Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / usb.h
1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23
24 struct usb_device;
25 struct usb_driver;
26
27 /*-------------------------------------------------------------------------*/
28
29 /*
30 * Host-side wrappers for standard USB descriptors ... these are parsed
31 * from the data provided by devices. Parsing turns them from a flat
32 * sequence of descriptors into a hierarchy:
33 *
34 * - devices have one (usually) or more configs;
35 * - configs have one (often) or more interfaces;
36 * - interfaces have one (usually) or more settings;
37 * - each interface setting has zero or (usually) more endpoints.
38 *
39 * And there might be other descriptors mixed in with those.
40 *
41 * Devices may also have class-specific or vendor-specific descriptors.
42 */
43
44 struct ep_device;
45
46 /**
47 * struct usb_host_endpoint - host-side endpoint descriptor and queue
48 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
49 * @urb_list: urbs queued to this endpoint; maintained by usbcore
50 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
51 * with one or more transfer descriptors (TDs) per urb
52 * @ep_dev: ep_device for sysfs info
53 * @extra: descriptors following this endpoint in the configuration
54 * @extralen: how many bytes of "extra" are valid
55 * @enabled: URBs may be submitted to this endpoint
56 *
57 * USB requests are always queued to a given endpoint, identified by a
58 * descriptor within an active interface in a given USB configuration.
59 */
60 struct usb_host_endpoint {
61 struct usb_endpoint_descriptor desc;
62 struct list_head urb_list;
63 void *hcpriv;
64 struct ep_device *ep_dev; /* For sysfs info */
65
66 unsigned char *extra; /* Extra descriptors */
67 int extralen;
68 int enabled;
69 };
70
71 /* host-side wrapper for one interface setting's parsed descriptors */
72 struct usb_host_interface {
73 struct usb_interface_descriptor desc;
74
75 /* array of desc.bNumEndpoint endpoints associated with this
76 * interface setting. these will be in no particular order.
77 */
78 struct usb_host_endpoint *endpoint;
79
80 char *string; /* iInterface string, if present */
81 unsigned char *extra; /* Extra descriptors */
82 int extralen;
83 };
84
85 enum usb_interface_condition {
86 USB_INTERFACE_UNBOUND = 0,
87 USB_INTERFACE_BINDING,
88 USB_INTERFACE_BOUND,
89 USB_INTERFACE_UNBINDING,
90 };
91
92 /**
93 * struct usb_interface - what usb device drivers talk to
94 * @altsetting: array of interface structures, one for each alternate
95 * setting that may be selected. Each one includes a set of
96 * endpoint configurations. They will be in no particular order.
97 * @cur_altsetting: the current altsetting.
98 * @num_altsetting: number of altsettings defined.
99 * @intf_assoc: interface association descriptor
100 * @minor: the minor number assigned to this interface, if this
101 * interface is bound to a driver that uses the USB major number.
102 * If this interface does not use the USB major, this field should
103 * be unused. The driver should set this value in the probe()
104 * function of the driver, after it has been assigned a minor
105 * number from the USB core by calling usb_register_dev().
106 * @condition: binding state of the interface: not bound, binding
107 * (in probe()), bound to a driver, or unbinding (in disconnect())
108 * @is_active: flag set when the interface is bound and not suspended.
109 * @sysfs_files_created: sysfs attributes exist
110 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
111 * capability during autosuspend.
112 * @dev: driver model's view of this device
113 * @usb_dev: if an interface is bound to the USB major, this will point
114 * to the sysfs representation for that device.
115 * @pm_usage_cnt: PM usage counter for this interface; autosuspend is not
116 * allowed unless the counter is 0.
117 *
118 * USB device drivers attach to interfaces on a physical device. Each
119 * interface encapsulates a single high level function, such as feeding
120 * an audio stream to a speaker or reporting a change in a volume control.
121 * Many USB devices only have one interface. The protocol used to talk to
122 * an interface's endpoints can be defined in a usb "class" specification,
123 * or by a product's vendor. The (default) control endpoint is part of
124 * every interface, but is never listed among the interface's descriptors.
