Fix common misspellings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / sock.h
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the AF_INET socket handler.
7 *
8 * Version: @(#)sock.h 1.0.4 05/13/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
14 *
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
33 *
34 *
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
39 */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
59
60 #include <linux/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
63
64 /*
65 * This structure really needs to be cleaned up.
66 * Most of it is for TCP, and not used by any of
67 * the other protocols.
68 */
69
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
79 {
80 }
81 #endif
82
83 /* This is the per-socket lock. The spinlock provides a synchronization
84 * between user contexts and software interrupt processing, whereas the
85 * mini-semaphore synchronizes multiple users amongst themselves.
86 */
87 typedef struct {
88 spinlock_t slock;
89 int owned;
90 wait_queue_head_t wq;
91 /*
92 * We express the mutex-alike socket_lock semantics
93 * to the lock validator by explicitly managing
94 * the slock as a lock variant (in addition to
95 * the slock itself):
96 */
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
101
102 struct sock;
103 struct proto;
104 struct net;
105
106 /**
107 * struct sock_common - minimal network layer representation of sockets
108 * @skc_daddr: Foreign IPv4 addr
109 * @skc_rcv_saddr: Bound local IPv4 addr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_family: network address family
113 * @skc_state: Connection state
114 * @skc_reuse: %SO_REUSEADDR setting
115 * @skc_bound_dev_if: bound device index if != 0
116 * @skc_bind_node: bind hash linkage for various protocol lookup tables
117 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
118 * @skc_prot: protocol handlers inside a network family
119 * @skc_net: reference to the network namespace of this socket
120 * @skc_node: main hash linkage for various protocol lookup tables
121 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
122 * @skc_tx_queue_mapping: tx queue number for this connection
123 * @skc_refcnt: reference count
124 *
125 * This is the minimal network layer representation of sockets, the header
126 * for struct sock and struct inet_timewait_sock.
127 */
128 struct sock_common {
129 /* skc_daddr and skc_rcv_saddr must be grouped :
130 * cf INET_MATCH() and INET_TW_MATCH()
131 */
132 __be32 skc_daddr;
133 __be32 skc_rcv_saddr;
134
135 union {
136 unsigned int skc_hash;
137 __u16 skc_u16hashes[2];
138 };
139 unsigned short skc_family;
140 volatile unsigned char skc_state;
141 unsigned char skc_reuse;
142 int skc_bound_dev_if;
143 union {
144 struct hlist_node skc_bind_node;
145 struct hlist_nulls_node skc_portaddr_node;
146 };
147 struct proto *skc_prot;
148 #ifdef CONFIG_NET_NS
149 struct net *skc_net;
150 #endif
151 /*
152 * fields between dontcopy_begin/dontcopy_end
153 * are not copied in sock_copy()
154 */
155 /* private: */
156 int skc_dontcopy_begin[0];
157 /* public: */
158 union {
159 struct hlist_node skc_node;
160 struct hlist_nulls_node skc_nulls_node;
161 };
162 int skc_tx_queue_mapping;
163 atomic_t skc_refcnt;
164 /* private: */
165 int skc_dontcopy_end[0];
166 /* public: */
167 };
168
169 /**
170 * struct sock - network layer representation of sockets
171 * @__sk_common: shared layout with inet_timewait_sock
172 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
173 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
174 * @sk_lock: synchronizer
175 * @sk_rcvbuf: size of receive buffer in bytes
176 * @sk_wq: sock wait queue and async head
177 * @sk_dst_cache: destination cache
178 * @sk_dst_lock: destination cache lock
179 * @sk_policy: flow policy
180 * @sk_rmem_alloc: receive queue bytes committed
181 * @sk_receive_queue: incoming packets
182 * @sk_wmem_alloc: transmit queue bytes committed
183 * @sk_write_queue: Packet sending queue
184 * @sk_async_wait_queue: DMA copied packets
185 * @sk_omem_alloc: "o" is "option" or "other"
186 * @sk_wmem_queued: persistent queue size
187 * @sk_forward_alloc: space allocated forward
188 * @sk_allocation: allocation mode
189 * @sk_sndbuf: size of send buffer in bytes
190 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
191 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
192 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
193 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
194 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
195 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
196 * @sk_gso_max_size: Maximum GSO segment size to build
197 * @sk_lingertime: %SO_LINGER l_linger setting
198 * @sk_backlog: always used with the per-socket spinlock held
199 * @sk_callback_lock: used with the callbacks in the end of this struct
200 * @sk_error_queue: rarely used
201 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
202 * IPV6_ADDRFORM for instance)
203 * @sk_err: last error
204 * @sk_err_soft: errors that don't cause failure but are the cause of a
205 * persistent failure not just 'timed out'
206 * @sk_drops: raw/udp drops counter
207 * @sk_ack_backlog: current listen backlog
208 * @sk_max_ack_backlog: listen backlog set in listen()
209 * @sk_priority: %SO_PRIORITY setting
210 * @sk_type: socket type (%SOCK_STREAM, etc)
211 * @sk_protocol: which protocol this socket belongs in this network family
212 * @sk_peer_pid: &struct pid for this socket's peer
213 * @sk_peer_cred: %SO_PEERCRED setting
214 * @sk_rcvlowat: %SO_RCVLOWAT setting
215 * @sk_rcvtimeo: %SO_RCVTIMEO setting
216 * @sk_sndtimeo: %SO_SNDTIMEO setting
217 * @sk_rxhash: flow hash received from netif layer
218 * @sk_filter: socket filtering instructions
219 * @sk_protinfo: private area, net family specific, when not using slab
220 * @sk_timer: sock cleanup timer
221 * @sk_stamp: time stamp of last packet received
222 * @sk_socket: Identd and reporting IO signals
223 * @sk_user_data: RPC layer private data
224 * @sk_sndmsg_page: cached page for sendmsg
225 * @sk_sndmsg_off: cached offset for sendmsg
226 * @sk_send_head: front of stuff to transmit
227 * @sk_security: used by security modules
228 * @sk_mark: generic packet mark
229 * @sk_classid: this socket's cgroup classid
230 * @sk_write_pending: a write to stream socket waits to start
231 * @sk_state_change: callback to indicate change in the state of the sock
232 * @sk_data_ready: callback to indicate there is data to be processed
233 * @sk_write_space: callback to indicate there is bf sending space available
234 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
235 * @sk_backlog_rcv: callback to process the backlog
236 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
237 */
238 struct sock {
239 /*
240 * Now struct inet_timewait_sock also uses sock_common, so please just
241 * don't add nothing before this first member (__sk_common) --acme
242 */
243 struct sock_common __sk_common;
244 #define sk_node __sk_common.skc_node
245 #define sk_nulls_node __sk_common.skc_nulls_node
246 #define sk_refcnt __sk_common.skc_refcnt
247 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
248
249 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
250 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
251 #define sk_hash __sk_common.skc_hash
252 #define sk_family __sk_common.skc_family
253 #define sk_state __sk_common.skc_state
254 #define sk_reuse __sk_common.skc_reuse
255 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
256 #define sk_bind_node __sk_common.skc_bind_node
257 #define sk_prot __sk_common.skc_prot
258 #define sk_net __sk_common.skc_net
259 socket_lock_t sk_lock;
260 struct sk_buff_head sk_receive_queue;
261 /*
262 * The backlog queue is special, it is always used with
263 * the per-socket spinlock held and requires low latency
264 * access. Therefore we special case it's implementation.
