010ee708304db18a36e0906ffc869c0e776915f2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / uwb.h
1 /*
2 * Ultra Wide Band
3 * UWB API
4 *
5 * Copyright (C) 2005-2006 Intel Corporation
6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version
10 * 2 as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
20 * 02110-1301, USA.
21 *
22 *
23 * FIXME: doc: overview of the API, different parts and pointers
24 */
25
26 #ifndef __LINUX__UWB_H__
27 #define __LINUX__UWB_H__
28
29 #include <linux/limits.h>
30 #include <linux/device.h>
31 #include <linux/mutex.h>
32 #include <linux/timer.h>
33 #include <linux/workqueue.h>
34 #include <linux/uwb/spec.h>
35
36 struct uwb_dev;
37 struct uwb_beca_e;
38 struct uwb_rc;
39 struct uwb_rsv;
40 struct uwb_dbg;
41
42 /**
43 * struct uwb_dev - a UWB Device
44 * @rc: UWB Radio Controller that discovered the device (kind of its
45 * parent).
46 * @bce: a beacon cache entry for this device; or NULL if the device
47 * is a local radio controller.
48 * @mac_addr: the EUI-48 address of this device.
49 * @dev_addr: the current DevAddr used by this device.
50 * @beacon_slot: the slot number the beacon is using.
51 * @streams: bitmap of streams allocated to reservations targeted at
52 * this device. For an RC, this is the streams allocated for
53 * reservations targeted at DevAddrs.
54 *
55 * A UWB device may either by a neighbor or part of a local radio
56 * controller.
57 */
58 struct uwb_dev {
59 struct mutex mutex;
60 struct list_head list_node;
61 struct device dev;
62 struct uwb_rc *rc; /* radio controller */
63 struct uwb_beca_e *bce; /* Beacon Cache Entry */
64
65 struct uwb_mac_addr mac_addr;
66 struct uwb_dev_addr dev_addr;
67 int beacon_slot;
68 DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
69 };
70 #define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
71
72 /**
73 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
74 *
75 * RC[CE]Bs have a 'context ID' field that matches the command with
76 * the event received to confirm it.
77 *
78 * Maximum number of context IDs
79 */
80 enum { UWB_RC_CTX_MAX = 256 };
81
82
83 /** Notification chain head for UWB generated events to listeners */
84 struct uwb_notifs_chain {
85 struct list_head list;
86 struct mutex mutex;
87 };
88
89 /**
90 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
91 * @bm: a bitmap of length #UWB_NUM_MAS
92 */
93 struct uwb_mas_bm {
94 DECLARE_BITMAP(bm, UWB_NUM_MAS);
95 };
96
97 /**
98 * uwb_rsv_state - UWB Reservation state.
99 *
100 * NONE - reservation is not active (no DRP IE being transmitted).
101 *
102 * Owner reservation states:
103 *
104 * INITIATED - owner has sent an initial DRP request.
105 * PENDING - target responded with pending Reason Code.
106 * MODIFIED - reservation manager is modifying an established
107 * reservation with a different MAS allocation.
108 * ESTABLISHED - the reservation has been successfully negotiated.
109 *
110 * Target reservation states:
111 *
112 * DENIED - request is denied.
113 * ACCEPTED - request is accepted.
114 * PENDING - PAL has yet to make a decision to whether to accept or
115 * deny.
116 *
117 * FIXME: further target states TBD.
118 */
119 enum uwb_rsv_state {
120 UWB_RSV_STATE_NONE,
121 UWB_RSV_STATE_O_INITIATED,
122 UWB_RSV_STATE_O_PENDING,
123 UWB_RSV_STATE_O_MODIFIED,
124 UWB_RSV_STATE_O_ESTABLISHED,
125 UWB_RSV_STATE_T_ACCEPTED,
126 UWB_RSV_STATE_T_DENIED,
127 UWB_RSV_STATE_T_PENDING,
128
129 UWB_RSV_STATE_LAST,
130 };
131
132 enum uwb_rsv_target_type {
133 UWB_RSV_TARGET_DEV,
134 UWB_RSV_TARGET_DEVADDR,
135 };
136
137 /**
138 * struct uwb_rsv_target - the target of a reservation.
