Merge branches 'timers/clocksource', 'timers/hrtimers', 'timers/nohz', 'timers/ntp...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / math-emu / op-common.h
1 /* Software floating-point emulation. Common operations.
2 Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Richard Henderson (rth@cygnus.com),
5 Jakub Jelinek (jj@ultra.linux.cz),
6 David S. Miller (davem@redhat.com) and
7 Peter Maydell (pmaydell@chiark.greenend.org.uk).
8
9 The GNU C Library is free software; you can redistribute it and/or
10 modify it under the terms of the GNU Library General Public License as
11 published by the Free Software Foundation; either version 2 of the
12 License, or (at your option) any later version.
13
14 The GNU C Library is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 Library General Public License for more details.
18
19 You should have received a copy of the GNU Library General Public
20 License along with the GNU C Library; see the file COPYING.LIB. If
21 not, write to the Free Software Foundation, Inc.,
22 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #ifndef __MATH_EMU_OP_COMMON_H__
25 #define __MATH_EMU_OP_COMMON_H__
26
27 #define _FP_DECL(wc, X) \
28 _FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \
29 _FP_FRAC_DECL_##wc(X)
30
31 /*
32 * Finish truely unpacking a native fp value by classifying the kind
33 * of fp value and normalizing both the exponent and the fraction.
34 */
35
36 #define _FP_UNPACK_CANONICAL(fs, wc, X) \
37 do { \
38 switch (X##_e) \
39 { \
40 default: \
41 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \
42 _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
43 X##_e -= _FP_EXPBIAS_##fs; \
44 X##_c = FP_CLS_NORMAL; \
45 break; \
46 \
47 case 0: \
48 if (_FP_FRAC_ZEROP_##wc(X)) \
49 X##_c = FP_CLS_ZERO; \
50 else \
51 { \
52 /* a denormalized number */ \
53 _FP_I_TYPE _shift; \
54 _FP_FRAC_CLZ_##wc(_shift, X); \
55 _shift -= _FP_FRACXBITS_##fs; \
56 _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
57 X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
58 X##_c = FP_CLS_NORMAL; \
59 FP_SET_EXCEPTION(FP_EX_DENORM); \
60 if (FP_DENORM_ZERO) \
61 { \
62 FP_SET_EXCEPTION(FP_EX_INEXACT); \
63 X##_c = FP_CLS_ZERO; \
64 } \
65 } \
66 break; \
67 \
68 case _FP_EXPMAX_##fs: \
69 if (_FP_FRAC_ZEROP_##wc(X)) \
70 X##_c = FP_CLS_INF; \
71 else \
72 { \
73 X##_c = FP_CLS_NAN; \
74 /* Check for signaling NaN */ \
75 if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
76 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN); \
77 } \
78 break; \
79 } \
80 } while (0)
81
82 /*
83 * Before packing the bits back into the native fp result, take care
84 * of such mundane things as rounding and overflow. Also, for some
85 * kinds of fp values, the original parts may not have been fully
86 * extracted -- but that is ok, we can regenerate them now.