265 * Note : rmem_alloc is in this structure to fill a hole
266 * on 64bit arches, not because its logically part of
267 * backlog.
268 */
269 struct {
270 atomic_t rmem_alloc;
271 int len;
272 struct sk_buff *head;
273 struct sk_buff *tail;
274 } sk_backlog;
275 #define sk_rmem_alloc sk_backlog.rmem_alloc
276 int sk_forward_alloc;
277 #ifdef CONFIG_RPS
278 __u32 sk_rxhash;
279 #endif
280 atomic_t sk_drops;
281 int sk_rcvbuf;
282
283 struct sk_filter __rcu *sk_filter;
284 struct socket_wq __rcu *sk_wq;
285
286 #ifdef CONFIG_NET_DMA
287 struct sk_buff_head sk_async_wait_queue;
288 #endif
289
290 #ifdef CONFIG_XFRM
291 struct xfrm_policy *sk_policy[2];
292 #endif
293 unsigned long sk_flags;
294 struct dst_entry *sk_dst_cache;
295 spinlock_t sk_dst_lock;
296 atomic_t sk_wmem_alloc;
297 atomic_t sk_omem_alloc;
298 int sk_sndbuf;
299 struct sk_buff_head sk_write_queue;
300 kmemcheck_bitfield_begin(flags);
301 unsigned int sk_shutdown : 2,
302 sk_no_check : 2,
303 sk_userlocks : 4,
304 sk_protocol : 8,
305 sk_type : 16;
306 kmemcheck_bitfield_end(flags);
307 int sk_wmem_queued;
308 gfp_t sk_allocation;
309 int sk_route_caps;
310 int sk_route_nocaps;
311 int sk_gso_type;
312 unsigned int sk_gso_max_size;
313 int sk_rcvlowat;
314 unsigned long sk_lingertime;
315 struct sk_buff_head sk_error_queue;
316 struct proto *sk_prot_creator;
317 rwlock_t sk_callback_lock;
318 int sk_err,
319 sk_err_soft;
320 unsigned short sk_ack_backlog;
321 unsigned short sk_max_ack_backlog;
322 __u32 sk_priority;
323 struct pid *sk_peer_pid;
324 const struct cred *sk_peer_cred;
325 long sk_rcvtimeo;
326 long sk_sndtimeo;
327 void *sk_protinfo;
328 struct timer_list sk_timer;
329 ktime_t sk_stamp;
330 struct socket *sk_socket;
331 void *sk_user_data;
332 struct page *sk_sndmsg_page;
333 struct sk_buff *sk_send_head;
334 __u32 sk_sndmsg_off;
335 int sk_write_pending;
336 #ifdef CONFIG_SECURITY
337 void *sk_security;
338 #endif
339 __u32 sk_mark;
340 u32 sk_classid;
341 void (*sk_state_change)(struct sock *sk);
342 void (*sk_data_ready)(struct sock *sk, int bytes);
343 void (*sk_write_space)(struct sock *sk);
344 void (*sk_error_report)(struct sock *sk);
345 int (*sk_backlog_rcv)(struct sock *sk,
346 struct sk_buff *skb);
347 void (*sk_destruct)(struct sock *sk);
348 };
349
350 /*
351 * Hashed lists helper routines
352 */
353 static inline struct sock *sk_entry(const struct hlist_node *node)
354 {
355 return hlist_entry(node, struct sock, sk_node);
356 }
357
358 static inline struct sock *__sk_head(const struct hlist_head *head)
359 {
360 return hlist_entry(head->first, struct sock, sk_node);
361 }
362
363 static inline struct sock *sk_head(const struct hlist_head *head)
364 {
365 return hlist_empty(head) ? NULL : __sk_head(head);
366 }
367
368 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
369 {
370 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
371 }
372
373 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
374 {
375 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
376 }
377
378 static inline struct sock *sk_next(const struct sock *sk)
379 {
380 return sk->sk_node.next ?
381 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
382 }
383
384 static inline struct sock *sk_nulls_next(const struct sock *sk)
385 {
386 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
387 hlist_nulls_entry(sk->sk_nulls_node.next,
388 struct sock, sk_nulls_node) :
389 NULL;
390 }
391
392 static inline int sk_unhashed(const struct sock *sk)
393 {
394 return hlist_unhashed(&sk->sk_node);
395 }
396
397 static inline int sk_hashed(const struct sock *sk)
398 {
399 return !sk_unhashed(sk);
400 }
401
402 static __inline__ void sk_node_init(struct hlist_node *node)
403 {
404 node->pprev = NULL;
405 }
406
407 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
408 {
409 node->pprev = NULL;
410 }
411
412 static __inline__ void __sk_del_node(struct sock *sk)
413 {
414 __hlist_del(&sk->sk_node);
415 }
416
417 /* NB: equivalent to hlist_del_init_rcu */
418 static __inline__ int __sk_del_node_init(struct sock *sk)
419 {
420 if (sk_hashed(sk)) {
421 __sk_del_node(sk);
422 sk_node_init(&sk->sk_node);
423 return 1;
424 }
425 return 0;
426 }
427
428 /* Grab socket reference count. This operation is valid only
429 when sk is ALREADY grabbed f.e. it is found in hash table
430 or a list and the lookup is made under lock preventing hash table
431 modifications.
432 */
433
434 static inline void sock_hold(struct sock *sk)
435 {
436 atomic_inc(&sk->sk_refcnt);
437 }
438
439 /* Ungrab socket in the context, which assumes that socket refcnt
440 cannot hit zero, f.e. it is true in context of any socketcall.
