d10ed1776fcd137a5c9921f39a7de4c9159ebd7c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / net / mac80211.h
1 /*
2 * mac80211 <-> driver interface
3 *
4 * Copyright 2002-2005, Devicescape Software, Inc.
5 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
6 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #ifndef MAC80211_H
14 #define MAC80211_H
15
16 #include <linux/kernel.h>
17 #include <linux/if_ether.h>
18 #include <linux/skbuff.h>
19 #include <linux/wireless.h>
20 #include <linux/device.h>
21 #include <linux/ieee80211.h>
22 #include <net/cfg80211.h>
23
24 /**
25 * DOC: Introduction
26 *
27 * mac80211 is the Linux stack for 802.11 hardware that implements
28 * only partial functionality in hard- or firmware. This document
29 * defines the interface between mac80211 and low-level hardware
30 * drivers.
31 */
32
33 /**
34 * DOC: Calling mac80211 from interrupts
35 *
36 * Only ieee80211_tx_status_irqsafe() and ieee80211_rx_irqsafe() can be
37 * called in hardware interrupt context. The low-level driver must not call any
38 * other functions in hardware interrupt context. If there is a need for such
39 * call, the low-level driver should first ACK the interrupt and perform the
40 * IEEE 802.11 code call after this, e.g. from a scheduled workqueue or even
41 * tasklet function.
42 *
43 * NOTE: If the driver opts to use the _irqsafe() functions, it may not also
44 * use the non-IRQ-safe functions!
45 */
46
47 /**
48 * DOC: Warning
49 *
50 * If you're reading this document and not the header file itself, it will
51 * be incomplete because not all documentation has been converted yet.
52 */
53
54 /**
55 * DOC: Frame format
56 *
57 * As a general rule, when frames are passed between mac80211 and the driver,
58 * they start with the IEEE 802.11 header and include the same octets that are
59 * sent over the air except for the FCS which should be calculated by the
60 * hardware.
61 *
62 * There are, however, various exceptions to this rule for advanced features:
63 *
64 * The first exception is for hardware encryption and decryption offload
65 * where the IV/ICV may or may not be generated in hardware.
66 *
67 * Secondly, when the hardware handles fragmentation, the frame handed to
68 * the driver from mac80211 is the MSDU, not the MPDU.
69 *
70 * Finally, for received frames, the driver is able to indicate that it has
71 * filled a radiotap header and put that in front of the frame; if it does
72 * not do so then mac80211 may add this under certain circumstances.
73 */
74
75 /**
76 * enum ieee80211_max_queues - maximum number of queues
77 *
78 * @IEEE80211_MAX_QUEUES: Maximum number of regular device queues.
79 */
80 enum ieee80211_max_queues {
81 IEEE80211_MAX_QUEUES = 4,
82 };
83
84 /**
85 * struct ieee80211_tx_queue_params - transmit queue configuration
86 *
87 * The information provided in this structure is required for QoS
88 * transmit queue configuration. Cf. IEEE 802.11 7.3.2.29.
89 *
90 * @aifs: arbitration interframe space [0..255]
91 * @cw_min: minimum contention window [a value of the form
92 * 2^n-1 in the range 1..32767]
93 * @cw_max: maximum contention window [like @cw_min]
94 * @txop: maximum burst time in units of 32 usecs, 0 meaning disabled
95 */
96 struct ieee80211_tx_queue_params {
97 u16 txop;
98 u16 cw_min;
99 u16 cw_max;
100 u8 aifs;
101 };
102
103 /**
104 * struct ieee80211_tx_queue_stats - transmit queue statistics
105 *
106 * @len: number of packets in queue
107 * @limit: queue length limit
108 * @count: number of frames sent
109 */
110 struct ieee80211_tx_queue_stats {
111 unsigned int len;
112 unsigned int limit;
113 unsigned int count;
114 };
115
116 struct ieee80211_low_level_stats {
117 unsigned int dot11ACKFailureCount;
118 unsigned int dot11RTSFailureCount;
119 unsigned int dot11FCSErrorCount;
120 unsigned int dot11RTSSuccessCount;
121 };
122
123 /**
124 * enum ieee80211_bss_change - BSS change notification flags
125 *
126 * These flags are used with the bss_info_changed() callback
127 * to indicate which BSS parameter changed.
128 *
129 * @BSS_CHANGED_ASSOC: association status changed (associated/disassociated),
130 * also implies a change in the AID.
131 * @BSS_CHANGED_ERP_CTS_PROT: CTS protection changed
132 * @BSS_CHANGED_ERP_PREAMBLE: preamble changed
133 * @BSS_CHANGED_ERP_SLOT: slot timing changed
134 * @BSS_CHANGED_HT: 802.11n parameters changed
135 * @BSS_CHANGED_BASIC_RATES: Basic rateset changed
136 * @BSS_CHANGED_BEACON_INT: Beacon interval changed
137 * @BSS_CHANGED_BSSID: BSSID changed, for whatever
138 * reason (IBSS and managed mode)
139 * @BSS_CHANGED_BEACON: Beacon data changed, retrieve
140 * new beacon (beaconing modes)
141 * @BSS_CHANGED_BEACON_ENABLED: Beaconing should be
142 * enabled/disabled (beaconing modes)
143 */
144 enum ieee80211_bss_change {
145 BSS_CHANGED_ASSOC = 1<<0,
146 BSS_CHANGED_ERP_CTS_PROT = 1<<1,
147 BSS_CHANGED_ERP_PREAMBLE = 1<<2,
148 BSS_CHANGED_ERP_SLOT = 1<<3,
149 BSS_CHANGED_HT = 1<<4,
150 BSS_CHANGED_BASIC_RATES = 1<<5,
151 BSS_CHANGED_BEACON_INT = 1<<6,
152 BSS_CHANGED_BSSID = 1<<7,
153 BSS_CHANGED_BEACON = 1<<8,
154 BSS_CHANGED_BEACON_ENABLED = 1<<9,
155 };
156
157 /**
158 * struct ieee80211_bss_conf - holds the BSS's changing parameters
159 *
160 * This structure keeps information about a BSS (and an association
161 * to that BSS) that can change during the lifetime of the BSS.
162 *
163 * @assoc: association status
164 * @aid: association ID number, valid only when @assoc is true
165 * @use_cts_prot: use CTS protection
166 * @use_short_preamble: use 802.11b short preamble;
167 * if the hardware cannot handle this it must set the
168 * IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE hardware flag
169 * @use_short_slot: use short slot time (only relevant for ERP);
170 * if the hardware cannot handle this it must set the
171 * IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE hardware flag
172 * @dtim_period: num of beacons before the next DTIM, for PSM
173 * @timestamp: beacon timestamp
174 * @beacon_int: beacon interval
175 * @assoc_capability: capabilities taken from assoc resp
176 * @ht: BSS's HT configuration
177 * @basic_rates: bitmap of basic rates, each bit stands for an
178 * index into the rate table configured by the driver in
179 * the current band.
180 * @bssid: The BSSID for this BSS
181 * @enable_beacon: whether beaconing should be enabled or not
182 * @ht_operation_mode: HT operation mode (like in &struct ieee80211_ht_info).
183 * This field is only valid when the channel type is one of the HT types.
184 */
185 struct ieee80211_bss_conf {
186 const u8 *bssid;
187 /* association related data */
188 bool assoc;
189 u16 aid;
190 /* erp related data */
191 bool use_cts_prot;
192 bool use_short_preamble;
193 bool use_short_slot;
194 bool enable_beacon;
195 u8 dtim_period;
196 u16 beacon_int;
197 u16 assoc_capability;
198 u64 timestamp;
199 u32 basic_rates;
200 u16 ht_operation_mode;
201 };
202
203 /**
204 * enum mac80211_tx_control_flags - flags to describe transmission information/status
205 *
206 * These flags are used with the @flags member of &ieee80211_tx_info.
207 *
208 * @IEEE80211_TX_CTL_REQ_TX_STATUS: request TX status callback for this frame.
209 * @IEEE80211_TX_CTL_ASSIGN_SEQ: The driver has to assign a sequence
210 * number to this frame, taking care of not overwriting the fragment
211 * number and increasing the sequence number only when the
212 * IEEE80211_TX_CTL_FIRST_FRAGMENT flag is set. mac80211 will properly
213 * assign sequence numbers to QoS-data frames but cannot do so correctly
214 * for non-QoS-data and management frames because beacons need them from
215 * that counter as well and mac80211 cannot guarantee proper sequencing.
216 * If this flag is set, the driver should instruct the hardware to
217 * assign a sequence number to the frame or assign one itself. Cf. IEEE
218 * 802.11-2007 7.1.3.4.1 paragraph 3. This flag will always be set for
219 * beacons and always be clear for frames without a sequence number field.
220 * @IEEE80211_TX_CTL_NO_ACK: tell the low level not to wait for an ack
221 * @IEEE80211_TX_CTL_CLEAR_PS_FILT: clear powersave filter for destination
222 * station
223 * @IEEE80211_TX_CTL_FIRST_FRAGMENT: this is a first fragment of the frame
224 * @IEEE80211_TX_CTL_SEND_AFTER_DTIM: send this frame after DTIM beacon
225 * @IEEE80211_TX_CTL_AMPDU: this frame should be sent as part of an A-MPDU
226 * @IEEE80211_TX_CTL_INJECTED: Frame was injected, internal to mac80211.
227 * @IEEE80211_TX_STAT_TX_FILTERED: The frame was not transmitted
228 * because the destination STA was in powersave mode.
229 * @IEEE80211_TX_STAT_ACK: Frame was acknowledged
230 * @IEEE80211_TX_STAT_AMPDU: The frame was aggregated, so status
231 * is for the whole aggregation.
232 * @IEEE80211_TX_STAT_AMPDU_NO_BACK: no block ack was returned,
233 * so consider using block ack request (BAR).
234 * @IEEE80211_TX_CTL_RATE_CTRL_PROBE: internal to mac80211, can be
235 * set by rate control algorithms to indicate probe rate, will
236 * be cleared for fragmented frames (except on the last fragment)
237 * @IEEE80211_TX_INTFL_RCALGO: mac80211 internal flag, do not test or
238 * set this flag in the driver; indicates that the rate control
239 * algorithm was used and should be notified of TX status
240 * @IEEE80211_TX_INTFL_NEED_TXPROCESSING: completely internal to mac80211,
241 * used to indicate that a pending frame requires TX processing before
242 * it can be sent out.
243 */
244 enum mac80211_tx_control_flags {
245 IEEE80211_TX_CTL_REQ_TX_STATUS = BIT(0),
246 IEEE80211_TX_CTL_ASSIGN_SEQ = BIT(1),
247 IEEE80211_TX_CTL_NO_ACK = BIT(2),
248 IEEE80211_TX_CTL_CLEAR_PS_FILT = BIT(3),
249 IEEE80211_TX_CTL_FIRST_FRAGMENT = BIT(4),
250 IEEE80211_TX_CTL_SEND_AFTER_DTIM = BIT(5),
251 IEEE80211_TX_CTL_AMPDU = BIT(6),
252 IEEE80211_TX_CTL_INJECTED = BIT(7),
253 IEEE80211_TX_STAT_TX_FILTERED = BIT(8),
254 IEEE80211_TX_STAT_ACK = BIT(9),
255 IEEE80211_TX_STAT_AMPDU = BIT(10),
256 IEEE80211_TX_STAT_AMPDU_NO_BACK = BIT(11),
257 IEEE80211_TX_CTL_RATE_CTRL_PROBE = BIT(12),
258 IEEE80211_TX_INTFL_RCALGO = BIT(13),
259 IEEE80211_TX_INTFL_NEED_TXPROCESSING = BIT(14),
260 };
261
262 /**
263 * enum mac80211_rate_control_flags - per-rate flags set by the
264 * Rate Control algorithm.
265 *
266 * These flags are set by the Rate control algorithm for each rate during tx,
267 * in the @flags member of struct ieee80211_tx_rate.
