[NET]: Fix sparse warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/config.h>
44 #include <linux/list.h>
45 #include <linux/timer.h>
46 #include <linux/cache.h>
47 #include <linux/module.h>
48 #include <linux/netdevice.h>
49 #include <linux/skbuff.h> /* struct sk_buff */
50 #include <linux/security.h>
51
52 #include <linux/filter.h>
53
54 #include <asm/atomic.h>
55 #include <net/dst.h>
56 #include <net/checksum.h>
57
58 /*
59 * This structure really needs to be cleaned up.
60 * Most of it is for TCP, and not used by any of
61 * the other protocols.
62 */
63
64 /* Define this to get the SOCK_DBG debugging facility. */
65 #define SOCK_DEBUGGING
66 #ifdef SOCK_DEBUGGING
67 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
68 printk(KERN_DEBUG msg); } while (0)
69 #else
70 #define SOCK_DEBUG(sk, msg...) do { } while (0)
71 #endif
72
73 /* This is the per-socket lock. The spinlock provides a synchronization
74 * between user contexts and software interrupt processing, whereas the
75 * mini-semaphore synchronizes multiple users amongst themselves.
76 */
77 struct sock_iocb;
78 typedef struct {
79 spinlock_t slock;
80 struct sock_iocb *owner;
81 wait_queue_head_t wq;
82 } socket_lock_t;
83
84 #define sock_lock_init(__sk) \
85 do { spin_lock_init(&((__sk)->sk_lock.slock)); \
86 (__sk)->sk_lock.owner = NULL; \
87 init_waitqueue_head(&((__sk)->sk_lock.wq)); \
88 } while(0)
89
90 struct sock;
91 struct proto;
92
93 /**
94 * struct sock_common - minimal network layer representation of sockets
95 * @skc_family: network address family
96 * @skc_state: Connection state
97 * @skc_reuse: %SO_REUSEADDR setting
98 * @skc_bound_dev_if: bound device index if != 0
99 * @skc_node: main hash linkage for various protocol lookup tables
100 * @skc_bind_node: bind hash linkage for various protocol lookup tables
101 * @skc_refcnt: reference count
102 * @skc_prot: protocol handlers inside a network family
103 *
104 * This is the minimal network layer representation of sockets, the header
105 * for struct sock and struct inet_timewait_sock.
106 */
107 struct sock_common {
108 unsigned short skc_family;
109 volatile unsigned char skc_state;
110 unsigned char skc_reuse;
111 int skc_bound_dev_if;
112 struct hlist_node skc_node;
113 struct hlist_node skc_bind_node;
114 atomic_t skc_refcnt;
115 struct proto *skc_prot;
116 };
117
118 /**
119 * struct sock - network layer representation of sockets
120 * @__sk_common: shared layout with inet_timewait_sock
121 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
122 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
123 * @sk_lock: synchronizer
124 * @sk_rcvbuf: size of receive buffer in bytes
125 * @sk_sleep: sock wait queue
126 * @sk_dst_cache: destination cache
127 * @sk_dst_lock: destination cache lock
128 * @sk_policy: flow policy
129 * @sk_rmem_alloc: receive queue bytes committed
130 * @sk_receive_queue: incoming packets
131 * @sk_wmem_alloc: transmit queue bytes committed
132 * @sk_write_queue: Packet sending queue
133 * @sk_omem_alloc: "o" is "option" or "other"
134 * @sk_wmem_queued: persistent queue size
135 * @sk_forward_alloc: space allocated forward
136 * @sk_allocation: allocation mode
137 * @sk_sndbuf: size of send buffer in bytes
138 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, %SO_OOBINLINE settings
139 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
140 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
141 * @sk_lingertime: %SO_LINGER l_linger setting
142 * @sk_hashent: hash entry in several tables (e.g. inet_hashinfo.ehash)
143 * @sk_backlog: always used with the per-socket spinlock held
144 * @sk_callback_lock: used with the callbacks in the end of this struct
145 * @sk_error_queue: rarely used
146 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, IPV6_ADDRFORM for instance)
147 * @sk_err: last error
148 * @sk_err_soft: errors that don't cause failure but are the cause of a persistent failure not just 'timed out'
149 * @sk_ack_backlog: current listen backlog
150 * @sk_max_ack_backlog: listen backlog set in listen()
151 * @sk_priority: %SO_PRIORITY setting
152 * @sk_type: socket type (%SOCK_STREAM, etc)
153 * @sk_protocol: which protocol this socket belongs in this network family
154 * @sk_peercred: %SO_PEERCRED setting
155 * @sk_rcvlowat: %SO_RCVLOWAT setting
156 * @sk_rcvtimeo: %SO_RCVTIMEO setting
157 * @sk_sndtimeo: %SO_SNDTIMEO setting
158 * @sk_filter: socket filtering instructions
159 * @sk_protinfo: private area, net family specific, when not using slab
160 * @sk_timer: sock cleanup timer
161 * @sk_stamp: time stamp of last packet received
162 * @sk_socket: Identd and reporting IO signals
163 * @sk_user_data: RPC layer private data
164 * @sk_sndmsg_page: cached page for sendmsg