87 */
88
89 #define _FP_PACK_CANONICAL(fs, wc, X) \
90 do { \
91 switch (X##_c) \
92 { \
93 case FP_CLS_NORMAL: \
94 X##_e += _FP_EXPBIAS_##fs; \
95 if (X##_e > 0) \
96 { \
97 _FP_ROUND(wc, X); \
98 if (_FP_FRAC_OVERP_##wc(fs, X)) \
99 { \
100 _FP_FRAC_CLEAR_OVERP_##wc(fs, X); \
101 X##_e++; \
102 } \
103 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
104 if (X##_e >= _FP_EXPMAX_##fs) \
105 { \
106 /* overflow */ \
107 switch (FP_ROUNDMODE) \
108 { \
109 case FP_RND_NEAREST: \
110 X##_c = FP_CLS_INF; \
111 break; \
112 case FP_RND_PINF: \
113 if (!X##_s) X##_c = FP_CLS_INF; \
114 break; \
115 case FP_RND_MINF: \
116 if (X##_s) X##_c = FP_CLS_INF; \
117 break; \
118 } \
119 if (X##_c == FP_CLS_INF) \
120 { \
121 /* Overflow to infinity */ \
122 X##_e = _FP_EXPMAX_##fs; \
123 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
124 } \
125 else \
126 { \
127 /* Overflow to maximum normal */ \
128 X##_e = _FP_EXPMAX_##fs - 1; \
129 _FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \
130 } \
131 FP_SET_EXCEPTION(FP_EX_OVERFLOW); \
132 FP_SET_EXCEPTION(FP_EX_INEXACT); \
133 } \
134 } \
135 else \
136 { \
137 /* we've got a denormalized number */ \
138 X##_e = -X##_e + 1; \
139 if (X##_e <= _FP_WFRACBITS_##fs) \
140 { \
141 _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
142 _FP_ROUND(wc, X); \
143 if (_FP_FRAC_HIGH_##fs(X) \
144 & (_FP_OVERFLOW_##fs >> 1)) \
145 { \
146 X##_e = 1; \
147 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
148 FP_SET_EXCEPTION(FP_EX_INEXACT); \
149 } \
150 else \
151 { \
152 X##_e = 0; \
153 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
154 } \
155 if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) || \
156 (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
157 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
158 } \
159 else \
160 { \
161 /* underflow to zero */ \
162 X##_e = 0; \
163 if (!_FP_FRAC_ZEROP_##wc(X)) \
164 { \
165 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
166 _FP_ROUND(wc, X); \
167 _FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \
168 } \
169 FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
170 } \
171 } \
172 break; \
173 \
174 case FP_CLS_ZERO: \
175 X##_e = 0; \
176 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
177 break; \
178 \
179 case FP_CLS_INF: \
180 X##_e = _FP_EXPMAX_##fs; \
181 _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
182 break; \
183 \
184 case FP_CLS_NAN: \
185 X##_e = _FP_EXPMAX_##fs; \
186 if (!_FP_KEEPNANFRACP) \
187 { \
188 _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
189 X##_s = _FP_NANSIGN_##fs; \
190 } \
191 else \
192 _FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \
193 break; \
194 } \
195 } while (0)
196
197 /* This one accepts raw argument and not cooked, returns
198 * 1 if X is a signaling NaN.
199 */
200 #define _FP_ISSIGNAN(fs, wc, X) \
201 ({ \
202 int __ret = 0; \
203 if (X##_e == _FP_EXPMAX_##fs) \
204 { \
205 if (!_FP_FRAC_ZEROP_##wc(X) \
206 && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
207 __ret = 1; \
208 } \
209 __ret; \
210 })
211
212
213
214
215
216 /*
217 * Main addition routine. The input values should be cooked.
218 */
219
220 #define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
221 do { \
222 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
223 { \
224 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
225 { \
226 /* shift the smaller number so that its exponent matches the larger */ \
227 _FP_I_TYPE diff = X##_e - Y##_e; \
228 \
229 if (diff < 0) \
230 { \
231 diff = -diff; \
232 if (diff <= _FP_WFRACBITS_##fs) \
233 _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
234 else if (!_FP_FRAC_ZEROP_##wc(X)) \
235 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
236 R##_e = Y##_e; \
237 } \
238 else \
239 { \
240 if (diff > 0) \
241 { \
242 if (diff <= _FP_WFRACBITS_##fs) \
243 _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
244 else if (!_FP_FRAC_ZEROP_##wc(Y)) \
245 _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
246 } \
247 R##_e = X##_e; \
248 } \
249 \
250 R##_c = FP_CLS_NORMAL; \
251 \
252 if (X##_s == Y##_s) \
253 { \
254 R##_s = X##_s; \
255 _FP_FRAC_ADD_##wc(R, X, Y); \
256 if (_FP_FRAC_OVERP_##wc(fs, R)) \
257 { \
258 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
259 R##_e++; \
260 } \
261 } \
262 else \
263 { \
264 R##_s = X##_s; \
265 _FP_FRAC_SUB_##wc(R, X, Y); \
266 if (_FP_FRAC_ZEROP_##wc(R)) \
267 { \
268 /* return an exact zero */ \
269 if (FP_ROUNDMODE == FP_RND_MINF) \
270 R##_s |= Y##_s; \
271 else \
272 R##_s &= Y##_s; \
273 R##_c = FP_CLS_ZERO; \
274 } \
275 else \
276 { \
277 if (_FP_FRAC_NEGP_##wc(R)) \
278 { \
279 _FP_FRAC_SUB_##wc(R, Y, X); \
280 R##_s = Y##_s; \