268 *
269 * @IEEE80211_TX_RC_USE_RTS_CTS: Use RTS/CTS exchange for this rate.
270 * @IEEE80211_TX_RC_USE_CTS_PROTECT: CTS-to-self protection is required.
271 * This is set if the current BSS requires ERP protection.
272 * @IEEE80211_TX_RC_USE_SHORT_PREAMBLE: Use short preamble.
273 * @IEEE80211_TX_RC_MCS: HT rate.
274 * @IEEE80211_TX_RC_GREEN_FIELD: Indicates whether this rate should be used in
275 * Greenfield mode.
276 * @IEEE80211_TX_RC_40_MHZ_WIDTH: Indicates if the Channel Width should be 40 MHz.
277 * @IEEE80211_TX_RC_DUP_DATA: The frame should be transmitted on both of the
278 * adjacent 20 MHz channels, if the current channel type is
279 * NL80211_CHAN_HT40MINUS or NL80211_CHAN_HT40PLUS.
280 * @IEEE80211_TX_RC_SHORT_GI: Short Guard interval should be used for this rate.
281 */
282 enum mac80211_rate_control_flags {
283 IEEE80211_TX_RC_USE_RTS_CTS = BIT(0),
284 IEEE80211_TX_RC_USE_CTS_PROTECT = BIT(1),
285 IEEE80211_TX_RC_USE_SHORT_PREAMBLE = BIT(2),
286
287 /* rate index is an MCS rate number instead of an index */
288 IEEE80211_TX_RC_MCS = BIT(3),
289 IEEE80211_TX_RC_GREEN_FIELD = BIT(4),
290 IEEE80211_TX_RC_40_MHZ_WIDTH = BIT(5),
291 IEEE80211_TX_RC_DUP_DATA = BIT(6),
292 IEEE80211_TX_RC_SHORT_GI = BIT(7),
293 };
294
295
296 /* there are 40 bytes if you don't need the rateset to be kept */
297 #define IEEE80211_TX_INFO_DRIVER_DATA_SIZE 40
298
299 /* if you do need the rateset, then you have less space */
300 #define IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE 24
301
302 /* maximum number of rate stages */
303 #define IEEE80211_TX_MAX_RATES 5
304
305 /**
306 * struct ieee80211_tx_rate - rate selection/status
307 *
308 * @idx: rate index to attempt to send with
309 * @flags: rate control flags (&enum mac80211_rate_control_flags)
310 * @count: number of tries in this rate before going to the next rate
311 *
312 * A value of -1 for @idx indicates an invalid rate and, if used
313 * in an array of retry rates, that no more rates should be tried.
314 *
315 * When used for transmit status reporting, the driver should
316 * always report the rate along with the flags it used.
317 */
318 struct ieee80211_tx_rate {
319 s8 idx;
320 u8 count;
321 u8 flags;
322 } __attribute__((packed));
323
324 /**
325 * struct ieee80211_tx_info - skb transmit information
326 *
327 * This structure is placed in skb->cb for three uses:
328 * (1) mac80211 TX control - mac80211 tells the driver what to do
329 * (2) driver internal use (if applicable)
330 * (3) TX status information - driver tells mac80211 what happened
331 *
332 * The TX control's sta pointer is only valid during the ->tx call,
333 * it may be NULL.
334 *
335 * @flags: transmit info flags, defined above
336 * @band: the band to transmit on (use for checking for races)
337 * @antenna_sel_tx: antenna to use, 0 for automatic diversity
338 * @pad: padding, ignore
339 * @control: union for control data
340 * @status: union for status data
341 * @driver_data: array of driver_data pointers
342 * @ampdu_ack_len: number of aggregated frames.
343 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
344 * @ampdu_ack_map: block ack bit map for the aggregation.
345 * relevant only if IEEE80211_TX_STATUS_AMPDU was set.
346 * @ack_signal: signal strength of the ACK frame
347 */
348 struct ieee80211_tx_info {
349 /* common information */
350 u32 flags;
351 u8 band;
352
353 u8 antenna_sel_tx;
354
355 /* 2 byte hole */
356 u8 pad[2];
357
358 union {
359 struct {
360 union {
361 /* rate control */
362 struct {
363 struct ieee80211_tx_rate rates[
364 IEEE80211_TX_MAX_RATES];
365 s8 rts_cts_rate_idx;
366 };
367 /* only needed before rate control */
368 unsigned long jiffies;
369 };
370 /* NB: vif can be NULL for injected frames */
371 struct ieee80211_vif *vif;
372 struct ieee80211_key_conf *hw_key;
373 struct ieee80211_sta *sta;
374 } control;
375 struct {
376 struct ieee80211_tx_rate rates[IEEE80211_TX_MAX_RATES];
377 u8 ampdu_ack_len;
378 u64 ampdu_ack_map;
379 int ack_signal;
380 /* 8 bytes free */
381 } status;
382 struct {
383 struct ieee80211_tx_rate driver_rates[
384 IEEE80211_TX_MAX_RATES];
385 void *rate_driver_data[
386 IEEE80211_TX_INFO_RATE_DRIVER_DATA_SIZE / sizeof(void *)];
387 };
388 void *driver_data[
389 IEEE80211_TX_INFO_DRIVER_DATA_SIZE / sizeof(void *)];
390 };
391 };
392
393 static inline struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb)
394 {
395 return (struct ieee80211_tx_info *)skb->cb;
396 }
397
398 /**
399 * ieee80211_tx_info_clear_status - clear TX status
400 *
401 * @info: The &struct ieee80211_tx_info to be cleared.
402 *
403 * When the driver passes an skb back to mac80211, it must report
404 * a number of things in TX status. This function clears everything
405 * in the TX status but the rate control information (it does clear
406 * the count since you need to fill that in anyway).
407 *
408 * NOTE: You can only use this function if you do NOT use
409 * info->driver_data! Use info->rate_driver_data
410 * instead if you need only the less space that allows.
411 */
412 static inline void
413 ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info)
414 {
415 int i;
416
417 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
418 offsetof(struct ieee80211_tx_info, control.rates));
419 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) !=
420 offsetof(struct ieee80211_tx_info, driver_rates));
421 BUILD_BUG_ON(offsetof(struct ieee80211_tx_info, status.rates) != 8);
422 /* clear the rate counts */
423 for (i = 0; i < IEEE80211_TX_MAX_RATES; i++)
424 info->status.rates[i].count = 0;
425
426 BUILD_BUG_ON(
427 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len) != 23);
428 memset(&info->status.ampdu_ack_len, 0,
429 sizeof(struct ieee80211_tx_info) -
430 offsetof(struct ieee80211_tx_info, status.ampdu_ack_len));
431 }
432
433
434 /**
435 * enum mac80211_rx_flags - receive flags
436 *
437 * These flags are used with the @flag member of &struct ieee80211_rx_status.
438 * @RX_FLAG_MMIC_ERROR: Michael MIC error was reported on this frame.
439 * Use together with %RX_FLAG_MMIC_STRIPPED.
440 * @RX_FLAG_DECRYPTED: This frame was decrypted in hardware.
441 * @RX_FLAG_RADIOTAP: This frame starts with a radiotap header.
442 * @RX_FLAG_MMIC_STRIPPED: the Michael MIC is stripped off this frame,
443 * verification has been done by the hardware.
444 * @RX_FLAG_IV_STRIPPED: The IV/ICV are stripped from this frame.
445 * If this flag is set, the stack cannot do any replay detection
446 * hence the driver or hardware will have to do that.
447 * @RX_FLAG_FAILED_FCS_CRC: Set this flag if the FCS check failed on
448 * the frame.
449 * @RX_FLAG_FAILED_PLCP_CRC: Set this flag if the PCLP check failed on
450 * the frame.
451 * @RX_FLAG_TSFT: The timestamp passed in the RX status (@mactime field)
452 * is valid. This is useful in monitor mode and necessary for beacon frames
453 * to enable IBSS merging.
454 * @RX_FLAG_SHORTPRE: Short preamble was used for this frame
455 * @RX_FLAG_HT: HT MCS was used and rate_idx is MCS index
456 * @RX_FLAG_40MHZ: HT40 (40 MHz) was used
457 * @RX_FLAG_SHORT_GI: Short guard interval was used
458 */
459 enum mac80211_rx_flags {
460 RX_FLAG_MMIC_ERROR = 1<<0,
461 RX_FLAG_DECRYPTED = 1<<1,
462 RX_FLAG_RADIOTAP = 1<<2,
463 RX_FLAG_MMIC_STRIPPED = 1<<3,
464 RX_FLAG_IV_STRIPPED = 1<<4,
465 RX_FLAG_FAILED_FCS_CRC = 1<<5,
466 RX_FLAG_FAILED_PLCP_CRC = 1<<6,
467 RX_FLAG_TSFT = 1<<7,
468 RX_FLAG_SHORTPRE = 1<<8,
469 RX_FLAG_HT = 1<<9,
470 RX_FLAG_40MHZ = 1<<10,
471 RX_FLAG_SHORT_GI = 1<<11,
472 };
473
474 /**
475 * struct ieee80211_rx_status - receive status
476 *
477 * The low-level driver should provide this information (the subset
478 * supported by hardware) to the 802.11 code with each received
479 * frame.
480 *
481 * @mactime: value in microseconds of the 64-bit Time Synchronization Function
482 * (TSF) timer when the first data symbol (MPDU) arrived at the hardware.
483 * @band: the active band when this frame was received
484 * @freq: frequency the radio was tuned to when receiving this frame, in MHz
485 * @signal: signal strength when receiving this frame, either in dBm, in dB or
486 * unspecified depending on the hardware capabilities flags
487 * @IEEE80211_HW_SIGNAL_*
488 * @noise: noise when receiving this frame, in dBm.
489 * @qual: overall signal quality indication, in percent (0-100).
490 * @antenna: antenna used
491 * @rate_idx: index of data rate into band's supported rates or MCS index if
492 * HT rates are use (RX_FLAG_HT)
493 * @flag: %RX_FLAG_*
494 */
495 struct ieee80211_rx_status {
496 u64 mactime;
497 enum ieee80211_band band;
498 int freq;
499 int signal;
500 int noise;
501 int qual;
502 int antenna;
503 int rate_idx;
504 int flag;
505 };
506
507 /**
508 * enum ieee80211_conf_flags - configuration flags
509 *
510 * Flags to define PHY configuration options
511 *
512 * @IEEE80211_CONF_RADIOTAP: add radiotap header at receive time (if supported)
513 * @IEEE80211_CONF_PS: Enable 802.11 power save mode (managed mode only)
514 * @IEEE80211_CONF_IDLE: The device is running, but idle; if the flag is set
515 * the driver should be prepared to handle configuration requests but
516 * may turn the device off as much as possible. Typically, this flag will
517 * be set when an interface is set UP but not associated or scanning, but
518 * it can also be unset in that case when monitor interfaces are active.
