Merge branch 'slab/next' into slab/for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / tcp.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the TCP module.
7 *
8 * Version: @(#)tcp.h 1.0.5 05/23/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 */
18 #ifndef _TCP_H
19 #define _TCP_H
20
21 #define FASTRETRANS_DEBUG 1
22
23 #include <linux/list.h>
24 #include <linux/tcp.h>
25 #include <linux/bug.h>
26 #include <linux/slab.h>
27 #include <linux/cache.h>
28 #include <linux/percpu.h>
29 #include <linux/skbuff.h>
30 #include <linux/dmaengine.h>
31 #include <linux/crypto.h>
32 #include <linux/cryptohash.h>
33 #include <linux/kref.h>
34
35 #include <net/inet_connection_sock.h>
36 #include <net/inet_timewait_sock.h>
37 #include <net/inet_hashtables.h>
38 #include <net/checksum.h>
39 #include <net/request_sock.h>
40 #include <net/sock.h>
41 #include <net/snmp.h>
42 #include <net/ip.h>
43 #include <net/tcp_states.h>
44 #include <net/inet_ecn.h>
45 #include <net/dst.h>
46
47 #include <linux/seq_file.h>
48 #include <linux/memcontrol.h>
49
50 extern struct inet_hashinfo tcp_hashinfo;
51
52 extern struct percpu_counter tcp_orphan_count;
53 extern void tcp_time_wait(struct sock *sk, int state, int timeo);
54
55 #define MAX_TCP_HEADER (128 + MAX_HEADER)
56 #define MAX_TCP_OPTION_SPACE 40
57
58 /*
59 * Never offer a window over 32767 without using window scaling. Some
60 * poor stacks do signed 16bit maths!
61 */
62 #define MAX_TCP_WINDOW 32767U
63
64 /* Offer an initial receive window of 10 mss. */
65 #define TCP_DEFAULT_INIT_RCVWND 10
66
67 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68 #define TCP_MIN_MSS 88U
69
70 /* The least MTU to use for probing */
71 #define TCP_BASE_MSS 512
72
73 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
74 #define TCP_FASTRETRANS_THRESH 3
75
76 /* Maximal reordering. */
77 #define TCP_MAX_REORDERING 127
78
79 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
80 #define TCP_MAX_QUICKACKS 16U
81
82 /* urg_data states */
83 #define TCP_URG_VALID 0x0100
84 #define TCP_URG_NOTYET 0x0200
85 #define TCP_URG_READ 0x0400
86
87 #define TCP_RETR1 3 /*
88 * This is how many retries it does before it
89 * tries to figure out if the gateway is
90 * down. Minimal RFC value is 3; it corresponds
91 * to ~3sec-8min depending on RTO.
92 */
93
94 #define TCP_RETR2 15 /*
95 * This should take at least
96 * 90 minutes to time out.
97 * RFC1122 says that the limit is 100 sec.
98 * 15 is ~13-30min depending on RTO.
99 */
100
101 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
102 * when active opening a connection.
103 * RFC1122 says the minimum retry MUST
104 * be at least 180secs. Nevertheless
105 * this value is corresponding to
106 * 63secs of retransmission with the
107 * current initial RTO.
108 */
109
110 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
111 * when passive opening a connection.
112 * This is corresponding to 31secs of
113 * retransmission with the current
114 * initial RTO.
115 */
116
117 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
118 * state, about 60 seconds */
119 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
120 /* BSD style FIN_WAIT2 deadlock breaker.
121 * It used to be 3min, new value is 60sec,
122 * to combine FIN-WAIT-2 timeout with
123 * TIME-WAIT timer.
124 */
125
126 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
127 #if HZ >= 100
128 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
129 #define TCP_ATO_MIN ((unsigned)(HZ/25))
130 #else
131 #define TCP_DELACK_MIN 4U
132 #define TCP_ATO_MIN 4U
133 #endif
134 #define TCP_RTO_MAX ((unsigned)(120*HZ))
135 #define TCP_RTO_MIN ((unsigned)(HZ/5))
136 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
137 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
138 * used as a fallback RTO for the
139 * initial data transmission if no
140 * valid RTT sample has been acquired,
141 * most likely due to retrans in 3WHS.
142 */
143
144 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
145 * for local resources.
146 */
147
148 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
149 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
150 #define TCP_KEEPALIVE_INTVL (75*HZ)
151
152 #define MAX_TCP_KEEPIDLE 32767
153 #define MAX_TCP_KEEPINTVL 32767
154 #define MAX_TCP_KEEPCNT 127
155 #define MAX_TCP_SYNCNT 127
156
157 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
158
159 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
160 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
161 * after this time. It should be equal
162 * (or greater than) TCP_TIMEWAIT_LEN
163 * to provide reliability equal to one
164 * provided by timewait state.
165 */
166 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
167 * timestamps. It must be less than
168 * minimal timewait lifetime.
169 */
170 /*
171 * TCP option
172 */
173
174 #define TCPOPT_NOP 1 /* Padding */
175 #define TCPOPT_EOL 0 /* End of options */
176 #define TCPOPT_MSS 2 /* Segment size negotiating */
177 #define TCPOPT_WINDOW 3 /* Window scaling */
178 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
179 #define TCPOPT_SACK 5 /* SACK Block */
180 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
181 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
182 #define TCPOPT_COOKIE 253 /* Cookie extension (experimental) */
183 #define TCPOPT_EXP 254 /* Experimental */
184 /* Magic number to be after the option value for sharing TCP
185 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
186 */
187 #define TCPOPT_FASTOPEN_MAGIC 0xF989
188
189 /*
190 * TCP option lengths
191 */
192
193 #define TCPOLEN_MSS 4
194 #define TCPOLEN_WINDOW 3
195 #define TCPOLEN_SACK_PERM 2
196 #define TCPOLEN_TIMESTAMP 10
197 #define TCPOLEN_MD5SIG 18
198 #define TCPOLEN_EXP_FASTOPEN_BASE 4
199 #define TCPOLEN_COOKIE_BASE 2 /* Cookie-less header extension */
200 #define TCPOLEN_COOKIE_PAIR 3 /* Cookie pair header extension */
201 #define TCPOLEN_COOKIE_MIN (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MIN)
202 #define TCPOLEN_COOKIE_MAX (TCPOLEN_COOKIE_BASE+TCP_COOKIE_MAX)
203
204 /* But this is what stacks really send out. */
205 #define TCPOLEN_TSTAMP_ALIGNED 12
206 #define TCPOLEN_WSCALE_ALIGNED 4
207 #define TCPOLEN_SACKPERM_ALIGNED 4
208 #define TCPOLEN_SACK_BASE 2
209 #define TCPOLEN_SACK_BASE_ALIGNED 4
210 #define TCPOLEN_SACK_PERBLOCK 8
211 #define TCPOLEN_MD5SIG_ALIGNED 20
212 #define TCPOLEN_MSS_ALIGNED 4
213
214 /* Flags in tp->nonagle */
215 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
216 #define TCP_NAGLE_CORK 2 /* Socket is corked */
217 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
218
219 /* TCP thin-stream limits */
220 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
221
222 /* TCP initial congestion window as per draft-hkchu-tcpm-initcwnd-01 */
223 #define TCP_INIT_CWND 10
224
225 /* Bit Flags for sysctl_tcp_fastopen */
226 #define TFO_CLIENT_ENABLE 1
227 #define TFO_SERVER_ENABLE 2
228 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
229
230 /* Process SYN data but skip cookie validation */
231 #define TFO_SERVER_COOKIE_NOT_CHKED 0x100
232 /* Accept SYN data w/o any cookie option */
233 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
234
235 /* Force enable TFO on all listeners, i.e., not requiring the
236 * TCP_FASTOPEN socket option. SOCKOPT1/2 determine how to set max_qlen.
