Merge tag 'rpmsg-3.10' of git://git.kernel.org/pub/scm/linux/kernel/git/ohad/rpmsg
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / ipc / sem.c
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
74 */
75
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
89
90 #include <asm/uaccess.h>
91 #include "util.h"
92
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
98 struct list_head sem_pending; /* pending single-sop operations */
99 };
100
101 /* One queue for each sleeping process in the system. */
102 struct sem_queue {
103 struct list_head list; /* queue of pending operations */
104 struct task_struct *sleeper; /* this process */
105 struct sem_undo *undo; /* undo structure */
106 int pid; /* process id of requesting process */
107 int status; /* completion status of operation */
108 struct sembuf *sops; /* array of pending operations */
109 int nsops; /* number of operations */
110 int alter; /* does *sops alter the array? */
111 };
112
113 /* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
115 */
116 struct sem_undo {
117 struct list_head list_proc; /* per-process list: *
118 * all undos from one process
119 * rcu protected */
120 struct rcu_head rcu; /* rcu struct for sem_undo */
121 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
122 struct list_head list_id; /* per semaphore array list:
123 * all undos for one array */
124 int semid; /* semaphore set identifier */
125 short *semadj; /* array of adjustments */
126 /* one per semaphore */
127 };
128
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
131 */
132 struct sem_undo_list {
133 atomic_t refcnt;
134 spinlock_t lock;
135 struct list_head list_proc;
136 };
137
138
139 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
140
141 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
142
143 static int newary(struct ipc_namespace *, struct ipc_params *);
144 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
145 #ifdef CONFIG_PROC_FS
146 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
147 #endif
148
149 #define SEMMSL_FAST 256 /* 512 bytes on stack */
150 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
151
152 /*
153 * linked list protection:
154 * sem_undo.id_next,
155 * sem_array.sem_pending{,last},
156 * sem_array.sem_undo: sem_lock() for read/write
157 * sem_undo.proc_next: only "current" is allowed to read/write that field.
158 *
159 */
160
161 #define sc_semmsl sem_ctls[0]
162 #define sc_semmns sem_ctls[1]
163 #define sc_semopm sem_ctls[2]
164 #define sc_semmni sem_ctls[3]
165
166 void sem_init_ns(struct ipc_namespace *ns)
167 {
168 ns->sc_semmsl = SEMMSL;
169 ns->sc_semmns = SEMMNS;
170 ns->sc_semopm = SEMOPM;
171 ns->sc_semmni = SEMMNI;
172 ns->used_sems = 0;
173 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
174 }
175
176 #ifdef CONFIG_IPC_NS
177 void sem_exit_ns(struct ipc_namespace *ns)
178 {
179 free_ipcs(ns, &sem_ids(ns), freeary);
180 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
181 }
182 #endif
183
184 void __init sem_init (void)
185 {
186 sem_init_ns(&init_ipc_ns);
187 ipc_init_proc_interface("sysvipc/sem",
188 " key semid perms nsems uid gid cuid cgid otime ctime\n",
189 IPC_SEM_IDS, sysvipc_sem_proc_show);
190 }
191
192 /*
193 * If the request contains only one semaphore operation, and there are
194 * no complex transactions pending, lock only the semaphore involved.
195 * Otherwise, lock the entire semaphore array, since we either have
196 * multiple semaphores in our own semops, or we need to look at
197 * semaphores from other pending complex operations.
198 *
199 * Carefully guard against sma->complex_count changing between zero
200 * and non-zero while we are spinning for the lock. The value of
201 * sma->complex_count cannot change while we are holding the lock,
202 * so sem_unlock should be fine.
203 *
204 * The global lock path checks that all the local locks have been released,
205 * checking each local lock once. This means that the local lock paths
206 * cannot start their critical sections while the global lock is held.
207 */
208 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
209 int nsops)
210 {
211 int locknum;
212 again:
213 if (nsops == 1 && !sma->complex_count) {
214 struct sem *sem = sma->sem_base + sops->sem_num;
215
216 /* Lock just the semaphore we are interested in. */
217 spin_lock(&sem->lock);
218
219 /*
220 * If sma->complex_count was set while we were spinning,
221 * we may need to look at things we did not lock here.
222 */
223 if (unlikely(sma->complex_count)) {
224 spin_unlock(&sem->lock);
225 goto lock_array;
226 }
227
228 /*
229 * Another process is holding the global lock on the
230 * sem_array; we cannot enter our critical section,
231 * but have to wait for the global lock to be released.
232 */
233 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
234 spin_unlock(&sem->lock);
235 spin_unlock_wait(&sma->sem_perm.lock);
236 goto again;
237 }
238
239 locknum = sops->sem_num;
240 } else {
241 int i;
242 /*
243 * Lock the semaphore array, and wait for all of the
244 * individual semaphore locks to go away. The code
245 * above ensures no new single-lock holders will enter
246 * their critical section while the array lock is held.
247 */
248 lock_array:
249 spin_lock(&sma->sem_perm.lock);
250 for (i = 0; i < sma->sem_nsems; i++) {
251 struct sem *sem = sma->sem_base + i;
252 spin_unlock_wait(&sem->lock);
253 }
254 locknum = -1;
255 }
256 return locknum;
257 }
258
259 static inline void sem_unlock(struct sem_array *sma, int locknum)
260 {
261 if (locknum == -1) {
262 spin_unlock(&sma->sem_perm.lock);
263 } else {
264 struct sem *sem = sma->sem_base + locknum;
265 spin_unlock(&sem->lock);
266 }
267 }
268
269 /*
270 * sem_lock_(check_) routines are called in the paths where the rw_mutex
271 * is not held.
272 *
273 * The caller holds the RCU read lock.
274 */
275 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
276 int id, struct sembuf *sops, int nsops, int *locknum)
277 {
278 struct kern_ipc_perm *ipcp;
279 struct sem_array *sma;
280
281 ipcp = ipc_obtain_object(&sem_ids(ns), id);
282 if (IS_ERR(ipcp))
283 return ERR_CAST(ipcp);
284
285 sma = container_of(ipcp, struct sem_array, sem_perm);
286 *locknum = sem_lock(sma, sops, nsops);
287
288 /* ipc_rmid() may have already freed the ID while sem_lock
289 * was spinning: verify that the structure is still valid
290 */
291 if (!ipcp->deleted)
292 return container_of(ipcp, struct sem_array, sem_perm);
293
294 sem_unlock(sma, *locknum);
295 return ERR_PTR(-EINVAL);
296 }
297
298 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
299 {
300 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
301
302 if (IS_ERR(ipcp))
303 return ERR_CAST(ipcp);
304
305 return container_of(ipcp, struct sem_array, sem_perm);
306 }
307
308 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
309 int id)
310 {
311 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
312
313 if (IS_ERR(ipcp))
314 return ERR_CAST(ipcp);
315
316 return container_of(ipcp, struct sem_array, sem_perm);
317 }
318
319 static inline void sem_lock_and_putref(struct sem_array *sma)
320 {
321 sem_lock(sma, NULL, -1);
322 ipc_rcu_putref(sma);
323 }
324
325 static inline void sem_putref(struct sem_array *sma)
326 {
327 ipc_rcu_putref(sma);
328 }
329
330 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
331 {
332 ipc_rmid(&sem_ids(ns), &s->sem_perm);
333 }
334
335 /*
336 * Lockless wakeup algorithm:
337 * Without the check/retry algorithm a lockless wakeup is possible:
338 * - queue.status is initialized to -EINTR before blocking.