519 */
520 enum ieee80211_conf_flags {
521 IEEE80211_CONF_RADIOTAP = (1<<0),
522 IEEE80211_CONF_PS = (1<<1),
523 IEEE80211_CONF_IDLE = (1<<2),
524 };
525
526
527 /**
528 * enum ieee80211_conf_changed - denotes which configuration changed
529 *
530 * @IEEE80211_CONF_CHANGE_RADIO_ENABLED: the value of radio_enabled changed
531 * @_IEEE80211_CONF_CHANGE_BEACON_INTERVAL: DEPRECATED
532 * @IEEE80211_CONF_CHANGE_LISTEN_INTERVAL: the listen interval changed
533 * @IEEE80211_CONF_CHANGE_RADIOTAP: the radiotap flag changed
534 * @IEEE80211_CONF_CHANGE_PS: the PS flag or dynamic PS timeout changed
535 * @IEEE80211_CONF_CHANGE_POWER: the TX power changed
536 * @IEEE80211_CONF_CHANGE_CHANNEL: the channel/channel_type changed
537 * @IEEE80211_CONF_CHANGE_RETRY_LIMITS: retry limits changed
538 * @IEEE80211_CONF_CHANGE_IDLE: Idle flag changed
539 */
540 enum ieee80211_conf_changed {
541 IEEE80211_CONF_CHANGE_RADIO_ENABLED = BIT(0),
542 _IEEE80211_CONF_CHANGE_BEACON_INTERVAL = BIT(1),
543 IEEE80211_CONF_CHANGE_LISTEN_INTERVAL = BIT(2),
544 IEEE80211_CONF_CHANGE_RADIOTAP = BIT(3),
545 IEEE80211_CONF_CHANGE_PS = BIT(4),
546 IEEE80211_CONF_CHANGE_POWER = BIT(5),
547 IEEE80211_CONF_CHANGE_CHANNEL = BIT(6),
548 IEEE80211_CONF_CHANGE_RETRY_LIMITS = BIT(7),
549 IEEE80211_CONF_CHANGE_IDLE = BIT(8),
550 };
551
552 static inline __deprecated enum ieee80211_conf_changed
553 __IEEE80211_CONF_CHANGE_BEACON_INTERVAL(void)
554 {
555 return _IEEE80211_CONF_CHANGE_BEACON_INTERVAL;
556 }
557 #define IEEE80211_CONF_CHANGE_BEACON_INTERVAL \
558 __IEEE80211_CONF_CHANGE_BEACON_INTERVAL()
559
560 /**
561 * struct ieee80211_conf - configuration of the device
562 *
563 * This struct indicates how the driver shall configure the hardware.
564 *
565 * @flags: configuration flags defined above
566 *
567 * @radio_enabled: when zero, driver is required to switch off the radio.
568 * @beacon_int: beacon interval (TODO make interface config)
569 *
570 * @listen_interval: listen interval in units of beacon interval
571 * @max_sleep_period: the maximum number of beacon intervals to sleep for
572 * before checking the beacon for a TIM bit (managed mode only); this
573 * value will be only achievable between DTIM frames, the hardware
574 * needs to check for the multicast traffic bit in DTIM beacons.
575 * This variable is valid only when the CONF_PS flag is set.
576 * @dynamic_ps_timeout: The dynamic powersave timeout (in ms), see the
577 * powersave documentation below. This variable is valid only when
578 * the CONF_PS flag is set.
579 *
580 * @power_level: requested transmit power (in dBm)
581 *
582 * @channel: the channel to tune to
583 * @channel_type: the channel (HT) type
584 *
585 * @long_frame_max_tx_count: Maximum number of transmissions for a "long" frame
586 * (a frame not RTS protected), called "dot11LongRetryLimit" in 802.11,
587 * but actually means the number of transmissions not the number of retries
588 * @short_frame_max_tx_count: Maximum number of transmissions for a "short"
589 * frame, called "dot11ShortRetryLimit" in 802.11, but actually means the
590 * number of transmissions not the number of retries
591 */
592 struct ieee80211_conf {
593 int beacon_int;
594 u32 flags;
595 int power_level, dynamic_ps_timeout;
596 int max_sleep_period;
597
598 u16 listen_interval;
599 bool radio_enabled;
600
601 u8 long_frame_max_tx_count, short_frame_max_tx_count;
602
603 struct ieee80211_channel *channel;
604 enum nl80211_channel_type channel_type;
605 };
606
607 /**
608 * struct ieee80211_vif - per-interface data
609 *
610 * Data in this structure is continually present for driver
611 * use during the life of a virtual interface.
612 *
613 * @type: type of this virtual interface
614 * @bss_conf: BSS configuration for this interface, either our own
615 * or the BSS we're associated to
616 * @drv_priv: data area for driver use, will always be aligned to
617 * sizeof(void *).
618 */
619 struct ieee80211_vif {
620 enum nl80211_iftype type;
621 struct ieee80211_bss_conf bss_conf;
622 /* must be last */
623 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
624 };
625
626 static inline bool ieee80211_vif_is_mesh(struct ieee80211_vif *vif)
627 {
628 #ifdef CONFIG_MAC80211_MESH
629 return vif->type == NL80211_IFTYPE_MESH_POINT;
630 #endif
631 return false;
632 }
633
634 /**
635 * struct ieee80211_if_init_conf - initial configuration of an interface
636 *
637 * @vif: pointer to a driver-use per-interface structure. The pointer
638 * itself is also used for various functions including
639 * ieee80211_beacon_get() and ieee80211_get_buffered_bc().
640 * @type: one of &enum nl80211_iftype constants. Determines the type of
641 * added/removed interface.
642 * @mac_addr: pointer to MAC address of the interface. This pointer is valid
643 * until the interface is removed (i.e. it cannot be used after
644 * remove_interface() callback was called for this interface).
645 *
646 * This structure is used in add_interface() and remove_interface()
647 * callbacks of &struct ieee80211_hw.
648 *
649 * When you allow multiple interfaces to be added to your PHY, take care
650 * that the hardware can actually handle multiple MAC addresses. However,
651 * also take care that when there's no interface left with mac_addr != %NULL
652 * you remove the MAC address from the device to avoid acknowledging packets
653 * in pure monitor mode.
654 */
655 struct ieee80211_if_init_conf {
656 enum nl80211_iftype type;
657 struct ieee80211_vif *vif;
658 void *mac_addr;
659 };
660
661 /**
662 * enum ieee80211_key_alg - key algorithm
663 * @ALG_WEP: WEP40 or WEP104
664 * @ALG_TKIP: TKIP
665 * @ALG_CCMP: CCMP (AES)
666 * @ALG_AES_CMAC: AES-128-CMAC
667 */
668 enum ieee80211_key_alg {
669 ALG_WEP,
670 ALG_TKIP,
671 ALG_CCMP,
672 ALG_AES_CMAC,
673 };
674
675 /**
676 * enum ieee80211_key_len - key length
677 * @LEN_WEP40: WEP 5-byte long key
678 * @LEN_WEP104: WEP 13-byte long key
679 */
680 enum ieee80211_key_len {
681 LEN_WEP40 = 5,
682 LEN_WEP104 = 13,
683 };
684
685 /**
686 * enum ieee80211_key_flags - key flags
687 *
688 * These flags are used for communication about keys between the driver
689 * and mac80211, with the @flags parameter of &struct ieee80211_key_conf.
690 *
691 * @IEEE80211_KEY_FLAG_WMM_STA: Set by mac80211, this flag indicates
692 * that the STA this key will be used with could be using QoS.
693 * @IEEE80211_KEY_FLAG_GENERATE_IV: This flag should be set by the
694 * driver to indicate that it requires IV generation for this
695 * particular key.
696 * @IEEE80211_KEY_FLAG_GENERATE_MMIC: This flag should be set by
697 * the driver for a TKIP key if it requires Michael MIC
698 * generation in software.
699 * @IEEE80211_KEY_FLAG_PAIRWISE: Set by mac80211, this flag indicates
700 * that the key is pairwise rather then a shared key.
701 * @IEEE80211_KEY_FLAG_SW_MGMT: This flag should be set by the driver for a
702 * CCMP key if it requires CCMP encryption of management frames (MFP) to
703 * be done in software.
704 */
705 enum ieee80211_key_flags {
706 IEEE80211_KEY_FLAG_WMM_STA = 1<<0,
707 IEEE80211_KEY_FLAG_GENERATE_IV = 1<<1,
708 IEEE80211_KEY_FLAG_GENERATE_MMIC= 1<<2,
709 IEEE80211_KEY_FLAG_PAIRWISE = 1<<3,
710 IEEE80211_KEY_FLAG_SW_MGMT = 1<<4,
711 };
712
713 /**
714 * struct ieee80211_key_conf - key information
715 *
716 * This key information is given by mac80211 to the driver by
717 * the set_key() callback in &struct ieee80211_ops.
718 *
719 * @hw_key_idx: To be set by the driver, this is the key index the driver
720 * wants to be given when a frame is transmitted and needs to be
721 * encrypted in hardware.
722 * @alg: The key algorithm.
723 * @flags: key flags, see &enum ieee80211_key_flags.
724 * @keyidx: the key index (0-3)
725 * @keylen: key material length
726 * @key: key material. For ALG_TKIP the key is encoded as a 256-bit (32 byte)
727 * data block:
728 * - Temporal Encryption Key (128 bits)
729 * - Temporal Authenticator Tx MIC Key (64 bits)
730 * - Temporal Authenticator Rx MIC Key (64 bits)
731 * @icv_len: The ICV length for this key type
732 * @iv_len: The IV length for this key type
733 */
734 struct ieee80211_key_conf {
735 enum ieee80211_key_alg alg;
736 u8 icv_len;
737 u8 iv_len;
738 u8 hw_key_idx;
739 u8 flags;
740 s8 keyidx;
741 u8 keylen;
742 u8 key[0];
743 };
744
745 /**
746 * enum set_key_cmd - key command
747 *
748 * Used with the set_key() callback in &struct ieee80211_ops, this
749 * indicates whether a key is being removed or added.
750 *
751 * @SET_KEY: a key is set
752 * @DISABLE_KEY: a key must be disabled
753 */
754 enum set_key_cmd {
755 SET_KEY, DISABLE_KEY,
756 };
757
758 /**
759 * struct ieee80211_sta - station table entry
760 *
761 * A station table entry represents a station we are possibly
762 * communicating with. Since stations are RCU-managed in
763 * mac80211, any ieee80211_sta pointer you get access to must
764 * either be protected by rcu_read_lock() explicitly or implicitly,
765 * or you must take good care to not use such a pointer after a
766 * call to your sta_notify callback that removed it.
767 *
768 * @addr: MAC address
769 * @aid: AID we assigned to the station if we're an AP
770 * @supp_rates: Bitmap of supported rates (per band)
771 * @ht_cap: HT capabilities of this STA; restricted to our own TX capabilities
772 * @drv_priv: data area for driver use, will always be aligned to
773 * sizeof(void *), size is determined in hw information.
774 */
775 struct ieee80211_sta {
776 u32 supp_rates[IEEE80211_NUM_BANDS];
777 u8 addr[ETH_ALEN];
778 u16 aid;
779 struct ieee80211_sta_ht_cap ht_cap;
780
781 /* must be last */
782 u8 drv_priv[0] __attribute__((__aligned__(sizeof(void *))));
783 };
784
785 /**
786 * enum sta_notify_cmd - sta notify command
787 *
788 * Used with the sta_notify() callback in &struct ieee80211_ops, this
789 * indicates addition and removal of a station to station table,
790 * or if a associated station made a power state transition.
791 *
792 * @STA_NOTIFY_ADD: a station was added to the station table
793 * @STA_NOTIFY_REMOVE: a station being removed from the station table
794 * @STA_NOTIFY_SLEEP: a station is now sleeping
795 * @STA_NOTIFY_AWAKE: a sleeping station woke up
796 */
797 enum sta_notify_cmd {
798 STA_NOTIFY_ADD, STA_NOTIFY_REMOVE,
799 STA_NOTIFY_SLEEP, STA_NOTIFY_AWAKE,
800 };
801
802 /**
803 * enum ieee80211_tkip_key_type - get tkip key
804 *
805 * Used by drivers which need to get a tkip key for skb. Some drivers need a
806 * phase 1 key, others need a phase 2 key. A single function allows the driver
807 * to get the key, this enum indicates what type of key is required.
808 *
809 * @IEEE80211_TKIP_P1_KEY: the driver needs a phase 1 key
810 * @IEEE80211_TKIP_P2_KEY: the driver needs a phase 2 key
811 */
812 enum ieee80211_tkip_key_type {
813 IEEE80211_TKIP_P1_KEY,
814 IEEE80211_TKIP_P2_KEY,
815 };
816
817 /**
818 * enum ieee80211_hw_flags - hardware flags
819 *
820 * These flags are used to indicate hardware capabilities to
821 * the stack. Generally, flags here should have their meaning
822 * done in a way that the simplest hardware doesn't need setting
823 * any particular flags. There are some exceptions to this rule,
824 * however, so you are advised to review these flags carefully.