125 *
126 * The driver that is bound to the interface can use standard driver model
127 * calls such as dev_get_drvdata() on the dev member of this structure.
128 *
129 * Each interface may have alternate settings. The initial configuration
130 * of a device sets altsetting 0, but the device driver can change
131 * that setting using usb_set_interface(). Alternate settings are often
132 * used to control the use of periodic endpoints, such as by having
133 * different endpoints use different amounts of reserved USB bandwidth.
134 * All standards-conformant USB devices that use isochronous endpoints
135 * will use them in non-default settings.
136 *
137 * The USB specification says that alternate setting numbers must run from
138 * 0 to one less than the total number of alternate settings. But some
139 * devices manage to mess this up, and the structures aren't necessarily
140 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
141 * look up an alternate setting in the altsetting array based on its number.
142 */
143 struct usb_interface {
144 /* array of alternate settings for this interface,
145 * stored in no particular order */
146 struct usb_host_interface *altsetting;
147
148 struct usb_host_interface *cur_altsetting; /* the currently
149 * active alternate setting */
150 unsigned num_altsetting; /* number of alternate settings */
151
152 /* If there is an interface association descriptor then it will list
153 * the associated interfaces */
154 struct usb_interface_assoc_descriptor *intf_assoc;
155
156 int minor; /* minor number this interface is
157 * bound to */
158 enum usb_interface_condition condition; /* state of binding */
159 unsigned is_active:1; /* the interface is not suspended */
160 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
161 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
162
163 struct device dev; /* interface specific device info */
164 struct device *usb_dev;
165 int pm_usage_cnt; /* usage counter for autosuspend */
166 };
167 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
168 #define interface_to_usbdev(intf) \
169 container_of(intf->dev.parent, struct usb_device, dev)
170
171 static inline void *usb_get_intfdata(struct usb_interface *intf)
172 {
173 return dev_get_drvdata(&intf->dev);
174 }
175
176 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
177 {
178 dev_set_drvdata(&intf->dev, data);
179 }
180
181 struct usb_interface *usb_get_intf(struct usb_interface *intf);
182 void usb_put_intf(struct usb_interface *intf);
183
184 /* this maximum is arbitrary */
185 #define USB_MAXINTERFACES 32
186 #define USB_MAXIADS USB_MAXINTERFACES/2
187
188 /**
189 * struct usb_interface_cache - long-term representation of a device interface
190 * @num_altsetting: number of altsettings defined.
191 * @ref: reference counter.
192 * @altsetting: variable-length array of interface structures, one for
193 * each alternate setting that may be selected. Each one includes a
194 * set of endpoint configurations. They will be in no particular order.
195 *
196 * These structures persist for the lifetime of a usb_device, unlike
197 * struct usb_interface (which persists only as long as its configuration
198 * is installed). The altsetting arrays can be accessed through these
199 * structures at any time, permitting comparison of configurations and
200 * providing support for the /proc/bus/usb/devices pseudo-file.
201 */
202 struct usb_interface_cache {
203 unsigned num_altsetting; /* number of alternate settings */
204 struct kref ref; /* reference counter */
205
206 /* variable-length array of alternate settings for this interface,
207 * stored in no particular order */
208 struct usb_host_interface altsetting[0];
209 };
210 #define ref_to_usb_interface_cache(r) \
211 container_of(r, struct usb_interface_cache, ref)
212 #define altsetting_to_usb_interface_cache(a) \
213 container_of(a, struct usb_interface_cache, altsetting[0])
214
215 /**
216 * struct usb_host_config - representation of a device's configuration
217 * @desc: the device's configuration descriptor.
218 * @string: pointer to the cached version of the iConfiguration string, if
219 * present for this configuration.
220 * @intf_assoc: list of any interface association descriptors in this config
221 * @interface: array of pointers to usb_interface structures, one for each
222 * interface in the configuration. The number of interfaces is stored
223 * in desc.bNumInterfaces. These pointers are valid only while the
224 * the configuration is active.
225 * @intf_cache: array of pointers to usb_interface_cache structures, one
226 * for each interface in the configuration. These structures exist
227 * for the entire life of the device.