139 *
140 * Reservations unicast and targeted at a single device
141 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
142 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
143 */
144 struct uwb_rsv_target {
145 enum uwb_rsv_target_type type;
146 union {
147 struct uwb_dev *dev;
148 struct uwb_dev_addr devaddr;
149 };
150 };
151
152 /*
153 * Number of streams reserved for reservations targeted at DevAddrs.
154 */
155 #define UWB_NUM_GLOBAL_STREAMS 1
156
157 typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
158
159 /**
160 * struct uwb_rsv - a DRP reservation
161 *
162 * Data structure management:
163 *
164 * @rc: the radio controller this reservation is for
165 * (as target or owner)
166 * @rc_node: a list node for the RC
167 * @pal_node: a list node for the PAL
168 *
169 * Owner and target parameters:
170 *
171 * @owner: the UWB device owning this reservation
172 * @target: the target UWB device
173 * @type: reservation type
174 *
175 * Owner parameters:
176 *
177 * @max_mas: maxiumum number of MAS
178 * @min_mas: minimum number of MAS
179 * @sparsity: owner selected sparsity
180 * @is_multicast: true iff multicast
181 *
182 * @callback: callback function when the reservation completes
183 * @pal_priv: private data for the PAL making the reservation
184 *
185 * Reservation status:
186 *
187 * @status: negotiation status
188 * @stream: stream index allocated for this reservation
189 * @mas: reserved MAS
190 * @drp_ie: the DRP IE
191 * @ie_valid: true iff the DRP IE matches the reservation parameters
192 *
193 * DRP reservations are uniquely identified by the owner, target and
194 * stream index. However, when using a DevAddr as a target (e.g., for
195 * a WUSB cluster reservation) the responses may be received from
196 * devices with different DevAddrs. In this case, reservations are
197 * uniquely identified by just the stream index. A number of stream
198 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
199 */
200 struct uwb_rsv {
201 struct uwb_rc *rc;
202 struct list_head rc_node;
203 struct list_head pal_node;
204 struct kref kref;
205
206 struct uwb_dev *owner;
207 struct uwb_rsv_target target;
208 enum uwb_drp_type type;
209 int max_mas;
210 int min_mas;
211 int sparsity;
212 bool is_multicast;
213
214 uwb_rsv_cb_f callback;
215 void *pal_priv;
216
217 enum uwb_rsv_state state;
218 u8 stream;
219 struct uwb_mas_bm mas;
220 struct uwb_ie_drp *drp_ie;
221 bool ie_valid;
222 struct timer_list timer;
223 bool expired;
224 };
225
226 static const
227 struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
228
229 static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
230 {
231 bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
232 }
233
234 /**
235 * struct uwb_drp_avail - a radio controller's view of MAS usage
236 * @global: MAS unused by neighbors (excluding reservations targetted
237 * or owned by the local radio controller) or the beaon period
238 * @local: MAS unused by local established reservations
239 * @pending: MAS unused by local pending reservations
240 * @ie: DRP Availability IE to be included in the beacon
241 * @ie_valid: true iff @ie is valid and does not need to regenerated from
242 * @global and @local
243 *
244 * Each radio controller maintains a view of MAS usage or
245 * availability. MAS available for a new reservation are determined
246 * from the intersection of @global, @local, and @pending.
247 *
248 * The radio controller must transmit a DRP Availability IE that's the
249 * intersection of @global and @local.
250 *
251 * A set bit indicates the MAS is unused and available.
252 *
253 * rc->rsvs_mutex should be held before accessing this data structure.
254 *
255 * [ECMA-368] section 17.4.3.