237 */
238 #define TFO_SERVER_WO_SOCKOPT1 0x400
239 #define TFO_SERVER_WO_SOCKOPT2 0x800
240 /* Always create TFO child sockets on a TFO listener even when
241 * cookie/data not present. (For testing purpose!)
242 */
243 #define TFO_SERVER_ALWAYS 0x1000
244
245 extern struct inet_timewait_death_row tcp_death_row;
246
247 /* sysctl variables for tcp */
248 extern int sysctl_tcp_timestamps;
249 extern int sysctl_tcp_window_scaling;
250 extern int sysctl_tcp_sack;
251 extern int sysctl_tcp_fin_timeout;
252 extern int sysctl_tcp_keepalive_time;
253 extern int sysctl_tcp_keepalive_probes;
254 extern int sysctl_tcp_keepalive_intvl;
255 extern int sysctl_tcp_syn_retries;
256 extern int sysctl_tcp_synack_retries;
257 extern int sysctl_tcp_retries1;
258 extern int sysctl_tcp_retries2;
259 extern int sysctl_tcp_orphan_retries;
260 extern int sysctl_tcp_syncookies;
261 extern int sysctl_tcp_fastopen;
262 extern int sysctl_tcp_retrans_collapse;
263 extern int sysctl_tcp_stdurg;
264 extern int sysctl_tcp_rfc1337;
265 extern int sysctl_tcp_abort_on_overflow;
266 extern int sysctl_tcp_max_orphans;
267 extern int sysctl_tcp_fack;
268 extern int sysctl_tcp_reordering;
269 extern int sysctl_tcp_dsack;
270 extern int sysctl_tcp_wmem[3];
271 extern int sysctl_tcp_rmem[3];
272 extern int sysctl_tcp_app_win;
273 extern int sysctl_tcp_adv_win_scale;
274 extern int sysctl_tcp_tw_reuse;
275 extern int sysctl_tcp_frto;
276 extern int sysctl_tcp_frto_response;
277 extern int sysctl_tcp_low_latency;
278 extern int sysctl_tcp_dma_copybreak;
279 extern int sysctl_tcp_nometrics_save;
280 extern int sysctl_tcp_moderate_rcvbuf;
281 extern int sysctl_tcp_tso_win_divisor;
282 extern int sysctl_tcp_mtu_probing;
283 extern int sysctl_tcp_base_mss;
284 extern int sysctl_tcp_workaround_signed_windows;
285 extern int sysctl_tcp_slow_start_after_idle;
286 extern int sysctl_tcp_max_ssthresh;
287 extern int sysctl_tcp_cookie_size;
288 extern int sysctl_tcp_thin_linear_timeouts;
289 extern int sysctl_tcp_thin_dupack;
290 extern int sysctl_tcp_early_retrans;
291 extern int sysctl_tcp_limit_output_bytes;
292 extern int sysctl_tcp_challenge_ack_limit;
293
294 extern atomic_long_t tcp_memory_allocated;
295 extern struct percpu_counter tcp_sockets_allocated;
296 extern int tcp_memory_pressure;
297
298 /*
299 * The next routines deal with comparing 32 bit unsigned ints
300 * and worry about wraparound (automatic with unsigned arithmetic).
301 */
302
303 static inline bool before(__u32 seq1, __u32 seq2)
304 {
305 return (__s32)(seq1-seq2) < 0;
306 }
307 #define after(seq2, seq1) before(seq1, seq2)
308
309 /* is s2<=s1<=s3 ? */
310 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
311 {
312 return seq3 - seq2 >= seq1 - seq2;
313 }
314
315 static inline bool tcp_out_of_memory(struct sock *sk)
316 {
317 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
318 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
319 return true;
320 return false;
321 }
322
323 static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
324 {
325 struct percpu_counter *ocp = sk->sk_prot->orphan_count;
326 int orphans = percpu_counter_read_positive(ocp);
327
328 if (orphans << shift > sysctl_tcp_max_orphans) {
329 orphans = percpu_counter_sum_positive(ocp);
330 if (orphans << shift > sysctl_tcp_max_orphans)
331 return true;
332 }
333 return false;
334 }
335
336 extern bool tcp_check_oom(struct sock *sk, int shift);
337
338 /* syncookies: remember time of last synqueue overflow */
339 static inline void tcp_synq_overflow(struct sock *sk)
340 {
341 tcp_sk(sk)->rx_opt.ts_recent_stamp = jiffies;
342 }
343
344 /* syncookies: no recent synqueue overflow on this listening socket? */
345 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
346 {
347 unsigned long last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp;
348 return time_after(jiffies, last_overflow + TCP_TIMEOUT_FALLBACK);
349 }
350
351 extern struct proto tcp_prot;
352
353 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
354 #define TCP_INC_STATS_BH(net, field) SNMP_INC_STATS_BH((net)->mib.tcp_statistics, field)
355 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
356 #define TCP_ADD_STATS_USER(net, field, val) SNMP_ADD_STATS_USER((net)->mib.tcp_statistics, field, val)
357 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
358
359 extern void tcp_init_mem(struct net *net);
360
361 extern void tcp_tasklet_init(void);
362
363 extern void tcp_v4_err(struct sk_buff *skb, u32);
364
365 extern void tcp_shutdown (struct sock *sk, int how);
366
367 extern void tcp_v4_early_demux(struct sk_buff *skb);
368 extern int tcp_v4_rcv(struct sk_buff *skb);
369
370 extern int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
371 extern int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
372 size_t size);
373 extern int tcp_sendpage(struct sock *sk, struct page *page, int offset,
374 size_t size, int flags);
375 extern void tcp_release_cb(struct sock *sk);
376 extern void tcp_write_timer_handler(struct sock *sk);
377 extern void tcp_delack_timer_handler(struct sock *sk);
378 extern int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
379 extern int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
380 const struct tcphdr *th, unsigned int len);
381 extern int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
382 const struct tcphdr *th, unsigned int len);
383 extern void tcp_rcv_space_adjust(struct sock *sk);
384 extern void tcp_cleanup_rbuf(struct sock *sk, int copied);
385 extern int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
386 extern void tcp_twsk_destructor(struct sock *sk);
387 extern ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
388 struct pipe_inode_info *pipe, size_t len,
389 unsigned int flags);
390
391 static inline void tcp_dec_quickack_mode(struct sock *sk,
392 const unsigned int pkts)
393 {
394 struct inet_connection_sock *icsk = inet_csk(sk);
395
396 if (icsk->icsk_ack.quick) {
397 if (pkts >= icsk->icsk_ack.quick) {
398 icsk->icsk_ack.quick = 0;
399 /* Leaving quickack mode we deflate ATO. */
400 icsk->icsk_ack.ato = TCP_ATO_MIN;
401 } else
402 icsk->icsk_ack.quick -= pkts;
403 }
404 }
405
406 #define TCP_ECN_OK 1
407 #define TCP_ECN_QUEUE_CWR 2
408 #define TCP_ECN_DEMAND_CWR 4
409 #define TCP_ECN_SEEN 8
410
411 enum tcp_tw_status {
412 TCP_TW_SUCCESS = 0,
413 TCP_TW_RST = 1,
414 TCP_TW_ACK = 2,
415 TCP_TW_SYN = 3
416 };
417
418
419 extern enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
420 struct sk_buff *skb,
421 const struct tcphdr *th);
422 extern struct sock * tcp_check_req(struct sock *sk,struct sk_buff *skb,
423 struct request_sock *req,
424 struct request_sock **prev,
425 bool fastopen);
426 extern int tcp_child_process(struct sock *parent, struct sock *child,
427 struct sk_buff *skb);
428 extern bool tcp_use_frto(struct sock *sk);
429 extern void tcp_enter_frto(struct sock *sk);
430 extern void tcp_enter_loss(struct sock *sk, int how);
431 extern void tcp_clear_retrans(struct tcp_sock *tp);
432 extern void tcp_update_metrics(struct sock *sk);
433 extern void tcp_init_metrics(struct sock *sk);
434 extern void tcp_metrics_init(void);
435 extern bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst, bool paws_check);
436 extern bool tcp_remember_stamp(struct sock *sk);
437 extern bool tcp_tw_remember_stamp(struct inet_timewait_sock *tw);
438 extern void tcp_fetch_timewait_stamp(struct sock *sk, struct dst_entry *dst);
439 extern void tcp_disable_fack(struct tcp_sock *tp);
440 extern void tcp_close(struct sock *sk, long timeout);
441 extern void tcp_init_sock(struct sock *sk);
442 extern unsigned int tcp_poll(struct file * file, struct socket *sock,
443 struct poll_table_struct *wait);
