at syscall exit. However, this could delay the reporting of
641 * significant errors until syscall exit (or never, if the system
642 * halts).
643 */
644 unsigned int audit_serial(void)
645 {
646 static spinlock_t serial_lock = SPIN_LOCK_UNLOCKED;
647 static unsigned int serial = 0;
648
649 unsigned long flags;
650 unsigned int ret;
651
652 spin_lock_irqsave(&serial_lock, flags);
653 do {
654 ret = ++serial;
655 } while (unlikely(!ret));
656 spin_unlock_irqrestore(&serial_lock, flags);
657
658 return ret;
659 }
660
661 static inline void audit_get_stamp(struct audit_context *ctx,
662 struct timespec *t, unsigned int *serial)
663 {
664 if (ctx)
665 auditsc_get_stamp(ctx, t, serial);
666 else {
667 *t = CURRENT_TIME;
668 *serial = audit_serial();
669 }
670 }
671
672 /* Obtain an audit buffer. This routine does locking to obtain the
673 * audit buffer, but then no locking is required for calls to
674 * audit_log_*format. If the tsk is a task that is currently in a
675 * syscall, then the syscall is marked as auditable and an audit record
676 * will be written at syscall exit. If there is no associated task, tsk
677 * should be NULL. */
678
679 /**
680 * audit_log_start - obtain an audit buffer
681 * @ctx: audit_context (may be NULL)
682 * @gfp_mask: type of allocation
683 * @type: audit message type
684 *
685 * Returns audit_buffer pointer on success or NULL on error.
686 *
687 * Obtain an audit buffer. This routine does locking to obtain the
688 * audit buffer, but then no locking is required for calls to
689 * audit_log_*format. If the task (ctx) is a task that is currently in a
690 * syscall, then the syscall is marked as auditable and an audit record
691 * will be written at syscall exit. If there is no associated task, then
692 * task context (ctx) should be NULL.
693 */
694 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
695 int type)
696 {
697 struct audit_buffer *ab = NULL;
698 struct timespec t;
699 unsigned int serial;
700 int reserve;
701 unsigned long timeout_start = jiffies;
702
703 if (!audit_initialized)
704 return NULL;
705
706 if (unlikely(audit_filter_type(type)))
707 return NULL;
708
709 if (gfp_mask & __GFP_WAIT)
710 reserve = 0;
711 else
712 reserve = 5; /* Allow atomic callers to go up to five
713 entries over the normal backlog limit */
714
715 while (audit_backlog_limit
716 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
717 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
718 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
719
720 /* Wait for auditd to drain the queue a little */
721 DECLARE_WAITQUEUE(wait, current);
722 set_current_state(TASK_INTERRUPTIBLE);
723 add_wait_queue(&audit_backlog_wait, &wait);
724
725 if (audit_backlog_limit &&
726 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
727 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
728
729 __set_current_state(TASK_RUNNING);
730 remove_wait_queue(&audit_backlog_wait, &wait);
731 continue;
732 }
733 if (audit_rate_check())
734 printk(KERN_WARNING
735 "audit: audit_backlog=%d > "
736 "audit_backlog_limit=%d\n",
737 skb_queue_len(&audit_skb_queue),
738 audit_backlog_limit);
739 audit_log_lost("backlog limit exceeded");
740 audit_backlog_wait_time = audit_backlog_wait_overflow;
741 wake_up(&audit_backlog_wait);
742 return NULL;
743 }
744
745 ab = audit_buffer_alloc(ctx, gfp_mask, type);
746 if (!ab) {
747 audit_log_lost("out of memory in audit_log_start");
748 return NULL;
749 }
750
751 audit_get_stamp(ab->ctx, &t, &serial);
752
753 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
754 t.tv_sec, t.tv_nsec/1000000, serial);
755 return ab;
756 }
757
758 /**
759 * audit_expand - expand skb in the audit buffer
760 * @ab: audit_buffer
761 * @extra: space to add at tail of the skb
762 *
763 * Returns 0 (no space) on failed expansion, or available space if
764 * successful.
765 */
766 static inline int audit_expand(struct audit_buffer *ab, int extra)
767 {
768 struct sk_buff *skb = ab->skb;
769 int ret = pskb_expand_head(skb, skb_headroom(skb), extra,
770 ab->gfp_mask);
771 if (ret < 0) {
772 audit_log_lost("out of memory in audit_expand");
773 return 0;
774 }
775 return skb_tailroom(skb);
776 }
777
778 /*
779 * Format an audit message into the audit buffer. If there isn't enough
780 * room in the audit buffer, more room will be allocated and vsnprint
781 * will be called a second time. Currently, we assume that a printk
782 * can't format message larger than 1024 bytes, so we don't either.
783 */
784 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
785 va_list args)
786 {
787 int len, avail;
788 struct sk_buff *skb;
789 va_list args2;
790
791 if (!ab)
792 return;
793
794 BUG_ON(!ab->skb);
795 skb = ab->skb;
796 avail = skb_tailroom(skb);
797 if (avail == 0) {
798 avail = audit_expand(ab, AUDIT_BUFSIZ);
799 if (!avail)
800 goto out;
801 }
802 va_copy(args2, args);
803 len = vsnprintf(skb->tail, avail, fmt, args);
804 if (len >= avail) {
805 /* The printk buffer is 1024 bytes long, so if we get
806 * here and AUDIT_BUFSIZ is at least 1024, then we can
807 * log everything that printk could have logged. */
808 avail = audit_expand(ab,
809 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
810 if (!avail)
811 goto out;
812 len = vsnprintf(skb->tail, avail, fmt, args2);
813 }
814 if (len > 0)
815 skb_put(skb, len);
816 out:
817 return;
818 }
819
820 /**
821 * audit_log_format - format a message into the audit buffer.