228 * @extra: pointer to buffer containing all extra descriptors associated
229 * with this configuration (those preceding the first interface
230 * descriptor).
231 * @extralen: length of the extra descriptors buffer.
232 *
233 * USB devices may have multiple configurations, but only one can be active
234 * at any time. Each encapsulates a different operational environment;
235 * for example, a dual-speed device would have separate configurations for
236 * full-speed and high-speed operation. The number of configurations
237 * available is stored in the device descriptor as bNumConfigurations.
238 *
239 * A configuration can contain multiple interfaces. Each corresponds to
240 * a different function of the USB device, and all are available whenever
241 * the configuration is active. The USB standard says that interfaces
242 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
243 * of devices get this wrong. In addition, the interface array is not
244 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
245 * look up an interface entry based on its number.
246 *
247 * Device drivers should not attempt to activate configurations. The choice
248 * of which configuration to install is a policy decision based on such
249 * considerations as available power, functionality provided, and the user's
250 * desires (expressed through userspace tools). However, drivers can call
251 * usb_reset_configuration() to reinitialize the current configuration and
252 * all its interfaces.
253 */
254 struct usb_host_config {
255 struct usb_config_descriptor desc;
256
257 char *string; /* iConfiguration string, if present */
258
259 /* List of any Interface Association Descriptors in this
260 * configuration. */
261 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
262
263 /* the interfaces associated with this configuration,
264 * stored in no particular order */
265 struct usb_interface *interface[USB_MAXINTERFACES];
266
267 /* Interface information available even when this is not the
268 * active configuration */
269 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
270
271 unsigned char *extra; /* Extra descriptors */
272 int extralen;
273 };
274
275 int __usb_get_extra_descriptor(char *buffer, unsigned size,
276 unsigned char type, void **ptr);
277 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
278 __usb_get_extra_descriptor((ifpoint)->extra, \
279 (ifpoint)->extralen, \
280 type, (void **)ptr)
281
282 /* ----------------------------------------------------------------------- */
283
284 /* USB device number allocation bitmap */
285 struct usb_devmap {
286 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
287 };
288
289 /*
290 * Allocated per bus (tree of devices) we have:
291 */
292 struct usb_bus {
293 struct device *controller; /* host/master side hardware */
294 int busnum; /* Bus number (in order of reg) */
295 char *bus_name; /* stable id (PCI slot_name etc) */
296 u8 uses_dma; /* Does the host controller use DMA? */
297 u8 otg_port; /* 0, or number of OTG/HNP port */
298 unsigned is_b_host:1; /* true during some HNP roleswitches */
299 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
300
301 int devnum_next; /* Next open device number in
302 * round-robin allocation */
303
304 struct usb_devmap devmap; /* device address allocation map */
305 struct usb_device *root_hub; /* Root hub */
306 struct list_head bus_list; /* list of busses */
307
308 int bandwidth_allocated; /* on this bus: how much of the time
309 * reserved for periodic (intr/iso)
310 * requests is used, on average?
311 * Units: microseconds/frame.
312 * Limits: Full/low speed reserve 90%,
313 * while high speed reserves 80%.
314 */
315 int bandwidth_int_reqs; /* number of Interrupt requests */
316 int bandwidth_isoc_reqs; /* number of Isoc. requests */
317
318 #ifdef CONFIG_USB_DEVICEFS
319 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
320 #endif
321 struct device *dev; /* device for this bus */
322
323 #if defined(CONFIG_USB_MON)
324 struct mon_bus *mon_bus; /* non-null when associated */
325 int monitored; /* non-zero when monitored */
326 #endif
327 };
328
329 /* ----------------------------------------------------------------------- */
330
331 /* This is arbitrary.
332 * From USB 2.0 spec Table 11-13, offset 7, a hub can
333 * have up to 255 ports. The most yet reported is 10.
334 *
335 * Current Wireless USB host hardware (Intel i1480 for example) allows
336 * up to 22 devices to connect. Upcoming hardware might raise that
337 * limit. Because the arrays need to add a bit for hub status data, we
338 * do 31, so plus one evens out to four bytes.