339 * - wakeup is performed by
340 * * unlinking the queue entry from sma->sem_pending
341 * * setting queue.status to IN_WAKEUP
342 * This is the notification for the blocked thread that a
343 * result value is imminent.
344 * * call wake_up_process
345 * * set queue.status to the final value.
346 * - the previously blocked thread checks queue.status:
347 * * if it's IN_WAKEUP, then it must wait until the value changes
348 * * if it's not -EINTR, then the operation was completed by
349 * update_queue. semtimedop can return queue.status without
350 * performing any operation on the sem array.
351 * * otherwise it must acquire the spinlock and check what's up.
352 *
353 * The two-stage algorithm is necessary to protect against the following
354 * races:
355 * - if queue.status is set after wake_up_process, then the woken up idle
356 * thread could race forward and try (and fail) to acquire sma->lock
357 * before update_queue had a chance to set queue.status
358 * - if queue.status is written before wake_up_process and if the
359 * blocked process is woken up by a signal between writing
360 * queue.status and the wake_up_process, then the woken up
361 * process could return from semtimedop and die by calling
362 * sys_exit before wake_up_process is called. Then wake_up_process
363 * will oops, because the task structure is already invalid.
364 * (yes, this happened on s390 with sysv msg).
365 *
366 */
367 #define IN_WAKEUP 1
368
369 /**
370 * newary - Create a new semaphore set
371 * @ns: namespace
372 * @params: ptr to the structure that contains key, semflg and nsems
373 *
374 * Called with sem_ids.rw_mutex held (as a writer)
375 */
376
377 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
378 {
379 int id;
380 int retval;
381 struct sem_array *sma;
382 int size;
383 key_t key = params->key;
384 int nsems = params->u.nsems;
385 int semflg = params->flg;
386 int i;
387
388 if (!nsems)
389 return -EINVAL;
390 if (ns->used_sems + nsems > ns->sc_semmns)
391 return -ENOSPC;
392
393 size = sizeof (*sma) + nsems * sizeof (struct sem);
394 sma = ipc_rcu_alloc(size);
395 if (!sma) {
396 return -ENOMEM;
397 }
398 memset (sma, 0, size);
399
400 sma->sem_perm.mode = (semflg & S_IRWXUGO);
401 sma->sem_perm.key = key;
402
403 sma->sem_perm.security = NULL;
404 retval = security_sem_alloc(sma);
405 if (retval) {
406 ipc_rcu_putref(sma);
407 return retval;
408 }
409
410 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
411 if (id < 0) {
412 security_sem_free(sma);
413 ipc_rcu_putref(sma);
414 return id;
415 }
416 ns->used_sems += nsems;
417
418 sma->sem_base = (struct sem *) &sma[1];
419
420 for (i = 0; i < nsems; i++) {
421 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
422 spin_lock_init(&sma->sem_base[i].lock);
423 }
424
425 sma->complex_count = 0;
426 INIT_LIST_HEAD(&sma->sem_pending);
427 INIT_LIST_HEAD(&sma->list_id);
428 sma->sem_nsems = nsems;
429 sma->sem_ctime = get_seconds();
430 sem_unlock(sma, -1);
431 rcu_read_unlock();
432
433 return sma->sem_perm.id;
434 }
435
436
437 /*
438 * Called with sem_ids.rw_mutex and ipcp locked.
439 */
440 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
441 {
442 struct sem_array *sma;
443
444 sma = container_of(ipcp, struct sem_array, sem_perm);
445 return security_sem_associate(sma, semflg);
446 }
447
448 /*
449 * Called with sem_ids.rw_mutex and ipcp locked.
450 */
451 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
452 struct ipc_params *params)
453 {
454 struct sem_array *sma;
455
456 sma = container_of(ipcp, struct sem_array, sem_perm);
457 if (params->u.nsems > sma->sem_nsems)
458 return -EINVAL;
459
460 return 0;
461 }
462
463 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
464 {
465 struct ipc_namespace *ns;
466 struct ipc_ops sem_ops;
467 struct ipc_params sem_params;
468
469 ns = current->nsproxy->ipc_ns;
470
471 if (nsems < 0 || nsems > ns->sc_semmsl)
472 return -EINVAL;
473
474 sem_ops.getnew = newary;
475 sem_ops.associate = sem_security;
476 sem_ops.more_checks = sem_more_checks;
477
478 sem_params.key = key;
479 sem_params.flg = semflg;
480 sem_params.u.nsems = nsems;
481
482 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
483 }
484
485 /*
486 * Determine whether a sequence of semaphore operations would succeed
487 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
488 */
489
490 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
491 int nsops, struct sem_undo *un, int pid)
492 {
493 int result, sem_op;
494 struct sembuf *sop;
495 struct sem * curr;
496
497 for (sop = sops; sop < sops + nsops; sop++) {
498 curr = sma->sem_base + sop->sem_num;
499 sem_op = sop->sem_op;
500 result = curr->semval;
501
502 if (!sem_op && result)
503 goto would_block;
504
505 result += sem_op;
506 if (result < 0)
507 goto would_block;
508 if (result > SEMVMX)
509 goto out_of_range;
510 if (sop->sem_flg & SEM_UNDO) {
511 int undo = un->semadj[sop->sem_num] - sem_op;
512 /*
513 * Exceeding the undo range is an error.
514 */
515 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
516 goto out_of_range;
517 }
518 curr->semval = result;
519 }
520
521 sop--;
522 while (sop >= sops) {
523 sma->sem_base[sop->sem_num].sempid = pid;
524 if (sop->sem_flg & SEM_UNDO)
525 un->semadj[sop->sem_num] -= sop->sem_op;
526 sop--;
527 }
528
529 return 0;
530
531 out_of_range:
532 result = -ERANGE;
533 goto undo;
534
535 would_block:
536 if (sop->sem_flg & IPC_NOWAIT)
537 result = -EAGAIN;
538 else
539 result = 1;
540
541 undo:
542 sop--;
543 while (sop >= sops) {
544 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
545 sop--;
546 }
547
548 return result;
549 }
550
551 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
552 * @q: queue entry that must be signaled
553 * @error: Error value for the signal
554 *
555 * Prepare the wake-up of the queue entry q.