822 * @ab: audit_buffer
823 * @fmt: format string
824 * @...: optional parameters matching @fmt string
825 *
826 * All the work is done in audit_log_vformat.
827 */
828 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
829 {
830 va_list args;
831
832 if (!ab)
833 return;
834 va_start(args, fmt);
835 audit_log_vformat(ab, fmt, args);
836 va_end(args);
837 }
838
839 /**
840 * audit_log_hex - convert a buffer to hex and append it to the audit skb
841 * @ab: the audit_buffer
842 * @buf: buffer to convert to hex
843 * @len: length of @buf to be converted
844 *
845 * No return value; failure to expand is silently ignored.
846 *
847 * This function will take the passed buf and convert it into a string of
848 * ascii hex digits. The new string is placed onto the skb.
849 */
850 void audit_log_hex(struct audit_buffer *ab, const unsigned char *buf,
851 size_t len)
852 {
853 int i, avail, new_len;
854 unsigned char *ptr;
855 struct sk_buff *skb;
856 static const unsigned char *hex = "0123456789ABCDEF";
857
858 BUG_ON(!ab->skb);
859 skb = ab->skb;
860 avail = skb_tailroom(skb);
861 new_len = len<<1;
862 if (new_len >= avail) {
863 /* Round the buffer request up to the next multiple */
864 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
865 avail = audit_expand(ab, new_len);
866 if (!avail)
867 return;
868 }
869
870 ptr = skb->tail;
871 for (i=0; i<len; i++) {
872 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
873 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
874 }
875 *ptr = 0;
876 skb_put(skb, len << 1); /* new string is twice the old string */
877 }
878
879 /**
880 * audit_log_unstrustedstring - log a string that may contain random characters
881 * @ab: audit_buffer
882 * @string: string to be logged
883 *
884 * This code will escape a string that is passed to it if the string
885 * contains a control character, unprintable character, double quote mark,
886 * or a space. Unescaped strings will start and end with a double quote mark.
887 * Strings that are escaped are printed in hex (2 digits per char).
888 */
889 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
890 {
891 const unsigned char *p = string;
892
893 while (*p) {
894 if (*p == '"' || *p < 0x21 || *p > 0x7f) {
895 audit_log_hex(ab, string, strlen(string));
896 return;
897 }
898 p++;
899 }
900 audit_log_format(ab, "\"%s\"", string);
901 }
902
903 /* This is a helper-function to print the escaped d_path */
904 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
905 struct dentry *dentry, struct vfsmount *vfsmnt)
906 {
907 char *p, *path;
908
909 if (prefix)
910 audit_log_format(ab, " %s", prefix);
911
912 /* We will allow 11 spaces for ' (deleted)' to be appended */
913 path = kmalloc(PATH_MAX+11, ab->gfp_mask);
914 if (!path) {
915 audit_log_format(ab, "<no memory>");
916 return;
917 }
918 p = d_path(dentry, vfsmnt, path, PATH_MAX+11);
919 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
920 /* FIXME: can we save some information here? */
921 audit_log_format(ab, "<too long>");
922 } else
923 audit_log_untrustedstring(ab, p);
924 kfree(path);
925 }
926
927 /**
928 * audit_log_end - end one audit record
929 * @ab: the audit_buffer
930 *
931 * The netlink_* functions cannot be called inside an irq context, so
932 * the audit buffer is placed on a queue and a tasklet is scheduled to
933 * remove them from the queue outside the irq context. May be called in
934 * any context.
935 */
936 void audit_log_end(struct audit_buffer *ab)
937 {
938 if (!ab)
939 return;
940 if (!audit_rate_check()) {
941 audit_log_lost("rate limit exceeded");
942 } else {
943 if (audit_pid) {
944 struct nlmsghdr *nlh = (struct nlmsghdr *)ab->skb->data;
945 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
946 skb_queue_tail(&audit_skb_queue, ab->skb);
947 ab->skb = NULL;
948 wake_up_interruptible(&kauditd_wait);
949 } else {
950 printk(KERN_NOTICE "%s\n", ab->skb->data + NLMSG_SPACE(0));
951 }
952 }
953 audit_buffer_free(ab);
954 }
955
956 /**
957 * audit_log - Log an audit record
958 * @ctx: audit context
959 * @gfp_mask: type of allocation
960 * @type: audit message type
961 * @fmt: format string to use
962 * @...: variable parameters matching the format string
963 *
964 * This is a convenience function that calls audit_log_start,
965 * audit_log_vformat, and audit_log_end. It may be called
966 * in any context.
967 */
968 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
969 const char *fmt, ...)
970 {
971 struct audit_buffer *ab;
972 va_list args;
973
974 ab = audit_log_start(ctx, gfp_mask, type);
975 if (ab) {
976 va_start(args, fmt);
977 audit_log_vformat(ab, fmt, args);
978 va_end(args);
979 audit_log_end(ab);
980 }
981 }