339 */
340 #define USB_MAXCHILDREN (31)
341
342 struct usb_tt;
343
344 /*
345 * struct usb_device - kernel's representation of a USB device
346 *
347 * FIXME: Write the kerneldoc!
348 *
349 * Usbcore drivers should not set usbdev->state directly. Instead use
350 * usb_set_device_state().
351 *
352 * @authorized: (user space) policy determines if we authorize this
353 * device to be used or not. By default, wired USB
354 * devices are authorized. WUSB devices are not, until we
355 * authorize them from user space. FIXME -- complete doc
356 */
357 struct usb_device {
358 int devnum; /* Address on USB bus */
359 char devpath [16]; /* Use in messages: /port/port/... */
360 enum usb_device_state state; /* configured, not attached, etc */
361 enum usb_device_speed speed; /* high/full/low (or error) */
362
363 struct usb_tt *tt; /* low/full speed dev, highspeed hub */
364 int ttport; /* device port on that tt hub */
365
366 unsigned int toggle[2]; /* one bit for each endpoint
367 * ([0] = IN, [1] = OUT) */
368
369 struct usb_device *parent; /* our hub, unless we're the root */
370 struct usb_bus *bus; /* Bus we're part of */
371 struct usb_host_endpoint ep0;
372
373 struct device dev; /* Generic device interface */
374
375 struct usb_device_descriptor descriptor;/* Descriptor */
376 struct usb_host_config *config; /* All of the configs */
377
378 struct usb_host_config *actconfig;/* the active configuration */
379 struct usb_host_endpoint *ep_in[16];
380 struct usb_host_endpoint *ep_out[16];
381
382 char **rawdescriptors; /* Raw descriptors for each config */
383
384 unsigned short bus_mA; /* Current available from the bus */
385 u8 portnum; /* Parent port number (origin 1) */
386 u8 level; /* Number of USB hub ancestors */
387
388 unsigned can_submit:1; /* URBs may be submitted */
389 unsigned discon_suspended:1; /* Disconnected while suspended */
390 unsigned have_langid:1; /* whether string_langid is valid */
391 unsigned authorized:1; /* Policy has said we can use it */
392 unsigned wusb:1; /* Device is Wireless USB */
393 int string_langid; /* language ID for strings */
394
395 /* static strings from the device */
396 char *product; /* iProduct string, if present */
397 char *manufacturer; /* iManufacturer string, if present */
398 char *serial; /* iSerialNumber string, if present */
399
400 struct list_head filelist;
401 #ifdef CONFIG_USB_DEVICE_CLASS
402 struct device *usb_classdev;
403 #endif
404 #ifdef CONFIG_USB_DEVICEFS
405 struct dentry *usbfs_dentry; /* usbfs dentry entry for the device */
406 #endif
407 /*
408 * Child devices - these can be either new devices
409 * (if this is a hub device), or different instances
410 * of this same device.
411 *
412 * Each instance needs its own set of data structures.
413 */
414
415 int maxchild; /* Number of ports if hub */
416 struct usb_device *children[USB_MAXCHILDREN];
417
418 int pm_usage_cnt; /* usage counter for autosuspend */
419 u32 quirks; /* quirks of the whole device */
420 atomic_t urbnum; /* number of URBs submitted for
421 the whole device */
422
423 unsigned long active_duration; /* total time device is not suspended */
424
425 #ifdef CONFIG_PM
426 struct delayed_work autosuspend; /* for delayed autosuspends */
427 struct mutex pm_mutex; /* protects PM operations */
428
429 unsigned long last_busy; /* time of last use */
430 int autosuspend_delay; /* in jiffies */
431 unsigned long connect_time; /* time device was first connected */
432
433 unsigned auto_pm:1; /* autosuspend/resume in progress */
434 unsigned do_remote_wakeup:1; /* remote wakeup should be enabled */
435 unsigned reset_resume:1; /* needs reset instead of resume */
436 unsigned persist_enabled:1; /* USB_PERSIST enabled for this dev */
437 unsigned autosuspend_disabled:1; /* autosuspend and autoresume */
438 unsigned autoresume_disabled:1; /* disabled by the user */