556 */
557 static void wake_up_sem_queue_prepare(struct list_head *pt,
558 struct sem_queue *q, int error)
559 {
560 if (list_empty(pt)) {
561 /*
562 * Hold preempt off so that we don't get preempted and have the
563 * wakee busy-wait until we're scheduled back on.
564 */
565 preempt_disable();
566 }
567 q->status = IN_WAKEUP;
568 q->pid = error;
569
570 list_add_tail(&q->list, pt);
571 }
572
573 /**
574 * wake_up_sem_queue_do(pt) - do the actual wake-up
575 * @pt: list of tasks to be woken up
576 *
577 * Do the actual wake-up.
578 * The function is called without any locks held, thus the semaphore array
579 * could be destroyed already and the tasks can disappear as soon as the
580 * status is set to the actual return code.
581 */
582 static void wake_up_sem_queue_do(struct list_head *pt)
583 {
584 struct sem_queue *q, *t;
585 int did_something;
586
587 did_something = !list_empty(pt);
588 list_for_each_entry_safe(q, t, pt, list) {
589 wake_up_process(q->sleeper);
590 /* q can disappear immediately after writing q->status. */
591 smp_wmb();
592 q->status = q->pid;
593 }
594 if (did_something)
595 preempt_enable();
596 }
597
598 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
599 {
600 list_del(&q->list);
601 if (q->nsops > 1)
602 sma->complex_count--;
603 }
604
605 /** check_restart(sma, q)
606 * @sma: semaphore array
607 * @q: the operation that just completed
608 *
609 * update_queue is O(N^2) when it restarts scanning the whole queue of
610 * waiting operations. Therefore this function checks if the restart is
611 * really necessary. It is called after a previously waiting operation
612 * was completed.
613 */
614 static int check_restart(struct sem_array *sma, struct sem_queue *q)
615 {
616 struct sem *curr;
617 struct sem_queue *h;
618
619 /* if the operation didn't modify the array, then no restart */
620 if (q->alter == 0)
621 return 0;
622
623 /* pending complex operations are too difficult to analyse */
624 if (sma->complex_count)
625 return 1;
626
627 /* we were a sleeping complex operation. Too difficult */
628 if (q->nsops > 1)
629 return 1;
630
631 curr = sma->sem_base + q->sops[0].sem_num;
632
633 /* No-one waits on this queue */
634 if (list_empty(&curr->sem_pending))
635 return 0;
636
637 /* the new semaphore value */
638 if (curr->semval) {
639 /* It is impossible that someone waits for the new value:
640 * - q is a previously sleeping simple operation that
641 * altered the array. It must be a decrement, because
642 * simple increments never sleep.
643 * - The value is not 0, thus wait-for-zero won't proceed.
644 * - If there are older (higher priority) decrements
645 * in the queue, then they have observed the original
646 * semval value and couldn't proceed. The operation
647 * decremented to value - thus they won't proceed either.
648 */
649 BUG_ON(q->sops[0].sem_op >= 0);
650 return 0;
651 }
652 /*
653 * semval is 0. Check if there are wait-for-zero semops.
654 * They must be the first entries in the per-semaphore queue
655 */
656 h = list_first_entry(&curr->sem_pending, struct sem_queue, list);
657 BUG_ON(h->nsops != 1);
658 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
659
660 /* Yes, there is a wait-for-zero semop. Restart */
661 if (h->sops[0].sem_op == 0)
662 return 1;
663
664 /* Again - no-one is waiting for the new value. */
665 return 0;
666 }
667
668
669 /**
670 * update_queue(sma, semnum): Look for tasks that can be completed.
671 * @sma: semaphore array.
672 * @semnum: semaphore that was modified.
673 * @pt: list head for the tasks that must be woken up.
674 *
675 * update_queue must be called after a semaphore in a semaphore array
676 * was modified. If multiple semaphores were modified, update_queue must
677 * be called with semnum = -1, as well as with the number of each modified
678 * semaphore.
679 * The tasks that must be woken up are added to @pt. The return code
680 * is stored in q->pid.
681 * The function return 1 if at least one semop was completed successfully.
682 */
683 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
684 {
685 struct sem_queue *q;
686 struct list_head *walk;
687 struct list_head *pending_list;
688 int semop_completed = 0;
689
690 if (semnum == -1)
691 pending_list = &sma->sem_pending;
692 else
693 pending_list = &sma->sem_base[semnum].sem_pending;
694
695 again:
696 walk = pending_list->next;
697 while (walk != pending_list) {
698 int error, restart;
699
700 q = container_of(walk, struct sem_queue, list);
701 walk = walk->next;
702
703 /* If we are scanning the single sop, per-semaphore list of
704 * one semaphore and that semaphore is 0, then it is not
705 * necessary to scan the "alter" entries: simple increments
706 * that affect only one entry succeed immediately and cannot
707 * be in the per semaphore pending queue, and decrements
708 * cannot be successful if the value is already 0.
709 */
710 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
711 q->alter)
712 break;
713
714 error = try_atomic_semop(sma, q->sops, q->nsops,
715 q->undo, q->pid);
716
717 /* Does q->sleeper still need to sleep? */
718 if (error > 0)
719 continue;
720
721 unlink_queue(sma, q);
722
723 if (error) {
724 restart = 0;
725 } else {
726 semop_completed = 1;
727 restart = check_restart(sma, q);
728 }
729
730 wake_up_sem_queue_prepare(pt, q, error);
731 if (restart)
732 goto again;
733 }
734 return semop_completed;
735 }
736
737 /**
738 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
739 * @sma: semaphore array
740 * @sops: operations that were performed
741 * @nsops: number of operations
742 * @otime: force setting otime
743 * @pt: list head of the tasks that must be woken up.
744 *
745 * do_smart_update() does the required called to update_queue, based on the
746 * actual changes that were performed on the semaphore array.
747 * Note that the function does not do the actual wake-up: the caller is
748 * responsible for calling wake_up_sem_queue_do(@pt).
749 * It is safe to perform this call after dropping all locks.
750 */
751 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
752 int otime, struct list_head *pt)
753 {
754 int i;
755
756 if (sma->complex_count || sops == NULL) {
757 if (update_queue(sma, -1, pt))
758 otime = 1;
759 }
760
761 if (!sops) {
762 /* No semops; something special is going on. */
763 for (i = 0; i < sma->sem_nsems; i++) {
764 if (update_queue(sma, i, pt))
765 otime = 1;
766 }
767 goto done;
768 }
769
770 /* Check the semaphores that were modified. */
771 for (i = 0; i < nsops; i++) {
772 if (sops[i].sem_op > 0 ||
773 (sops[i].sem_op < 0 &&
774 sma->sem_base[sops[i].sem_num].semval == 0))
775 if (update_queue(sma, sops[i].sem_num, pt))
776 otime = 1;
777 }
778 done:
779 if (otime)
780 sma->sem_otime = get_seconds();
781 }
782
783
784 /* The following counts are associated to each semaphore:
785 * semncnt number of tasks waiting on semval being nonzero
786 * semzcnt number of tasks waiting on semval being zero
787 * This model assumes that a task waits on exactly one semaphore.