281 } \
282 \
283 /* renormalize after subtraction */ \
284 _FP_FRAC_CLZ_##wc(diff, R); \
285 diff -= _FP_WFRACXBITS_##fs; \
286 if (diff) \
287 { \
288 R##_e -= diff; \
289 _FP_FRAC_SLL_##wc(R, diff); \
290 } \
291 } \
292 } \
293 break; \
294 } \
295 \
296 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
297 _FP_CHOOSENAN(fs, wc, R, X, Y, OP); \
298 break; \
299 \
300 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
301 R##_e = X##_e; \
302 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
303 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
304 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
305 _FP_FRAC_COPY_##wc(R, X); \
306 R##_s = X##_s; \
307 R##_c = X##_c; \
308 break; \
309 \
310 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
311 R##_e = Y##_e; \
312 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
313 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
314 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
315 _FP_FRAC_COPY_##wc(R, Y); \
316 R##_s = Y##_s; \
317 R##_c = Y##_c; \
318 break; \
319 \
320 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
321 if (X##_s != Y##_s) \
322 { \
323 /* +INF + -INF => NAN */ \
324 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
325 R##_s = _FP_NANSIGN_##fs; \
326 R##_c = FP_CLS_NAN; \
327 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI); \
328 break; \
329 } \
330 /* FALLTHRU */ \
331 \
332 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
333 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
334 R##_s = X##_s; \
335 R##_c = FP_CLS_INF; \
336 break; \
337 \
338 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
339 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
340 R##_s = Y##_s; \
341 R##_c = FP_CLS_INF; \
342 break; \
343 \
344 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
345 /* make sure the sign is correct */ \
346 if (FP_ROUNDMODE == FP_RND_MINF) \
347 R##_s = X##_s | Y##_s; \
348 else \
349 R##_s = X##_s & Y##_s; \
350 R##_c = FP_CLS_ZERO; \
351 break; \
352 \
353 default: \
354 abort(); \
355 } \
356 } while (0)
357
358 #define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
359 #define _FP_SUB(fs, wc, R, X, Y) \
360 do { \
361 if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \
362 _FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \
363 } while (0)
364
365
366 /*
367 * Main negation routine. FIXME -- when we care about setting exception
368 * bits reliably, this will not do. We should examine all of the fp classes.
369 */
370
371 #define _FP_NEG(fs, wc, R, X) \
372 do { \
373 _FP_FRAC_COPY_##wc(R, X); \
374 R##_c = X##_c; \
375 R##_e = X##_e; \
376 R##_s = 1 ^ X##_s; \
377 } while (0)
378
379
380 /*
381 * Main multiplication routine. The input values should be cooked.
382 */
383
384 #define _FP_MUL(fs, wc, R, X, Y) \
385 do { \
386 R##_s = X##_s ^ Y##_s; \
387 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
388 { \
389 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
390 R##_c = FP_CLS_NORMAL; \
391 R##_e = X##_e + Y##_e + 1; \
392 \
393 _FP_MUL_MEAT_##fs(R,X,Y); \
394 \
395 if (_FP_FRAC_OVERP_##wc(fs, R)) \
396 _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
397 else \
398 R##_e--; \
399 break; \
400 \
401 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
402 _FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \
403 break; \
404 \
405 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
406 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
407 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
408 R##_s = X##_s; \
409 \
410 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
411 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
412 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
413 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
414 _FP_FRAC_COPY_##wc(R, X); \
415 R##_c = X##_c; \
416 break; \
417 \
418 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
419 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
420 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
421 R##_s = Y##_s; \
422 \
423 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
424 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
425 _FP_FRAC_COPY_##wc(R, Y); \
426 R##_c = Y##_c; \
427 break; \
428 \
429 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
430 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
431 R##_s = _FP_NANSIGN_##fs; \
432 R##_c = FP_CLS_NAN; \
433 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
434 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\
435 break; \
436 \
437 default: \
438 abort(); \
439 } \
440 } while (0)
441
442
443 /*
444 * Main division routine. The input values should be cooked.