825 *
826 * @IEEE80211_HW_RX_INCLUDES_FCS:
827 * Indicates that received frames passed to the stack include
828 * the FCS at the end.
829 *
830 * @IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING:
831 * Some wireless LAN chipsets buffer broadcast/multicast frames
832 * for power saving stations in the hardware/firmware and others
833 * rely on the host system for such buffering. This option is used
834 * to configure the IEEE 802.11 upper layer to buffer broadcast and
835 * multicast frames when there are power saving stations so that
836 * the driver can fetch them with ieee80211_get_buffered_bc().
837 *
838 * @IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE:
839 * Hardware is not capable of short slot operation on the 2.4 GHz band.
840 *
841 * @IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE:
842 * Hardware is not capable of receiving frames with short preamble on
843 * the 2.4 GHz band.
844 *
845 * @IEEE80211_HW_SIGNAL_UNSPEC:
846 * Hardware can provide signal values but we don't know its units. We
847 * expect values between 0 and @max_signal.
848 * If possible please provide dB or dBm instead.
849 *
850 * @IEEE80211_HW_SIGNAL_DBM:
851 * Hardware gives signal values in dBm, decibel difference from
852 * one milliwatt. This is the preferred method since it is standardized
853 * between different devices. @max_signal does not need to be set.
854 *
855 * @IEEE80211_HW_NOISE_DBM:
856 * Hardware can provide noise (radio interference) values in units dBm,
857 * decibel difference from one milliwatt.
858 *
859 * @IEEE80211_HW_SPECTRUM_MGMT:
860 * Hardware supports spectrum management defined in 802.11h
861 * Measurement, Channel Switch, Quieting, TPC
862 *
863 * @IEEE80211_HW_AMPDU_AGGREGATION:
864 * Hardware supports 11n A-MPDU aggregation.
865 *
866 * @IEEE80211_HW_SUPPORTS_PS:
867 * Hardware has power save support (i.e. can go to sleep).
868 *
869 * @IEEE80211_HW_PS_NULLFUNC_STACK:
870 * Hardware requires nullfunc frame handling in stack, implies
871 * stack support for dynamic PS.
872 *
873 * @IEEE80211_HW_SUPPORTS_DYNAMIC_PS:
874 * Hardware has support for dynamic PS.
875 *
876 * @IEEE80211_HW_MFP_CAPABLE:
877 * Hardware supports management frame protection (MFP, IEEE 802.11w).
878 *
879 * @IEEE80211_HW_BEACON_FILTER:
880 * Hardware supports dropping of irrelevant beacon frames to
881 * avoid waking up cpu.
882 */
883 enum ieee80211_hw_flags {
884 IEEE80211_HW_RX_INCLUDES_FCS = 1<<1,
885 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING = 1<<2,
886 IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE = 1<<3,
887 IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE = 1<<4,
888 IEEE80211_HW_SIGNAL_UNSPEC = 1<<5,
889 IEEE80211_HW_SIGNAL_DBM = 1<<6,
890 IEEE80211_HW_NOISE_DBM = 1<<7,
891 IEEE80211_HW_SPECTRUM_MGMT = 1<<8,
892 IEEE80211_HW_AMPDU_AGGREGATION = 1<<9,
893 IEEE80211_HW_SUPPORTS_PS = 1<<10,
894 IEEE80211_HW_PS_NULLFUNC_STACK = 1<<11,
895 IEEE80211_HW_SUPPORTS_DYNAMIC_PS = 1<<12,
896 IEEE80211_HW_MFP_CAPABLE = 1<<13,
897 IEEE80211_HW_BEACON_FILTER = 1<<14,
898 };
899
900 /**
901 * struct ieee80211_hw - hardware information and state
902 *
903 * This structure contains the configuration and hardware
904 * information for an 802.11 PHY.
905 *
906 * @wiphy: This points to the &struct wiphy allocated for this
907 * 802.11 PHY. You must fill in the @perm_addr and @dev
908 * members of this structure using SET_IEEE80211_DEV()
909 * and SET_IEEE80211_PERM_ADDR(). Additionally, all supported
910 * bands (with channels, bitrates) are registered here.
911 *
912 * @conf: &struct ieee80211_conf, device configuration, don't use.
913 *
914 * @workqueue: single threaded workqueue available for driver use,
915 * allocated by mac80211 on registration and flushed when an
916 * interface is removed.
917 * NOTICE: All work performed on this workqueue must not
918 * acquire the RTNL lock.
919 *
920 * @priv: pointer to private area that was allocated for driver use
921 * along with this structure.
922 *
923 * @flags: hardware flags, see &enum ieee80211_hw_flags.
924 *
925 * @extra_tx_headroom: headroom to reserve in each transmit skb
926 * for use by the driver (e.g. for transmit headers.)
927 *
928 * @channel_change_time: time (in microseconds) it takes to change channels.
929 *
930 * @max_signal: Maximum value for signal (rssi) in RX information, used
931 * only when @IEEE80211_HW_SIGNAL_UNSPEC or @IEEE80211_HW_SIGNAL_DB
932 *
933 * @max_listen_interval: max listen interval in units of beacon interval
934 * that HW supports
935 *
936 * @queues: number of available hardware transmit queues for
937 * data packets. WMM/QoS requires at least four, these
938 * queues need to have configurable access parameters.
939 *
940 * @rate_control_algorithm: rate control algorithm for this hardware.
941 * If unset (NULL), the default algorithm will be used. Must be
942 * set before calling ieee80211_register_hw().
943 *
944 * @vif_data_size: size (in bytes) of the drv_priv data area
945 * within &struct ieee80211_vif.
946 * @sta_data_size: size (in bytes) of the drv_priv data area
947 * within &struct ieee80211_sta.
948 *
949 * @max_rates: maximum number of alternate rate retry stages
950 * @max_rate_tries: maximum number of tries for each stage
951 */
952 struct ieee80211_hw {
953 struct ieee80211_conf conf;
954 struct wiphy *wiphy;
955 struct workqueue_struct *workqueue;
956 const char *rate_control_algorithm;
957 void *priv;
958 u32 flags;
959 unsigned int extra_tx_headroom;
960 int channel_change_time;
961 int vif_data_size;
962 int sta_data_size;
963 u16 queues;
964 u16 max_listen_interval;
965 s8 max_signal;
966 u8 max_rates;
967 u8 max_rate_tries;
968 };
969
970 /**
971 * wiphy_to_ieee80211_hw - return a mac80211 driver hw struct from a wiphy
972 *
973 * @wiphy: the &struct wiphy which we want to query
974 *
975 * mac80211 drivers can use this to get to their respective
976 * &struct ieee80211_hw. Drivers wishing to get to their own private
977 * structure can then access it via hw->priv. Note that mac802111 drivers should
978 * not use wiphy_priv() to try to get their private driver structure as this
979 * is already used internally by mac80211.
980 */
981 struct ieee80211_hw *wiphy_to_ieee80211_hw(struct wiphy *wiphy);
982
983 /**
984 * SET_IEEE80211_DEV - set device for 802.11 hardware
985 *
986 * @hw: the &struct ieee80211_hw to set the device for
987 * @dev: the &struct device of this 802.11 device
988 */
989 static inline void SET_IEEE80211_DEV(struct ieee80211_hw *hw, struct device *dev)
990 {
991 set_wiphy_dev(hw->wiphy, dev);
992 }
993
994 /**
995 * SET_IEEE80211_PERM_ADDR - set the permanent MAC address for 802.11 hardware
996 *
997 * @hw: the &struct ieee80211_hw to set the MAC address for
998 * @addr: the address to set
999 */
1000 static inline void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw, u8 *addr)
1001 {
1002 memcpy(hw->wiphy->perm_addr, addr, ETH_ALEN);
1003 }
1004
1005 static inline struct ieee80211_rate *
1006 ieee80211_get_tx_rate(const struct ieee80211_hw *hw,
1007 const struct ieee80211_tx_info *c)
1008 {
1009 if (WARN_ON(c->control.rates[0].idx < 0))
1010 return NULL;
1011 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[0].idx];
1012 }
1013
1014 static inline struct ieee80211_rate *
1015 ieee80211_get_rts_cts_rate(const struct ieee80211_hw *hw,
1016 const struct ieee80211_tx_info *c)
1017 {
1018 if (c->control.rts_cts_rate_idx < 0)
1019 return NULL;
1020 return &hw->wiphy->bands[c->band]->bitrates[c->control.rts_cts_rate_idx];
1021 }
1022
1023 static inline struct ieee80211_rate *
1024 ieee80211_get_alt_retry_rate(const struct ieee80211_hw *hw,
1025 const struct ieee80211_tx_info *c, int idx)
1026 {
1027 if (c->control.rates[idx + 1].idx < 0)
1028 return NULL;
1029 return &hw->wiphy->bands[c->band]->bitrates[c->control.rates[idx + 1].idx];
1030 }
1031
1032 /**
1033 * DOC: Hardware crypto acceleration
1034 *
1035 * mac80211 is capable of taking advantage of many hardware
1036 * acceleration designs for encryption and decryption operations.
1037 *
1038 * The set_key() callback in the &struct ieee80211_ops for a given
1039 * device is called to enable hardware acceleration of encryption and
1040 * decryption. The callback takes a @sta parameter that will be NULL
1041 * for default keys or keys used for transmission only, or point to
1042 * the station information for the peer for individual keys.
1043 * Multiple transmission keys with the same key index may be used when
1044 * VLANs are configured for an access point.
1045 *
1046 * When transmitting, the TX control data will use the @hw_key_idx
1047 * selected by the driver by modifying the &struct ieee80211_key_conf
1048 * pointed to by the @key parameter to the set_key() function.
1049 *
1050 * The set_key() call for the %SET_KEY command should return 0 if
1051 * the key is now in use, -%EOPNOTSUPP or -%ENOSPC if it couldn't be
1052 * added; if you return 0 then hw_key_idx must be assigned to the
1053 * hardware key index, you are free to use the full u8 range.
1054 *
1055 * When the cmd is %DISABLE_KEY then it must succeed.
1056 *
1057 * Note that it is permissible to not decrypt a frame even if a key
1058 * for it has been uploaded to hardware, the stack will not make any
1059 * decision based on whether a key has been uploaded or not but rather
1060 * based on the receive flags.
1061 *
1062 * The &struct ieee80211_key_conf structure pointed to by the @key
1063 * parameter is guaranteed to be valid until another call to set_key()
1064 * removes it, but it can only be used as a cookie to differentiate
1065 * keys.
1066 *
1067 * In TKIP some HW need to be provided a phase 1 key, for RX decryption
1068 * acceleration (i.e. iwlwifi). Those drivers should provide update_tkip_key
1069 * handler.
1070 * The update_tkip_key() call updates the driver with the new phase 1 key.
1071 * This happens everytime the iv16 wraps around (every 65536 packets). The
1072 * set_key() call will happen only once for each key (unless the AP did
1073 * rekeying), it will not include a valid phase 1 key. The valid phase 1 key is
1074 * provided by update_tkip_key only. The trigger that makes mac80211 call this
1075 * handler is software decryption with wrap around of iv16.
1076 */
1077
1078 /**
1079 * DOC: Powersave support
1080 *
1081 * mac80211 has support for various powersave implementations.
1082 *
1083 * First, it can support hardware that handles all powersaving by
1084 * itself, such hardware should simply set the %IEEE80211_HW_SUPPORTS_PS
1085 * hardware flag. In that case, it will be told about the desired
1086 * powersave mode depending on the association status, and the driver
1087 * must take care of sending nullfunc frames when necessary, i.e. when
1088 * entering and leaving powersave mode. The driver is required to look at
1089 * the AID in beacons and signal to the AP that it woke up when it finds
1090 * traffic directed to it. This mode supports dynamic PS by simply
1091 * enabling/disabling PS.