444 extern int tcp_getsockopt(struct sock *sk, int level, int optname,
445 char __user *optval, int __user *optlen);
446 extern int tcp_setsockopt(struct sock *sk, int level, int optname,
447 char __user *optval, unsigned int optlen);
448 extern int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
449 char __user *optval, int __user *optlen);
450 extern int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
451 char __user *optval, unsigned int optlen);
452 extern void tcp_set_keepalive(struct sock *sk, int val);
453 extern void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req);
454 extern int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
455 size_t len, int nonblock, int flags, int *addr_len);
456 extern void tcp_parse_options(const struct sk_buff *skb,
457 struct tcp_options_received *opt_rx, const u8 **hvpp,
458 int estab, struct tcp_fastopen_cookie *foc);
459 extern const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
460
461 /*
462 * TCP v4 functions exported for the inet6 API
463 */
464
465 extern void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
466 extern int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
467 extern struct sock * tcp_create_openreq_child(struct sock *sk,
468 struct request_sock *req,
469 struct sk_buff *skb);
470 extern struct sock * tcp_v4_syn_recv_sock(struct sock *sk, struct sk_buff *skb,
471 struct request_sock *req,
472 struct dst_entry *dst);
473 extern int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
474 extern int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr,
475 int addr_len);
476 extern int tcp_connect(struct sock *sk);
477 extern struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst,
478 struct request_sock *req,
479 struct request_values *rvp,
480 struct tcp_fastopen_cookie *foc);
481 extern int tcp_disconnect(struct sock *sk, int flags);
482
483 void tcp_connect_init(struct sock *sk);
484 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
485 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
486 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
487
488 /* From syncookies.c */
489 extern __u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
490 extern struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
491 struct ip_options *opt);
492 #ifdef CONFIG_SYN_COOKIES
493 extern __u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
494 __u16 *mss);
495 #else
496 static inline __u32 cookie_v4_init_sequence(struct sock *sk,
497 struct sk_buff *skb,
498 __u16 *mss)
499 {
500 return 0;
501 }
502 #endif
503
504 extern __u32 cookie_init_timestamp(struct request_sock *req);
505 extern bool cookie_check_timestamp(struct tcp_options_received *opt,
506 struct net *net, bool *ecn_ok);
507
508 /* From net/ipv6/syncookies.c */
509 extern struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
510 #ifdef CONFIG_SYN_COOKIES
511 extern __u32 cookie_v6_init_sequence(struct sock *sk, const struct sk_buff *skb,
512 __u16 *mss);
513 #else
514 static inline __u32 cookie_v6_init_sequence(struct sock *sk,
515 struct sk_buff *skb,
516 __u16 *mss)
517 {
518 return 0;
519 }
520 #endif
521 /* tcp_output.c */
522
523 extern void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
524 int nonagle);
525 extern bool tcp_may_send_now(struct sock *sk);
526 extern int __tcp_retransmit_skb(struct sock *, struct sk_buff *);
527 extern int tcp_retransmit_skb(struct sock *, struct sk_buff *);
528 extern void tcp_retransmit_timer(struct sock *sk);
529 extern void tcp_xmit_retransmit_queue(struct sock *);
530 extern void tcp_simple_retransmit(struct sock *);
531 extern int tcp_trim_head(struct sock *, struct sk_buff *, u32);
532 extern int tcp_fragment(struct sock *, struct sk_buff *, u32, unsigned int);
533
534 extern void tcp_send_probe0(struct sock *);
535 extern void tcp_send_partial(struct sock *);
536 extern int tcp_write_wakeup(struct sock *);
537 extern void tcp_send_fin(struct sock *sk);
538 extern void tcp_send_active_reset(struct sock *sk, gfp_t priority);
539 extern int tcp_send_synack(struct sock *);
540 extern bool tcp_syn_flood_action(struct sock *sk,
541 const struct sk_buff *skb,
542 const char *proto);
543 extern void tcp_push_one(struct sock *, unsigned int mss_now);
544 extern void tcp_send_ack(struct sock *sk);
545 extern void tcp_send_delayed_ack(struct sock *sk);
546
547 /* tcp_input.c */
548 extern void tcp_cwnd_application_limited(struct sock *sk);
549 extern void tcp_resume_early_retransmit(struct sock *sk);
550 extern void tcp_rearm_rto(struct sock *sk);
551 extern void tcp_reset(struct sock *sk);
552
553 /* tcp_timer.c */
554 extern void tcp_init_xmit_timers(struct sock *);
555 static inline void tcp_clear_xmit_timers(struct sock *sk)
556 {
557 inet_csk_clear_xmit_timers(sk);
558 }
559
560 extern unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
561 extern unsigned int tcp_current_mss(struct sock *sk);
562
563 /* Bound MSS / TSO packet size with the half of the window */
564 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
565 {
566 int cutoff;
567
568 /* When peer uses tiny windows, there is no use in packetizing
569 * to sub-MSS pieces for the sake of SWS or making sure there
570 * are enough packets in the pipe for fast recovery.
571 *
572 * On the other hand, for extremely large MSS devices, handling
573 * smaller than MSS windows in this way does make sense.
574 */
575 if (tp->max_window >= 512)
576 cutoff = (tp->max_window >> 1);
577 else
578 cutoff = tp->max_window;
579
580 if (cutoff && pktsize > cutoff)
581 return max_t(int, cutoff, 68U - tp->tcp_header_len);
582 else
583 return pktsize;
584 }
585
586 /* tcp.c */
587 extern void tcp_get_info(const struct sock *, struct tcp_info *);
588
589 /* Read 'sendfile()'-style from a TCP socket */
590 typedef int (*sk_read_actor_t)(read_descriptor_t *, struct sk_buff *,
591 unsigned int, size_t);
592 extern int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
593 sk_read_actor_t recv_actor);
594
595 extern void tcp_initialize_rcv_mss(struct sock *sk);
596
597 extern int tcp_mtu_to_mss(struct sock *sk, int pmtu);
598 extern int tcp_mss_to_mtu(struct sock *sk, int mss);
599 extern void tcp_mtup_init(struct sock *sk);
600 extern void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt);
601 extern void tcp_init_buffer_space(struct sock *sk);
602
603 static inline void tcp_bound_rto(const struct sock *sk)
604 {
605 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
606 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
607 }
608
609 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
610 {
611 return (tp->srtt >> 3) + tp->rttvar;
612 }
613
614 extern void tcp_set_rto(struct sock *sk);
615
616 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
617 {
618 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
619 ntohl(TCP_FLAG_ACK) |
620 snd_wnd);
621 }
622
623 static inline void tcp_fast_path_on(struct tcp_sock *tp)
624 {
625 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
626 }
627
628 static inline void tcp_fast_path_check(struct sock *sk)
629 {
630 struct tcp_sock *tp = tcp_sk(sk);
631
632 if (skb_queue_empty(&tp->out_of_order_queue) &&
633 tp->rcv_wnd &&
634 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
635 !tp->urg_data)
636 tcp_fast_path_on(tp);
637 }
638
639 /* Compute the actual rto_min value */
640 static inline u32 tcp_rto_min(struct sock *sk)
641 {
642 const struct dst_entry *dst = __sk_dst_get(sk);
643 u32 rto_min = TCP_RTO_MIN;
644
645 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
646 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
647 return rto_min;
648 }
649
650 /* Compute the actual receive window we are currently advertising.