788 * Since semaphore operations are to be performed atomically, tasks actually
789 * wait on a whole sequence of semaphores simultaneously.
790 * The counts we return here are a rough approximation, but still
791 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
792 */
793 static int count_semncnt (struct sem_array * sma, ushort semnum)
794 {
795 int semncnt;
796 struct sem_queue * q;
797
798 semncnt = 0;
799 list_for_each_entry(q, &sma->sem_pending, list) {
800 struct sembuf * sops = q->sops;
801 int nsops = q->nsops;
802 int i;
803 for (i = 0; i < nsops; i++)
804 if (sops[i].sem_num == semnum
805 && (sops[i].sem_op < 0)
806 && !(sops[i].sem_flg & IPC_NOWAIT))
807 semncnt++;
808 }
809 return semncnt;
810 }
811
812 static int count_semzcnt (struct sem_array * sma, ushort semnum)
813 {
814 int semzcnt;
815 struct sem_queue * q;
816
817 semzcnt = 0;
818 list_for_each_entry(q, &sma->sem_pending, list) {
819 struct sembuf * sops = q->sops;
820 int nsops = q->nsops;
821 int i;
822 for (i = 0; i < nsops; i++)
823 if (sops[i].sem_num == semnum
824 && (sops[i].sem_op == 0)
825 && !(sops[i].sem_flg & IPC_NOWAIT))
826 semzcnt++;
827 }
828 return semzcnt;
829 }
830
831 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
832 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
833 * remains locked on exit.
834 */
835 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
836 {
837 struct sem_undo *un, *tu;
838 struct sem_queue *q, *tq;
839 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
840 struct list_head tasks;
841 int i;
842
843 /* Free the existing undo structures for this semaphore set. */
844 assert_spin_locked(&sma->sem_perm.lock);
845 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
846 list_del(&un->list_id);
847 spin_lock(&un->ulp->lock);
848 un->semid = -1;
849 list_del_rcu(&un->list_proc);
850 spin_unlock(&un->ulp->lock);
851 kfree_rcu(un, rcu);
852 }
853
854 /* Wake up all pending processes and let them fail with EIDRM. */
855 INIT_LIST_HEAD(&tasks);
856 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
857 unlink_queue(sma, q);
858 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
859 }
860 for (i = 0; i < sma->sem_nsems; i++) {
861 struct sem *sem = sma->sem_base + i;
862 list_for_each_entry_safe(q, tq, &sem->sem_pending, list) {
863 unlink_queue(sma, q);
864 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
865 }
866 }
867
868 /* Remove the semaphore set from the IDR */
869 sem_rmid(ns, sma);
870 sem_unlock(sma, -1);
871 rcu_read_unlock();
872
873 wake_up_sem_queue_do(&tasks);
874 ns->used_sems -= sma->sem_nsems;
875 security_sem_free(sma);
876 ipc_rcu_putref(sma);
877 }
878
879 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
880 {
881 switch(version) {
882 case IPC_64:
883 return copy_to_user(buf, in, sizeof(*in));
884 case IPC_OLD:
885 {
886 struct semid_ds out;
887
888 memset(&out, 0, sizeof(out));
889
890 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
891
892 out.sem_otime = in->sem_otime;
893 out.sem_ctime = in->sem_ctime;
894 out.sem_nsems = in->sem_nsems;
895
896 return copy_to_user(buf, &out, sizeof(out));
897 }
898 default:
899 return -EINVAL;
900 }
901 }
902
903 static int semctl_nolock(struct ipc_namespace *ns, int semid,
904 int cmd, int version, void __user *p)
905 {
906 int err;
907 struct sem_array *sma;
908
909 switch(cmd) {
910 case IPC_INFO:
911 case SEM_INFO:
912 {
913 struct seminfo seminfo;
914 int max_id;
915
916 err = security_sem_semctl(NULL, cmd);
917 if (err)
918 return err;
919
920 memset(&seminfo,0,sizeof(seminfo));
921 seminfo.semmni = ns->sc_semmni;
922 seminfo.semmns = ns->sc_semmns;
923 seminfo.semmsl = ns->sc_semmsl;
924 seminfo.semopm = ns->sc_semopm;
925 seminfo.semvmx = SEMVMX;
926 seminfo.semmnu = SEMMNU;
927 seminfo.semmap = SEMMAP;
928 seminfo.semume = SEMUME;
929 down_read(&sem_ids(ns).rw_mutex);
930 if (cmd == SEM_INFO) {
931 seminfo.semusz = sem_ids(ns).in_use;
932 seminfo.semaem = ns->used_sems;
933 } else {
934 seminfo.semusz = SEMUSZ;
935 seminfo.semaem = SEMAEM;
936 }
937 max_id = ipc_get_maxid(&sem_ids(ns));
938 up_read(&sem_ids(ns).rw_mutex);
939 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
940 return -EFAULT;
941 return (max_id < 0) ? 0: max_id;
942 }
943 case IPC_STAT:
944 case SEM_STAT:
945 {
946 struct semid64_ds tbuf;
947 int id = 0;
948
949 memset(&tbuf, 0, sizeof(tbuf));
950
951 rcu_read_lock();
952 if (cmd == SEM_STAT) {
953 sma = sem_obtain_object(ns, semid);
954 if (IS_ERR(sma)) {
955 err = PTR_ERR(sma);
956 goto out_unlock;
957 }
958 id = sma->sem_perm.id;
959 } else {
960 sma = sem_obtain_object_check(ns, semid);
961 if (IS_ERR(sma)) {
962 err = PTR_ERR(sma);
963 goto out_unlock;
964 }
965 }
966
967 err = -EACCES;
968 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
969 goto out_unlock;
970
971 err = security_sem_semctl(sma, cmd);
972 if (err)
973 goto out_unlock;
974
975 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
976 tbuf.sem_otime = sma->sem_otime;
977 tbuf.sem_ctime = sma->sem_ctime;
978 tbuf.sem_nsems = sma->sem_nsems;
979 rcu_read_unlock();
980 if (copy_semid_to_user(p, &tbuf, version))
981 return -EFAULT;
982 return id;
983 }
984 default:
985 return -EINVAL;
986 }
987 out_unlock:
988 rcu_read_unlock();
989 return err;
990 }
991
992 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
993 unsigned long arg)
994 {
995 struct sem_undo *un;
996 struct sem_array *sma;
997 struct sem* curr;
998 int err;
999 struct list_head tasks;
1000 int val;
1001 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1002 /* big-endian 64bit */
1003 val = arg >> 32;
1004 #else