256 */
257 struct uwb_drp_avail {
258 DECLARE_BITMAP(global, UWB_NUM_MAS);
259 DECLARE_BITMAP(local, UWB_NUM_MAS);
260 DECLARE_BITMAP(pending, UWB_NUM_MAS);
261 struct uwb_ie_drp_avail ie;
262 bool ie_valid;
263 };
264
265
266 const char *uwb_rsv_state_str(enum uwb_rsv_state state);
267 const char *uwb_rsv_type_str(enum uwb_drp_type type);
268
269 struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
270 void *pal_priv);
271 void uwb_rsv_destroy(struct uwb_rsv *rsv);
272
273 int uwb_rsv_establish(struct uwb_rsv *rsv);
274 int uwb_rsv_modify(struct uwb_rsv *rsv,
275 int max_mas, int min_mas, int sparsity);
276 void uwb_rsv_terminate(struct uwb_rsv *rsv);
277
278 void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
279
280 /**
281 * Radio Control Interface instance
282 *
283 *
284 * Life cycle rules: those of the UWB Device.
285 *
286 * @index: an index number for this radio controller, as used in the
287 * device name.
288 * @version: version of protocol supported by this device
289 * @priv: Backend implementation; rw with uwb_dev.dev.sem taken.
290 * @cmd: Backend implementation to execute commands; rw and call
291 * only with uwb_dev.dev.sem taken.
292 * @reset: Hardware reset of radio controller and any PAL controllers.
293 * @filter: Backend implementation to manipulate data to and from device
294 * to be compliant to specification assumed by driver (WHCI
295 * 0.95).
296 *
297 * uwb_dev.dev.mutex is used to execute commands and update
298 * the corresponding structures; can't use a spinlock
299 * because rc->cmd() can sleep.
300 * @ies: This is a dynamically allocated array cacheing the
301 * IEs (settable by the host) that the beacon of this
302 * radio controller is currently sending.
303 *
304 * In reality, we store here the full command we set to
305 * the radio controller (which is basically a command
306 * prefix followed by all the IEs the beacon currently
307 * contains). This way we don't have to realloc and
308 * memcpy when setting it.
309 *
310 * We set this up in uwb_rc_ie_setup(), where we alloc
311 * this struct, call get_ie() [so we know which IEs are
312 * currently being sent, if any].
313 *
314 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
315 * amount used is given by sizeof(*ies) plus ies->wIELength
316 * (which is a little endian quantity all the time).
317 * @ies_mutex: protect the IE cache
318 * @dbg: information for the debug interface
319 */
320 struct uwb_rc {
321 struct uwb_dev uwb_dev;
322 int index;
323 u16 version;
324
325 struct module *owner;
326 void *priv;
327 int (*start)(struct uwb_rc *rc);
328 void (*stop)(struct uwb_rc *rc);
329 int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
330 int (*reset)(struct uwb_rc *rc);
331 int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
332 int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
333 size_t *, size_t *);
334
335 spinlock_t neh_lock; /* protects neh_* and ctx_* */
336 struct list_head neh_list; /* Open NE handles */
337 unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
338 u8 ctx_roll;
339
340 int beaconing; /* Beaconing state [channel number] */
341 int scanning;
342 enum uwb_scan_type scan_type:3;
343 unsigned ready:1;
344 struct uwb_notifs_chain notifs_chain;
345
346 struct uwb_drp_avail drp_avail;
347 struct list_head reservations;
348 struct mutex rsvs_mutex;
349 struct workqueue_struct *rsv_workq;
350 struct work_struct rsv_update_work;
351
352 struct mutex ies_mutex;
353 struct uwb_rc_cmd_set_ie *ies;
354 size_t ies_capacity;
355
356 spinlock_t pal_lock;
357 struct list_head pals;
358
359 struct uwb_dbg *dbg;
360 };
361
362
363 /**
364 * struct uwb_pal - a UWB PAL
365 * @name: descriptive name for this PAL (wushc, wlp, etc.).
366 * @device: a device for the PAL. Used to link the PAL and the radio
367 * controller in sysfs.
368 * @new_rsv: called when a peer requests a reservation (may be NULL if
369 * the PAL cannot accept reservation requests).
370 *
371 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
372 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
373 *
374 * The PALs using a radio controller must register themselves to
375 * permit the UWB stack to coordinate usage of the radio between the
376 * various PALs or to allow PALs to response to certain requests from
377 * peers.