1092 *
1093 * Additionally, such hardware may set the %IEEE80211_HW_SUPPORTS_DYNAMIC_PS
1094 * flag to indicate that it can support dynamic PS mode itself (see below).
1095 *
1096 * Other hardware designs cannot send nullfunc frames by themselves and also
1097 * need software support for parsing the TIM bitmap. This is also supported
1098 * by mac80211 by combining the %IEEE80211_HW_SUPPORTS_PS and
1099 * %IEEE80211_HW_PS_NULLFUNC_STACK flags. The hardware is of course still
1100 * required to pass up beacons. The hardware is still required to handle
1101 * waking up for multicast traffic; if it cannot the driver must handle that
1102 * as best as it can, mac80211 is too slow.
1103 *
1104 * Dynamic powersave mode is an extension to normal powersave mode in which
1105 * the hardware stays awake for a user-specified period of time after sending
1106 * a frame so that reply frames need not be buffered and therefore delayed
1107 * to the next wakeup. This can either be supported by hardware, in which case
1108 * the driver needs to look at the @dynamic_ps_timeout hardware configuration
1109 * value, or by the stack if all nullfunc handling is in the stack.
1110 */
1111
1112 /**
1113 * DOC: Beacon filter support
1114 *
1115 * Some hardware have beacon filter support to reduce host cpu wakeups
1116 * which will reduce system power consumption. It usuallly works so that
1117 * the firmware creates a checksum of the beacon but omits all constantly
1118 * changing elements (TSF, TIM etc). Whenever the checksum changes the
1119 * beacon is forwarded to the host, otherwise it will be just dropped. That
1120 * way the host will only receive beacons where some relevant information
1121 * (for example ERP protection or WMM settings) have changed.
1122 *
1123 * Beacon filter support is advertised with the %IEEE80211_HW_BEACON_FILTER
1124 * hardware capability. The driver needs to enable beacon filter support
1125 * whenever power save is enabled, that is %IEEE80211_CONF_PS is set. When
1126 * power save is enabled, the stack will not check for beacon loss and the
1127 * driver needs to notify about loss of beacons with ieee80211_beacon_loss().
1128 *
1129 * The time (or number of beacons missed) until the firmware notifies the
1130 * driver of a beacon loss event (which in turn causes the driver to call
1131 * ieee80211_beacon_loss()) should be configurable and will be controlled
1132 * by mac80211 and the roaming algorithm in the future.
1133 *
1134 * Since there may be constantly changing information elements that nothing
1135 * in the software stack cares about, we will, in the future, have mac80211
1136 * tell the driver which information elements are interesting in the sense
1137 * that we want to see changes in them. This will include
1138 * - a list of information element IDs
1139 * - a list of OUIs for the vendor information element
1140 *
1141 * Ideally, the hardware would filter out any beacons without changes in the
1142 * requested elements, but if it cannot support that it may, at the expense
1143 * of some efficiency, filter out only a subset. For example, if the device
1144 * doesn't support checking for OUIs it should pass up all changes in all
1145 * vendor information elements.
1146 *
1147 * Note that change, for the sake of simplification, also includes information
1148 * elements appearing or disappearing from the beacon.
1149 *
1150 * Some hardware supports an "ignore list" instead, just make sure nothing
1151 * that was requested is on the ignore list, and include commonly changing
1152 * information element IDs in the ignore list, for example 11 (BSS load) and
1153 * the various vendor-assigned IEs with unknown contents (128, 129, 133-136,
1154 * 149, 150, 155, 156, 173, 176, 178, 179, 219); for forward compatibility
1155 * it could also include some currently unused IDs.
1156 *
1157 *
1158 * In addition to these capabilities, hardware should support notifying the
1159 * host of changes in the beacon RSSI. This is relevant to implement roaming
1160 * when no traffic is flowing (when traffic is flowing we see the RSSI of
1161 * the received data packets). This can consist in notifying the host when
1162 * the RSSI changes significantly or when it drops below or rises above
1163 * configurable thresholds. In the future these thresholds will also be
1164 * configured by mac80211 (which gets them from userspace) to implement
1165 * them as the roaming algorithm requires.
1166 *
1167 * If the hardware cannot implement this, the driver should ask it to
1168 * periodically pass beacon frames to the host so that software can do the
1169 * signal strength threshold checking.
1170 */
1171
1172 /**
1173 * DOC: Frame filtering
1174 *
1175 * mac80211 requires to see many management frames for proper
1176 * operation, and users may want to see many more frames when
1177 * in monitor mode. However, for best CPU usage and power consumption,
1178 * having as few frames as possible percolate through the stack is
1179 * desirable. Hence, the hardware should filter as much as possible.
1180 *
1181 * To achieve this, mac80211 uses filter flags (see below) to tell
1182 * the driver's configure_filter() function which frames should be
1183 * passed to mac80211 and which should be filtered out.
1184 *
1185 * The configure_filter() callback is invoked with the parameters
1186 * @mc_count and @mc_list for the combined multicast address list
1187 * of all virtual interfaces, @changed_flags telling which flags
1188 * were changed and @total_flags with the new flag states.
1189 *
1190 * If your device has no multicast address filters your driver will
1191 * need to check both the %FIF_ALLMULTI flag and the @mc_count
1192 * parameter to see whether multicast frames should be accepted
1193 * or dropped.
1194 *
1195 * All unsupported flags in @total_flags must be cleared.
1196 * Hardware does not support a flag if it is incapable of _passing_
1197 * the frame to the stack. Otherwise the driver must ignore
1198 * the flag, but not clear it.
1199 * You must _only_ clear the flag (announce no support for the
1200 * flag to mac80211) if you are not able to pass the packet type
1201 * to the stack (so the hardware always filters it).
1202 * So for example, you should clear @FIF_CONTROL, if your hardware
1203 * always filters control frames. If your hardware always passes
1204 * control frames to the kernel and is incapable of filtering them,
1205 * you do _not_ clear the @FIF_CONTROL flag.
1206 * This rule applies to all other FIF flags as well.
1207 */
1208
1209 /**
1210 * enum ieee80211_filter_flags - hardware filter flags
1211 *
1212 * These flags determine what the filter in hardware should be
1213 * programmed to let through and what should not be passed to the
1214 * stack. It is always safe to pass more frames than requested,
1215 * but this has negative impact on power consumption.
1216 *
1217 * @FIF_PROMISC_IN_BSS: promiscuous mode within your BSS,
1218 * think of the BSS as your network segment and then this corresponds
1219 * to the regular ethernet device promiscuous mode.
1220 *
1221 * @FIF_ALLMULTI: pass all multicast frames, this is used if requested
1222 * by the user or if the hardware is not capable of filtering by
1223 * multicast address.
1224 *
1225 * @FIF_FCSFAIL: pass frames with failed FCS (but you need to set the
1226 * %RX_FLAG_FAILED_FCS_CRC for them)
1227 *
1228 * @FIF_PLCPFAIL: pass frames with failed PLCP CRC (but you need to set
1229 * the %RX_FLAG_FAILED_PLCP_CRC for them
1230 *
1231 * @FIF_BCN_PRBRESP_PROMISC: This flag is set during scanning to indicate
1232 * to the hardware that it should not filter beacons or probe responses
1233 * by BSSID. Filtering them can greatly reduce the amount of processing
1234 * mac80211 needs to do and the amount of CPU wakeups, so you should
1235 * honour this flag if possible.
1236 *
1237 * @FIF_CONTROL: pass control frames, if PROMISC_IN_BSS is not set then
1238 * only those addressed to this station
1239 *
1240 * @FIF_OTHER_BSS: pass frames destined to other BSSes
1241 */
1242 enum ieee80211_filter_flags {
1243 FIF_PROMISC_IN_BSS = 1<<0,
1244 FIF_ALLMULTI = 1<<1,
1245 FIF_FCSFAIL = 1<<2,
1246 FIF_PLCPFAIL = 1<<3,
1247 FIF_BCN_PRBRESP_PROMISC = 1<<4,
1248 FIF_CONTROL = 1<<5,
1249 FIF_OTHER_BSS = 1<<6,
1250 };
1251
1252 /**
1253 * enum ieee80211_ampdu_mlme_action - A-MPDU actions
1254 *
1255 * These flags are used with the ampdu_action() callback in
1256 * &struct ieee80211_ops to indicate which action is needed.
1257 * @IEEE80211_AMPDU_RX_START: start Rx aggregation
1258 * @IEEE80211_AMPDU_RX_STOP: stop Rx aggregation
1259 * @IEEE80211_AMPDU_TX_START: start Tx aggregation
1260 * @IEEE80211_AMPDU_TX_STOP: stop Tx aggregation
1261 * @IEEE80211_AMPDU_TX_OPERATIONAL: TX aggregation has become operational
1262 */
1263 enum ieee80211_ampdu_mlme_action {
1264 IEEE80211_AMPDU_RX_START,
1265 IEEE80211_AMPDU_RX_STOP,
1266 IEEE80211_AMPDU_TX_START,
1267 IEEE80211_AMPDU_TX_STOP,
1268 IEEE80211_AMPDU_TX_OPERATIONAL,
1269 };
1270
1271 /**
1272 * struct ieee80211_ops - callbacks from mac80211 to the driver
1273 *
1274 * This structure contains various callbacks that the driver may
1275 * handle or, in some cases, must handle, for example to configure
1276 * the hardware to a new channel or to transmit a frame.
1277 *
1278 * @tx: Handler that 802.11 module calls for each transmitted frame.
1279 * skb contains the buffer starting from the IEEE 802.11 header.
1280 * The low-level driver should send the frame out based on
1281 * configuration in the TX control data. This handler should,
1282 * preferably, never fail and stop queues appropriately, more
1283 * importantly, however, it must never fail for A-MPDU-queues.
1284 * This function should return NETDEV_TX_OK except in very
1285 * limited cases.
1286 * Must be implemented and atomic.
1287 *
1288 * @start: Called before the first netdevice attached to the hardware
1289 * is enabled. This should turn on the hardware and must turn on
1290 * frame reception (for possibly enabled monitor interfaces.)
1291 * Returns negative error codes, these may be seen in userspace,
1292 * or zero.
1293 * When the device is started it should not have a MAC address
1294 * to avoid acknowledging frames before a non-monitor device
1295 * is added.
1296 * Must be implemented.
1297 *
1298 * @stop: Called after last netdevice attached to the hardware
1299 * is disabled. This should turn off the hardware (at least
1300 * it must turn off frame reception.)
1301 * May be called right after add_interface if that rejects
1302 * an interface.
1303 * Must be implemented.
1304 *
1305 * @add_interface: Called when a netdevice attached to the hardware is
1306 * enabled. Because it is not called for monitor mode devices, @start
1307 * and @stop must be implemented.
1308 * The driver should perform any initialization it needs before
1309 * the device can be enabled. The initial configuration for the
1310 * interface is given in the conf parameter.
1311 * The callback may refuse to add an interface by returning a
1312 * negative error code (which will be seen in userspace.)
1313 * Must be implemented.
1314 *
1315 * @remove_interface: Notifies a driver that an interface is going down.
1316 * The @stop callback is called after this if it is the last interface
1317 * and no monitor interfaces are present.
1318 * When all interfaces are removed, the MAC address in the hardware
1319 * must be cleared so the device no longer acknowledges packets,
1320 * the mac_addr member of the conf structure is, however, set to the
1321 * MAC address of the device going away.
1322 * Hence, this callback must be implemented.
1323 *
1324 * @config: Handler for configuration requests. IEEE 802.11 code calls this
1325 * function to change hardware configuration, e.g., channel.
1326 * This function should never fail but returns a negative error code
1327 * if it does.
1328 *
1329 * @bss_info_changed: Handler for configuration requests related to BSS
1330 * parameters that may vary during BSS's lifespan, and may affect low
1331 * level driver (e.g. assoc/disassoc status, erp parameters).