165 * @sk_sndmsg_off: cached offset for sendmsg
166 * @sk_send_head: front of stuff to transmit
167 * @sk_security: used by security modules
168 * @sk_write_pending: a write to stream socket waits to start
169 * @sk_state_change: callback to indicate change in the state of the sock
170 * @sk_data_ready: callback to indicate there is data to be processed
171 * @sk_write_space: callback to indicate there is bf sending space available
172 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
173 * @sk_backlog_rcv: callback to process the backlog
174 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
175 */
176 struct sock {
177 /*
178 * Now struct inet_timewait_sock also uses sock_common, so please just
179 * don't add nothing before this first member (__sk_common) --acme
180 */
181 struct sock_common __sk_common;
182 #define sk_family __sk_common.skc_family
183 #define sk_state __sk_common.skc_state
184 #define sk_reuse __sk_common.skc_reuse
185 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
186 #define sk_node __sk_common.skc_node
187 #define sk_bind_node __sk_common.skc_bind_node
188 #define sk_refcnt __sk_common.skc_refcnt
189 #define sk_prot __sk_common.skc_prot
190 unsigned char sk_shutdown : 2,
191 sk_no_check : 2,
192 sk_userlocks : 4;
193 unsigned char sk_protocol;
194 unsigned short sk_type;
195 int sk_rcvbuf;
196 socket_lock_t sk_lock;
197 wait_queue_head_t *sk_sleep;
198 struct dst_entry *sk_dst_cache;
199 struct xfrm_policy *sk_policy[2];
200 rwlock_t sk_dst_lock;
201 atomic_t sk_rmem_alloc;
202 atomic_t sk_wmem_alloc;
203 atomic_t sk_omem_alloc;
204 struct sk_buff_head sk_receive_queue;
205 struct sk_buff_head sk_write_queue;
206 int sk_wmem_queued;
207 int sk_forward_alloc;
208 unsigned int sk_allocation;
209 int sk_sndbuf;
210 int sk_route_caps;
211 int sk_hashent;
212 unsigned long sk_flags;
213 unsigned long sk_lingertime;
214 /*
215 * The backlog queue is special, it is always used with
216 * the per-socket spinlock held and requires low latency
217 * access. Therefore we special case it's implementation.
218 */
219 struct {
220 struct sk_buff *head;
221 struct sk_buff *tail;
222 } sk_backlog;
223 struct sk_buff_head sk_error_queue;
224 struct proto *sk_prot_creator;
225 rwlock_t sk_callback_lock;
226 int sk_err,
227 sk_err_soft;
228 unsigned short sk_ack_backlog;
229 unsigned short sk_max_ack_backlog;
230 __u32 sk_priority;
231 struct ucred sk_peercred;
232 int sk_rcvlowat;
233 long sk_rcvtimeo;
234 long sk_sndtimeo;
235 struct sk_filter *sk_filter;
236 void *sk_protinfo;
237 struct timer_list sk_timer;
238 struct timeval sk_stamp;
239 struct socket *sk_socket;
240 void *sk_user_data;
241 struct page *sk_sndmsg_page;
242 struct sk_buff *sk_send_head;
243 __u32 sk_sndmsg_off;
244 int sk_write_pending;
245 void *sk_security;
246 void (*sk_state_change)(struct sock *sk);
247 void (*sk_data_ready)(struct sock *sk, int bytes);
248 void (*sk_write_space)(struct sock *sk);
249 void (*sk_error_report)(struct sock *sk);
250 int (*sk_backlog_rcv)(struct sock *sk,
251 struct sk_buff *skb);
252 void (*sk_destruct)(struct sock *sk);
253 };
254
255 /*
256 * Hashed lists helper routines
257 */
258 static inline struct sock *__sk_head(const struct hlist_head *head)
259 {
260 return hlist_entry(head->first, struct sock, sk_node);
261 }
262
263 static inline struct sock *sk_head(const struct hlist_head *head)
264 {
265 return hlist_empty(head) ? NULL : __sk_head(head);
266 }
267
268 static inline struct sock *sk_next(const struct sock *sk)
269 {
270 return sk->sk_node.next ?
271 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
272 }
273
274 static inline int sk_unhashed(const struct sock *sk)
275 {
276 return hlist_unhashed(&sk->sk_node);
277 }
278
279 static inline int sk_hashed(const struct sock *sk)
280 {
281 return sk->sk_node.pprev != NULL;
282 }
283
284 static __inline__ void sk_node_init(struct hlist_node *node)
285 {
286 node->pprev = NULL;
287 }
288
289 static __inline__ void __sk_del_node(struct sock *sk)
290 {
291 __hlist_del(&sk->sk_node);
292 }
293
294 static __inline__ int __sk_del_node_init(struct sock *sk)
295 {
296 if (sk_hashed(sk)) {
297 __sk_del_node(sk);
298 sk_node_init(&sk->sk_node);
299 return 1;
300 }
301 return 0;
302 }
303
304 /* Grab socket reference count. This operation is valid only
305 when sk is ALREADY grabbed f.e. it is found in hash table
306 or a list and the lookup is made under lock preventing hash table
307 modifications.
308 */
309
310 static inline void sock_hold(struct sock *sk)
311 {
312 atomic_inc(&sk->sk_refcnt);
313 }
314
315 /* Ungrab socket in the context, which assumes that socket refcnt
316 cannot hit zero, f.e. it is true in context of any socketcall.