441 */
442 static inline void __sock_put(struct sock *sk)
443 {
444 atomic_dec(&sk->sk_refcnt);
445 }
446
447 static __inline__ int sk_del_node_init(struct sock *sk)
448 {
449 int rc = __sk_del_node_init(sk);
450
451 if (rc) {
452 /* paranoid for a while -acme */
453 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
454 __sock_put(sk);
455 }
456 return rc;
457 }
458 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
459
460 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
461 {
462 if (sk_hashed(sk)) {
463 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
464 return 1;
465 }
466 return 0;
467 }
468
469 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
470 {
471 int rc = __sk_nulls_del_node_init_rcu(sk);
472
473 if (rc) {
474 /* paranoid for a while -acme */
475 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
476 __sock_put(sk);
477 }
478 return rc;
479 }
480
481 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
482 {
483 hlist_add_head(&sk->sk_node, list);
484 }
485
486 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
487 {
488 sock_hold(sk);
489 __sk_add_node(sk, list);
490 }
491
492 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
493 {
494 sock_hold(sk);
495 hlist_add_head_rcu(&sk->sk_node, list);
496 }
497
498 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
499 {
500 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
501 }
502
503 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
504 {
505 sock_hold(sk);
506 __sk_nulls_add_node_rcu(sk, list);
507 }
508
509 static __inline__ void __sk_del_bind_node(struct sock *sk)
510 {
511 __hlist_del(&sk->sk_bind_node);
512 }
513
514 static __inline__ void sk_add_bind_node(struct sock *sk,
515 struct hlist_head *list)
516 {
517 hlist_add_head(&sk->sk_bind_node, list);
518 }
519
520 #define sk_for_each(__sk, node, list) \
521 hlist_for_each_entry(__sk, node, list, sk_node)
522 #define sk_for_each_rcu(__sk, node, list) \
523 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
524 #define sk_nulls_for_each(__sk, node, list) \
525 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
526 #define sk_nulls_for_each_rcu(__sk, node, list) \
527 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
528 #define sk_for_each_from(__sk, node) \
529 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
530 hlist_for_each_entry_from(__sk, node, sk_node)
531 #define sk_nulls_for_each_from(__sk, node) \
532 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
533 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
534 #define sk_for_each_safe(__sk, node, tmp, list) \
535 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
536 #define sk_for_each_bound(__sk, node, list) \
537 hlist_for_each_entry(__sk, node, list, sk_bind_node)
538
539 /* Sock flags */
540 enum sock_flags {
541 SOCK_DEAD,
542 SOCK_DONE,
543 SOCK_URGINLINE,
544 SOCK_KEEPOPEN,
545 SOCK_LINGER,
546 SOCK_DESTROY,
547 SOCK_BROADCAST,
548 SOCK_TIMESTAMP,
549 SOCK_ZAPPED,
550 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
551 SOCK_DBG, /* %SO_DEBUG setting */
552 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
553 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
554 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
555 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
556 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
557 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
558 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
559 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
560 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
561 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
562 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
563 SOCK_FASYNC, /* fasync() active */
564 SOCK_RXQ_OVFL,
565 };
566
567 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
568 {
569 nsk->sk_flags = osk->sk_flags;
570 }
571
572 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
573 {
574 __set_bit(flag, &sk->sk_flags);
575 }
576
577 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
578 {
579 __clear_bit(flag, &sk->sk_flags);
580 }
581
582 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
583 {
584 return test_bit(flag, &sk->sk_flags);
585 }
586
587 static inline void sk_acceptq_removed(struct sock *sk)
588 {
589 sk->sk_ack_backlog--;
590 }
591
592 static inline void sk_acceptq_added(struct sock *sk)
593 {
594 sk->sk_ack_backlog++;
595 }
596
597 static inline int sk_acceptq_is_full(struct sock *sk)
598 {
599 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
600 }
601
602 /*
603 * Compute minimal free write space needed to queue new packets.
604 */
605 static inline int sk_stream_min_wspace(struct sock *sk)
606 {
607 return sk->sk_wmem_queued >> 1;
608 }
609
610 static inline int sk_stream_wspace(struct sock *sk)
611 {
612 return sk->sk_sndbuf - sk->sk_wmem_queued;
613 }
614
615 extern void sk_stream_write_space(struct sock *sk);
616
617 static inline int sk_stream_memory_free(struct sock *sk)
618 {
619 return sk->sk_wmem_queued < sk->sk_sndbuf;
620 }
621
622 /* OOB backlog add */
623 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
624 {
625 /* dont let skb dst not refcounted, we are going to leave rcu lock */
626 skb_dst_force(skb);
627
628 if (!sk->sk_backlog.tail)
629 sk->sk_backlog.head = skb;
630 else
631 sk->sk_backlog.tail->next = skb;
632
633 sk->sk_backlog.tail = skb;
634 skb->next = NULL;
635 }
636
637 /*
638 * Take into account size of receive queue and backlog queue
639 */
640 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
641 {
642 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
643
644 return qsize + skb->truesize > sk->sk_rcvbuf;
645 }
646
647 /* The per-socket spinlock must be held here. */
648 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
649 {
650 if (sk_rcvqueues_full(sk, skb))
651 return -ENOBUFS;
652
653 __sk_add_backlog(sk, skb);
654 sk->sk_backlog.len += skb->truesize;
655 return 0;
656 }
657
658 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
659 {
660 return sk->sk_backlog_rcv(sk, skb);
661 }
662
663 static inline void sock_rps_record_flow(const struct sock *sk)
664 {
665 #ifdef CONFIG_RPS
666 struct rps_sock_flow_table *sock_flow_table;
667
668 rcu_read_lock();
669 sock_flow_table = rcu_dereference(rps_sock_flow_table);
670 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
671 rcu_read_unlock();
672 #endif
673 }
674
675 static inline void sock_rps_reset_flow(const struct sock *sk)
676 {
677 #ifdef CONFIG_RPS
678 struct rps_sock_flow_table *sock_flow_table;
679
680 rcu_read_lock();
681 sock_flow_table = rcu_dereference(rps_sock_flow_table);
682 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
683 rcu_read_unlock();
684 #endif
685 }
686
687 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
688 {
689 #ifdef CONFIG_RPS
690 if (unlikely(sk->sk_rxhash != rxhash)) {
691 sock_rps_reset_flow(sk);
692 sk->sk_rxhash = rxhash;
693 }
694 #endif
695 }
696
697 #define sk_wait_event(__sk, __timeo, __condition) \
698 ({ int __rc; \
699 release_sock(__sk); \
700 __rc = __condition; \
701 if (!__rc) { \
702 *(__timeo) = schedule_timeout(*(__timeo)); \
703 } \
704 lock_sock(__sk); \
705 __rc = __condition; \
706 __rc; \
707 })
708
709 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
710 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
711 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
712 extern int sk_stream_error(struct sock *sk, int flags, int err);
713 extern void sk_stream_kill_queues(struct sock *sk);
714
715 extern int sk_wait_data(struct sock *sk, long *timeo);
716
717 struct request_sock_ops;
718 struct timewait_sock_ops;
719 struct inet_hashinfo;
720 struct raw_hashinfo;
721
722 /* Networking protocol blocks we attach to sockets.