378 *
379 * A struct uwb_pal should be embedded in a containing structure
380 * belonging to the PAL and initialized with uwb_pal_init()). Fields
381 * should be set appropriately by the PAL before registering the PAL
382 * with uwb_pal_register().
383 */
384 struct uwb_pal {
385 struct list_head node;
386 const char *name;
387 struct device *device;
388 void (*new_rsv)(struct uwb_rsv *rsv);
389 };
390
391 void uwb_pal_init(struct uwb_pal *pal);
392 int uwb_pal_register(struct uwb_rc *rc, struct uwb_pal *pal);
393 void uwb_pal_unregister(struct uwb_rc *rc, struct uwb_pal *pal);
394
395 /*
396 * General public API
397 *
398 * This API can be used by UWB device drivers or by those implementing
399 * UWB Radio Controllers
400 */
401 struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
402 const struct uwb_dev_addr *devaddr);
403 struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
404 static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
405 {
406 get_device(&uwb_dev->dev);
407 }
408 static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
409 {
410 put_device(&uwb_dev->dev);
411 }
412 struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
413
414 /**
415 * Callback function for 'uwb_{dev,rc}_foreach()'.
416 *
417 * @dev: Linux device instance
418 * 'uwb_dev = container_of(dev, struct uwb_dev, dev)'
419 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
420 *
421 * @returns: 0 to continue the iterations, any other val to stop
422 * iterating and return the value to the caller of
423 * _foreach().
424 */
425 typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
426 int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
427
428 struct uwb_rc *uwb_rc_alloc(void);
429 struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
430 struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
431 void uwb_rc_put(struct uwb_rc *rc);
432
433 typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
434 struct uwb_rceb *reply, ssize_t reply_size);
435
436 int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
437 struct uwb_rccb *cmd, size_t cmd_size,
438 u8 expected_type, u16 expected_event,
439 uwb_rc_cmd_cb_f cb, void *arg);
440 ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
441 struct uwb_rccb *cmd, size_t cmd_size,
442 struct uwb_rceb *reply, size_t reply_size);
443 ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
444 struct uwb_rccb *cmd, size_t cmd_size,
445 u8 expected_type, u16 expected_event,
446 struct uwb_rceb **preply);
447 ssize_t uwb_rc_get_ie(struct uwb_rc *, struct uwb_rc_evt_get_ie **);
448 int uwb_bg_joined(struct uwb_rc *rc);
449
450 size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
451
452 int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
453 int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
454 int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
455 int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
456 int __uwb_mac_addr_assigned_check(struct device *, void *);
457 int __uwb_dev_addr_assigned_check(struct device *, void *);
458
459 /* Print in @buf a pretty repr of @addr */
460 static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
461 const struct uwb_dev_addr *addr)
462 {
463 return __uwb_addr_print(buf, buf_size, addr->data, 0);
464 }
465
466 /* Print in @buf a pretty repr of @addr */
467 static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
468 const struct uwb_mac_addr *addr)
469 {
470 return __uwb_addr_print(buf, buf_size, addr->data, 1);
471 }
472
473 /* @returns 0 if device addresses @addr2 and @addr1 are equal */
474 static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
475 const struct uwb_dev_addr *addr2)
476 {
477 return memcmp(addr1, addr2, sizeof(*addr1));
478 }
479
480 /* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
481 static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
482 const struct uwb_mac_addr *addr2)
483 {
484 return memcmp(addr1, addr2, sizeof(*addr1));
485 }
486
487 /* @returns !0 if a MAC @addr is a broadcast address */
488 static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
489 {
490 struct uwb_mac_addr bcast = {
491 .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
492 };
493 return !uwb_mac_addr_cmp(addr, &bcast);
494 }
495
496 /* @returns !0 if a MAC @addr is all zeroes*/
497 static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
498 {
499 struct uwb_mac_addr unset = {
500 .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
501 };
502 return !uwb_mac_addr_cmp(addr, &unset);
503 }
504
505 /* @returns !0 if the address is in use. */
506 static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
507 struct uwb_dev_addr *addr)
508 {
509 return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
510 }
511
512 /*
513 * UWB Radio Controller API
514 *
515 * This API is used (in addition to the general API) to implement UWB
516 * Radio Controllers.