439 unsigned skip_sys_resume:1; /* skip the next system resume */
440 #endif
441 };
442 #define to_usb_device(d) container_of(d, struct usb_device, dev)
443
444 extern struct usb_device *usb_get_dev(struct usb_device *dev);
445 extern void usb_put_dev(struct usb_device *dev);
446
447 /* USB device locking */
448 #define usb_lock_device(udev) down(&(udev)->dev.sem)
449 #define usb_unlock_device(udev) up(&(udev)->dev.sem)
450 #define usb_trylock_device(udev) down_trylock(&(udev)->dev.sem)
451 extern int usb_lock_device_for_reset(struct usb_device *udev,
452 const struct usb_interface *iface);
453
454 /* USB port reset for device reinitialization */
455 extern int usb_reset_device(struct usb_device *dev);
456 extern int usb_reset_composite_device(struct usb_device *dev,
457 struct usb_interface *iface);
458
459 extern struct usb_device *usb_find_device(u16 vendor_id, u16 product_id);
460
461 /* USB autosuspend and autoresume */
462 #ifdef CONFIG_USB_SUSPEND
463 extern int usb_autopm_set_interface(struct usb_interface *intf);
464 extern int usb_autopm_get_interface(struct usb_interface *intf);
465 extern void usb_autopm_put_interface(struct usb_interface *intf);
466
467 static inline void usb_autopm_enable(struct usb_interface *intf)
468 {
469 intf->pm_usage_cnt = 0;
470 usb_autopm_set_interface(intf);
471 }
472
473 static inline void usb_autopm_disable(struct usb_interface *intf)
474 {
475 intf->pm_usage_cnt = 1;
476 usb_autopm_set_interface(intf);
477 }
478
479 static inline void usb_mark_last_busy(struct usb_device *udev)
480 {
481 udev->last_busy = jiffies;
482 }
483
484 #else
485
486 static inline int usb_autopm_set_interface(struct usb_interface *intf)
487 { return 0; }
488
489 static inline int usb_autopm_get_interface(struct usb_interface *intf)
490 { return 0; }
491
492 static inline void usb_autopm_put_interface(struct usb_interface *intf)
493 { }
494 static inline void usb_autopm_enable(struct usb_interface *intf)
495 { }
496 static inline void usb_autopm_disable(struct usb_interface *intf)
497 { }
498 static inline void usb_mark_last_busy(struct usb_device *udev)
499 { }
500 #endif
501
502 /*-------------------------------------------------------------------------*/
503
504 /* for drivers using iso endpoints */
505 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
506
507 /* used these for multi-interface device registration */
508 extern int usb_driver_claim_interface(struct usb_driver *driver,
509 struct usb_interface *iface, void *priv);
510
511 /**
512 * usb_interface_claimed - returns true iff an interface is claimed
513 * @iface: the interface being checked
514 *
515 * Returns true (nonzero) iff the interface is claimed, else false (zero).
516 * Callers must own the driver model's usb bus readlock. So driver
517 * probe() entries don't need extra locking, but other call contexts
518 * may need to explicitly claim that lock.
519 *
520 */
521 static inline int usb_interface_claimed(struct usb_interface *iface)
522 {
523 return (iface->dev.driver != NULL);
524 }
525
526 extern void usb_driver_release_interface(struct usb_driver *driver,
527 struct usb_interface *iface);
528 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
529 const struct usb_device_id *id);
530 extern int usb_match_one_id(struct usb_interface *interface,
531 const struct usb_device_id *id);
532
533 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
534 int minor);
535 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
536 unsigned ifnum);
537 extern struct usb_host_interface *usb_altnum_to_altsetting(
538 const struct usb_interface *intf, unsigned int altnum);
539
540
541 /**
542 * usb_make_path - returns stable device path in the usb tree
543 * @dev: the device whose path is being constructed
544 * @buf: where to put the string
545 * @size: how big is "buf"?
546 *
547 * Returns length of the string (> 0) or negative if size was too small.