723 * socket layer -> transport layer interface
724 * transport -> network interface is defined by struct inet_proto
725 */
726 struct proto {
727 void (*close)(struct sock *sk,
728 long timeout);
729 int (*connect)(struct sock *sk,
730 struct sockaddr *uaddr,
731 int addr_len);
732 int (*disconnect)(struct sock *sk, int flags);
733
734 struct sock * (*accept) (struct sock *sk, int flags, int *err);
735
736 int (*ioctl)(struct sock *sk, int cmd,
737 unsigned long arg);
738 int (*init)(struct sock *sk);
739 void (*destroy)(struct sock *sk);
740 void (*shutdown)(struct sock *sk, int how);
741 int (*setsockopt)(struct sock *sk, int level,
742 int optname, char __user *optval,
743 unsigned int optlen);
744 int (*getsockopt)(struct sock *sk, int level,
745 int optname, char __user *optval,
746 int __user *option);
747 #ifdef CONFIG_COMPAT
748 int (*compat_setsockopt)(struct sock *sk,
749 int level,
750 int optname, char __user *optval,
751 unsigned int optlen);
752 int (*compat_getsockopt)(struct sock *sk,
753 int level,
754 int optname, char __user *optval,
755 int __user *option);
756 int (*compat_ioctl)(struct sock *sk,
757 unsigned int cmd, unsigned long arg);
758 #endif
759 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
760 struct msghdr *msg, size_t len);
761 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
762 struct msghdr *msg,
763 size_t len, int noblock, int flags,
764 int *addr_len);
765 int (*sendpage)(struct sock *sk, struct page *page,
766 int offset, size_t size, int flags);
767 int (*bind)(struct sock *sk,
768 struct sockaddr *uaddr, int addr_len);
769
770 int (*backlog_rcv) (struct sock *sk,
771 struct sk_buff *skb);
772
773 /* Keeping track of sk's, looking them up, and port selection methods. */
774 void (*hash)(struct sock *sk);
775 void (*unhash)(struct sock *sk);
776 void (*rehash)(struct sock *sk);
777 int (*get_port)(struct sock *sk, unsigned short snum);
778 void (*clear_sk)(struct sock *sk, int size);
779
780 /* Keeping track of sockets in use */
781 #ifdef CONFIG_PROC_FS
782 unsigned int inuse_idx;
783 #endif
784
785 /* Memory pressure */
786 void (*enter_memory_pressure)(struct sock *sk);
787 atomic_long_t *memory_allocated; /* Current allocated memory. */
788 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
789 /*
790 * Pressure flag: try to collapse.
791 * Technical note: it is used by multiple contexts non atomically.
792 * All the __sk_mem_schedule() is of this nature: accounting
793 * is strict, actions are advisory and have some latency.
794 */
795 int *memory_pressure;
796 long *sysctl_mem;
797 int *sysctl_wmem;
798 int *sysctl_rmem;
799 int max_header;
800 bool no_autobind;
801
802 struct kmem_cache *slab;
803 unsigned int obj_size;
804 int slab_flags;
805
806 struct percpu_counter *orphan_count;
807
808 struct request_sock_ops *rsk_prot;
809 struct timewait_sock_ops *twsk_prot;
810
811 union {
812 struct inet_hashinfo *hashinfo;
813 struct udp_table *udp_table;
814 struct raw_hashinfo *raw_hash;
815 } h;
816
817 struct module *owner;
818
819 char name[32];
820
821 struct list_head node;
822 #ifdef SOCK_REFCNT_DEBUG
823 atomic_t socks;
824 #endif
825 };
826
827 extern int proto_register(struct proto *prot, int alloc_slab);
828 extern void proto_unregister(struct proto *prot);
829
830 #ifdef SOCK_REFCNT_DEBUG
831 static inline void sk_refcnt_debug_inc(struct sock *sk)
832 {
833 atomic_inc(&sk->sk_prot->socks);
834 }
835
836 static inline void sk_refcnt_debug_dec(struct sock *sk)
837 {
838 atomic_dec(&sk->sk_prot->socks);
839 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
840 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
841 }
842
843 static inline void sk_refcnt_debug_release(const struct sock *sk)
844 {
845 if (atomic_read(&sk->sk_refcnt) != 1)
846 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
847 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
848 }
849 #else /* SOCK_REFCNT_DEBUG */
850 #define sk_refcnt_debug_inc(sk) do { } while (0)
851 #define sk_refcnt_debug_dec(sk) do { } while (0)
852 #define sk_refcnt_debug_release(sk) do { } while (0)
853 #endif /* SOCK_REFCNT_DEBUG */
854
855
856 #ifdef CONFIG_PROC_FS
857 /* Called with local bh disabled */
858 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
859 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
860 #else
861 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
862 int inc)
863 {
864 }
865 #endif
866
867
868 /* With per-bucket locks this operation is not-atomic, so that
869 * this version is not worse.