1332 * This function should not be used if no BSS has been set, unless
1333 * for association indication. The @changed parameter indicates which
1334 * of the bss parameters has changed when a call is made.
1335 *
1336 * @configure_filter: Configure the device's RX filter.
1337 * See the section "Frame filtering" for more information.
1338 * This callback must be implemented and atomic.
1339 *
1340 * @set_tim: Set TIM bit. mac80211 calls this function when a TIM bit
1341 * must be set or cleared for a given STA. Must be atomic.
1342 *
1343 * @set_key: See the section "Hardware crypto acceleration"
1344 * This callback can sleep, and is only called between add_interface
1345 * and remove_interface calls, i.e. while the given virtual interface
1346 * is enabled.
1347 * Returns a negative error code if the key can't be added.
1348 *
1349 * @update_tkip_key: See the section "Hardware crypto acceleration"
1350 * This callback will be called in the context of Rx. Called for drivers
1351 * which set IEEE80211_KEY_FLAG_TKIP_REQ_RX_P1_KEY.
1352 *
1353 * @hw_scan: Ask the hardware to service the scan request, no need to start
1354 * the scan state machine in stack. The scan must honour the channel
1355 * configuration done by the regulatory agent in the wiphy's
1356 * registered bands. The hardware (or the driver) needs to make sure
1357 * that power save is disabled.
1358 * The @req ie/ie_len members are rewritten by mac80211 to contain the
1359 * entire IEs after the SSID, so that drivers need not look at these
1360 * at all but just send them after the SSID -- mac80211 includes the
1361 * (extended) supported rates and HT information (where applicable).
1362 * When the scan finishes, ieee80211_scan_completed() must be called;
1363 * note that it also must be called when the scan cannot finish due to
1364 * any error unless this callback returned a negative error code.
1365 *
1366 * @sw_scan_start: Notifier function that is called just before a software scan
1367 * is started. Can be NULL, if the driver doesn't need this notification.
1368 *
1369 * @sw_scan_complete: Notifier function that is called just after a software scan
1370 * finished. Can be NULL, if the driver doesn't need this notification.
1371 *
1372 * @get_stats: Return low-level statistics.
1373 * Returns zero if statistics are available.
1374 *
1375 * @get_tkip_seq: If your device implements TKIP encryption in hardware this
1376 * callback should be provided to read the TKIP transmit IVs (both IV32
1377 * and IV16) for the given key from hardware.
1378 *
1379 * @set_rts_threshold: Configuration of RTS threshold (if device needs it)
1380 *
1381 * @sta_notify: Notifies low level driver about addition, removal or power
1382 * state transition of an associated station, AP, IBSS/WDS/mesh peer etc.
1383 * Must be atomic.
1384 *
1385 * @conf_tx: Configure TX queue parameters (EDCF (aifs, cw_min, cw_max),
1386 * bursting) for a hardware TX queue.
1387 * Returns a negative error code on failure.
1388 *
1389 * @get_tx_stats: Get statistics of the current TX queue status. This is used
1390 * to get number of currently queued packets (queue length), maximum queue
1391 * size (limit), and total number of packets sent using each TX queue
1392 * (count). The 'stats' pointer points to an array that has hw->queues
1393 * items.
1394 *
1395 * @get_tsf: Get the current TSF timer value from firmware/hardware. Currently,
1396 * this is only used for IBSS mode BSSID merging and debugging. Is not a
1397 * required function.
1398 *
1399 * @set_tsf: Set the TSF timer to the specified value in the firmware/hardware.
1400 * Currently, this is only used for IBSS mode debugging. Is not a
1401 * required function.
1402 *
1403 * @reset_tsf: Reset the TSF timer and allow firmware/hardware to synchronize
1404 * with other STAs in the IBSS. This is only used in IBSS mode. This
1405 * function is optional if the firmware/hardware takes full care of
1406 * TSF synchronization.
1407 *
1408 * @tx_last_beacon: Determine whether the last IBSS beacon was sent by us.
1409 * This is needed only for IBSS mode and the result of this function is
1410 * used to determine whether to reply to Probe Requests.
1411 * Returns non-zero if this device sent the last beacon.
1412 *
1413 * @ampdu_action: Perform a certain A-MPDU action
1414 * The RA/TID combination determines the destination and TID we want
1415 * the ampdu action to be performed for. The action is defined through
1416 * ieee80211_ampdu_mlme_action. Starting sequence number (@ssn)
1417 * is the first frame we expect to perform the action on. Notice
1418 * that TX/RX_STOP can pass NULL for this parameter.
1419 * Returns a negative error code on failure.
1420 */
1421 struct ieee80211_ops {
1422 int (*tx)(struct ieee80211_hw *hw, struct sk_buff *skb);
1423 int (*start)(struct ieee80211_hw *hw);
1424 void (*stop)(struct ieee80211_hw *hw);
1425 int (*add_interface)(struct ieee80211_hw *hw,
1426 struct ieee80211_if_init_conf *conf);
1427 void (*remove_interface)(struct ieee80211_hw *hw,
1428 struct ieee80211_if_init_conf *conf);
1429 int (*config)(struct ieee80211_hw *hw, u32 changed);
1430 void (*bss_info_changed)(struct ieee80211_hw *hw,
1431 struct ieee80211_vif *vif,
1432 struct ieee80211_bss_conf *info,
1433 u32 changed);
1434 void (*configure_filter)(struct ieee80211_hw *hw,
1435 unsigned int changed_flags,
1436 unsigned int *total_flags,
1437 int mc_count, struct dev_addr_list *mc_list);
1438 int (*set_tim)(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1439 bool set);
1440 int (*set_key)(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1441 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1442 struct ieee80211_key_conf *key);
1443 void (*update_tkip_key)(struct ieee80211_hw *hw,
1444 struct ieee80211_key_conf *conf, const u8 *address,
1445 u32 iv32, u16 *phase1key);
1446 int (*hw_scan)(struct ieee80211_hw *hw,
1447 struct cfg80211_scan_request *req);
1448 void (*sw_scan_start)(struct ieee80211_hw *hw);
1449 void (*sw_scan_complete)(struct ieee80211_hw *hw);
1450 int (*get_stats)(struct ieee80211_hw *hw,
1451 struct ieee80211_low_level_stats *stats);
1452 void (*get_tkip_seq)(struct ieee80211_hw *hw, u8 hw_key_idx,
1453 u32 *iv32, u16 *iv16);
1454 int (*set_rts_threshold)(struct ieee80211_hw *hw, u32 value);
1455 void (*sta_notify)(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1456 enum sta_notify_cmd, struct ieee80211_sta *sta);
1457 int (*conf_tx)(struct ieee80211_hw *hw, u16 queue,
1458 const struct ieee80211_tx_queue_params *params);
1459 int (*get_tx_stats)(struct ieee80211_hw *hw,
1460 struct ieee80211_tx_queue_stats *stats);
1461 u64 (*get_tsf)(struct ieee80211_hw *hw);
1462 void (*set_tsf)(struct ieee80211_hw *hw, u64 tsf);
1463 void (*reset_tsf)(struct ieee80211_hw *hw);
1464 int (*tx_last_beacon)(struct ieee80211_hw *hw);
1465 int (*ampdu_action)(struct ieee80211_hw *hw,
1466 enum ieee80211_ampdu_mlme_action action,
1467 struct ieee80211_sta *sta, u16 tid, u16 *ssn);
1468 };
1469
1470 /**
1471 * ieee80211_alloc_hw - Allocate a new hardware device
1472 *
1473 * This must be called once for each hardware device. The returned pointer
1474 * must be used to refer to this device when calling other functions.
1475 * mac80211 allocates a private data area for the driver pointed to by
1476 * @priv in &struct ieee80211_hw, the size of this area is given as
1477 * @priv_data_len.
1478 *
1479 * @priv_data_len: length of private data
1480 * @ops: callbacks for this device
1481 */
1482 struct ieee80211_hw *ieee80211_alloc_hw(size_t priv_data_len,
1483 const struct ieee80211_ops *ops);
1484
1485 /**
1486 * ieee80211_register_hw - Register hardware device
1487 *
1488 * You must call this function before any other functions in
1489 * mac80211. Note that before a hardware can be registered, you
1490 * need to fill the contained wiphy's information.
1491 *
1492 * @hw: the device to register as returned by ieee80211_alloc_hw()
1493 */
1494 int ieee80211_register_hw(struct ieee80211_hw *hw);
1495
1496 #ifdef CONFIG_MAC80211_LEDS
1497 extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw *hw);
1498 extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw *hw);
1499 extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw *hw);
1500 extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw *hw);
1501 #endif
1502 /**
1503 * ieee80211_get_tx_led_name - get name of TX LED
1504 *
1505 * mac80211 creates a transmit LED trigger for each wireless hardware
1506 * that can be used to drive LEDs if your driver registers a LED device.
1507 * This function returns the name (or %NULL if not configured for LEDs)
1508 * of the trigger so you can automatically link the LED device.
1509 *
1510 * @hw: the hardware to get the LED trigger name for
1511 */
1512 static inline char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw)
1513 {
1514 #ifdef CONFIG_MAC80211_LEDS
1515 return __ieee80211_get_tx_led_name(hw);
1516 #else
1517 return NULL;
1518 #endif
1519 }
1520
1521 /**
1522 * ieee80211_get_rx_led_name - get name of RX LED
1523 *
1524 * mac80211 creates a receive LED trigger for each wireless hardware
1525 * that can be used to drive LEDs if your driver registers a LED device.
1526 * This function returns the name (or %NULL if not configured for LEDs)
1527 * of the trigger so you can automatically link the LED device.
1528 *
1529 * @hw: the hardware to get the LED trigger name for
1530 */
1531 static inline char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw)
1532 {
1533 #ifdef CONFIG_MAC80211_LEDS
1534 return __ieee80211_get_rx_led_name(hw);
1535 #else
1536 return NULL;
1537 #endif
1538 }
1539
1540 /**
1541 * ieee80211_get_assoc_led_name - get name of association LED
1542 *
1543 * mac80211 creates a association LED trigger for each wireless hardware
1544 * that can be used to drive LEDs if your driver registers a LED device.
1545 * This function returns the name (or %NULL if not configured for LEDs)
1546 * of the trigger so you can automatically link the LED device.
1547 *
1548 * @hw: the hardware to get the LED trigger name for
1549 */
1550 static inline char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw)
1551 {
1552 #ifdef CONFIG_MAC80211_LEDS
1553 return __ieee80211_get_assoc_led_name(hw);
1554 #else
1555 return NULL;
1556 #endif
1557 }
1558
1559 /**
1560 * ieee80211_get_radio_led_name - get name of radio LED
1561 *
1562 * mac80211 creates a radio change LED trigger for each wireless hardware
1563 * that can be used to drive LEDs if your driver registers a LED device.
1564 * This function returns the name (or %NULL if not configured for LEDs)
1565 * of the trigger so you can automatically link the LED device.
1566 *
1567 * @hw: the hardware to get the LED trigger name for
1568 */
1569 static inline char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw)
1570 {
1571 #ifdef CONFIG_MAC80211_LEDS
1572 return __ieee80211_get_radio_led_name(hw);
1573 #else
1574 return NULL;
1575 #endif
1576 }
1577
1578 /**
1579 * ieee80211_unregister_hw - Unregister a hardware device
1580 *
1581 * This function instructs mac80211 to free allocated resources
1582 * and unregister netdevices from the networking subsystem.
1583 *
1584 * @hw: the hardware to unregister
1585 */
1586 void ieee80211_unregister_hw(struct ieee80211_hw *hw);
1587
1588 /**
1589 * ieee80211_free_hw - free hardware descriptor
1590 *
1591 * This function frees everything that was allocated, including the
1592 * private data for the driver. You must call ieee80211_unregister_hw()
1593 * before calling this function.