651 * Rcv_nxt can be after the window if our peer push more data
652 * than the offered window.
653 */
654 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
655 {
656 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
657
658 if (win < 0)
659 win = 0;
660 return (u32) win;
661 }
662
663 /* Choose a new window, without checks for shrinking, and without
664 * scaling applied to the result. The caller does these things
665 * if necessary. This is a "raw" window selection.
666 */
667 extern u32 __tcp_select_window(struct sock *sk);
668
669 void tcp_send_window_probe(struct sock *sk);
670
671 /* TCP timestamps are only 32-bits, this causes a slight
672 * complication on 64-bit systems since we store a snapshot
673 * of jiffies in the buffer control blocks below. We decided
674 * to use only the low 32-bits of jiffies and hide the ugly
675 * casts with the following macro.
676 */
677 #define tcp_time_stamp ((__u32)(jiffies))
678
679 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
680
681 #define TCPHDR_FIN 0x01
682 #define TCPHDR_SYN 0x02
683 #define TCPHDR_RST 0x04
684 #define TCPHDR_PSH 0x08
685 #define TCPHDR_ACK 0x10
686 #define TCPHDR_URG 0x20
687 #define TCPHDR_ECE 0x40
688 #define TCPHDR_CWR 0x80
689
690 /* This is what the send packet queuing engine uses to pass
691 * TCP per-packet control information to the transmission code.
692 * We also store the host-order sequence numbers in here too.
693 * This is 44 bytes if IPV6 is enabled.
694 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
695 */
696 struct tcp_skb_cb {
697 union {
698 struct inet_skb_parm h4;
699 #if IS_ENABLED(CONFIG_IPV6)
700 struct inet6_skb_parm h6;
701 #endif
702 } header; /* For incoming frames */
703 __u32 seq; /* Starting sequence number */
704 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
705 __u32 when; /* used to compute rtt's */
706 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
707
708 __u8 sacked; /* State flags for SACK/FACK. */
709 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
710 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
711 #define TCPCB_LOST 0x04 /* SKB is lost */
712 #define TCPCB_TAGBITS 0x07 /* All tag bits */
713 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
714 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS)
715
716 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
717 /* 1 byte hole */
718 __u32 ack_seq; /* Sequence number ACK'd */
719 };
720
721 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
722
723 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
724 *
725 * If we receive a SYN packet with these bits set, it means a network is
726 * playing bad games with TOS bits. In order to avoid possible false congestion
727 * notifications, we disable TCP ECN negociation.
728 */
729 static inline void
730 TCP_ECN_create_request(struct request_sock *req, const struct sk_buff *skb,
731 struct net *net)
732 {
733 const struct tcphdr *th = tcp_hdr(skb);
734
735 if (net->ipv4.sysctl_tcp_ecn && th->ece && th->cwr &&
736 INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield))
737 inet_rsk(req)->ecn_ok = 1;
738 }
739
740 /* Due to TSO, an SKB can be composed of multiple actual
741 * packets. To keep these tracked properly, we use this.
742 */
743 static inline int tcp_skb_pcount(const struct sk_buff *skb)
744 {
745 return skb_shinfo(skb)->gso_segs;
746 }
747
748 /* This is valid iff tcp_skb_pcount() > 1. */
749 static inline int tcp_skb_mss(const struct sk_buff *skb)
750 {
751 return skb_shinfo(skb)->gso_size;
752 }
753
754 /* Events passed to congestion control interface */
755 enum tcp_ca_event {
756 CA_EVENT_TX_START, /* first transmit when no packets in flight */
757 CA_EVENT_CWND_RESTART, /* congestion window restart */
758 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
759 CA_EVENT_FRTO, /* fast recovery timeout */
760 CA_EVENT_LOSS, /* loss timeout */
761 CA_EVENT_FAST_ACK, /* in sequence ack */
762 CA_EVENT_SLOW_ACK, /* other ack */
763 };
764
765 /*
766 * Interface for adding new TCP congestion control handlers
767 */
768 #define TCP_CA_NAME_MAX 16
769 #define TCP_CA_MAX 128
770 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
771
772 #define TCP_CONG_NON_RESTRICTED 0x1
773 #define TCP_CONG_RTT_STAMP 0x2
774
775 struct tcp_congestion_ops {
776 struct list_head list;
777 unsigned long flags;
778
779 /* initialize private data (optional) */
780 void (*init)(struct sock *sk);
781 /* cleanup private data (optional) */
782 void (*release)(struct sock *sk);
783
784 /* return slow start threshold (required) */
785 u32 (*ssthresh)(struct sock *sk);
786 /* lower bound for congestion window (optional) */
787 u32 (*min_cwnd)(const struct sock *sk);
788 /* do new cwnd calculation (required) */
789 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);
790 /* call before changing ca_state (optional) */
791 void (*set_state)(struct sock *sk, u8 new_state);
792 /* call when cwnd event occurs (optional) */
793 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
794 /* new value of cwnd after loss (optional) */
795 u32 (*undo_cwnd)(struct sock *sk);
796 /* hook for packet ack accounting (optional) */
797 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);
798 /* get info for inet_diag (optional) */
799 void (*get_info)(struct sock *sk, u32 ext, struct sk_buff *skb);
800
801 char name[TCP_CA_NAME_MAX];
802 struct module *owner;
803 };
804
805 extern int tcp_register_congestion_control(struct tcp_congestion_ops *type);
806 extern void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
807
808 extern void tcp_init_congestion_control(struct sock *sk);
809 extern void tcp_cleanup_congestion_control(struct sock *sk);
810 extern int tcp_set_default_congestion_control(const char *name);
811 extern void tcp_get_default_congestion_control(char *name);
812 extern void tcp_get_available_congestion_control(char *buf, size_t len);
813 extern void tcp_get_allowed_congestion_control(char *buf, size_t len);
814 extern int tcp_set_allowed_congestion_control(char *allowed);
815 extern int tcp_set_congestion_control(struct sock *sk, const char *name);
816 extern void tcp_slow_start(struct tcp_sock *tp);
817 extern void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w);
818
819 extern struct tcp_congestion_ops tcp_init_congestion_ops;
820 extern u32 tcp_reno_ssthresh(struct sock *sk);
821 extern void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 in_flight);
822 extern u32 tcp_reno_min_cwnd(const struct sock *sk);
823 extern struct tcp_congestion_ops tcp_reno;
824
825 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
826 {
827 struct inet_connection_sock *icsk = inet_csk(sk);
828
829 if (icsk->icsk_ca_ops->set_state)
830 icsk->icsk_ca_ops->set_state(sk, ca_state);
831 icsk->icsk_ca_state = ca_state;
832 }
833
834 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
835 {
836 const struct inet_connection_sock *icsk = inet_csk(sk);
837
838 if (icsk->icsk_ca_ops->cwnd_event)
839 icsk->icsk_ca_ops->cwnd_event(sk, event);
840 }
841
842 /* These functions determine how the current flow behaves in respect of SACK
843 * handling. SACK is negotiated with the peer, and therefore it can vary
844 * between different flows.