870 */
871 static inline void __sk_prot_rehash(struct sock *sk)
872 {
873 sk->sk_prot->unhash(sk);
874 sk->sk_prot->hash(sk);
875 }
876
877 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
878
879 /* About 10 seconds */
880 #define SOCK_DESTROY_TIME (10*HZ)
881
882 /* Sockets 0-1023 can't be bound to unless you are superuser */
883 #define PROT_SOCK 1024
884
885 #define SHUTDOWN_MASK 3
886 #define RCV_SHUTDOWN 1
887 #define SEND_SHUTDOWN 2
888
889 #define SOCK_SNDBUF_LOCK 1
890 #define SOCK_RCVBUF_LOCK 2
891 #define SOCK_BINDADDR_LOCK 4
892 #define SOCK_BINDPORT_LOCK 8
893
894 /* sock_iocb: used to kick off async processing of socket ios */
895 struct sock_iocb {
896 struct list_head list;
897
898 int flags;
899 int size;
900 struct socket *sock;
901 struct sock *sk;
902 struct scm_cookie *scm;
903 struct msghdr *msg, async_msg;
904 struct kiocb *kiocb;
905 };
906
907 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
908 {
909 return (struct sock_iocb *)iocb->private;
910 }
911
912 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
913 {
914 return si->kiocb;
915 }
916
917 struct socket_alloc {
918 struct socket socket;
919 struct inode vfs_inode;
920 };
921
922 static inline struct socket *SOCKET_I(struct inode *inode)
923 {
924 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
925 }
926
927 static inline struct inode *SOCK_INODE(struct socket *socket)
928 {
929 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
930 }
931
932 /*
933 * Functions for memory accounting
934 */
935 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
936 extern void __sk_mem_reclaim(struct sock *sk);
937
938 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
939 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
940 #define SK_MEM_SEND 0
941 #define SK_MEM_RECV 1
942
943 static inline int sk_mem_pages(int amt)
944 {
945 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
946 }
947
948 static inline int sk_has_account(struct sock *sk)
949 {
950 /* return true if protocol supports memory accounting */
951 return !!sk->sk_prot->memory_allocated;
952 }
953
954 static inline int sk_wmem_schedule(struct sock *sk, int size)
955 {
956 if (!sk_has_account(sk))
957 return 1;
958 return size <= sk->sk_forward_alloc ||
959 __sk_mem_schedule(sk, size, SK_MEM_SEND);
960 }
961
962 static inline int sk_rmem_schedule(struct sock *sk, int size)
963 {
964 if (!sk_has_account(sk))
965 return 1;
966 return size <= sk->sk_forward_alloc ||
967 __sk_mem_schedule(sk, size, SK_MEM_RECV);
968 }
969
970 static inline void sk_mem_reclaim(struct sock *sk)
971 {
972 if (!sk_has_account(sk))
973 return;
974 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
975 __sk_mem_reclaim(sk);
976 }
977
978 static inline void sk_mem_reclaim_partial(struct sock *sk)
979 {
980 if (!sk_has_account(sk))
981 return;
982 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
983 __sk_mem_reclaim(sk);
984 }
985
986 static inline void sk_mem_charge(struct sock *sk, int size)
987 {
988 if (!sk_has_account(sk))
989 return;
990 sk->sk_forward_alloc -= size;
991 }
992
993 static inline void sk_mem_uncharge(struct sock *sk, int size)
994 {
995 if (!sk_has_account(sk))
996 return;
997 sk->sk_forward_alloc += size;
998 }
999
1000 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1001 {
1002 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1003 sk->sk_wmem_queued -= skb->truesize;
1004 sk_mem_uncharge(sk, skb->truesize);
1005 __kfree_skb(skb);
1006 }
1007
1008 /* Used by processes to "lock" a socket state, so that
1009 * interrupts and bottom half handlers won't change it
1010 * from under us. It essentially blocks any incoming
1011 * packets, so that we won't get any new data or any
1012 * packets that change the state of the socket.
1013 *
1014 * While locked, BH processing will add new packets to
1015 * the backlog queue. This queue is processed by the
1016 * owner of the socket lock right before it is released.
1017 *
1018 * Since ~2.3.5 it is also exclusive sleep lock serializing
1019 * accesses from user process context.
1020 */
1021 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1022
1023 /*
1024 * Macro so as to not evaluate some arguments when
1025 * lockdep is not enabled.
1026 *
1027 * Mark both the sk_lock and the sk_lock.slock as a
1028 * per-address-family lock class.
1029 */
1030 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1031 do { \
1032 sk->sk_lock.owned = 0; \
1033 init_waitqueue_head(&sk->sk_lock.wq); \
1034 spin_lock_init(&(sk)->sk_lock.slock); \
1035 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1036 sizeof((sk)->sk_lock)); \
1037 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1038 (skey), (sname)); \
1039 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1040 } while (0)
1041
1042 extern void lock_sock_nested(struct sock *sk, int subclass);
1043
1044 static inline void lock_sock(struct sock *sk)
1045 {
1046 lock_sock_nested(sk, 0);
1047 }
1048
1049 extern void release_sock(struct sock *sk);
1050
1051 /* BH context may only use the following locking interface. */
1052 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1053 #define bh_lock_sock_nested(__sk) \
1054 spin_lock_nested(&((__sk)->sk_lock.slock), \
1055 SINGLE_DEPTH_NESTING)
1056 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1057
1058 extern bool lock_sock_fast(struct sock *sk);
1059 /**
1060 * unlock_sock_fast - complement of lock_sock_fast
1061 * @sk: socket
1062 * @slow: slow mode
1063 *
1064 * fast unlock socket for user context.
1065 * If slow mode is on, we call regular release_sock()
1066 */
1067 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1068 {
1069 if (slow)
1070 release_sock(sk);
1071 else
1072 spin_unlock_bh(&sk->sk_lock.slock);
1073 }
1074
1075
1076 extern struct sock *sk_alloc(struct net *net, int family,
1077 gfp_t priority,
1078 struct proto *prot);
1079 extern void sk_free(struct sock *sk);
1080 extern void sk_release_kernel(struct sock *sk);
1081 extern struct sock *sk_clone(const struct sock *sk,
1082 const gfp_t priority);
1083
1084 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1085 unsigned long size, int force,
1086 gfp_t priority);
1087 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1088 unsigned long size, int force,
1089 gfp_t priority);
1090 extern void sock_wfree(struct sk_buff *skb);
1091 extern void sock_rfree(struct sk_buff *skb);
1092
1093 extern int sock_setsockopt(struct socket *sock, int level,
1094 int op, char __user *optval,
1095 unsigned int optlen);
1096
1097 extern int sock_getsockopt(struct socket *sock, int level,
1098 int op, char __user *optval,
1099 int __user *optlen);
1100 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1101 unsigned long size,
1102 int noblock,
1103 int *errcode);
1104 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1105 unsigned long header_len,
1106 unsigned long data_len,
1107 int noblock,
1108 int *errcode);
1109 extern void *sock_kmalloc(struct sock *sk, int size,
1110 gfp_t priority);
1111 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1112 extern void sk_send_sigurg(struct sock *sk);
1113
1114 #ifdef CONFIG_CGROUPS
1115 extern void sock_update_classid(struct sock *sk);
1116 #else
1117 static inline void sock_update_classid(struct sock *sk)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123 * Functions to fill in entries in struct proto_ops when a protocol
1124 * does not implement a particular function.