317 */
318 static inline void __sock_put(struct sock *sk)
319 {
320 atomic_dec(&sk->sk_refcnt);
321 }
322
323 static __inline__ int sk_del_node_init(struct sock *sk)
324 {
325 int rc = __sk_del_node_init(sk);
326
327 if (rc) {
328 /* paranoid for a while -acme */
329 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
330 __sock_put(sk);
331 }
332 return rc;
333 }
334
335 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
336 {
337 hlist_add_head(&sk->sk_node, list);
338 }
339
340 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
341 {
342 sock_hold(sk);
343 __sk_add_node(sk, list);
344 }
345
346 static __inline__ void __sk_del_bind_node(struct sock *sk)
347 {
348 __hlist_del(&sk->sk_bind_node);
349 }
350
351 static __inline__ void sk_add_bind_node(struct sock *sk,
352 struct hlist_head *list)
353 {
354 hlist_add_head(&sk->sk_bind_node, list);
355 }
356
357 #define sk_for_each(__sk, node, list) \
358 hlist_for_each_entry(__sk, node, list, sk_node)
359 #define sk_for_each_from(__sk, node) \
360 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
361 hlist_for_each_entry_from(__sk, node, sk_node)
362 #define sk_for_each_continue(__sk, node) \
363 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
364 hlist_for_each_entry_continue(__sk, node, sk_node)
365 #define sk_for_each_safe(__sk, node, tmp, list) \
366 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
367 #define sk_for_each_bound(__sk, node, list) \
368 hlist_for_each_entry(__sk, node, list, sk_bind_node)
369
370 /* Sock flags */
371 enum sock_flags {
372 SOCK_DEAD,
373 SOCK_DONE,
374 SOCK_URGINLINE,
375 SOCK_KEEPOPEN,
376 SOCK_LINGER,
377 SOCK_DESTROY,
378 SOCK_BROADCAST,
379 SOCK_TIMESTAMP,
380 SOCK_ZAPPED,
381 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
382 SOCK_DBG, /* %SO_DEBUG setting */
383 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
384 SOCK_NO_LARGESEND, /* whether to sent large segments or not */
385 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
386 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
387 };
388
389 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
390 {
391 nsk->sk_flags = osk->sk_flags;
392 }
393
394 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
395 {
396 __set_bit(flag, &sk->sk_flags);
397 }
398
399 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
400 {
401 __clear_bit(flag, &sk->sk_flags);
402 }
403
404 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
405 {
406 return test_bit(flag, &sk->sk_flags);
407 }
408
409 static inline void sk_acceptq_removed(struct sock *sk)
410 {
411 sk->sk_ack_backlog--;
412 }
413
414 static inline void sk_acceptq_added(struct sock *sk)
415 {
416 sk->sk_ack_backlog++;
417 }
418
419 static inline int sk_acceptq_is_full(struct sock *sk)
420 {
421 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
422 }
423
424 /*
425 * Compute minimal free write space needed to queue new packets.
426 */
427 static inline int sk_stream_min_wspace(struct sock *sk)
428 {
429 return sk->sk_wmem_queued / 2;
430 }
431
432 static inline int sk_stream_wspace(struct sock *sk)
433 {
434 return sk->sk_sndbuf - sk->sk_wmem_queued;
435 }
436
437 extern void sk_stream_write_space(struct sock *sk);
438
439 static inline int sk_stream_memory_free(struct sock *sk)
440 {
441 return sk->sk_wmem_queued < sk->sk_sndbuf;
442 }
443
444 extern void sk_stream_rfree(struct sk_buff *skb);
445
446 static inline void sk_stream_set_owner_r(struct sk_buff *skb, struct sock *sk)
447 {
448 skb->sk = sk;
449 skb->destructor = sk_stream_rfree;
450 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
451 sk->sk_forward_alloc -= skb->truesize;
452 }
453
454 static inline void sk_stream_free_skb(struct sock *sk, struct sk_buff *skb)
455 {
456 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
457 sk->sk_wmem_queued -= skb->truesize;
458 sk->sk_forward_alloc += skb->truesize;
459 __kfree_skb(skb);
460 }
461
462 /* The per-socket spinlock must be held here. */
463 #define sk_add_backlog(__sk, __skb) \
464 do { if (!(__sk)->sk_backlog.tail) { \
465 (__sk)->sk_backlog.head = \
466 (__sk)->sk_backlog.tail = (__skb); \
467 } else { \
468 ((__sk)->sk_backlog.tail)->next = (__skb); \
469 (__sk)->sk_backlog.tail = (__skb); \
470 } \
471 (__skb)->next = NULL; \
472 } while(0)
473
474 #define sk_wait_event(__sk, __timeo, __condition) \
475 ({ int rc; \
476 release_sock(__sk); \
477 rc = __condition; \
478 if (!rc) { \
479 *(__timeo) = schedule_timeout(*(__timeo)); \
480 rc = __condition; \
481 } \
482 lock_sock(__sk); \
483 rc; \
484 })
485
486 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
487 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
488 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
489 extern int sk_stream_error(struct sock *sk, int flags, int err);
490 extern void sk_stream_kill_queues(struct sock *sk);
491
492 extern int sk_wait_data(struct sock *sk, long *timeo);
493
494 struct request_sock_ops;
495
496 /* Networking protocol blocks we attach to sockets.