1005 /* 32bit or little-endian 64bit */
1006 val = arg;
1007 #endif
1008
1009 if (val > SEMVMX || val < 0)
1010 return -ERANGE;
1011
1012 INIT_LIST_HEAD(&tasks);
1013
1014 rcu_read_lock();
1015 sma = sem_obtain_object_check(ns, semid);
1016 if (IS_ERR(sma)) {
1017 rcu_read_unlock();
1018 return PTR_ERR(sma);
1019 }
1020
1021 if (semnum < 0 || semnum >= sma->sem_nsems) {
1022 rcu_read_unlock();
1023 return -EINVAL;
1024 }
1025
1026
1027 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1028 rcu_read_unlock();
1029 return -EACCES;
1030 }
1031
1032 err = security_sem_semctl(sma, SETVAL);
1033 if (err) {
1034 rcu_read_unlock();
1035 return -EACCES;
1036 }
1037
1038 sem_lock(sma, NULL, -1);
1039
1040 curr = &sma->sem_base[semnum];
1041
1042 assert_spin_locked(&sma->sem_perm.lock);
1043 list_for_each_entry(un, &sma->list_id, list_id)
1044 un->semadj[semnum] = 0;
1045
1046 curr->semval = val;
1047 curr->sempid = task_tgid_vnr(current);
1048 sma->sem_ctime = get_seconds();
1049 /* maybe some queued-up processes were waiting for this */
1050 do_smart_update(sma, NULL, 0, 0, &tasks);
1051 sem_unlock(sma, -1);
1052 rcu_read_unlock();
1053 wake_up_sem_queue_do(&tasks);
1054 return 0;
1055 }
1056
1057 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1058 int cmd, void __user *p)
1059 {
1060 struct sem_array *sma;
1061 struct sem* curr;
1062 int err, nsems;
1063 ushort fast_sem_io[SEMMSL_FAST];
1064 ushort* sem_io = fast_sem_io;
1065 struct list_head tasks;
1066
1067 INIT_LIST_HEAD(&tasks);
1068
1069 rcu_read_lock();
1070 sma = sem_obtain_object_check(ns, semid);
1071 if (IS_ERR(sma)) {
1072 rcu_read_unlock();
1073 return PTR_ERR(sma);
1074 }
1075
1076 nsems = sma->sem_nsems;
1077
1078 err = -EACCES;
1079 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1080 goto out_rcu_wakeup;
1081
1082 err = security_sem_semctl(sma, cmd);
1083 if (err)
1084 goto out_rcu_wakeup;
1085
1086 err = -EACCES;
1087 switch (cmd) {
1088 case GETALL:
1089 {
1090 ushort __user *array = p;
1091 int i;
1092
1093 sem_lock(sma, NULL, -1);
1094 if(nsems > SEMMSL_FAST) {
1095 if (!ipc_rcu_getref(sma)) {
1096 sem_unlock(sma, -1);
1097 rcu_read_unlock();
1098 err = -EIDRM;
1099 goto out_free;
1100 }
1101 sem_unlock(sma, -1);
1102 rcu_read_unlock();
1103 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1104 if(sem_io == NULL) {
1105 sem_putref(sma);
1106 return -ENOMEM;
1107 }
1108
1109 rcu_read_lock();
1110 sem_lock_and_putref(sma);
1111 if (sma->sem_perm.deleted) {
1112 sem_unlock(sma, -1);
1113 rcu_read_unlock();
1114 err = -EIDRM;
1115 goto out_free;
1116 }
1117 }
1118 for (i = 0; i < sma->sem_nsems; i++)
1119 sem_io[i] = sma->sem_base[i].semval;
1120 sem_unlock(sma, -1);
1121 rcu_read_unlock();
1122 err = 0;
1123 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1124 err = -EFAULT;
1125 goto out_free;
1126 }
1127 case SETALL:
1128 {
1129 int i;
1130 struct sem_undo *un;
1131
1132 if (!ipc_rcu_getref(sma)) {
1133 rcu_read_unlock();
1134 return -EIDRM;
1135 }
1136 rcu_read_unlock();
1137
1138 if(nsems > SEMMSL_FAST) {
1139 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1140 if(sem_io == NULL) {
1141 sem_putref(sma);
1142 return -ENOMEM;
1143 }
1144 }
1145
1146 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
1147 sem_putref(sma);
1148 err = -EFAULT;
1149 goto out_free;
1150 }
1151
1152 for (i = 0; i < nsems; i++) {
1153 if (sem_io[i] > SEMVMX) {
1154 sem_putref(sma);
1155 err = -ERANGE;
1156 goto out_free;
1157 }
1158 }
1159 rcu_read_lock();
1160 sem_lock_and_putref(sma);
1161 if (sma->sem_perm.deleted) {
1162 sem_unlock(sma, -1);
1163 rcu_read_unlock();
1164 err = -EIDRM;
1165 goto out_free;
1166 }
1167
1168 for (i = 0; i < nsems; i++)
1169 sma->sem_base[i].semval = sem_io[i];
1170
1171 assert_spin_locked(&sma->sem_perm.lock);
1172 list_for_each_entry(un, &sma->list_id, list_id) {
1173 for (i = 0; i < nsems; i++)
1174 un->semadj[i] = 0;
1175 }
1176 sma->sem_ctime = get_seconds();
1177 /* maybe some queued-up processes were waiting for this */
1178 do_smart_update(sma, NULL, 0, 0, &tasks);
1179 err = 0;
1180 goto out_unlock;
1181 }
1182 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1183 }
1184 err = -EINVAL;
1185 if (semnum < 0 || semnum >= nsems)
1186 goto out_rcu_wakeup;
1187
1188 sem_lock(sma, NULL, -1);
1189 curr = &sma->sem_base[semnum];
1190
1191 switch (cmd) {
1192 case GETVAL:
1193 err = curr->semval;
1194 goto out_unlock;
1195 case GETPID:
1196 err = curr->sempid;
1197 goto out_unlock;
1198 case GETNCNT:
1199 err = count_semncnt(sma,semnum);
1200 goto out_unlock;
1201 case GETZCNT:
1202 err = count_semzcnt(sma,semnum);
1203 goto out_unlock;
1204 }
1205
1206 out_unlock:
1207 sem_unlock(sma, -1);
1208 out_rcu_wakeup:
1209 rcu_read_unlock();
1210 wake_up_sem_queue_do(&tasks);
1211 out_free:
1212 if(sem_io != fast_sem_io)
1213 ipc_free(sem_io, sizeof(ushort)*nsems);
1214 return err;
1215 }
1216
1217 static inline unsigned long
1218 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1219 {
1220 switch(version) {
1221 case IPC_64:
1222 if (copy_from_user(out, buf, sizeof(*out)))
1223 return -EFAULT;
1224 return 0;
1225 case IPC_OLD:
1226 {
1227 struct semid_ds tbuf_old;
1228
1229 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1230 return -EFAULT;
1231
1232 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1233 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1234 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1235
1236 return 0;
1237 }
1238 default:
1239 return -EINVAL;
1240 }
1241 }
1242
1243 /*
1244 * This function handles some semctl commands which require the rw_mutex
1245 * to be held in write mode.