1125 */
1126 extern int sock_no_bind(struct socket *,
1127 struct sockaddr *, int);
1128 extern int sock_no_connect(struct socket *,
1129 struct sockaddr *, int, int);
1130 extern int sock_no_socketpair(struct socket *,
1131 struct socket *);
1132 extern int sock_no_accept(struct socket *,
1133 struct socket *, int);
1134 extern int sock_no_getname(struct socket *,
1135 struct sockaddr *, int *, int);
1136 extern unsigned int sock_no_poll(struct file *, struct socket *,
1137 struct poll_table_struct *);
1138 extern int sock_no_ioctl(struct socket *, unsigned int,
1139 unsigned long);
1140 extern int sock_no_listen(struct socket *, int);
1141 extern int sock_no_shutdown(struct socket *, int);
1142 extern int sock_no_getsockopt(struct socket *, int , int,
1143 char __user *, int __user *);
1144 extern int sock_no_setsockopt(struct socket *, int, int,
1145 char __user *, unsigned int);
1146 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1147 struct msghdr *, size_t);
1148 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1149 struct msghdr *, size_t, int);
1150 extern int sock_no_mmap(struct file *file,
1151 struct socket *sock,
1152 struct vm_area_struct *vma);
1153 extern ssize_t sock_no_sendpage(struct socket *sock,
1154 struct page *page,
1155 int offset, size_t size,
1156 int flags);
1157
1158 /*
1159 * Functions to fill in entries in struct proto_ops when a protocol
1160 * uses the inet style.
1161 */
1162 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1163 char __user *optval, int __user *optlen);
1164 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1165 struct msghdr *msg, size_t size, int flags);
1166 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1167 char __user *optval, unsigned int optlen);
1168 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1169 int optname, char __user *optval, int __user *optlen);
1170 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1171 int optname, char __user *optval, unsigned int optlen);
1172
1173 extern void sk_common_release(struct sock *sk);
1174
1175 /*
1176 * Default socket callbacks and setup code
1177 */
1178
1179 /* Initialise core socket variables */
1180 extern void sock_init_data(struct socket *sock, struct sock *sk);
1181
1182 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1183
1184 /**
1185 * sk_filter_release - release a socket filter
1186 * @fp: filter to remove
1187 *
1188 * Remove a filter from a socket and release its resources.
1189 */
1190
1191 static inline void sk_filter_release(struct sk_filter *fp)
1192 {
1193 if (atomic_dec_and_test(&fp->refcnt))
1194 call_rcu(&fp->rcu, sk_filter_release_rcu);
1195 }
1196
1197 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1198 {
1199 unsigned int size = sk_filter_len(fp);
1200
1201 atomic_sub(size, &sk->sk_omem_alloc);
1202 sk_filter_release(fp);
1203 }
1204
1205 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1206 {
1207 atomic_inc(&fp->refcnt);
1208 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1209 }
1210
1211 /*
1212 * Socket reference counting postulates.
1213 *
1214 * * Each user of socket SHOULD hold a reference count.
1215 * * Each access point to socket (an hash table bucket, reference from a list,
1216 * running timer, skb in flight MUST hold a reference count.
1217 * * When reference count hits 0, it means it will never increase back.
1218 * * When reference count hits 0, it means that no references from
1219 * outside exist to this socket and current process on current CPU
1220 * is last user and may/should destroy this socket.
1221 * * sk_free is called from any context: process, BH, IRQ. When
1222 * it is called, socket has no references from outside -> sk_free
1223 * may release descendant resources allocated by the socket, but
1224 * to the time when it is called, socket is NOT referenced by any
1225 * hash tables, lists etc.
1226 * * Packets, delivered from outside (from network or from another process)
1227 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1228 * when they sit in queue. Otherwise, packets will leak to hole, when
1229 * socket is looked up by one cpu and unhasing is made by another CPU.
1230 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1231 * (leak to backlog). Packet socket does all the processing inside
1232 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1233 * use separate SMP lock, so that they are prone too.
1234 */
1235
1236 /* Ungrab socket and destroy it, if it was the last reference. */
1237 static inline void sock_put(struct sock *sk)
1238 {
1239 if (atomic_dec_and_test(&sk->sk_refcnt))
1240 sk_free(sk);
1241 }
1242
1243 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1244 const int nested);
1245
1246 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1247 {
1248 sk->sk_tx_queue_mapping = tx_queue;
1249 }
1250
1251 static inline void sk_tx_queue_clear(struct sock *sk)
1252 {
1253 sk->sk_tx_queue_mapping = -1;
1254 }
1255
1256 static inline int sk_tx_queue_get(const struct sock *sk)
1257 {
1258 return sk ? sk->sk_tx_queue_mapping : -1;
1259 }
1260
1261 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1262 {
1263 sk_tx_queue_clear(sk);
1264 sk->sk_socket = sock;
1265 }
1266
1267 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1268 {
1269 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1270 return &rcu_dereference_raw(sk->sk_wq)->wait;
1271 }
1272 /* Detach socket from process context.
1273 * Announce socket dead, detach it from wait queue and inode.
1274 * Note that parent inode held reference count on this struct sock,
1275 * we do not release it in this function, because protocol
1276 * probably wants some additional cleanups or even continuing
1277 * to work with this socket (TCP).