845 *
846 * tcp_is_sack - SACK enabled
847 * tcp_is_reno - No SACK
848 * tcp_is_fack - FACK enabled, implies SACK enabled
849 */
850 static inline int tcp_is_sack(const struct tcp_sock *tp)
851 {
852 return tp->rx_opt.sack_ok;
853 }
854
855 static inline bool tcp_is_reno(const struct tcp_sock *tp)
856 {
857 return !tcp_is_sack(tp);
858 }
859
860 static inline bool tcp_is_fack(const struct tcp_sock *tp)
861 {
862 return tp->rx_opt.sack_ok & TCP_FACK_ENABLED;
863 }
864
865 static inline void tcp_enable_fack(struct tcp_sock *tp)
866 {
867 tp->rx_opt.sack_ok |= TCP_FACK_ENABLED;
868 }
869
870 /* TCP early-retransmit (ER) is similar to but more conservative than
871 * the thin-dupack feature. Enable ER only if thin-dupack is disabled.
872 */
873 static inline void tcp_enable_early_retrans(struct tcp_sock *tp)
874 {
875 tp->do_early_retrans = sysctl_tcp_early_retrans &&
876 !sysctl_tcp_thin_dupack && sysctl_tcp_reordering == 3;
877 tp->early_retrans_delayed = 0;
878 }
879
880 static inline void tcp_disable_early_retrans(struct tcp_sock *tp)
881 {
882 tp->do_early_retrans = 0;
883 }
884
885 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
886 {
887 return tp->sacked_out + tp->lost_out;
888 }
889
890 /* This determines how many packets are "in the network" to the best
891 * of our knowledge. In many cases it is conservative, but where
892 * detailed information is available from the receiver (via SACK
893 * blocks etc.) we can make more aggressive calculations.
894 *
895 * Use this for decisions involving congestion control, use just
896 * tp->packets_out to determine if the send queue is empty or not.
897 *
898 * Read this equation as:
899 *
900 * "Packets sent once on transmission queue" MINUS
901 * "Packets left network, but not honestly ACKed yet" PLUS
902 * "Packets fast retransmitted"
903 */
904 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
905 {
906 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
907 }
908
909 #define TCP_INFINITE_SSTHRESH 0x7fffffff
910
911 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
912 {
913 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
914 }
915
916 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
917 {
918 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
919 (1 << inet_csk(sk)->icsk_ca_state);
920 }
921
922 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
923 * The exception is cwnd reduction phase, when cwnd is decreasing towards
924 * ssthresh.
925 */
926 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
927 {
928 const struct tcp_sock *tp = tcp_sk(sk);
929
930 if (tcp_in_cwnd_reduction(sk))
931 return tp->snd_ssthresh;
932 else
933 return max(tp->snd_ssthresh,
934 ((tp->snd_cwnd >> 1) +
935 (tp->snd_cwnd >> 2)));
936 }
937
938 /* Use define here intentionally to get WARN_ON location shown at the caller */
939 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
940
941 extern void tcp_enter_cwr(struct sock *sk, const int set_ssthresh);
942 extern __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
943
944 /* The maximum number of MSS of available cwnd for which TSO defers
945 * sending if not using sysctl_tcp_tso_win_divisor.
946 */
947 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
948 {
949 return 3;
950 }
951
952 /* Slow start with delack produces 3 packets of burst, so that
953 * it is safe "de facto". This will be the default - same as
954 * the default reordering threshold - but if reordering increases,
955 * we must be able to allow cwnd to burst at least this much in order
956 * to not pull it back when holes are filled.
957 */
958 static __inline__ __u32 tcp_max_burst(const struct tcp_sock *tp)
959 {
960 return tp->reordering;
961 }
962
963 /* Returns end sequence number of the receiver's advertised window */
964 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
965 {
966 return tp->snd_una + tp->snd_wnd;
967 }
968 extern bool tcp_is_cwnd_limited(const struct sock *sk, u32 in_flight);
969
970 static inline void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss,
971 const struct sk_buff *skb)
972 {
973 if (skb->len < mss)
974 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
975 }
976
977 static inline void tcp_check_probe_timer(struct sock *sk)
978 {
979 const struct tcp_sock *tp = tcp_sk(sk);
980 const struct inet_connection_sock *icsk = inet_csk(sk);
981
982 if (!tp->packets_out && !icsk->icsk_pending)
983 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
984 icsk->icsk_rto, TCP_RTO_MAX);
985 }
986
987 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
988 {
989 tp->snd_wl1 = seq;
990 }
991
992 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
993 {
994 tp->snd_wl1 = seq;
995 }
996
997 /*
998 * Calculate(/check) TCP checksum
999 */
1000 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1001 __be32 daddr, __wsum base)
1002 {
1003 return csum_tcpudp_magic(saddr,daddr,len,IPPROTO_TCP,base);
1004 }
1005
1006 static inline __sum16 __tcp_checksum_complete(struct sk_buff *skb)
1007 {
1008 return __skb_checksum_complete(skb);
1009 }
1010
1011 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1012 {
1013 return !skb_csum_unnecessary(skb) &&
1014 __tcp_checksum_complete(skb);
1015 }
1016
1017 /* Prequeue for VJ style copy to user, combined with checksumming. */
1018
1019 static inline void tcp_prequeue_init(struct tcp_sock *tp)
1020 {
1021 tp->ucopy.task = NULL;
1022 tp->ucopy.len = 0;
1023 tp->ucopy.memory = 0;
1024 skb_queue_head_init(&tp->ucopy.prequeue);
1025 #ifdef CONFIG_NET_DMA
1026 tp->ucopy.dma_chan = NULL;
1027 tp->ucopy.wakeup = 0;
1028 tp->ucopy.pinned_list = NULL;
1029 tp->ucopy.dma_cookie = 0;
1030 #endif
1031 }
1032
1033 /* Packet is added to VJ-style prequeue for processing in process
1034 * context, if a reader task is waiting. Apparently, this exciting
1035 * idea (VJ's mail "Re: query about TCP header on tcp-ip" of 07 Sep 93)
1036 * failed somewhere. Latency? Burstiness? Well, at least now we will
1037 * see, why it failed. 8)8) --ANK
1038 *
1039 * NOTE: is this not too big to inline?
1040 */
1041 static inline bool tcp_prequeue(struct sock *sk, struct sk_buff *skb)
1042 {
1043 struct tcp_sock *tp = tcp_sk(sk);
1044
1045 if (sysctl_tcp_low_latency || !tp->ucopy.task)
1046 return false;
1047
1048 if (skb->len <= tcp_hdrlen(skb) &&
1049 skb_queue_len(&tp->ucopy.prequeue) == 0)
1050 return false;
1051
1052 __skb_queue_tail(&tp->ucopy.prequeue, skb);
1053 tp->ucopy.memory += skb->truesize;
1054 if (tp->ucopy.memory > sk->sk_rcvbuf) {
1055 struct sk_buff *skb1;
1056
1057 BUG_ON(sock_owned_by_user(sk));
1058
1059 while ((skb1 = __skb_dequeue(&tp->ucopy.prequeue)) != NULL) {
1060 sk_backlog_rcv(sk, skb1);
1061 NET_INC_STATS_BH(sock_net(sk),
1062 LINUX_MIB_TCPPREQUEUEDROPPED);
1063 }
1064
1065 tp->ucopy.memory = 0;
1066 } else if (skb_queue_len(&tp->ucopy.prequeue) == 1) {
1067 wake_up_interruptible_sync_poll(sk_sleep(sk),
1068 POLLIN | POLLRDNORM | POLLRDBAND);
1069 if (!inet_csk_ack_scheduled(sk))
1070 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
1071 (3 * tcp_rto_min(sk)) / 4,
1072 TCP_RTO_MAX);
1073 }
1074 return true;
1075 }
1076
1077
1078 #undef STATE_TRACE
1079
1080 #ifdef STATE_TRACE
1081 static const char *statename[]={
1082 "Unused","Established","Syn Sent","Syn Recv",
1083 "Fin Wait 1","Fin Wait 2","Time Wait", "Close",
1084 "Close Wait","Last ACK","Listen","Closing"
1085 };
1086 #endif
1087 extern void tcp_set_state(struct sock *sk, int state);
1088
1089 extern void tcp_done(struct sock *sk);
1090
1091 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1092 {
1093 rx_opt->dsack = 0;
1094 rx_opt->num_sacks = 0;
1095 }
1096
1097 /* Determine a window scaling and initial window to offer. */
1098 extern void tcp_select_initial_window(int __space, __u32 mss,
1099 __u32 *rcv_wnd, __u32 *window_clamp,
1100 int wscale_ok, __u8 *rcv_wscale,
1101 __u32 init_rcv_wnd);
1102
1103 static inline int tcp_win_from_space(int space)
1104 {
1105 return sysctl_tcp_adv_win_scale<=0 ?