1594 *
1595 * @hw: the hardware to free
1596 */
1597 void ieee80211_free_hw(struct ieee80211_hw *hw);
1598
1599 /**
1600 * ieee80211_restart_hw - restart hardware completely
1601 *
1602 * Call this function when the hardware was restarted for some reason
1603 * (hardware error, ...) and the driver is unable to restore its state
1604 * by itself. mac80211 assumes that at this point the driver/hardware
1605 * is completely uninitialised and stopped, it starts the process by
1606 * calling the ->start() operation. The driver will need to reset all
1607 * internal state that it has prior to calling this function.
1608 *
1609 * @hw: the hardware to restart
1610 */
1611 void ieee80211_restart_hw(struct ieee80211_hw *hw);
1612
1613 /* trick to avoid symbol clashes with the ieee80211 subsystem */
1614 void __ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1615 struct ieee80211_rx_status *status);
1616
1617 /**
1618 * ieee80211_rx - receive frame
1619 *
1620 * Use this function to hand received frames to mac80211. The receive
1621 * buffer in @skb must start with an IEEE 802.11 header or a radiotap
1622 * header if %RX_FLAG_RADIOTAP is set in the @status flags.
1623 *
1624 * This function may not be called in IRQ context. Calls to this function
1625 * for a single hardware must be synchronized against each other. Calls
1626 * to this function and ieee80211_rx_irqsafe() may not be mixed for a
1627 * single hardware.
1628 *
1629 * @hw: the hardware this frame came in on
1630 * @skb: the buffer to receive, owned by mac80211 after this call
1631 * @status: status of this frame; the status pointer need not be valid
1632 * after this function returns
1633 */
1634 static inline void ieee80211_rx(struct ieee80211_hw *hw, struct sk_buff *skb,
1635 struct ieee80211_rx_status *status)
1636 {
1637 __ieee80211_rx(hw, skb, status);
1638 }
1639
1640 /**
1641 * ieee80211_rx_irqsafe - receive frame
1642 *
1643 * Like ieee80211_rx() but can be called in IRQ context
1644 * (internally defers to a tasklet.)
1645 *
1646 * Calls to this function and ieee80211_rx() may not be mixed for a
1647 * single hardware.
1648 *
1649 * @hw: the hardware this frame came in on
1650 * @skb: the buffer to receive, owned by mac80211 after this call
1651 * @status: status of this frame; the status pointer need not be valid
1652 * after this function returns and is not freed by mac80211,
1653 * it is recommended that it points to a stack area
1654 */
1655 void ieee80211_rx_irqsafe(struct ieee80211_hw *hw,
1656 struct sk_buff *skb,
1657 struct ieee80211_rx_status *status);
1658
1659 /**
1660 * ieee80211_tx_status - transmit status callback
1661 *
1662 * Call this function for all transmitted frames after they have been
1663 * transmitted. It is permissible to not call this function for
1664 * multicast frames but this can affect statistics.
1665 *
1666 * This function may not be called in IRQ context. Calls to this function
1667 * for a single hardware must be synchronized against each other. Calls
1668 * to this function and ieee80211_tx_status_irqsafe() may not be mixed
1669 * for a single hardware.
1670 *
1671 * @hw: the hardware the frame was transmitted by
1672 * @skb: the frame that was transmitted, owned by mac80211 after this call
1673 */
1674 void ieee80211_tx_status(struct ieee80211_hw *hw,
1675 struct sk_buff *skb);
1676
1677 /**
1678 * ieee80211_tx_status_irqsafe - IRQ-safe transmit status callback
1679 *
1680 * Like ieee80211_tx_status() but can be called in IRQ context
1681 * (internally defers to a tasklet.)
1682 *
1683 * Calls to this function and ieee80211_tx_status() may not be mixed for a
1684 * single hardware.
1685 *
1686 * @hw: the hardware the frame was transmitted by
1687 * @skb: the frame that was transmitted, owned by mac80211 after this call
1688 */
1689 void ieee80211_tx_status_irqsafe(struct ieee80211_hw *hw,
1690 struct sk_buff *skb);
1691
1692 /**
1693 * ieee80211_beacon_get - beacon generation function
1694 * @hw: pointer obtained from ieee80211_alloc_hw().
1695 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1696 *
1697 * If the beacon frames are generated by the host system (i.e., not in
1698 * hardware/firmware), the low-level driver uses this function to receive
1699 * the next beacon frame from the 802.11 code. The low-level is responsible
1700 * for calling this function before beacon data is needed (e.g., based on
1701 * hardware interrupt). Returned skb is used only once and low-level driver
1702 * is responsible for freeing it.
1703 */
1704 struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw,
1705 struct ieee80211_vif *vif);
1706
1707 /**
1708 * ieee80211_rts_get - RTS frame generation function
1709 * @hw: pointer obtained from ieee80211_alloc_hw().
1710 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1711 * @frame: pointer to the frame that is going to be protected by the RTS.
1712 * @frame_len: the frame length (in octets).
1713 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1714 * @rts: The buffer where to store the RTS frame.
1715 *
1716 * If the RTS frames are generated by the host system (i.e., not in
1717 * hardware/firmware), the low-level driver uses this function to receive
1718 * the next RTS frame from the 802.11 code. The low-level is responsible
1719 * for calling this function before and RTS frame is needed.
1720 */
1721 void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1722 const void *frame, size_t frame_len,
1723 const struct ieee80211_tx_info *frame_txctl,
1724 struct ieee80211_rts *rts);
1725
1726 /**
1727 * ieee80211_rts_duration - Get the duration field for an RTS frame
1728 * @hw: pointer obtained from ieee80211_alloc_hw().
1729 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1730 * @frame_len: the length of the frame that is going to be protected by the RTS.
1731 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1732 *
1733 * If the RTS is generated in firmware, but the host system must provide
1734 * the duration field, the low-level driver uses this function to receive
1735 * the duration field value in little-endian byteorder.
1736 */
1737 __le16 ieee80211_rts_duration(struct ieee80211_hw *hw,
1738 struct ieee80211_vif *vif, size_t frame_len,
1739 const struct ieee80211_tx_info *frame_txctl);
1740
1741 /**
1742 * ieee80211_ctstoself_get - CTS-to-self frame generation function
1743 * @hw: pointer obtained from ieee80211_alloc_hw().
1744 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1745 * @frame: pointer to the frame that is going to be protected by the CTS-to-self.
1746 * @frame_len: the frame length (in octets).
1747 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1748 * @cts: The buffer where to store the CTS-to-self frame.
1749 *
1750 * If the CTS-to-self frames are generated by the host system (i.e., not in
1751 * hardware/firmware), the low-level driver uses this function to receive
1752 * the next CTS-to-self frame from the 802.11 code. The low-level is responsible
1753 * for calling this function before and CTS-to-self frame is needed.
1754 */
1755 void ieee80211_ctstoself_get(struct ieee80211_hw *hw,
1756 struct ieee80211_vif *vif,
1757 const void *frame, size_t frame_len,
1758 const struct ieee80211_tx_info *frame_txctl,
1759 struct ieee80211_cts *cts);
1760
1761 /**
1762 * ieee80211_ctstoself_duration - Get the duration field for a CTS-to-self frame
1763 * @hw: pointer obtained from ieee80211_alloc_hw().
1764 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1765 * @frame_len: the length of the frame that is going to be protected by the CTS-to-self.
1766 * @frame_txctl: &struct ieee80211_tx_info of the frame.
1767 *
1768 * If the CTS-to-self is generated in firmware, but the host system must provide
1769 * the duration field, the low-level driver uses this function to receive
1770 * the duration field value in little-endian byteorder.
1771 */
1772 __le16 ieee80211_ctstoself_duration(struct ieee80211_hw *hw,
1773 struct ieee80211_vif *vif,
1774 size_t frame_len,
1775 const struct ieee80211_tx_info *frame_txctl);
1776
1777 /**
1778 * ieee80211_generic_frame_duration - Calculate the duration field for a frame
1779 * @hw: pointer obtained from ieee80211_alloc_hw().
1780 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1781 * @frame_len: the length of the frame.
1782 * @rate: the rate at which the frame is going to be transmitted.
1783 *
1784 * Calculate the duration field of some generic frame, given its
1785 * length and transmission rate (in 100kbps).
1786 */
1787 __le16 ieee80211_generic_frame_duration(struct ieee80211_hw *hw,
1788 struct ieee80211_vif *vif,
1789 size_t frame_len,
1790 struct ieee80211_rate *rate);
1791
1792 /**
1793 * ieee80211_get_buffered_bc - accessing buffered broadcast and multicast frames
1794 * @hw: pointer as obtained from ieee80211_alloc_hw().
1795 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
1796 *
1797 * Function for accessing buffered broadcast and multicast frames. If
1798 * hardware/firmware does not implement buffering of broadcast/multicast
1799 * frames when power saving is used, 802.11 code buffers them in the host
1800 * memory. The low-level driver uses this function to fetch next buffered
1801 * frame. In most cases, this is used when generating beacon frame. This
1802 * function returns a pointer to the next buffered skb or NULL if no more
1803 * buffered frames are available.
1804 *
1805 * Note: buffered frames are returned only after DTIM beacon frame was
1806 * generated with ieee80211_beacon_get() and the low-level driver must thus
1807 * call ieee80211_beacon_get() first. ieee80211_get_buffered_bc() returns
1808 * NULL if the previous generated beacon was not DTIM, so the low-level driver
1809 * does not need to check for DTIM beacons separately and should be able to
1810 * use common code for all beacons.
1811 */
1812 struct sk_buff *
1813 ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif);
1814
1815 /**
1816 * ieee80211_get_hdrlen_from_skb - get header length from data
1817 *
1818 * Given an skb with a raw 802.11 header at the data pointer this function
1819 * returns the 802.11 header length in bytes (not including encryption
1820 * headers). If the data in the sk_buff is too short to contain a valid 802.11
1821 * header the function returns 0.
1822 *
1823 * @skb: the frame
1824 */
1825 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb);
1826
1827 /**
1828 * ieee80211_hdrlen - get header length in bytes from frame control
1829 * @fc: frame control field in little-endian format
1830 */
1831 unsigned int ieee80211_hdrlen(__le16 fc);
1832
1833 /**
1834 * ieee80211_get_tkip_key - get a TKIP rc4 for skb
1835 *
1836 * This function computes a TKIP rc4 key for an skb. It computes
1837 * a phase 1 key if needed (iv16 wraps around). This function is to
1838 * be used by drivers which can do HW encryption but need to compute
1839 * to phase 1/2 key in SW.
1840 *
1841 * @keyconf: the parameter passed with the set key
1842 * @skb: the skb for which the key is needed
1843 * @type: TBD
1844 * @key: a buffer to which the key will be written
1845 */
1846 void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
1847 struct sk_buff *skb,
1848 enum ieee80211_tkip_key_type type, u8 *key);
1849 /**
1850 * ieee80211_wake_queue - wake specific queue
1851 * @hw: pointer as obtained from ieee80211_alloc_hw().
1852 * @queue: queue number (counted from zero).
1853 *
1854 * Drivers should use this function instead of netif_wake_queue.
1855 */
1856 void ieee80211_wake_queue(struct ieee80211_hw *hw, int queue);
1857
1858 /**
1859 * ieee80211_stop_queue - stop specific queue
1860 * @hw: pointer as obtained from ieee80211_alloc_hw().
1861 * @queue: queue number (counted from zero).
1862 *
1863 * Drivers should use this function instead of netif_stop_queue.
1864 */
1865 void ieee80211_stop_queue(struct ieee80211_hw *hw, int queue);
1866
1867 /**
1868 * ieee80211_queue_stopped - test status of the queue
1869 * @hw: pointer as obtained from ieee80211_alloc_hw().
1870 * @queue: queue number (counted from zero).
1871 *
1872 * Drivers should use this function instead of netif_stop_queue.