1278 */
1279 static inline void sock_orphan(struct sock *sk)
1280 {
1281 write_lock_bh(&sk->sk_callback_lock);
1282 sock_set_flag(sk, SOCK_DEAD);
1283 sk_set_socket(sk, NULL);
1284 sk->sk_wq = NULL;
1285 write_unlock_bh(&sk->sk_callback_lock);
1286 }
1287
1288 static inline void sock_graft(struct sock *sk, struct socket *parent)
1289 {
1290 write_lock_bh(&sk->sk_callback_lock);
1291 sk->sk_wq = parent->wq;
1292 parent->sk = sk;
1293 sk_set_socket(sk, parent);
1294 security_sock_graft(sk, parent);
1295 write_unlock_bh(&sk->sk_callback_lock);
1296 }
1297
1298 extern int sock_i_uid(struct sock *sk);
1299 extern unsigned long sock_i_ino(struct sock *sk);
1300
1301 static inline struct dst_entry *
1302 __sk_dst_get(struct sock *sk)
1303 {
1304 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1305 sock_owned_by_user(sk) ||
1306 lockdep_is_held(&sk->sk_lock.slock));
1307 }
1308
1309 static inline struct dst_entry *
1310 sk_dst_get(struct sock *sk)
1311 {
1312 struct dst_entry *dst;
1313
1314 rcu_read_lock();
1315 dst = rcu_dereference(sk->sk_dst_cache);
1316 if (dst)
1317 dst_hold(dst);
1318 rcu_read_unlock();
1319 return dst;
1320 }
1321
1322 extern void sk_reset_txq(struct sock *sk);
1323
1324 static inline void dst_negative_advice(struct sock *sk)
1325 {
1326 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1327
1328 if (dst && dst->ops->negative_advice) {
1329 ndst = dst->ops->negative_advice(dst);
1330
1331 if (ndst != dst) {
1332 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1333 sk_reset_txq(sk);
1334 }
1335 }
1336 }
1337
1338 static inline void
1339 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1340 {
1341 struct dst_entry *old_dst;
1342
1343 sk_tx_queue_clear(sk);
1344 /*
1345 * This can be called while sk is owned by the caller only,
1346 * with no state that can be checked in a rcu_dereference_check() cond
1347 */
1348 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1349 rcu_assign_pointer(sk->sk_dst_cache, dst);
1350 dst_release(old_dst);
1351 }
1352
1353 static inline void
1354 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1355 {
1356 spin_lock(&sk->sk_dst_lock);
1357 __sk_dst_set(sk, dst);
1358 spin_unlock(&sk->sk_dst_lock);
1359 }
1360
1361 static inline void
1362 __sk_dst_reset(struct sock *sk)
1363 {
1364 __sk_dst_set(sk, NULL);
1365 }
1366
1367 static inline void
1368 sk_dst_reset(struct sock *sk)
1369 {
1370 spin_lock(&sk->sk_dst_lock);
1371 __sk_dst_reset(sk);
1372 spin_unlock(&sk->sk_dst_lock);
1373 }
1374
1375 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1376
1377 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1378
1379 static inline int sk_can_gso(const struct sock *sk)
1380 {
1381 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1382 }
1383
1384 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1385
1386 static inline void sk_nocaps_add(struct sock *sk, int flags)
1387 {
1388 sk->sk_route_nocaps |= flags;
1389 sk->sk_route_caps &= ~flags;
1390 }
1391
1392 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1393 struct sk_buff *skb, struct page *page,
1394 int off, int copy)
1395 {
1396 if (skb->ip_summed == CHECKSUM_NONE) {
1397 int err = 0;
1398 __wsum csum = csum_and_copy_from_user(from,
1399 page_address(page) + off,
1400 copy, 0, &err);
1401 if (err)
1402 return err;
1403 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1404 } else if (copy_from_user(page_address(page) + off, from, copy))
1405 return -EFAULT;
1406
1407 skb->len += copy;
1408 skb->data_len += copy;
1409 skb->truesize += copy;
1410 sk->sk_wmem_queued += copy;
1411 sk_mem_charge(sk, copy);
1412 return 0;
1413 }
1414
1415 /**
1416 * sk_wmem_alloc_get - returns write allocations
1417 * @sk: socket
1418 *
1419 * Returns sk_wmem_alloc minus initial offset of one
1420 */
1421 static inline int sk_wmem_alloc_get(const struct sock *sk)
1422 {
1423 return atomic_read(&sk->sk_wmem_alloc) - 1;
1424 }
1425
1426 /**
1427 * sk_rmem_alloc_get - returns read allocations
1428 * @sk: socket
1429 *
1430 * Returns sk_rmem_alloc
1431 */
1432 static inline int sk_rmem_alloc_get(const struct sock *sk)
1433 {
1434 return atomic_read(&sk->sk_rmem_alloc);
1435 }
1436
1437 /**
1438 * sk_has_allocations - check if allocations are outstanding
1439 * @sk: socket
1440 *
1441 * Returns true if socket has write or read allocations
1442 */
1443 static inline int sk_has_allocations(const struct sock *sk)
1444 {
1445 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1446 }
1447
1448 /**
1449 * wq_has_sleeper - check if there are any waiting processes
1450 * @wq: struct socket_wq
1451 *
1452 * Returns true if socket_wq has waiting processes
1453 *
1454 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1455 * barrier call. They were added due to the race found within the tcp code.
1456 *
1457 * Consider following tcp code paths:
1458 *
1459 * CPU1 CPU2
1460 *
1461 * sys_select receive packet
1462 * ... ...
1463 * __add_wait_queue update tp->rcv_nxt
1464 * ... ...
1465 * tp->rcv_nxt check sock_def_readable
1466 * ... {
1467 * schedule rcu_read_lock();
1468 * wq = rcu_dereference(sk->sk_wq);
1469 * if (wq && waitqueue_active(&wq->wait))
1470 * wake_up_interruptible(&wq->wait)
1471 * ...
1472 * }
1473 *
1474 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1475 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1476 * could then endup calling schedule and sleep forever if there are no more
1477 * data on the socket.
1478 *
1479 */
1480 static inline bool wq_has_sleeper(struct socket_wq *wq)
1481 {
1482
1483 /*
1484 * We need to be sure we are in sync with the
1485 * add_wait_queue modifications to the wait queue.
1486 *
1487 * This memory barrier is paired in the sock_poll_wait.
1488 */
1489 smp_mb();
1490 return wq && waitqueue_active(&wq->wait);
1491 }
1492
1493 /**
1494 * sock_poll_wait - place memory barrier behind the poll_wait call.
1495 * @filp: file
1496 * @wait_address: socket wait queue
1497 * @p: poll_table
1498 *
1499 * See the comments in the wq_has_sleeper function.
1500 */
1501 static inline void sock_poll_wait(struct file *filp,
1502 wait_queue_head_t *wait_address, poll_table *p)
1503 {
1504 if (p && wait_address) {
1505 poll_wait(filp, wait_address, p);
1506 /*
1507 * We need to be sure we are in sync with the
1508 * socket flags modification.
1509 *
1510 * This memory barrier is paired in the wq_has_sleeper.
1511 */
1512 smp_mb();
1513 }
1514 }
1515
1516 /*
1517 * Queue a received datagram if it will fit. Stream and sequenced
1518 * protocols can't normally use this as they need to fit buffers in
1519 * and play with them.
1520 *
1521 * Inlined as it's very short and called for pretty much every
1522 * packet ever received.