517 */
518 void uwb_rc_init(struct uwb_rc *);
519 int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
520 void uwb_rc_rm(struct uwb_rc *);
521 void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
522 void uwb_rc_neh_error(struct uwb_rc *, int);
523 void uwb_rc_reset_all(struct uwb_rc *rc);
524
525 /**
526 * uwb_rsv_is_owner - is the owner of this reservation the RC?
527 * @rsv: the reservation
528 */
529 static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
530 {
531 return rsv->owner == &rsv->rc->uwb_dev;
532 }
533
534 /**
535 * Events generated by UWB that can be passed to any listeners
536 *
537 * Higher layers can register callback functions with the radio
538 * controller using uwb_notifs_register(). The radio controller
539 * maintains a list of all registered handlers and will notify all
540 * nodes when an event occurs.
541 */
542 enum uwb_notifs {
543 UWB_NOTIF_BG_JOIN = 0, /* radio controller joined a beacon group */
544 UWB_NOTIF_BG_LEAVE = 1, /* radio controller left a beacon group */
545 UWB_NOTIF_ONAIR,
546 UWB_NOTIF_OFFAIR,
547 };
548
549 /* Callback function registered with UWB */
550 struct uwb_notifs_handler {
551 struct list_head list_node;
552 void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
553 void *data;
554 };
555
556 int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
557 int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
558
559
560 /**
561 * UWB radio controller Event Size Entry (for creating entry tables)
562 *
563 * WUSB and WHCI define events and notifications, and they might have
564 * fixed or variable size.
565 *
566 * Each event/notification has a size which is not necessarily known
567 * in advance based on the event code. As well, vendor specific
568 * events/notifications will have a size impossible to determine
569 * unless we know about the device's specific details.
570 *
571 * It was way too smart of the spec writers not to think that it would
572 * be impossible for a generic driver to skip over vendor specific
573 * events/notifications if there are no LENGTH fields in the HEADER of
574 * each message...the transaction size cannot be counted on as the
575 * spec does not forbid to pack more than one event in a single
576 * transaction.
577 *
578 * Thus, we guess sizes with tables (or for events, when you know the
579 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
580 * register tables with the known events and their sizes, and then we
581 * traverse those tables. For those with variable length, we provide a
582 * way to lookup the size inside the event/notification's
583 * payload. This allows device-specific event size tables to be
584 * registered.
585 *
586 * @size: Size of the payload
587 *
588 * @offset: if != 0, at offset @offset-1 starts a field with a length
589 * that has to be added to @size. The format of the field is
590 * given by @type.
591 *
592 * @type: Type and length of the offset field. Most common is LE 16
593 * bits (that's why that is zero); others are there mostly to
594 * cover for bugs and weirdos.
595 */
596 struct uwb_est_entry {
597 size_t size;
598 unsigned offset;
599 enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
600 };
601
602 int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
603 const struct uwb_est_entry *, size_t entries);
604 int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
605 const struct uwb_est_entry *, size_t entries);
606 ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
607 size_t len);
608
609 /* -- Misc */
610
611 enum {
612 EDC_MAX_ERRORS = 10,
613 EDC_ERROR_TIMEFRAME = HZ,
614 };
615
616 /* error density counter */
617 struct edc {
618 unsigned long timestart;
619 u16 errorcount;
620 };
621
622 static inline
623 void edc_init(struct edc *edc)
624 {
625 edc->timestart = jiffies;
626 }
627
628 /* Called when an error occured.
629 * This is way to determine if the number of acceptable errors per time
630 * period has been exceeded. It is not accurate as there are cases in which
631 * this scheme will not work, for example if there are periodic occurences
632 * of errors that straddle updates to the start time. This scheme is
633 * sufficient for our usage.