445 */
446
447 #define _FP_DIV(fs, wc, R, X, Y) \
448 do { \
449 R##_s = X##_s ^ Y##_s; \
450 switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
451 { \
452 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
453 R##_c = FP_CLS_NORMAL; \
454 R##_e = X##_e - Y##_e; \
455 \
456 _FP_DIV_MEAT_##fs(R,X,Y); \
457 break; \
458 \
459 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
460 _FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \
461 break; \
462 \
463 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
464 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
465 case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
466 R##_s = X##_s; \
467 _FP_FRAC_COPY_##wc(R, X); \
468 R##_c = X##_c; \
469 break; \
470 \
471 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
472 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
473 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
474 R##_s = Y##_s; \
475 _FP_FRAC_COPY_##wc(R, Y); \
476 R##_c = Y##_c; \
477 break; \
478 \
479 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
480 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
481 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
482 R##_c = FP_CLS_ZERO; \
483 break; \
484 \
485 case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
486 FP_SET_EXCEPTION(FP_EX_DIVZERO); \
487 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
488 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
489 R##_c = FP_CLS_INF; \
490 break; \
491 \
492 case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
493 R##_s = _FP_NANSIGN_##fs; \
494 R##_c = FP_CLS_NAN; \
495 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
496 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\
497 case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
498 R##_s = _FP_NANSIGN_##fs; \
499 R##_c = FP_CLS_NAN; \
500 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
501 FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\
502 break; \
503 \
504 default: \
505 abort(); \
506 } \
507 } while (0)
508
509
510 /*
511 * Main differential comparison routine. The inputs should be raw not
512 * cooked. The return is -1,0,1 for normal values, 2 otherwise.
513 */
514
515 #define _FP_CMP(fs, wc, ret, X, Y, un) \
516 do { \
517 /* NANs are unordered */ \
518 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
519 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
520 { \
521 ret = un; \
522 } \
523 else \
524 { \
525 int __is_zero_x; \
526 int __is_zero_y; \
527 \
528 __is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
529 __is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
530 \
531 if (__is_zero_x && __is_zero_y) \
532 ret = 0; \
533 else if (__is_zero_x) \
534 ret = Y##_s ? 1 : -1; \
535 else if (__is_zero_y) \
536 ret = X##_s ? -1 : 1; \
537 else if (X##_s != Y##_s) \
538 ret = X##_s ? -1 : 1; \
539 else if (X##_e > Y##_e) \
540 ret = X##_s ? -1 : 1; \
541 else if (X##_e < Y##_e) \
542 ret = X##_s ? 1 : -1; \
543 else if (_FP_FRAC_GT_##wc(X, Y)) \
544 ret = X##_s ? -1 : 1; \
545 else if (_FP_FRAC_GT_##wc(Y, X)) \
546 ret = X##_s ? 1 : -1; \
547 else \
548 ret = 0; \
549 } \
550 } while (0)
551
552
553 /* Simplification for strict equality. */
554
555 #define _FP_CMP_EQ(fs, wc, ret, X, Y) \
556 do { \
557 /* NANs are unordered */ \
558 if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
559 || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
560 { \
561 ret = 1; \
562 } \
563 else \
564 { \
565 ret = !(X##_e == Y##_e \
566 && _FP_FRAC_EQ_##wc(X, Y) \
567 && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
568 } \
569 } while (0)
570
571 /*
572 * Main square root routine. The input value should be cooked.