1523 */
1524
1525 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1526 {
1527 skb_orphan(skb);
1528 skb->sk = sk;
1529 skb->destructor = sock_wfree;
1530 /*
1531 * We used to take a refcount on sk, but following operation
1532 * is enough to guarantee sk_free() wont free this sock until
1533 * all in-flight packets are completed
1534 */
1535 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1536 }
1537
1538 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1539 {
1540 skb_orphan(skb);
1541 skb->sk = sk;
1542 skb->destructor = sock_rfree;
1543 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1544 sk_mem_charge(sk, skb->truesize);
1545 }
1546
1547 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1548 unsigned long expires);
1549
1550 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1551
1552 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1553
1554 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1555
1556 /*
1557 * Recover an error report and clear atomically
1558 */
1559
1560 static inline int sock_error(struct sock *sk)
1561 {
1562 int err;
1563 if (likely(!sk->sk_err))
1564 return 0;
1565 err = xchg(&sk->sk_err, 0);
1566 return -err;
1567 }
1568
1569 static inline unsigned long sock_wspace(struct sock *sk)
1570 {
1571 int amt = 0;
1572
1573 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1574 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1575 if (amt < 0)
1576 amt = 0;
1577 }
1578 return amt;
1579 }
1580
1581 static inline void sk_wake_async(struct sock *sk, int how, int band)
1582 {
1583 if (sock_flag(sk, SOCK_FASYNC))
1584 sock_wake_async(sk->sk_socket, how, band);
1585 }
1586
1587 #define SOCK_MIN_SNDBUF 2048
1588 /*
1589 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1590 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1591 */
1592 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1593
1594 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1595 {
1596 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1597 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1598 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1599 }
1600 }
1601
1602 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1603
1604 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1605 {
1606 struct page *page = NULL;
1607
1608 page = alloc_pages(sk->sk_allocation, 0);
1609 if (!page) {
1610 sk->sk_prot->enter_memory_pressure(sk);
1611 sk_stream_moderate_sndbuf(sk);
1612 }
1613 return page;
1614 }
1615
1616 /*
1617 * Default write policy as shown to user space via poll/select/SIGIO
1618 */
1619 static inline int sock_writeable(const struct sock *sk)
1620 {
1621 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1622 }
1623
1624 static inline gfp_t gfp_any(void)
1625 {
1626 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1627 }
1628
1629 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1630 {
1631 return noblock ? 0 : sk->sk_rcvtimeo;
1632 }
1633
1634 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1635 {
1636 return noblock ? 0 : sk->sk_sndtimeo;
1637 }
1638
1639 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1640 {
1641 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1642 }
1643
1644 /* Alas, with timeout socket operations are not restartable.
1645 * Compare this to poll().
1646 */
1647 static inline int sock_intr_errno(long timeo)
1648 {
1649 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1650 }
1651
1652 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1653 struct sk_buff *skb);
1654
1655 static __inline__ void
1656 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1657 {
1658 ktime_t kt = skb->tstamp;
1659 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1660
1661 /*
1662 * generate control messages if
1663 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1664 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1665 * - software time stamp available and wanted
1666 * (SOCK_TIMESTAMPING_SOFTWARE)
1667 * - hardware time stamps available and wanted
1668 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1669 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1670 */
1671 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1672 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1673 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1674 (hwtstamps->hwtstamp.tv64 &&
1675 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1676 (hwtstamps->syststamp.tv64 &&
1677 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1678 __sock_recv_timestamp(msg, sk, skb);
1679 else
1680 sk->sk_stamp = kt;
1681 }
1682
1683 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1684 struct sk_buff *skb);
1685
1686 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1687 struct sk_buff *skb)
1688 {
1689 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1690 (1UL << SOCK_RCVTSTAMP) | \
1691 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1692 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1693 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1694 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1695
1696 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1697 __sock_recv_ts_and_drops(msg, sk, skb);
1698 else
1699 sk->sk_stamp = skb->tstamp;
1700 }
1701
1702 /**
1703 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1704 * @sk: socket sending this packet
1705 * @tx_flags: filled with instructions for time stamping
1706 *
1707 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1708 * parameters are invalid.
1709 */
1710 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1711
1712 /**
1713 * sk_eat_skb - Release a skb if it is no longer needed
1714 * @sk: socket to eat this skb from
1715 * @skb: socket buffer to eat
1716 * @copied_early: flag indicating whether DMA operations copied this data early
1717 *
1718 * This routine must be called with interrupts disabled or with the socket
1719 * locked so that the sk_buff queue operation is ok.
1720 */
1721 #ifdef CONFIG_NET_DMA
1722 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1723 {
1724 __skb_unlink(skb, &sk->sk_receive_queue);
1725 if (!copied_early)
1726 __kfree_skb(skb);
1727 else
1728 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1729 }
1730 #else
1731 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1732 {
1733 __skb_unlink(skb, &sk->sk_receive_queue);
1734 __kfree_skb(skb);
1735 }
1736 #endif
1737
1738 static inline
1739 struct net *sock_net(const struct sock *sk)
1740 {
1741 return read_pnet(&sk->sk_net);
1742 }
1743
1744 static inline
1745 void sock_net_set(struct sock *sk, struct net *net)
1746 {
1747 write_pnet(&sk->sk_net, net);
1748 }
1749
1750 /*
1751 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1752 * They should not hold a reference to a namespace in order to allow
1753 * to stop it.
1754 * Sockets after sk_change_net should be released using sk_release_kernel
1755 */
1756 static inline void sk_change_net(struct sock *sk, struct net *net)
1757 {
1758 put_net(sock_net(sk));
1759 sock_net_set(sk, hold_net(net));
1760 }
1761
1762 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1763 {
1764 if (unlikely(skb->sk)) {
1765 struct sock *sk = skb->sk;
1766
1767 skb->destructor = NULL;
1768 skb->sk = NULL;
1769 return sk;
1770 }
1771 return NULL;
1772 }
1773
1774 extern void sock_enable_timestamp(struct sock *sk, int flag);
1775 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1776 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1777
1778 /*
1779 * Enable debug/info messages
1780 */
1781 extern int net_msg_warn;
1782 #define NETDEBUG(fmt, args...) \
1783 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1784
1785 #define LIMIT_NETDEBUG(fmt, args...) \
1786 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1787
1788 extern __u32 sysctl_wmem_max;
1789 extern __u32 sysctl_rmem_max;
1790
1791 extern void sk_init(void);
1792
1793 extern int sysctl_optmem_max;
1794
1795 extern __u32 sysctl_wmem_default;
1796 extern __u32 sysctl_rmem_default;
1797
1798 #endif /* _SOCK_H */