497 * socket layer -> transport layer interface
498 * transport -> network interface is defined by struct inet_proto
499 */
500 struct proto {
501 void (*close)(struct sock *sk,
502 long timeout);
503 int (*connect)(struct sock *sk,
504 struct sockaddr *uaddr,
505 int addr_len);
506 int (*disconnect)(struct sock *sk, int flags);
507
508 struct sock * (*accept) (struct sock *sk, int flags, int *err);
509
510 int (*ioctl)(struct sock *sk, int cmd,
511 unsigned long arg);
512 int (*init)(struct sock *sk);
513 int (*destroy)(struct sock *sk);
514 void (*shutdown)(struct sock *sk, int how);
515 int (*setsockopt)(struct sock *sk, int level,
516 int optname, char __user *optval,
517 int optlen);
518 int (*getsockopt)(struct sock *sk, int level,
519 int optname, char __user *optval,
520 int __user *option);
521 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
522 struct msghdr *msg, size_t len);
523 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
524 struct msghdr *msg,
525 size_t len, int noblock, int flags,
526 int *addr_len);
527 int (*sendpage)(struct sock *sk, struct page *page,
528 int offset, size_t size, int flags);
529 int (*bind)(struct sock *sk,
530 struct sockaddr *uaddr, int addr_len);
531
532 int (*backlog_rcv) (struct sock *sk,
533 struct sk_buff *skb);
534
535 /* Keeping track of sk's, looking them up, and port selection methods. */
536 void (*hash)(struct sock *sk);
537 void (*unhash)(struct sock *sk);
538 int (*get_port)(struct sock *sk, unsigned short snum);
539
540 /* Memory pressure */
541 void (*enter_memory_pressure)(void);
542 atomic_t *memory_allocated; /* Current allocated memory. */
543 atomic_t *sockets_allocated; /* Current number of sockets. */
544 /*
545 * Pressure flag: try to collapse.
546 * Technical note: it is used by multiple contexts non atomically.
547 * All the sk_stream_mem_schedule() is of this nature: accounting
548 * is strict, actions are advisory and have some latency.
549 */
550 int *memory_pressure;
551 int *sysctl_mem;
552 int *sysctl_wmem;
553 int *sysctl_rmem;
554 int max_header;
555
556 kmem_cache_t *slab;
557 unsigned int obj_size;
558
559 kmem_cache_t *twsk_slab;
560 unsigned int twsk_obj_size;
561 atomic_t *orphan_count;
562
563 struct request_sock_ops *rsk_prot;
564
565 struct module *owner;
566
567 char name[32];
568
569 struct list_head node;
570 #ifdef SOCK_REFCNT_DEBUG
571 atomic_t socks;
572 #endif
573 struct {
574 int inuse;
575 u8 __pad[SMP_CACHE_BYTES - sizeof(int)];
576 } stats[NR_CPUS];
577 };
578
579 extern int proto_register(struct proto *prot, int alloc_slab);
580 extern void proto_unregister(struct proto *prot);
581
582 #ifdef SOCK_REFCNT_DEBUG
583 static inline void sk_refcnt_debug_inc(struct sock *sk)
584 {
585 atomic_inc(&sk->sk_prot->socks);
586 }
587
588 static inline void sk_refcnt_debug_dec(struct sock *sk)
589 {
590 atomic_dec(&sk->sk_prot->socks);
591 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
592 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
593 }
594
595 static inline void sk_refcnt_debug_release(const struct sock *sk)
596 {
597 if (atomic_read(&sk->sk_refcnt) != 1)
598 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
599 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
600 }
601 #else /* SOCK_REFCNT_DEBUG */
602 #define sk_refcnt_debug_inc(sk) do { } while (0)
603 #define sk_refcnt_debug_dec(sk) do { } while (0)
604 #define sk_refcnt_debug_release(sk) do { } while (0)
605 #endif /* SOCK_REFCNT_DEBUG */
606
607 /* Called with local bh disabled */
608 static __inline__ void sock_prot_inc_use(struct proto *prot)
609 {
610 prot->stats[smp_processor_id()].inuse++;
611 }
612
613 static __inline__ void sock_prot_dec_use(struct proto *prot)
614 {
615 prot->stats[smp_processor_id()].inuse--;
616 }
617
618 /* With per-bucket locks this operation is not-atomic, so that
619 * this version is not worse.
620 */
621 static inline void __sk_prot_rehash(struct sock *sk)
622 {
623 sk->sk_prot->unhash(sk);
624 sk->sk_prot->hash(sk);
625 }
626
627 /* About 10 seconds */
628 #define SOCK_DESTROY_TIME (10*HZ)
629
630 /* Sockets 0-1023 can't be bound to unless you are superuser */
631 #define PROT_SOCK 1024
632
633 #define SHUTDOWN_MASK 3
634 #define RCV_SHUTDOWN 1
635 #define SEND_SHUTDOWN 2
636
637 #define SOCK_SNDBUF_LOCK 1
638 #define SOCK_RCVBUF_LOCK 2
639 #define SOCK_BINDADDR_LOCK 4
640 #define SOCK_BINDPORT_LOCK 8
641
642 /* sock_iocb: used to kick off async processing of socket ios */
643 struct sock_iocb {
644 struct list_head list;
645
646 int flags;
647 int size;
648 struct socket *sock;
649 struct sock *sk;
650 struct scm_cookie *scm;
651 struct msghdr *msg, async_msg;
652 struct iovec async_iov;
653 struct kiocb *kiocb;
654 };
655
656 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
657 {
658 return (struct sock_iocb *)iocb->private;
659 }
660
661 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
662 {
663 return si->kiocb;
664 }
665
666 struct socket_alloc {
667 struct socket socket;
668 struct inode vfs_inode;
669 };
670
671 static inline struct socket *SOCKET_I(struct inode *inode)
672 {
673 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
674 }
675
676 static inline struct inode *SOCK_INODE(struct socket *socket)
677 {
678 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
679 }
680
681 extern void __sk_stream_mem_reclaim(struct sock *sk);
682 extern int sk_stream_mem_schedule(struct sock *sk, int size, int kind);
683
684 #define SK_STREAM_MEM_QUANTUM ((int)PAGE_SIZE)
685
686 static inline int sk_stream_pages(int amt)
687 {
688 return (amt + SK_STREAM_MEM_QUANTUM - 1) / SK_STREAM_MEM_QUANTUM;
689 }
690
691 static inline void sk_stream_mem_reclaim(struct sock *sk)
692 {
693 if (sk->sk_forward_alloc >= SK_STREAM_MEM_QUANTUM)
694 __sk_stream_mem_reclaim(sk);
695 }
696
697 static inline void sk_stream_writequeue_purge(struct sock *sk)
698 {
699 struct sk_buff *skb;
700
701 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL)
702 sk_stream_free_skb(sk, skb);
703 sk_stream_mem_reclaim(sk);
704 }
705
706 static inline int sk_stream_rmem_schedule(struct sock *sk, struct sk_buff *skb)
707 {
708 return (int)skb->truesize <= sk->sk_forward_alloc ||
709 sk_stream_mem_schedule(sk, skb->truesize, 1);
710 }
711
712 /* Used by processes to "lock" a socket state, so that
713 * interrupts and bottom half handlers won't change it
714 * from under us. It essentially blocks any incoming
715 * packets, so that we won't get any new data or any
716 * packets that change the state of the socket.