573 */
574
575 #define _FP_SQRT(fs, wc, R, X) \
576 do { \
577 _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
578 _FP_W_TYPE q; \
579 switch (X##_c) \
580 { \
581 case FP_CLS_NAN: \
582 _FP_FRAC_COPY_##wc(R, X); \
583 R##_s = X##_s; \
584 R##_c = FP_CLS_NAN; \
585 break; \
586 case FP_CLS_INF: \
587 if (X##_s) \
588 { \
589 R##_s = _FP_NANSIGN_##fs; \
590 R##_c = FP_CLS_NAN; /* NAN */ \
591 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
592 FP_SET_EXCEPTION(FP_EX_INVALID); \
593 } \
594 else \
595 { \
596 R##_s = 0; \
597 R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
598 } \
599 break; \
600 case FP_CLS_ZERO: \
601 R##_s = X##_s; \
602 R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
603 break; \
604 case FP_CLS_NORMAL: \
605 R##_s = 0; \
606 if (X##_s) \
607 { \
608 R##_c = FP_CLS_NAN; /* sNAN */ \
609 R##_s = _FP_NANSIGN_##fs; \
610 _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
611 FP_SET_EXCEPTION(FP_EX_INVALID); \
612 break; \
613 } \
614 R##_c = FP_CLS_NORMAL; \
615 if (X##_e & 1) \
616 _FP_FRAC_SLL_##wc(X, 1); \
617 R##_e = X##_e >> 1; \
618 _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
619 _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
620 q = _FP_OVERFLOW_##fs >> 1; \
621 _FP_SQRT_MEAT_##wc(R, S, T, X, q); \
622 } \
623 } while (0)
624
625 /*
626 * Convert from FP to integer
627 */
628
629 /* RSIGNED can have following values:
630 * 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
631 * the result is either 0 or (2^rsize)-1 depending on the sign in such case.
632 * 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
633 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
634 * on the sign in such case.
635 * 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
636 * set plus the result is truncated to fit into destination.
637 * -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
638 * set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
639 * on the sign in such case.
640 */
641 #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
642 do { \
643 switch (X##_c) \
644 { \
645 case FP_CLS_NORMAL: \
646 if (X##_e < 0) \
647 { \
648 FP_SET_EXCEPTION(FP_EX_INEXACT); \
649 case FP_CLS_ZERO: \
650 r = 0; \
651 } \
652 else if (X##_e >= rsize - (rsigned > 0 || X##_s) \
653 || (!rsigned && X##_s)) \
654 { /* overflow */ \
655 case FP_CLS_NAN: \
656 case FP_CLS_INF: \
657 if (rsigned == 2) \
658 { \
659 if (X##_c != FP_CLS_NORMAL \
660 || X##_e >= rsize - 1 + _FP_WFRACBITS_##fs) \
661 r = 0; \
662 else \
663 { \
664 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
665 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
666 } \
667 } \
668 else if (rsigned) \
669 { \
670 r = 1; \
671 r <<= rsize - 1; \
672 r -= 1 - X##_s; \
673 } \
674 else \
675 { \
676 r = 0; \
677 if (X##_s) \
678 r = ~r; \
679 } \
680 FP_SET_EXCEPTION(FP_EX_INVALID); \
681 } \
682 else \
683 { \
684 if (_FP_W_TYPE_SIZE*wc < rsize) \
685 { \
686 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
687 r <<= X##_e - _FP_WFRACBITS_##fs; \
688 } \
689 else \
690 { \
691 if (X##_e >= _FP_WFRACBITS_##fs) \
692 _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
693 else if (X##_e < _FP_WFRACBITS_##fs - 1) \
694 { \
695 _FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \
696 _FP_WFRACBITS_##fs); \
697 if (_FP_FRAC_LOW_##wc(X) & 1) \
698 FP_SET_EXCEPTION(FP_EX_INEXACT); \
699 _FP_FRAC_SRL_##wc(X, 1); \
700 } \
701 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
702 } \
703 if (rsigned && X##_s) \
704 r = -r; \
705 } \
706 break; \
707 } \
708 } while (0)
709
710 #define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \
711 do { \
712 r = 0; \
713 switch (X##_c) \
714 { \
715 case FP_CLS_NORMAL: \
716 if (X##_e >= _FP_FRACBITS_##fs - 1) \