1246 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1247 */
1248 static int semctl_down(struct ipc_namespace *ns, int semid,
1249 int cmd, int version, void __user *p)
1250 {
1251 struct sem_array *sma;
1252 int err;
1253 struct semid64_ds semid64;
1254 struct kern_ipc_perm *ipcp;
1255
1256 if(cmd == IPC_SET) {
1257 if (copy_semid_from_user(&semid64, p, version))
1258 return -EFAULT;
1259 }
1260
1261 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1262 &semid64.sem_perm, 0);
1263 if (IS_ERR(ipcp))
1264 return PTR_ERR(ipcp);
1265
1266 sma = container_of(ipcp, struct sem_array, sem_perm);
1267
1268 err = security_sem_semctl(sma, cmd);
1269 if (err) {
1270 rcu_read_unlock();
1271 goto out_up;
1272 }
1273
1274 switch(cmd){
1275 case IPC_RMID:
1276 sem_lock(sma, NULL, -1);
1277 freeary(ns, ipcp);
1278 goto out_up;
1279 case IPC_SET:
1280 sem_lock(sma, NULL, -1);
1281 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1282 if (err)
1283 goto out_unlock;
1284 sma->sem_ctime = get_seconds();
1285 break;
1286 default:
1287 rcu_read_unlock();
1288 err = -EINVAL;
1289 goto out_up;
1290 }
1291
1292 out_unlock:
1293 sem_unlock(sma, -1);
1294 rcu_read_unlock();
1295 out_up:
1296 up_write(&sem_ids(ns).rw_mutex);
1297 return err;
1298 }
1299
1300 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1301 {
1302 int version;
1303 struct ipc_namespace *ns;
1304 void __user *p = (void __user *)arg;
1305
1306 if (semid < 0)
1307 return -EINVAL;
1308
1309 version = ipc_parse_version(&cmd);
1310 ns = current->nsproxy->ipc_ns;
1311
1312 switch(cmd) {
1313 case IPC_INFO:
1314 case SEM_INFO:
1315 case IPC_STAT:
1316 case SEM_STAT:
1317 return semctl_nolock(ns, semid, cmd, version, p);
1318 case GETALL:
1319 case GETVAL:
1320 case GETPID:
1321 case GETNCNT:
1322 case GETZCNT:
1323 case SETALL:
1324 return semctl_main(ns, semid, semnum, cmd, p);
1325 case SETVAL:
1326 return semctl_setval(ns, semid, semnum, arg);
1327 case IPC_RMID:
1328 case IPC_SET:
1329 return semctl_down(ns, semid, cmd, version, p);
1330 default:
1331 return -EINVAL;
1332 }
1333 }
1334
1335 /* If the task doesn't already have a undo_list, then allocate one
1336 * here. We guarantee there is only one thread using this undo list,
1337 * and current is THE ONE
1338 *
1339 * If this allocation and assignment succeeds, but later
1340 * portions of this code fail, there is no need to free the sem_undo_list.
1341 * Just let it stay associated with the task, and it'll be freed later
1342 * at exit time.
1343 *
1344 * This can block, so callers must hold no locks.
1345 */
1346 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1347 {
1348 struct sem_undo_list *undo_list;
1349
1350 undo_list = current->sysvsem.undo_list;
1351 if (!undo_list) {
1352 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1353 if (undo_list == NULL)
1354 return -ENOMEM;
1355 spin_lock_init(&undo_list->lock);
1356 atomic_set(&undo_list->refcnt, 1);
1357 INIT_LIST_HEAD(&undo_list->list_proc);
1358
1359 current->sysvsem.undo_list = undo_list;
1360 }
1361 *undo_listp = undo_list;
1362 return 0;
1363 }
1364
1365 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1366 {
1367 struct sem_undo *un;
1368
1369 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1370 if (un->semid == semid)
1371 return un;
1372 }
1373 return NULL;
1374 }
1375
1376 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1377 {
1378 struct sem_undo *un;
1379
1380 assert_spin_locked(&ulp->lock);
1381
1382 un = __lookup_undo(ulp, semid);
1383 if (un) {
1384 list_del_rcu(&un->list_proc);
1385 list_add_rcu(&un->list_proc, &ulp->list_proc);
1386 }
1387 return un;
1388 }
1389
1390 /**
1391 * find_alloc_undo - Lookup (and if not present create) undo array
1392 * @ns: namespace
1393 * @semid: semaphore array id
1394 *
1395 * The function looks up (and if not present creates) the undo structure.
1396 * The size of the undo structure depends on the size of the semaphore
1397 * array, thus the alloc path is not that straightforward.
1398 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1399 * performs a rcu_read_lock().
1400 */
1401 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1402 {
1403 struct sem_array *sma;
1404 struct sem_undo_list *ulp;
1405 struct sem_undo *un, *new;
1406 int nsems, error;
1407
1408 error = get_undo_list(&ulp);
1409 if (error)
1410 return ERR_PTR(error);
1411
1412 rcu_read_lock();
1413 spin_lock(&ulp->lock);
1414 un = lookup_undo(ulp, semid);
1415 spin_unlock(&ulp->lock);
1416 if (likely(un!=NULL))
1417 goto out;
1418
1419 /* no undo structure around - allocate one. */
1420 /* step 1: figure out the size of the semaphore array */
1421 sma = sem_obtain_object_check(ns, semid);
1422 if (IS_ERR(sma)) {
1423 rcu_read_unlock();
1424 return ERR_CAST(sma);
1425 }
1426
1427 nsems = sma->sem_nsems;
1428 if (!ipc_rcu_getref(sma)) {
1429 rcu_read_unlock();
1430 un = ERR_PTR(-EIDRM);
1431 goto out;
1432 }
1433 rcu_read_unlock();
1434
1435 /* step 2: allocate new undo structure */
1436 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1437 if (!new) {
1438 sem_putref(sma);
1439 return ERR_PTR(-ENOMEM);
1440 }
1441
1442 /* step 3: Acquire the lock on semaphore array */
1443 rcu_read_lock();
1444 sem_lock_and_putref(sma);
1445 if (sma->sem_perm.deleted) {
1446 sem_unlock(sma, -1);
1447 rcu_read_unlock();
1448 kfree(new);
1449 un = ERR_PTR(-EIDRM);
1450 goto out;
1451 }
1452 spin_lock(&ulp->lock);
1453
1454 /*
1455 * step 4: check for races: did someone else allocate the undo struct?