717 *
718 * While locked, BH processing will add new packets to
719 * the backlog queue. This queue is processed by the
720 * owner of the socket lock right before it is released.
721 *
722 * Since ~2.3.5 it is also exclusive sleep lock serializing
723 * accesses from user process context.
724 */
725 #define sock_owned_by_user(sk) ((sk)->sk_lock.owner)
726
727 extern void FASTCALL(lock_sock(struct sock *sk));
728 extern void FASTCALL(release_sock(struct sock *sk));
729
730 /* BH context may only use the following locking interface. */
731 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
732 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
733
734 extern struct sock *sk_alloc(int family,
735 unsigned int __nocast priority,
736 struct proto *prot, int zero_it);
737 extern void sk_free(struct sock *sk);
738 extern struct sock *sk_clone(const struct sock *sk,
739 const unsigned int __nocast priority);
740
741 extern struct sk_buff *sock_wmalloc(struct sock *sk,
742 unsigned long size, int force,
743 unsigned int __nocast priority);
744 extern struct sk_buff *sock_rmalloc(struct sock *sk,
745 unsigned long size, int force,
746 unsigned int __nocast priority);
747 extern void sock_wfree(struct sk_buff *skb);
748 extern void sock_rfree(struct sk_buff *skb);
749
750 extern int sock_setsockopt(struct socket *sock, int level,
751 int op, char __user *optval,
752 int optlen);
753
754 extern int sock_getsockopt(struct socket *sock, int level,
755 int op, char __user *optval,
756 int __user *optlen);
757 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
758 unsigned long size,
759 int noblock,
760 int *errcode);
761 extern void *sock_kmalloc(struct sock *sk, int size,
762 unsigned int __nocast priority);
763 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
764 extern void sk_send_sigurg(struct sock *sk);
765
766 /*
767 * Functions to fill in entries in struct proto_ops when a protocol
768 * does not implement a particular function.
769 */
770 extern int sock_no_bind(struct socket *,
771 struct sockaddr *, int);
772 extern int sock_no_connect(struct socket *,
773 struct sockaddr *, int, int);
774 extern int sock_no_socketpair(struct socket *,
775 struct socket *);
776 extern int sock_no_accept(struct socket *,
777 struct socket *, int);
778 extern int sock_no_getname(struct socket *,
779 struct sockaddr *, int *, int);
780 extern unsigned int sock_no_poll(struct file *, struct socket *,
781 struct poll_table_struct *);
782 extern int sock_no_ioctl(struct socket *, unsigned int,
783 unsigned long);
784 extern int sock_no_listen(struct socket *, int);
785 extern int sock_no_shutdown(struct socket *, int);
786 extern int sock_no_getsockopt(struct socket *, int , int,
787 char __user *, int __user *);
788 extern int sock_no_setsockopt(struct socket *, int, int,
789 char __user *, int);
790 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
791 struct msghdr *, size_t);
792 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
793 struct msghdr *, size_t, int);
794 extern int sock_no_mmap(struct file *file,
795 struct socket *sock,
796 struct vm_area_struct *vma);
797 extern ssize_t sock_no_sendpage(struct socket *sock,
798 struct page *page,
799 int offset, size_t size,
800 int flags);
801
802 /*
803 * Functions to fill in entries in struct proto_ops when a protocol
804 * uses the inet style.
805 */
806 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
807 char __user *optval, int __user *optlen);
808 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
809 struct msghdr *msg, size_t size, int flags);
810 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
811 char __user *optval, int optlen);
812
813 extern void sk_common_release(struct sock *sk);
814
815 /*
816 * Default socket callbacks and setup code
817 */
818
819 /* Initialise core socket variables */
820 extern void sock_init_data(struct socket *sock, struct sock *sk);
821
822 /**
823 * sk_filter - run a packet through a socket filter
824 * @sk: sock associated with &sk_buff
825 * @skb: buffer to filter
826 * @needlock: set to 1 if the sock is not locked by caller.
827 *
828 * Run the filter code and then cut skb->data to correct size returned by
829 * sk_run_filter. If pkt_len is 0 we toss packet. If skb->len is smaller
830 * than pkt_len we keep whole skb->data. This is the socket level
831 * wrapper to sk_run_filter. It returns 0 if the packet should
832 * be accepted or -EPERM if the packet should be tossed.