1106 (space>>(-sysctl_tcp_adv_win_scale)) :
1107 space - (space>>sysctl_tcp_adv_win_scale);
1108 }
1109
1110 /* Note: caller must be prepared to deal with negative returns */
1111 static inline int tcp_space(const struct sock *sk)
1112 {
1113 return tcp_win_from_space(sk->sk_rcvbuf -
1114 atomic_read(&sk->sk_rmem_alloc));
1115 }
1116
1117 static inline int tcp_full_space(const struct sock *sk)
1118 {
1119 return tcp_win_from_space(sk->sk_rcvbuf);
1120 }
1121
1122 static inline void tcp_openreq_init(struct request_sock *req,
1123 struct tcp_options_received *rx_opt,
1124 struct sk_buff *skb)
1125 {
1126 struct inet_request_sock *ireq = inet_rsk(req);
1127
1128 req->rcv_wnd = 0; /* So that tcp_send_synack() knows! */
1129 req->cookie_ts = 0;
1130 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
1131 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
1132 tcp_rsk(req)->snt_synack = 0;
1133 req->mss = rx_opt->mss_clamp;
1134 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
1135 ireq->tstamp_ok = rx_opt->tstamp_ok;
1136 ireq->sack_ok = rx_opt->sack_ok;
1137 ireq->snd_wscale = rx_opt->snd_wscale;
1138 ireq->wscale_ok = rx_opt->wscale_ok;
1139 ireq->acked = 0;
1140 ireq->ecn_ok = 0;
1141 ireq->rmt_port = tcp_hdr(skb)->source;
1142 ireq->loc_port = tcp_hdr(skb)->dest;
1143 }
1144
1145 /* Compute time elapsed between SYNACK and the ACK completing 3WHS */
1146 static inline void tcp_synack_rtt_meas(struct sock *sk,
1147 struct request_sock *req)
1148 {
1149 if (tcp_rsk(req)->snt_synack)
1150 tcp_valid_rtt_meas(sk,
1151 tcp_time_stamp - tcp_rsk(req)->snt_synack);
1152 }
1153
1154 extern void tcp_enter_memory_pressure(struct sock *sk);
1155
1156 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1157 {
1158 return tp->keepalive_intvl ? : sysctl_tcp_keepalive_intvl;
1159 }
1160
1161 static inline int keepalive_time_when(const struct tcp_sock *tp)
1162 {
1163 return tp->keepalive_time ? : sysctl_tcp_keepalive_time;
1164 }
1165
1166 static inline int keepalive_probes(const struct tcp_sock *tp)
1167 {
1168 return tp->keepalive_probes ? : sysctl_tcp_keepalive_probes;
1169 }
1170
1171 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1172 {
1173 const struct inet_connection_sock *icsk = &tp->inet_conn;
1174
1175 return min_t(u32, tcp_time_stamp - icsk->icsk_ack.lrcvtime,
1176 tcp_time_stamp - tp->rcv_tstamp);
1177 }
1178
1179 static inline int tcp_fin_time(const struct sock *sk)
1180 {
1181 int fin_timeout = tcp_sk(sk)->linger2 ? : sysctl_tcp_fin_timeout;
1182 const int rto = inet_csk(sk)->icsk_rto;
1183
1184 if (fin_timeout < (rto << 2) - (rto >> 1))
1185 fin_timeout = (rto << 2) - (rto >> 1);
1186
1187 return fin_timeout;
1188 }
1189
1190 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1191 int paws_win)
1192 {
1193 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1194 return true;
1195 if (unlikely(get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS))
1196 return true;
1197 /*
1198 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1199 * then following tcp messages have valid values. Ignore 0 value,
1200 * or else 'negative' tsval might forbid us to accept their packets.
1201 */
1202 if (!rx_opt->ts_recent)
1203 return true;
1204 return false;
1205 }
1206
1207 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1208 int rst)
1209 {
1210 if (tcp_paws_check(rx_opt, 0))
1211 return false;
1212
1213 /* RST segments are not recommended to carry timestamp,
1214 and, if they do, it is recommended to ignore PAWS because
1215 "their cleanup function should take precedence over timestamps."
1216 Certainly, it is mistake. It is necessary to understand the reasons
1217 of this constraint to relax it: if peer reboots, clock may go
1218 out-of-sync and half-open connections will not be reset.
1219 Actually, the problem would be not existing if all
1220 the implementations followed draft about maintaining clock
1221 via reboots. Linux-2.2 DOES NOT!
1222
1223 However, we can relax time bounds for RST segments to MSL.
1224 */
1225 if (rst && get_seconds() >= rx_opt->ts_recent_stamp + TCP_PAWS_MSL)
1226 return false;
1227 return true;
1228 }
1229
1230 static inline void tcp_mib_init(struct net *net)
1231 {
1232 /* See RFC 2012 */
1233 TCP_ADD_STATS_USER(net, TCP_MIB_RTOALGORITHM, 1);
1234 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1235 TCP_ADD_STATS_USER(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1236 TCP_ADD_STATS_USER(net, TCP_MIB_MAXCONN, -1);
1237 }
1238
1239 /* from STCP */
1240 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1241 {
1242 tp->lost_skb_hint = NULL;
1243 tp->scoreboard_skb_hint = NULL;
1244 }
1245
1246 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1247 {
1248 tcp_clear_retrans_hints_partial(tp);
1249 tp->retransmit_skb_hint = NULL;
1250 }
1251
1252 /* MD5 Signature */
1253 struct crypto_hash;
1254
1255 union tcp_md5_addr {
1256 struct in_addr a4;
1257 #if IS_ENABLED(CONFIG_IPV6)
1258 struct in6_addr a6;
1259 #endif
1260 };
1261
1262 /* - key database */
1263 struct tcp_md5sig_key {
1264 struct hlist_node node;
1265 u8 keylen;
1266 u8 family; /* AF_INET or AF_INET6 */
1267 union tcp_md5_addr addr;
1268 u8 key[TCP_MD5SIG_MAXKEYLEN];
1269 struct rcu_head rcu;
1270 };
1271
1272 /* - sock block */
1273 struct tcp_md5sig_info {
1274 struct hlist_head head;
1275 struct rcu_head rcu;
1276 };
1277
1278 /* - pseudo header */
1279 struct tcp4_pseudohdr {
1280 __be32 saddr;
1281 __be32 daddr;
1282 __u8 pad;
1283 __u8 protocol;
1284 __be16 len;
1285 };
1286
1287 struct tcp6_pseudohdr {
1288 struct in6_addr saddr;
1289 struct in6_addr daddr;
1290 __be32 len;
1291 __be32 protocol; /* including padding */
1292 };
1293
1294 union tcp_md5sum_block {
1295 struct tcp4_pseudohdr ip4;
1296 #if IS_ENABLED(CONFIG_IPV6)
1297 struct tcp6_pseudohdr ip6;
1298 #endif
1299 };
1300
1301 /* - pool: digest algorithm, hash description and scratch buffer */
1302 struct tcp_md5sig_pool {
1303 struct hash_desc md5_desc;
1304 union tcp_md5sum_block md5_blk;
1305 };
1306
1307 /* - functions */
1308 extern int tcp_v4_md5_hash_skb(char *md5_hash, struct tcp_md5sig_key *key,
1309 const struct sock *sk,
1310 const struct request_sock *req,
1311 const struct sk_buff *skb);