1456 */
1457 un = lookup_undo(ulp, semid);
1458 if (un) {
1459 kfree(new);
1460 goto success;
1461 }
1462 /* step 5: initialize & link new undo structure */
1463 new->semadj = (short *) &new[1];
1464 new->ulp = ulp;
1465 new->semid = semid;
1466 assert_spin_locked(&ulp->lock);
1467 list_add_rcu(&new->list_proc, &ulp->list_proc);
1468 assert_spin_locked(&sma->sem_perm.lock);
1469 list_add(&new->list_id, &sma->list_id);
1470 un = new;
1471
1472 success:
1473 spin_unlock(&ulp->lock);
1474 sem_unlock(sma, -1);
1475 out:
1476 return un;
1477 }
1478
1479
1480 /**
1481 * get_queue_result - Retrieve the result code from sem_queue
1482 * @q: Pointer to queue structure
1483 *
1484 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1485 * q->status, then we must loop until the value is replaced with the final
1486 * value: This may happen if a task is woken up by an unrelated event (e.g.
1487 * signal) and in parallel the task is woken up by another task because it got
1488 * the requested semaphores.
1489 *
1490 * The function can be called with or without holding the semaphore spinlock.
1491 */
1492 static int get_queue_result(struct sem_queue *q)
1493 {
1494 int error;
1495
1496 error = q->status;
1497 while (unlikely(error == IN_WAKEUP)) {
1498 cpu_relax();
1499 error = q->status;
1500 }
1501
1502 return error;
1503 }
1504
1505
1506 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1507 unsigned, nsops, const struct timespec __user *, timeout)
1508 {
1509 int error = -EINVAL;
1510 struct sem_array *sma;
1511 struct sembuf fast_sops[SEMOPM_FAST];
1512 struct sembuf* sops = fast_sops, *sop;
1513 struct sem_undo *un;
1514 int undos = 0, alter = 0, max, locknum;
1515 struct sem_queue queue;
1516 unsigned long jiffies_left = 0;
1517 struct ipc_namespace *ns;
1518 struct list_head tasks;
1519
1520 ns = current->nsproxy->ipc_ns;
1521
1522 if (nsops < 1 || semid < 0)
1523 return -EINVAL;
1524 if (nsops > ns->sc_semopm)
1525 return -E2BIG;
1526 if(nsops > SEMOPM_FAST) {
1527 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1528 if(sops==NULL)
1529 return -ENOMEM;
1530 }
1531 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1532 error=-EFAULT;
1533 goto out_free;
1534 }
1535 if (timeout) {
1536 struct timespec _timeout;
1537 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1538 error = -EFAULT;
1539 goto out_free;
1540 }
1541 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1542 _timeout.tv_nsec >= 1000000000L) {
1543 error = -EINVAL;
1544 goto out_free;
1545 }
1546 jiffies_left = timespec_to_jiffies(&_timeout);
1547 }
1548 max = 0;
1549 for (sop = sops; sop < sops + nsops; sop++) {
1550 if (sop->sem_num >= max)
1551 max = sop->sem_num;
1552 if (sop->sem_flg & SEM_UNDO)
1553 undos = 1;
1554 if (sop->sem_op != 0)
1555 alter = 1;
1556 }
1557
1558 INIT_LIST_HEAD(&tasks);
1559
1560 if (undos) {
1561 /* On success, find_alloc_undo takes the rcu_read_lock */
1562 un = find_alloc_undo(ns, semid);
1563 if (IS_ERR(un)) {
1564 error = PTR_ERR(un);
1565 goto out_free;
1566 }
1567 } else {
1568 un = NULL;
1569 rcu_read_lock();
1570 }
1571
1572 sma = sem_obtain_object_check(ns, semid);
1573 if (IS_ERR(sma)) {
1574 rcu_read_unlock();
1575 error = PTR_ERR(sma);
1576 goto out_free;
1577 }
1578
1579 error = -EFBIG;
1580 if (max >= sma->sem_nsems)
1581 goto out_rcu_wakeup;
1582
1583 error = -EACCES;
1584 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1585 goto out_rcu_wakeup;
1586
1587 error = security_sem_semop(sma, sops, nsops, alter);
1588 if (error)
1589 goto out_rcu_wakeup;
1590
1591 /*
1592 * semid identifiers are not unique - find_alloc_undo may have
1593 * allocated an undo structure, it was invalidated by an RMID
1594 * and now a new array with received the same id. Check and fail.
1595 * This case can be detected checking un->semid. The existence of
1596 * "un" itself is guaranteed by rcu.
1597 */
1598 error = -EIDRM;
1599 locknum = sem_lock(sma, sops, nsops);
1600 if (un && un->semid == -1)
1601 goto out_unlock_free;
1602
1603 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1604 if (error <= 0) {
1605 if (alter && error == 0)
1606 do_smart_update(sma, sops, nsops, 1, &tasks);
1607
1608 goto out_unlock_free;
1609 }
1610
1611 /* We need to sleep on this operation, so we put the current
1612 * task into the pending queue and go to sleep.
1613 */
1614
1615 queue.sops = sops;
1616 queue.nsops = nsops;
1617 queue.undo = un;
1618 queue.pid = task_tgid_vnr(current);
1619 queue.alter = alter;
1620
1621 if (nsops == 1) {
1622 struct sem *curr;
1623 curr = &sma->sem_base[sops->sem_num];
1624
1625 if (alter)
1626 list_add_tail(&queue.list, &curr->sem_pending);
1627 else
1628 list_add(&queue.list, &curr->sem_pending);
1629 } else {
1630 if (alter)
1631 list_add_tail(&queue.list, &sma->sem_pending);
1632 else
1633 list_add(&queue.list, &sma->sem_pending);
1634 sma->complex_count++;
1635 }
1636
1637 queue.status = -EINTR;
1638 queue.sleeper = current;
1639
1640 sleep_again:
1641 current->state = TASK_INTERRUPTIBLE;
1642 sem_unlock(sma, locknum);
1643 rcu_read_unlock();
1644
1645 if (timeout)
1646 jiffies_left = schedule_timeout(jiffies_left);
1647 else
1648 schedule();
1649
1650 error = get_queue_result(&queue);
1651
1652 if (error != -EINTR) {
1653 /* fast path: update_queue already obtained all requested
1654 * resources.
1655 * Perform a smp_mb(): User space could assume that semop()
1656 * is a memory barrier: Without the mb(), the cpu could
1657 * speculatively read in user space stale data that was
1658 * overwritten by the previous owner of the semaphore.