833 *
834 */
835
836 static inline int sk_filter(struct sock *sk, struct sk_buff *skb, int needlock)
837 {
838 int err;
839
840 err = security_sock_rcv_skb(sk, skb);
841 if (err)
842 return err;
843
844 if (sk->sk_filter) {
845 struct sk_filter *filter;
846
847 if (needlock)
848 bh_lock_sock(sk);
849
850 filter = sk->sk_filter;
851 if (filter) {
852 int pkt_len = sk_run_filter(skb, filter->insns,
853 filter->len);
854 if (!pkt_len)
855 err = -EPERM;
856 else
857 skb_trim(skb, pkt_len);
858 }
859
860 if (needlock)
861 bh_unlock_sock(sk);
862 }
863 return err;
864 }
865
866 /**
867 * sk_filter_release: Release a socket filter
868 * @sk: socket
869 * @fp: filter to remove
870 *
871 * Remove a filter from a socket and release its resources.
872 */
873
874 static inline void sk_filter_release(struct sock *sk, struct sk_filter *fp)
875 {
876 unsigned int size = sk_filter_len(fp);
877
878 atomic_sub(size, &sk->sk_omem_alloc);
879
880 if (atomic_dec_and_test(&fp->refcnt))
881 kfree(fp);
882 }
883
884 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
885 {
886 atomic_inc(&fp->refcnt);
887 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
888 }
889
890 /*
891 * Socket reference counting postulates.
892 *
893 * * Each user of socket SHOULD hold a reference count.
894 * * Each access point to socket (an hash table bucket, reference from a list,
895 * running timer, skb in flight MUST hold a reference count.
896 * * When reference count hits 0, it means it will never increase back.
897 * * When reference count hits 0, it means that no references from
898 * outside exist to this socket and current process on current CPU
899 * is last user and may/should destroy this socket.
900 * * sk_free is called from any context: process, BH, IRQ. When
901 * it is called, socket has no references from outside -> sk_free
902 * may release descendant resources allocated by the socket, but
903 * to the time when it is called, socket is NOT referenced by any
904 * hash tables, lists etc.
905 * * Packets, delivered from outside (from network or from another process)
906 * and enqueued on receive/error queues SHOULD NOT grab reference count,
907 * when they sit in queue. Otherwise, packets will leak to hole, when
908 * socket is looked up by one cpu and unhasing is made by another CPU.
909 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
910 * (leak to backlog). Packet socket does all the processing inside
911 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
912 * use separate SMP lock, so that they are prone too.
913 */
914
915 /* Ungrab socket and destroy it, if it was the last reference. */
916 static inline void sock_put(struct sock *sk)
917 {
918 if (atomic_dec_and_test(&sk->sk_refcnt))
919 sk_free(sk);
920 }
921
922 /* Detach socket from process context.
923 * Announce socket dead, detach it from wait queue and inode.
924 * Note that parent inode held reference count on this struct sock,
925 * we do not release it in this function, because protocol
926 * probably wants some additional cleanups or even continuing
927 * to work with this socket (TCP).
928 */
929 static inline void sock_orphan(struct sock *sk)
930 {
931 write_lock_bh(&sk->sk_callback_lock);
932 sock_set_flag(sk, SOCK_DEAD);
933 sk->sk_socket = NULL;
934 sk->sk_sleep = NULL;
935 write_unlock_bh(&sk->sk_callback_lock);
936 }
937
938 static inline void sock_graft(struct sock *sk, struct socket *parent)
939 {
940 write_lock_bh(&sk->sk_callback_lock);
941 sk->sk_sleep = &parent->wait;
942 parent->sk = sk;
943 sk->sk_socket = parent;
944 write_unlock_bh(&sk->sk_callback_lock);
945 }
946
947 extern int sock_i_uid(struct sock *sk);
948 extern unsigned long sock_i_ino(struct sock *sk);
949
950 static inline struct dst_entry *
951 __sk_dst_get(struct sock *sk)
952 {
953 return sk->sk_dst_cache;
954 }
955
956 static inline struct dst_entry *
957 sk_dst_get(struct sock *sk)
958 {
959 struct dst_entry *dst;
960
961 read_lock(&sk->sk_dst_lock);
962 dst = sk->sk_dst_cache;
963 if (dst)
964 dst_hold(dst);
965 read_unlock(&sk->sk_dst_lock);
966 return dst;
967 }
968
969 static inline void
970 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
971 {
972 struct dst_entry *old_dst;
973
974 old_dst = sk->sk_dst_cache;
975 sk->sk_dst_cache = dst;
976 dst_release(old_dst);
977 }
978
979 static inline void
980 sk_dst_set(struct sock *sk, struct dst_entry *dst)
981 {
982 write_lock(&sk->sk_dst_lock);
983 __sk_dst_set(sk, dst);
984 write_unlock(&sk->sk_dst_lock);
985 }
986
987 static inline void
988 __sk_dst_reset(struct sock *sk)
989 {
990 struct dst_entry *old_dst;
991
992 old_dst = sk->sk_dst_cache;
993 sk->sk_dst_cache = NULL;
994 dst_release(old_dst);
995 }
996
997 static inline void
998 sk_dst_reset(struct sock *sk)
999 {
1000 write_lock(&sk->sk_dst_lock);
1001 __sk_dst_reset(sk);
1002 write_unlock(&sk->sk_dst_lock);
1003 }
1004
1005 static inline struct dst_entry *
1006 __sk_dst_check(struct sock *sk, u32 cookie)
1007 {
1008 struct dst_entry *dst = sk->sk_dst_cache;
1009
1010 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
1011 sk->sk_dst_cache = NULL;
1012 dst_release(dst);
1013 return NULL;
1014 }
1015