1873 */
1874
1875 int ieee80211_queue_stopped(struct ieee80211_hw *hw, int queue);
1876
1877 /**
1878 * ieee80211_stop_queues - stop all queues
1879 * @hw: pointer as obtained from ieee80211_alloc_hw().
1880 *
1881 * Drivers should use this function instead of netif_stop_queue.
1882 */
1883 void ieee80211_stop_queues(struct ieee80211_hw *hw);
1884
1885 /**
1886 * ieee80211_wake_queues - wake all queues
1887 * @hw: pointer as obtained from ieee80211_alloc_hw().
1888 *
1889 * Drivers should use this function instead of netif_wake_queue.
1890 */
1891 void ieee80211_wake_queues(struct ieee80211_hw *hw);
1892
1893 /**
1894 * ieee80211_scan_completed - completed hardware scan
1895 *
1896 * When hardware scan offload is used (i.e. the hw_scan() callback is
1897 * assigned) this function needs to be called by the driver to notify
1898 * mac80211 that the scan finished.
1899 *
1900 * @hw: the hardware that finished the scan
1901 * @aborted: set to true if scan was aborted
1902 */
1903 void ieee80211_scan_completed(struct ieee80211_hw *hw, bool aborted);
1904
1905 /**
1906 * ieee80211_iterate_active_interfaces - iterate active interfaces
1907 *
1908 * This function iterates over the interfaces associated with a given
1909 * hardware that are currently active and calls the callback for them.
1910 * This function allows the iterator function to sleep, when the iterator
1911 * function is atomic @ieee80211_iterate_active_interfaces_atomic can
1912 * be used.
1913 *
1914 * @hw: the hardware struct of which the interfaces should be iterated over
1915 * @iterator: the iterator function to call
1916 * @data: first argument of the iterator function
1917 */
1918 void ieee80211_iterate_active_interfaces(struct ieee80211_hw *hw,
1919 void (*iterator)(void *data, u8 *mac,
1920 struct ieee80211_vif *vif),
1921 void *data);
1922
1923 /**
1924 * ieee80211_iterate_active_interfaces_atomic - iterate active interfaces
1925 *
1926 * This function iterates over the interfaces associated with a given
1927 * hardware that are currently active and calls the callback for them.
1928 * This function requires the iterator callback function to be atomic,
1929 * if that is not desired, use @ieee80211_iterate_active_interfaces instead.
1930 *
1931 * @hw: the hardware struct of which the interfaces should be iterated over
1932 * @iterator: the iterator function to call, cannot sleep
1933 * @data: first argument of the iterator function
1934 */
1935 void ieee80211_iterate_active_interfaces_atomic(struct ieee80211_hw *hw,
1936 void (*iterator)(void *data,
1937 u8 *mac,
1938 struct ieee80211_vif *vif),
1939 void *data);
1940
1941 /**
1942 * ieee80211_start_tx_ba_session - Start a tx Block Ack session.
1943 * @hw: pointer as obtained from ieee80211_alloc_hw().
1944 * @ra: receiver address of the BA session recipient
1945 * @tid: the TID to BA on.
1946 *
1947 * Return: success if addBA request was sent, failure otherwise
1948 *
1949 * Although mac80211/low level driver/user space application can estimate
1950 * the need to start aggregation on a certain RA/TID, the session level
1951 * will be managed by the mac80211.
1952 */
1953 int ieee80211_start_tx_ba_session(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1954
1955 /**
1956 * ieee80211_start_tx_ba_cb - low level driver ready to aggregate.
1957 * @hw: pointer as obtained from ieee80211_alloc_hw().
1958 * @ra: receiver address of the BA session recipient.
1959 * @tid: the TID to BA on.
1960 *
1961 * This function must be called by low level driver once it has
1962 * finished with preparations for the BA session.
1963 */
1964 void ieee80211_start_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u16 tid);
1965
1966 /**
1967 * ieee80211_start_tx_ba_cb_irqsafe - low level driver ready to aggregate.
1968 * @hw: pointer as obtained from ieee80211_alloc_hw().
1969 * @ra: receiver address of the BA session recipient.
1970 * @tid: the TID to BA on.
1971 *
1972 * This function must be called by low level driver once it has
1973 * finished with preparations for the BA session.
1974 * This version of the function is IRQ-safe.
1975 */
1976 void ieee80211_start_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
1977 u16 tid);
1978
1979 /**
1980 * ieee80211_stop_tx_ba_session - Stop a Block Ack session.
1981 * @hw: pointer as obtained from ieee80211_alloc_hw().
1982 * @ra: receiver address of the BA session recipient
1983 * @tid: the TID to stop BA.
1984 * @initiator: if indicates initiator DELBA frame will be sent.
1985 *
1986 * Return: error if no sta with matching da found, success otherwise
1987 *
1988 * Although mac80211/low level driver/user space application can estimate
1989 * the need to stop aggregation on a certain RA/TID, the session level
1990 * will be managed by the mac80211.
1991 */
1992 int ieee80211_stop_tx_ba_session(struct ieee80211_hw *hw,
1993 u8 *ra, u16 tid,
1994 enum ieee80211_back_parties initiator);
1995
1996 /**
1997 * ieee80211_stop_tx_ba_cb - low level driver ready to stop aggregate.
1998 * @hw: pointer as obtained from ieee80211_alloc_hw().
1999 * @ra: receiver address of the BA session recipient.
2000 * @tid: the desired TID to BA on.
2001 *
2002 * This function must be called by low level driver once it has
2003 * finished with preparations for the BA session tear down.
2004 */
2005 void ieee80211_stop_tx_ba_cb(struct ieee80211_hw *hw, u8 *ra, u8 tid);
2006
2007 /**
2008 * ieee80211_stop_tx_ba_cb_irqsafe - low level driver ready to stop aggregate.
2009 * @hw: pointer as obtained from ieee80211_alloc_hw().
2010 * @ra: receiver address of the BA session recipient.
2011 * @tid: the desired TID to BA on.
2012 *
2013 * This function must be called by low level driver once it has
2014 * finished with preparations for the BA session tear down.
2015 * This version of the function is IRQ-safe.
2016 */
2017 void ieee80211_stop_tx_ba_cb_irqsafe(struct ieee80211_hw *hw, const u8 *ra,
2018 u16 tid);
2019
2020 /**
2021 * ieee80211_find_sta - find a station
2022 *
2023 * @hw: pointer as obtained from ieee80211_alloc_hw()
2024 * @addr: station's address
2025 *
2026 * This function must be called under RCU lock and the
2027 * resulting pointer is only valid under RCU lock as well.
2028 */
2029 struct ieee80211_sta *ieee80211_find_sta(struct ieee80211_hw *hw,
2030 const u8 *addr);
2031
2032 /**
2033 * ieee80211_beacon_loss - inform hardware does not receive beacons
2034 *
2035 * @vif: &struct ieee80211_vif pointer from &struct ieee80211_if_init_conf.
2036 *
2037 * When beacon filtering is enabled with IEEE80211_HW_BEACON_FILTERING and
2038 * IEEE80211_CONF_PS is set, the driver needs to inform whenever the
2039 * hardware is not receiving beacons with this function.
2040 */
2041 void ieee80211_beacon_loss(struct ieee80211_vif *vif);
2042
2043 /* Rate control API */
2044
2045 /**
2046 * enum rate_control_changed - flags to indicate which parameter changed
2047 *
2048 * @IEEE80211_RC_HT_CHANGED: The HT parameters of the operating channel have
2049 * changed, rate control algorithm can update its internal state if needed.
2050 */
2051 enum rate_control_changed {
2052 IEEE80211_RC_HT_CHANGED = BIT(0)
2053 };
2054
2055 /**
2056 * struct ieee80211_tx_rate_control - rate control information for/from RC algo
2057 *
2058 * @hw: The hardware the algorithm is invoked for.
2059 * @sband: The band this frame is being transmitted on.
2060 * @bss_conf: the current BSS configuration
2061 * @reported_rate: The rate control algorithm can fill this in to indicate
2062 * which rate should be reported to userspace as the current rate and
2063 * used for rate calculations in the mesh network.
2064 * @rts: whether RTS will be used for this frame because it is longer than the
2065 * RTS threshold
2066 * @short_preamble: whether mac80211 will request short-preamble transmission
2067 * if the selected rate supports it
2068 * @max_rate_idx: user-requested maximum rate (not MCS for now)
2069 * @skb: the skb that will be transmitted, the control information in it needs
2070 * to be filled in
2071 */
2072 struct ieee80211_tx_rate_control {
2073 struct ieee80211_hw *hw;
2074 struct ieee80211_supported_band *sband;
2075 struct ieee80211_bss_conf *bss_conf;
2076 struct sk_buff *skb;
2077 struct ieee80211_tx_rate reported_rate;
2078 bool rts, short_preamble;
2079 u8 max_rate_idx;
2080 };
2081
2082 struct rate_control_ops {
2083 struct module *module;
2084 const char *name;
2085 void *(*alloc)(struct ieee80211_hw *hw, struct dentry *debugfsdir);
2086 void (*free)(void *priv);
2087
2088 void *(*alloc_sta)(void *priv, struct ieee80211_sta *sta, gfp_t gfp);
2089 void (*rate_init)(void *priv, struct ieee80211_supported_band *sband,
2090 struct ieee80211_sta *sta, void *priv_sta);
2091 void (*rate_update)(void *priv, struct ieee80211_supported_band *sband,
2092 struct ieee80211_sta *sta,
2093 void *priv_sta, u32 changed);
2094 void (*free_sta)(void *priv, struct ieee80211_sta *sta,
2095 void *priv_sta);
2096
2097 void (*tx_status)(void *priv, struct ieee80211_supported_band *sband,
2098 struct ieee80211_sta *sta, void *priv_sta,
2099 struct sk_buff *skb);
2100 void (*get_rate)(void *priv, struct ieee80211_sta *sta, void *priv_sta,
2101 struct ieee80211_tx_rate_control *txrc);
2102
2103 void (*add_sta_debugfs)(void *priv, void *priv_sta,
2104 struct dentry *dir);
2105 void (*remove_sta_debugfs)(void *priv, void *priv_sta);
2106 };
2107
2108 static inline int rate_supported(struct ieee80211_sta *sta,
2109 enum ieee80211_band band,
2110 int index)
2111 {
2112 return (sta == NULL || sta->supp_rates[band] & BIT(index));
2113 }
2114
2115 static inline s8
2116 rate_lowest_index(struct ieee80211_supported_band *sband,
2117 struct ieee80211_sta *sta)
2118 {
2119 int i;
2120
2121 for (i = 0; i < sband->n_bitrates; i++)
2122 if (rate_supported(sta, sband->band, i))
2123 return i;
2124
2125 /* warn when we cannot find a rate. */
2126 WARN_ON(1);
2127
2128 return 0;
2129 }
2130
2131
2132 int ieee80211_rate_control_register(struct rate_control_ops *ops);
2133 void ieee80211_rate_control_unregister(struct rate_control_ops *ops);
2134
2135 static inline bool
2136 conf_is_ht20(struct ieee80211_conf *conf)
2137 {
2138 return conf->channel_type == NL80211_CHAN_HT20;
2139 }
2140
2141 static inline bool
2142 conf_is_ht40_minus(struct ieee80211_conf *conf)
2143 {
2144 return conf->channel_type == NL80211_CHAN_HT40MINUS;
2145 }
2146
2147 static inline bool
2148 conf_is_ht40_plus(struct ieee80211_conf *conf)
2149 {
2150 return conf->channel_type == NL80211_CHAN_HT40PLUS;
2151 }
2152
2153 static inline bool
2154 conf_is_ht40(struct ieee80211_conf *conf)
2155 {
2156 return conf_is_ht40_minus(conf) || conf_is_ht40_plus(conf);
2157 }
2158
2159 static inline bool
2160 conf_is_ht(struct ieee80211_conf *conf)
2161 {
2162 return conf->channel_type != NL80211_CHAN_NO_HT;
2163 }
2164
2165 #endif /* MAC80211_H */