1659 */
1660 smp_mb();
1661
1662 goto out_free;
1663 }
1664
1665 rcu_read_lock();
1666 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1667
1668 /*
1669 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1670 */
1671 error = get_queue_result(&queue);
1672
1673 /*
1674 * Array removed? If yes, leave without sem_unlock().
1675 */
1676 if (IS_ERR(sma)) {
1677 rcu_read_unlock();
1678 goto out_free;
1679 }
1680
1681
1682 /*
1683 * If queue.status != -EINTR we are woken up by another process.
1684 * Leave without unlink_queue(), but with sem_unlock().
1685 */
1686
1687 if (error != -EINTR) {
1688 goto out_unlock_free;
1689 }
1690
1691 /*
1692 * If an interrupt occurred we have to clean up the queue
1693 */
1694 if (timeout && jiffies_left == 0)
1695 error = -EAGAIN;
1696
1697 /*
1698 * If the wakeup was spurious, just retry
1699 */
1700 if (error == -EINTR && !signal_pending(current))
1701 goto sleep_again;
1702
1703 unlink_queue(sma, &queue);
1704
1705 out_unlock_free:
1706 sem_unlock(sma, locknum);
1707 out_rcu_wakeup:
1708 rcu_read_unlock();
1709 wake_up_sem_queue_do(&tasks);
1710 out_free:
1711 if(sops != fast_sops)
1712 kfree(sops);
1713 return error;
1714 }
1715
1716 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1717 unsigned, nsops)
1718 {
1719 return sys_semtimedop(semid, tsops, nsops, NULL);
1720 }
1721
1722 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1723 * parent and child tasks.
1724 */
1725
1726 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1727 {
1728 struct sem_undo_list *undo_list;
1729 int error;
1730
1731 if (clone_flags & CLONE_SYSVSEM) {
1732 error = get_undo_list(&undo_list);
1733 if (error)
1734 return error;
1735 atomic_inc(&undo_list->refcnt);
1736 tsk->sysvsem.undo_list = undo_list;
1737 } else
1738 tsk->sysvsem.undo_list = NULL;
1739
1740 return 0;
1741 }
1742
1743 /*
1744 * add semadj values to semaphores, free undo structures.
1745 * undo structures are not freed when semaphore arrays are destroyed
1746 * so some of them may be out of date.
1747 * IMPLEMENTATION NOTE: There is some confusion over whether the
1748 * set of adjustments that needs to be done should be done in an atomic
1749 * manner or not. That is, if we are attempting to decrement the semval
1750 * should we queue up and wait until we can do so legally?
1751 * The original implementation attempted to do this (queue and wait).
1752 * The current implementation does not do so. The POSIX standard
1753 * and SVID should be consulted to determine what behavior is mandated.
1754 */
1755 void exit_sem(struct task_struct *tsk)
1756 {
1757 struct sem_undo_list *ulp;
1758
1759 ulp = tsk->sysvsem.undo_list;
1760 if (!ulp)
1761 return;
1762 tsk->sysvsem.undo_list = NULL;
1763
1764 if (!atomic_dec_and_test(&ulp->refcnt))
1765 return;
1766
1767 for (;;) {
1768 struct sem_array *sma;
1769 struct sem_undo *un;
1770 struct list_head tasks;
1771 int semid, i;
1772
1773 rcu_read_lock();
1774 un = list_entry_rcu(ulp->list_proc.next,
1775 struct sem_undo, list_proc);
1776 if (&un->list_proc == &ulp->list_proc)
1777 semid = -1;
1778 else
1779 semid = un->semid;
1780
1781 if (semid == -1) {
1782 rcu_read_unlock();
1783 break;
1784 }
1785
1786 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
1787 /* exit_sem raced with IPC_RMID, nothing to do */
1788 if (IS_ERR(sma)) {
1789 rcu_read_unlock();
1790 continue;
1791 }
1792
1793 sem_lock(sma, NULL, -1);
1794 un = __lookup_undo(ulp, semid);
1795 if (un == NULL) {
1796 /* exit_sem raced with IPC_RMID+semget() that created
1797 * exactly the same semid. Nothing to do.
1798 */
1799 sem_unlock(sma, -1);
1800 rcu_read_unlock();
1801 continue;
1802 }
1803
1804 /* remove un from the linked lists */
1805 assert_spin_locked(&sma->sem_perm.lock);
1806 list_del(&un->list_id);
1807
1808 spin_lock(&ulp->lock);
1809 list_del_rcu(&un->list_proc);
1810 spin_unlock(&ulp->lock);
1811
1812 /* perform adjustments registered in un */
1813 for (i = 0; i < sma->sem_nsems; i++) {
1814 struct sem * semaphore = &sma->sem_base[i];
1815 if (un->semadj[i]) {
1816 semaphore->semval += un->semadj[i];
1817 /*
1818 * Range checks of the new semaphore value,
1819 * not defined by sus:
1820 * - Some unices ignore the undo entirely
1821 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1822 * - some cap the value (e.g. FreeBSD caps
1823 * at 0, but doesn't enforce SEMVMX)
1824 *
1825 * Linux caps the semaphore value, both at 0
1826 * and at SEMVMX.
1827 *
1828 * Manfred <manfred@colorfullife.com>
1829 */
1830 if (semaphore->semval < 0)
1831 semaphore->semval = 0;
1832 if (semaphore->semval > SEMVMX)
1833 semaphore->semval = SEMVMX;
1834 semaphore->sempid = task_tgid_vnr(current);
1835 }
1836 }
1837 /* maybe some queued-up processes were waiting for this */
1838 INIT_LIST_HEAD(&tasks);
1839 do_smart_update(sma, NULL, 0, 1, &tasks);
1840 sem_unlock(sma, -1);
1841 rcu_read_unlock();
1842 wake_up_sem_queue_do(&tasks);
1843
1844 kfree_rcu(un, rcu);
1845 }
1846 kfree(ulp);
1847 }
1848
1849 #ifdef CONFIG_PROC_FS
1850 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1851 {
1852 struct user_namespace *user_ns = seq_user_ns(s);
1853 struct sem_array *sma = it;
1854
1855 return seq_printf(s,
1856 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1857 sma->sem_perm.key,
1858 sma->sem_perm.id,
1859 sma->sem_perm.mode,
1860 sma->sem_nsems,
1861 from_kuid_munged(user_ns, sma->sem_perm.uid),
1862 from_kgid_munged(user_ns, sma->sem_perm.gid),
1863 from_kuid_munged(user_ns, sma->sem_perm.cuid),
1864 from_kgid_munged(user_ns, sma->sem_perm.cgid),
1865 sma->sem_otime,
1866 sma->sem_ctime);
1867 }
1868 #endif