1016 return dst;
1017 }
1018
1019 static inline struct dst_entry *
1020 sk_dst_check(struct sock *sk, u32 cookie)
1021 {
1022 struct dst_entry *dst = sk_dst_get(sk);
1023
1024 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
1025 sk_dst_reset(sk);
1026 dst_release(dst);
1027 return NULL;
1028 }
1029
1030 return dst;
1031 }
1032
1033 static inline void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1034 {
1035 __sk_dst_set(sk, dst);
1036 sk->sk_route_caps = dst->dev->features;
1037 if (sk->sk_route_caps & NETIF_F_TSO) {
1038 if (sock_flag(sk, SOCK_NO_LARGESEND) || dst->header_len)
1039 sk->sk_route_caps &= ~NETIF_F_TSO;
1040 }
1041 }
1042
1043 static inline void sk_charge_skb(struct sock *sk, struct sk_buff *skb)
1044 {
1045 sk->sk_wmem_queued += skb->truesize;
1046 sk->sk_forward_alloc -= skb->truesize;
1047 }
1048
1049 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1050 struct sk_buff *skb, struct page *page,
1051 int off, int copy)
1052 {
1053 if (skb->ip_summed == CHECKSUM_NONE) {
1054 int err = 0;
1055 unsigned int csum = csum_and_copy_from_user(from,
1056 page_address(page) + off,
1057 copy, 0, &err);
1058 if (err)
1059 return err;
1060 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1061 } else if (copy_from_user(page_address(page) + off, from, copy))
1062 return -EFAULT;
1063
1064 skb->len += copy;
1065 skb->data_len += copy;
1066 skb->truesize += copy;
1067 sk->sk_wmem_queued += copy;
1068 sk->sk_forward_alloc -= copy;
1069 return 0;
1070 }
1071
1072 /*
1073 * Queue a received datagram if it will fit. Stream and sequenced
1074 * protocols can't normally use this as they need to fit buffers in
1075 * and play with them.
1076 *
1077 * Inlined as it's very short and called for pretty much every
1078 * packet ever received.
1079 */
1080
1081 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1082 {
1083 sock_hold(sk);
1084 skb->sk = sk;
1085 skb->destructor = sock_wfree;
1086 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1087 }
1088
1089 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1090 {
1091 skb->sk = sk;
1092 skb->destructor = sock_rfree;
1093 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1094 }
1095
1096 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1097 unsigned long expires);
1098
1099 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1100
1101 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1102 {
1103 int err = 0;
1104 int skb_len;
1105
1106 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1107 number of warnings when compiling with -W --ANK
1108 */
1109 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1110 (unsigned)sk->sk_rcvbuf) {
1111 err = -ENOMEM;
1112 goto out;
1113 }
1114
1115 /* It would be deadlock, if sock_queue_rcv_skb is used
1116 with socket lock! We assume that users of this
1117 function are lock free.
1118 */
1119 err = sk_filter(sk, skb, 1);
1120 if (err)
1121 goto out;
1122
1123 skb->dev = NULL;
1124 skb_set_owner_r(skb, sk);
1125
1126 /* Cache the SKB length before we tack it onto the receive
1127 * queue. Once it is added it no longer belongs to us and
1128 * may be freed by other threads of control pulling packets
1129 * from the queue.
1130 */
1131 skb_len = skb->len;
1132
1133 skb_queue_tail(&sk->sk_receive_queue, skb);
1134
1135 if (!sock_flag(sk, SOCK_DEAD))
1136 sk->sk_data_ready(sk, skb_len);
1137 out:
1138 return err;
1139 }
1140
1141 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1142 {
1143 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1144 number of warnings when compiling with -W --ANK
1145 */
1146 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1147 (unsigned)sk->sk_rcvbuf)
1148 return -ENOMEM;
1149 skb_set_owner_r(skb, sk);
1150 skb_queue_tail(&sk->sk_error_queue, skb);
1151 if (!sock_flag(sk, SOCK_DEAD))
1152 sk->sk_data_ready(sk, skb->len);
1153 return 0;
1154 }
1155
1156 /*
1157 * Recover an error report and clear atomically
1158 */
1159
1160 static inline int sock_error(struct sock *sk)
1161 {
1162 int err = xchg(&sk->sk_err, 0);
1163 return -err;
1164 }
1165
1166 static inline unsigned long sock_wspace(struct sock *sk)
1167 {
1168 int amt = 0;
1169
1170 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1171 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1172 if (amt < 0)
1173 amt = 0;
1174 }
1175 return amt;
1176 }
1177
1178 static inline void sk_wake_async(struct sock *sk, int how, int band)
1179 {
1180 if (sk->sk_socket && sk->sk_socket->fasync_list)
1181 sock_wake_async(sk->sk_socket, how, band);
1182 }
1183
1184 #define SOCK_MIN_SNDBUF 2048
1185 #define SOCK_MIN_RCVBUF 256
1186
1187 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1188 {
1189 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1190 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued / 2);
1191 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1192 }
1193 }
1194
1195 static inline struct sk_buff *sk_stream_alloc_pskb(struct sock *sk,
1196 int size, int mem,
1197 unsigned int __nocast gfp)
1198 {
1199 struct sk_buff *skb;
1200 int hdr_len;
1201
1202 hdr_len = SKB_DATA_ALIGN(sk->sk_prot->max_header);
1203 skb = alloc_skb(size + hdr_len, gfp);