1312 extern int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1313 int family, const u8 *newkey,
1314 u8 newkeylen, gfp_t gfp);
1315 extern int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1316 int family);
1317 extern struct tcp_md5sig_key *tcp_v4_md5_lookup(struct sock *sk,
1318 struct sock *addr_sk);
1319
1320 #ifdef CONFIG_TCP_MD5SIG
1321 extern struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1322 const union tcp_md5_addr *addr, int family);
1323 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1324 #else
1325 static inline struct tcp_md5sig_key *tcp_md5_do_lookup(struct sock *sk,
1326 const union tcp_md5_addr *addr,
1327 int family)
1328 {
1329 return NULL;
1330 }
1331 #define tcp_twsk_md5_key(twsk) NULL
1332 #endif
1333
1334 extern struct tcp_md5sig_pool __percpu *tcp_alloc_md5sig_pool(struct sock *);
1335 extern void tcp_free_md5sig_pool(void);
1336
1337 extern struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1338 extern void tcp_put_md5sig_pool(void);
1339
1340 extern int tcp_md5_hash_header(struct tcp_md5sig_pool *, const struct tcphdr *);
1341 extern int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1342 unsigned int header_len);
1343 extern int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1344 const struct tcp_md5sig_key *key);
1345
1346 /* From tcp_fastopen.c */
1347 extern void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1348 struct tcp_fastopen_cookie *cookie,
1349 int *syn_loss, unsigned long *last_syn_loss);
1350 extern void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1351 struct tcp_fastopen_cookie *cookie,
1352 bool syn_lost);
1353 struct tcp_fastopen_request {
1354 /* Fast Open cookie. Size 0 means a cookie request */
1355 struct tcp_fastopen_cookie cookie;
1356 struct msghdr *data; /* data in MSG_FASTOPEN */
1357 u16 copied; /* queued in tcp_connect() */
1358 };
1359 void tcp_free_fastopen_req(struct tcp_sock *tp);
1360
1361 extern struct tcp_fastopen_context __rcu *tcp_fastopen_ctx;
1362 int tcp_fastopen_reset_cipher(void *key, unsigned int len);
1363 void tcp_fastopen_cookie_gen(__be32 addr, struct tcp_fastopen_cookie *foc);
1364
1365 #define TCP_FASTOPEN_KEY_LENGTH 16
1366
1367 /* Fastopen key context */
1368 struct tcp_fastopen_context {
1369 struct crypto_cipher __rcu *tfm;
1370 __u8 key[TCP_FASTOPEN_KEY_LENGTH];
1371 struct rcu_head rcu;
1372 };
1373
1374 /* write queue abstraction */
1375 static inline void tcp_write_queue_purge(struct sock *sk)
1376 {
1377 struct sk_buff *skb;
1378
1379 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
1380 sk_wmem_free_skb(sk, skb);
1381 sk_mem_reclaim(sk);
1382 tcp_clear_all_retrans_hints(tcp_sk(sk));
1383 }
1384
1385 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1386 {
1387 return skb_peek(&sk->sk_write_queue);
1388 }
1389
1390 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1391 {
1392 return skb_peek_tail(&sk->sk_write_queue);
1393 }
1394
1395 static inline struct sk_buff *tcp_write_queue_next(const struct sock *sk,
1396 const struct sk_buff *skb)
1397 {
1398 return skb_queue_next(&sk->sk_write_queue, skb);
1399 }
1400
1401 static inline struct sk_buff *tcp_write_queue_prev(const struct sock *sk,
1402 const struct sk_buff *skb)
1403 {
1404 return skb_queue_prev(&sk->sk_write_queue, skb);
1405 }
1406
1407 #define tcp_for_write_queue(skb, sk) \
1408 skb_queue_walk(&(sk)->sk_write_queue, skb)
1409
1410 #define tcp_for_write_queue_from(skb, sk) \
1411 skb_queue_walk_from(&(sk)->sk_write_queue, skb)
1412
1413 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1414 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1415
1416 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1417 {
1418 return sk->sk_send_head;
1419 }
1420
1421 static inline bool tcp_skb_is_last(const struct sock *sk,
1422 const struct sk_buff *skb)
1423 {
1424 return skb_queue_is_last(&sk->sk_write_queue, skb);
1425 }
1426
1427 static inline void tcp_advance_send_head(struct sock *sk, const struct sk_buff *skb)
1428 {
1429 if (tcp_skb_is_last(sk, skb))
1430 sk->sk_send_head = NULL;
1431 else
1432 sk->sk_send_head = tcp_write_queue_next(sk, skb);
1433 }
1434
1435 static inline void tcp_check_send_head(struct sock *sk, struct sk_buff *skb_unlinked)
1436 {
1437 if (sk->sk_send_head == skb_unlinked)
1438 sk->sk_send_head = NULL;
1439 }
1440
1441 static inline void tcp_init_send_head(struct sock *sk)
1442 {
1443 sk->sk_send_head = NULL;
1444 }
1445
1446 static inline void __tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1447 {
1448 __skb_queue_tail(&sk->sk_write_queue, skb);
1449 }
1450
1451 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1452 {
1453 __tcp_add_write_queue_tail(sk, skb);
1454
1455 /* Queue it, remembering where we must start sending. */
1456 if (sk->sk_send_head == NULL) {
1457 sk->sk_send_head = skb;
1458
1459 if (tcp_sk(sk)->highest_sack == NULL)
1460 tcp_sk(sk)->highest_sack = skb;
1461 }
1462 }
1463
1464 static inline void __tcp_add_write_queue_head(struct sock *sk, struct sk_buff *skb)
1465 {
1466 __skb_queue_head(&sk->sk_write_queue, skb);
1467 }
1468
1469 /* Insert buff after skb on the write queue of sk. */
1470 static inline void tcp_insert_write_queue_after(struct sk_buff *skb,
1471 struct sk_buff *buff,
1472 struct sock *sk)
1473 {
1474 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1475 }
1476
1477 /* Insert new before skb on the write queue of sk. */
1478 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1479 struct sk_buff *skb,
1480 struct sock *sk)
1481 {
1482 __skb_queue_before(&sk->sk_write_queue, skb, new);
1483
1484 if (sk->sk_send_head == skb)
1485 sk->sk_send_head = new;
1486 }
1487
1488 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1489 {
1490 __skb_unlink(skb, &sk->sk_write_queue);
1491 }
1492
1493 static inline bool tcp_write_queue_empty(struct sock *sk)
1494 {
1495 return skb_queue_empty(&sk->sk_write_queue);
1496 }
1497
1498 static inline void tcp_push_pending_frames(struct sock *sk)
1499 {
1500 if (tcp_send_head(sk)) {
1501 struct tcp_sock *tp = tcp_sk(sk);
1502
1503 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1504 }
1505 }
1506
1507 /* Start sequence of the skb just after the highest skb with SACKed
1508 * bit, valid only if sacked_out > 0 or when the caller has ensured
1509 * validity by itself.