634 *
635 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
636 */
637 static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
638 {
639 unsigned long now;
640
641 now = jiffies;
642 if (now - err_hist->timestart > timeframe) {
643 err_hist->errorcount = 1;
644 err_hist->timestart = now;
645 } else if (++err_hist->errorcount > max_err) {
646 err_hist->errorcount = 0;
647 err_hist->timestart = now;
648 return 1;
649 }
650 return 0;
651 }
652
653
654 /* Information Element handling */
655
656 /* For representing the state of writing to a buffer when iterating */
657 struct uwb_buf_ctx {
658 char *buf;
659 size_t bytes, size;
660 };
661
662 typedef int (*uwb_ie_f)(struct uwb_dev *, const struct uwb_ie_hdr *,
663 size_t, void *);
664 struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
665 ssize_t uwb_ie_for_each(struct uwb_dev *uwb_dev, uwb_ie_f fn, void *data,
666 const void *buf, size_t size);
667 int uwb_ie_dump_hex(struct uwb_dev *, const struct uwb_ie_hdr *,
668 size_t, void *);
669 int uwb_rc_set_ie(struct uwb_rc *, struct uwb_rc_cmd_set_ie *);
670 struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
671
672
673 /*
674 * Transmission statistics
675 *
676 * UWB uses LQI and RSSI (one byte values) for reporting radio signal
677 * strength and line quality indication. We do quick and dirty
678 * averages of those. They are signed values, btw.
679 *
680 * For 8 bit quantities, we keep the min, the max, an accumulator
681 * (@sigma) and a # of samples. When @samples gets to 255, we compute
682 * the average (@sigma / @samples), place it in @sigma and reset
683 * @samples to 1 (so we use it as the first sample).
684 *
685 * Now, statistically speaking, probably I am kicking the kidneys of
686 * some books I have in my shelves collecting dust, but I just want to
687 * get an approx, not the Nobel.
688 *
689 * LOCKING: there is no locking per se, but we try to keep a lockless
690 * schema. Only _add_samples() modifies the values--as long as you
691 * have other locking on top that makes sure that no two calls of
692 * _add_sample() happen at the same time, then we are fine. Now, for
693 * resetting the values we just set @samples to 0 and that makes the
694 * next _add_sample() to start with defaults. Reading the values in
695 * _show() currently can race, so you need to make sure the calls are
696 * under the same lock that protects calls to _add_sample(). FIXME:
697 * currently unlocked (It is not ultraprecise but does the trick. Bite
698 * me).
699 */
700 struct stats {
701 s8 min, max;
702 s16 sigma;
703 atomic_t samples;
704 };
705
706 static inline
707 void stats_init(struct stats *stats)
708 {
709 atomic_set(&stats->samples, 0);
710 wmb();
711 }
712
713 static inline
714 void stats_add_sample(struct stats *stats, s8 sample)
715 {
716 s8 min, max;
717 s16 sigma;
718 unsigned samples = atomic_read(&stats->samples);
719 if (samples == 0) { /* it was zero before, so we initialize */
720 min = 127;
721 max = -128;
722 sigma = 0;
723 } else {
724 min = stats->min;
725 max = stats->max;
726 sigma = stats->sigma;
727 }
728
729 if (sample < min) /* compute new values */
730 min = sample;
731 else if (sample > max)
732 max = sample;
733 sigma += sample;
734
735 stats->min = min; /* commit */
736 stats->max = max;
737 stats->sigma = sigma;
738 if (atomic_add_return(1, &stats->samples) > 255) {
739 /* wrapped around! reset */
740 stats->sigma = sigma / 256;
741 atomic_set(&stats->samples, 1);
742 }
743 }
744
745 static inline ssize_t stats_show(struct stats *stats, char *buf)
746 {
747 int min, max, avg;
748 int samples = atomic_read(&stats->samples);
749 if (samples == 0)
750 min = max = avg = 0;
751 else {
752 min = stats->min;
753 max = stats->max;
754 avg = stats->sigma / samples;
755 }
756 return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
757 }
758
759 static inline ssize_t stats_store(struct stats *stats, const char *buf,
760 size_t size)
761 {
762 stats_init(stats);
763 return size;
764 }
765
766 #endif /* #ifndef __LINUX__UWB_H__ */