1204 if (skb) {
1205 skb->truesize += mem;
1206 if (sk->sk_forward_alloc >= (int)skb->truesize ||
1207 sk_stream_mem_schedule(sk, skb->truesize, 0)) {
1208 skb_reserve(skb, hdr_len);
1209 return skb;
1210 }
1211 __kfree_skb(skb);
1212 } else {
1213 sk->sk_prot->enter_memory_pressure();
1214 sk_stream_moderate_sndbuf(sk);
1215 }
1216 return NULL;
1217 }
1218
1219 static inline struct sk_buff *sk_stream_alloc_skb(struct sock *sk,
1220 int size,
1221 unsigned int __nocast gfp)
1222 {
1223 return sk_stream_alloc_pskb(sk, size, 0, gfp);
1224 }
1225
1226 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1227 {
1228 struct page *page = NULL;
1229
1230 if (sk->sk_forward_alloc >= (int)PAGE_SIZE ||
1231 sk_stream_mem_schedule(sk, PAGE_SIZE, 0))
1232 page = alloc_pages(sk->sk_allocation, 0);
1233 else {
1234 sk->sk_prot->enter_memory_pressure();
1235 sk_stream_moderate_sndbuf(sk);
1236 }
1237 return page;
1238 }
1239
1240 #define sk_stream_for_retrans_queue(skb, sk) \
1241 for (skb = (sk)->sk_write_queue.next; \
1242 (skb != (sk)->sk_send_head) && \
1243 (skb != (struct sk_buff *)&(sk)->sk_write_queue); \
1244 skb = skb->next)
1245
1246 /*
1247 * Default write policy as shown to user space via poll/select/SIGIO
1248 */
1249 static inline int sock_writeable(const struct sock *sk)
1250 {
1251 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf / 2);
1252 }
1253
1254 static inline unsigned int __nocast gfp_any(void)
1255 {
1256 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1257 }
1258
1259 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1260 {
1261 return noblock ? 0 : sk->sk_rcvtimeo;
1262 }
1263
1264 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1265 {
1266 return noblock ? 0 : sk->sk_sndtimeo;
1267 }
1268
1269 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1270 {
1271 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1272 }
1273
1274 /* Alas, with timeout socket operations are not restartable.
1275 * Compare this to poll().
1276 */
1277 static inline int sock_intr_errno(long timeo)
1278 {
1279 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1280 }
1281
1282 static __inline__ void
1283 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1284 {
1285 struct timeval stamp;
1286
1287 skb_get_timestamp(skb, &stamp);
1288 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1289 /* Race occurred between timestamp enabling and packet
1290 receiving. Fill in the current time for now. */
1291 if (stamp.tv_sec == 0)
1292 do_gettimeofday(&stamp);
1293 skb_set_timestamp(skb, &stamp);
1294 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP, sizeof(struct timeval),
1295 &stamp);
1296 } else
1297 sk->sk_stamp = stamp;
1298 }
1299
1300 /**
1301 * sk_eat_skb - Release a skb if it is no longer needed
1302 * @sk: socket to eat this skb from
1303 * @skb: socket buffer to eat
1304 *
1305 * This routine must be called with interrupts disabled or with the socket
1306 * locked so that the sk_buff queue operation is ok.
1307 */
1308 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
1309 {
1310 __skb_unlink(skb, &sk->sk_receive_queue);
1311 __kfree_skb(skb);
1312 }
1313
1314 extern void sock_enable_timestamp(struct sock *sk);
1315 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1316
1317 /*
1318 * Enable debug/info messages
1319 */
1320
1321 #if 0
1322 #define NETDEBUG(fmt, args...) do { } while (0)
1323 #define LIMIT_NETDEBUG(fmt, args...) do { } while(0)
1324 #else
1325 #define NETDEBUG(fmt, args...) printk(fmt,##args)
1326 #define LIMIT_NETDEBUG(fmt, args...) do { if (net_ratelimit()) printk(fmt,##args); } while(0)
1327 #endif
1328
1329 /*
1330 * Macros for sleeping on a socket. Use them like this:
1331 *
1332 * SOCK_SLEEP_PRE(sk)
1333 * if (condition)
1334 * schedule();
1335 * SOCK_SLEEP_POST(sk)
1336 *
1337 * N.B. These are now obsolete and were, afaik, only ever used in DECnet
1338 * and when the last use of them in DECnet has gone, I'm intending to
1339 * remove them.
1340 */
1341
1342 #define SOCK_SLEEP_PRE(sk) { struct task_struct *tsk = current; \
1343 DECLARE_WAITQUEUE(wait, tsk); \
1344 tsk->state = TASK_INTERRUPTIBLE; \
1345 add_wait_queue((sk)->sk_sleep, &wait); \
1346 release_sock(sk);
1347
1348 #define SOCK_SLEEP_POST(sk) tsk->state = TASK_RUNNING; \
1349 remove_wait_queue((sk)->sk_sleep, &wait); \
1350 lock_sock(sk); \
1351 }
1352
1353 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
1354 {
1355 if (valbool)
1356 sock_set_flag(sk, bit);
1357 else
1358 sock_reset_flag(sk, bit);
1359 }
1360
1361 extern __u32 sysctl_wmem_max;
1362 extern __u32 sysctl_rmem_max;
1363
1364 #ifdef CONFIG_NET
1365 int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg);
1366 #else
1367 static inline int siocdevprivate_ioctl(unsigned int fd, unsigned int cmd, unsigned long arg)
1368 {
1369 return -ENODEV;
1370 }
1371 #endif
1372
1373 extern void sk_init(void);
1374
1375 #ifdef CONFIG_SYSCTL
1376 extern struct ctl_table core_table[];
1377 extern int sysctl_optmem_max;
1378 #endif
1379
1380 #ifdef CONFIG_PROC_FS
1381 extern __u32 sysctl_wmem_default;
1382 extern __u32 sysctl_rmem_default;
1383 #endif
1384
1385 #endif /* _SOCK_H */