1510 */
1511 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1512 {
1513 if (!tp->sacked_out)
1514 return tp->snd_una;
1515
1516 if (tp->highest_sack == NULL)
1517 return tp->snd_nxt;
1518
1519 return TCP_SKB_CB(tp->highest_sack)->seq;
1520 }
1521
1522 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1523 {
1524 tcp_sk(sk)->highest_sack = tcp_skb_is_last(sk, skb) ? NULL :
1525 tcp_write_queue_next(sk, skb);
1526 }
1527
1528 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1529 {
1530 return tcp_sk(sk)->highest_sack;
1531 }
1532
1533 static inline void tcp_highest_sack_reset(struct sock *sk)
1534 {
1535 tcp_sk(sk)->highest_sack = tcp_write_queue_head(sk);
1536 }
1537
1538 /* Called when old skb is about to be deleted (to be combined with new skb) */
1539 static inline void tcp_highest_sack_combine(struct sock *sk,
1540 struct sk_buff *old,
1541 struct sk_buff *new)
1542 {
1543 if (tcp_sk(sk)->sacked_out && (old == tcp_sk(sk)->highest_sack))
1544 tcp_sk(sk)->highest_sack = new;
1545 }
1546
1547 /* Determines whether this is a thin stream (which may suffer from
1548 * increased latency). Used to trigger latency-reducing mechanisms.
1549 */
1550 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1551 {
1552 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1553 }
1554
1555 /* /proc */
1556 enum tcp_seq_states {
1557 TCP_SEQ_STATE_LISTENING,
1558 TCP_SEQ_STATE_OPENREQ,
1559 TCP_SEQ_STATE_ESTABLISHED,
1560 TCP_SEQ_STATE_TIME_WAIT,
1561 };
1562
1563 int tcp_seq_open(struct inode *inode, struct file *file);
1564
1565 struct tcp_seq_afinfo {
1566 char *name;
1567 sa_family_t family;
1568 const struct file_operations *seq_fops;
1569 struct seq_operations seq_ops;
1570 };
1571
1572 struct tcp_iter_state {
1573 struct seq_net_private p;
1574 sa_family_t family;
1575 enum tcp_seq_states state;
1576 struct sock *syn_wait_sk;
1577 int bucket, offset, sbucket, num;
1578 kuid_t uid;
1579 loff_t last_pos;
1580 };
1581
1582 extern int tcp_proc_register(struct net *net, struct tcp_seq_afinfo *afinfo);
1583 extern void tcp_proc_unregister(struct net *net, struct tcp_seq_afinfo *afinfo);
1584
1585 extern struct request_sock_ops tcp_request_sock_ops;
1586 extern struct request_sock_ops tcp6_request_sock_ops;
1587
1588 extern void tcp_v4_destroy_sock(struct sock *sk);
1589
1590 extern int tcp_v4_gso_send_check(struct sk_buff *skb);
1591 extern struct sk_buff *tcp_tso_segment(struct sk_buff *skb,
1592 netdev_features_t features);
1593 extern struct sk_buff **tcp_gro_receive(struct sk_buff **head,
1594 struct sk_buff *skb);
1595 extern struct sk_buff **tcp4_gro_receive(struct sk_buff **head,
1596 struct sk_buff *skb);
1597 extern int tcp_gro_complete(struct sk_buff *skb);
1598 extern int tcp4_gro_complete(struct sk_buff *skb);
1599
1600 #ifdef CONFIG_PROC_FS
1601 extern int tcp4_proc_init(void);
1602 extern void tcp4_proc_exit(void);
1603 #endif
1604
1605 /* TCP af-specific functions */
1606 struct tcp_sock_af_ops {
1607 #ifdef CONFIG_TCP_MD5SIG
1608 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1609 struct sock *addr_sk);
1610 int (*calc_md5_hash) (char *location,
1611 struct tcp_md5sig_key *md5,
1612 const struct sock *sk,
1613 const struct request_sock *req,
1614 const struct sk_buff *skb);
1615 int (*md5_parse) (struct sock *sk,
1616 char __user *optval,
1617 int optlen);
1618 #endif
1619 };
1620
1621 struct tcp_request_sock_ops {
1622 #ifdef CONFIG_TCP_MD5SIG
1623 struct tcp_md5sig_key *(*md5_lookup) (struct sock *sk,
1624 struct request_sock *req);
1625 int (*calc_md5_hash) (char *location,
1626 struct tcp_md5sig_key *md5,
1627 const struct sock *sk,
1628 const struct request_sock *req,
1629 const struct sk_buff *skb);
1630 #endif
1631 };
1632
1633 /* Using SHA1 for now, define some constants.
1634 */
1635 #define COOKIE_DIGEST_WORDS (SHA_DIGEST_WORDS)
1636 #define COOKIE_MESSAGE_WORDS (SHA_MESSAGE_BYTES / 4)
1637 #define COOKIE_WORKSPACE_WORDS (COOKIE_DIGEST_WORDS + COOKIE_MESSAGE_WORDS)
1638
1639 extern int tcp_cookie_generator(u32 *bakery);
1640
1641 /**
1642 * struct tcp_cookie_values - each socket needs extra space for the
1643 * cookies, together with (optional) space for any SYN data.
1644 *
1645 * A tcp_sock contains a pointer to the current value, and this is
1646 * cloned to the tcp_timewait_sock.
1647 *
1648 * @cookie_pair: variable data from the option exchange.
1649 *
1650 * @cookie_desired: user specified tcpct_cookie_desired. Zero
1651 * indicates default (sysctl_tcp_cookie_size).
1652 * After cookie sent, remembers size of cookie.
1653 * Range 0, TCP_COOKIE_MIN to TCP_COOKIE_MAX.
1654 *
1655 * @s_data_desired: user specified tcpct_s_data_desired. When the
1656 * constant payload is specified (@s_data_constant),
1657 * holds its length instead.
1658 * Range 0 to TCP_MSS_DESIRED.
1659 *
1660 * @s_data_payload: constant data that is to be included in the
1661 * payload of SYN or SYNACK segments when the
1662 * cookie option is present.
1663 */
1664 struct tcp_cookie_values {
1665 struct kref kref;
1666 u8 cookie_pair[TCP_COOKIE_PAIR_SIZE];
1667 u8 cookie_pair_size;
1668 u8 cookie_desired;
1669 u16 s_data_desired:11,
1670 s_data_constant:1,
1671 s_data_in:1,
1672 s_data_out:1,
1673 s_data_unused:2;
1674 u8 s_data_payload[0];
1675 };
1676
1677 static inline void tcp_cookie_values_release(struct kref *kref)
1678 {
1679 kfree(container_of(kref, struct tcp_cookie_values, kref));
1680 }
1681
1682 /* The length of constant payload data. Note that s_data_desired is
1683 * overloaded, depending on s_data_constant: either the length of constant
1684 * data (returned here) or the limit on variable data.
1685 */
1686 static inline int tcp_s_data_size(const struct tcp_sock *tp)
1687 {
1688 return (tp->cookie_values != NULL && tp->cookie_values->s_data_constant)
1689 ? tp->cookie_values->s_data_desired
1690 : 0;
1691 }
1692
1693 /**
1694 * struct tcp_extend_values - tcp_ipv?.c to tcp_output.c workspace.
1695 *
1696 * As tcp_request_sock has already been extended in other places, the
1697 * only remaining method is to pass stack values along as function
1698 * parameters. These parameters are not needed after sending SYNACK.
1699 *
1700 * @cookie_bakery: cryptographic secret and message workspace.
1701 *
1702 * @cookie_plus: bytes in authenticator/cookie option, copied from
1703 * struct tcp_options_received (above).
1704 */
1705 struct tcp_extend_values {
1706 struct request_values rv;
1707 u32 cookie_bakery[COOKIE_WORKSPACE_WORDS];
1708 u8 cookie_plus:6,
1709 cookie_out_never:1,
1710 cookie_in_always:1;
1711 };
1712
1713 static inline struct tcp_extend_values *tcp_xv(struct request_values *rvp)
1714 {
1715 return (struct tcp_extend_values *)rvp;
1716 }
1717
1718 extern void tcp_v4_init(void);
1719 extern void tcp_init(void);
1720
1721 #endif /* _TCP_H */