717 { \
718 if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs) \
719 { \
720 if (X##_e >= _FP_WFRACBITS_##fs - 1) \
721 { \
722 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
723 r <<= X##_e - _FP_WFRACBITS_##fs + 1; \
724 } \
725 else \
726 { \
727 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e \
728 + _FP_FRACBITS_##fs - 1); \
729 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
730 } \
731 } \
732 } \
733 else \
734 { \
735 if (X##_e <= -_FP_WORKBITS - 1) \
736 _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
737 else \
738 _FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e, \
739 _FP_WFRACBITS_##fs); \
740 _FP_ROUND(wc, X); \
741 _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
742 _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
743 } \
744 if (rsigned && X##_s) \
745 r = -r; \
746 if (X##_e >= rsize - (rsigned > 0 || X##_s) \
747 || (!rsigned && X##_s)) \
748 { /* overflow */ \
749 case FP_CLS_NAN: \
750 case FP_CLS_INF: \
751 if (!rsigned) \
752 { \
753 r = 0; \
754 if (X##_s) \
755 r = ~r; \
756 } \
757 else if (rsigned != 2) \
758 { \
759 r = 1; \
760 r <<= rsize - 1; \
761 r -= 1 - X##_s; \
762 } \
763 FP_SET_EXCEPTION(FP_EX_INVALID); \
764 } \
765 break; \
766 case FP_CLS_ZERO: \
767 break; \
768 } \
769 } while (0)
770
771 #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
772 do { \
773 if (r) \
774 { \
775 unsigned rtype ur_; \
776 X##_c = FP_CLS_NORMAL; \
777 \
778 if ((X##_s = (r < 0))) \
779 ur_ = (unsigned rtype) -r; \
780 else \
781 ur_ = (unsigned rtype) r; \
782 if (rsize <= _FP_W_TYPE_SIZE) \
783 __FP_CLZ(X##_e, ur_); \
784 else \
785 __FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), \
786 (_FP_W_TYPE)ur_); \
787 if (rsize < _FP_W_TYPE_SIZE) \
788 X##_e -= (_FP_W_TYPE_SIZE - rsize); \
789 X##_e = rsize - X##_e - 1; \
790 \
791 if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \
792 __FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
793 _FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize); \
794 if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0) \
795 _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
796 } \
797 else \
798 { \
799 X##_c = FP_CLS_ZERO, X##_s = 0; \
800 } \
801 } while (0)
802
803
804 #define FP_CONV(dfs,sfs,dwc,swc,D,S) \
805 do { \
806 _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
807 D##_e = S##_e; \
808 D##_c = S##_c; \
809 D##_s = S##_s; \
810 } while (0)
811
812 /*
813 * Helper primitives.
814 */
815
816 /* Count leading zeros in a word. */
817
818 #ifndef __FP_CLZ
819 #if _FP_W_TYPE_SIZE < 64
820 /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
821 #define __FP_CLZ(r, x) \
822 do { \
823 _FP_W_TYPE _t = (x); \
824 r = _FP_W_TYPE_SIZE - 1; \
825 if (_t > 0xffff) r -= 16; \
826 if (_t > 0xffff) _t >>= 16; \
827 if (_t > 0xff) r -= 8; \
828 if (_t > 0xff) _t >>= 8; \
829 if (_t & 0xf0) r -= 4; \
830 if (_t & 0xf0) _t >>= 4; \
831 if (_t & 0xc) r -= 2; \
832 if (_t & 0xc) _t >>= 2; \
833 if (_t & 0x2) r -= 1; \
834 } while (0)
835 #else /* not _FP_W_TYPE_SIZE < 64 */
836 #define __FP_CLZ(r, x) \
837 do { \
838 _FP_W_TYPE _t = (x); \
839 r = _FP_W_TYPE_SIZE - 1; \
840 if (_t > 0xffffffff) r -= 32; \
841 if (_t > 0xffffffff) _t >>= 32; \
842 if (_t > 0xffff) r -= 16; \
843 if (_t > 0xffff) _t >>= 16; \
844 if (_t > 0xff) r -= 8; \
845 if (_t > 0xff) _t >>= 8; \
846 if (_t & 0xf0) r -= 4; \
847 if (_t & 0xf0) _t >>= 4; \
848 if (_t & 0xc) r -= 2; \
849 if (_t & 0xc) _t >>= 2; \
850 if (_t & 0x2) r -= 1; \
851 } while (0)
852 #endif /* not _FP_W_TYPE_SIZE < 64 */
853 #endif /* ndef __FP_CLZ */
854
855 #define _FP_DIV_HELP_imm(q, r, n, d) \
856 do { \
857 q = n / d, r = n % d; \
858 } while (0)
859
860 #endif /* __MATH_EMU_OP_COMMON_H__ */