548 *
549 * This identifier is intended to be "stable", reflecting physical paths in
550 * hardware such as physical bus addresses for host controllers or ports on
551 * USB hubs. That makes it stay the same until systems are physically
552 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
553 * controllers. Adding and removing devices, including virtual root hubs
554 * in host controller driver modules, does not change these path identifers;
555 * neither does rebooting or re-enumerating. These are more useful identifiers
556 * than changeable ("unstable") ones like bus numbers or device addresses.
557 *
558 * With a partial exception for devices connected to USB 2.0 root hubs, these
559 * identifiers are also predictable. So long as the device tree isn't changed,
560 * plugging any USB device into a given hub port always gives it the same path.
561 * Because of the use of "companion" controllers, devices connected to ports on
562 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
563 * high speed, and a different one if they are full or low speed.
564 */
565 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
566 {
567 int actual;
568 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
569 dev->devpath);
570 return (actual >= (int)size) ? -1 : actual;
571 }
572
573 /*-------------------------------------------------------------------------*/
574
575 /**
576 * usb_endpoint_num - get the endpoint's number
577 * @epd: endpoint to be checked
578 *
579 * Returns @epd's number: 0 to 15.
580 */
581 static inline int usb_endpoint_num(const struct usb_endpoint_descriptor *epd)
582 {
583 return epd->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
584 }
585
586 /**
587 * usb_endpoint_type - get the endpoint's transfer type
588 * @epd: endpoint to be checked
589 *
590 * Returns one of USB_ENDPOINT_XFER_{CONTROL, ISOC, BULK, INT} according
591 * to @epd's transfer type.
592 */
593 static inline int usb_endpoint_type(const struct usb_endpoint_descriptor *epd)
594 {
595 return epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
596 }
597
598 /**
599 * usb_endpoint_dir_in - check if the endpoint has IN direction
600 * @epd: endpoint to be checked
601 *
602 * Returns true if the endpoint is of type IN, otherwise it returns false.
603 */
604 static inline int usb_endpoint_dir_in(const struct usb_endpoint_descriptor *epd)
605 {
606 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN);
607 }
608
609 /**
610 * usb_endpoint_dir_out - check if the endpoint has OUT direction
611 * @epd: endpoint to be checked
612 *
613 * Returns true if the endpoint is of type OUT, otherwise it returns false.
614 */
615 static inline int usb_endpoint_dir_out(
616 const struct usb_endpoint_descriptor *epd)
617 {
618 return ((epd->bEndpointAddress & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT);
619 }
620
621 /**
622 * usb_endpoint_xfer_bulk - check if the endpoint has bulk transfer type
623 * @epd: endpoint to be checked
624 *
625 * Returns true if the endpoint is of type bulk, otherwise it returns false.
626 */
627 static inline int usb_endpoint_xfer_bulk(
628 const struct usb_endpoint_descriptor *epd)
629 {
630 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
631 USB_ENDPOINT_XFER_BULK);
632 }
633
634 /**
635 * usb_endpoint_xfer_control - check if the endpoint has control transfer type
636 * @epd: endpoint to be checked
637 *
638 * Returns true if the endpoint is of type control, otherwise it returns false.
639 */
640 static inline int usb_endpoint_xfer_control(
641 const struct usb_endpoint_descriptor *epd)
642 {
643 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
644 USB_ENDPOINT_XFER_CONTROL);
645 }
646
647 /**
648 * usb_endpoint_xfer_int - check if the endpoint has interrupt transfer type
649 * @epd: endpoint to be checked
650 *
651 * Returns true if the endpoint is of type interrupt, otherwise it returns
652 * false.
653 */
654 static inline int usb_endpoint_xfer_int(
655 const struct usb_endpoint_descriptor *epd)
656 {
657 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
658 USB_ENDPOINT_XFER_INT);
659 }
660
661 /**
662 * usb_endpoint_xfer_isoc - check if the endpoint has isochronous transfer type
663 * @epd: endpoint to be checked
664 *
665 * Returns true if the endpoint is of type isochronous, otherwise it returns
666 * false.
667 */
668 static inline int usb_endpoint_xfer_isoc(
669 const struct usb_endpoint_descriptor *epd)
670 {
671 return ((epd->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
672 USB_ENDPOINT_XFER_ISOC);
673 }
674
675 /**
676 * usb_endpoint_is_bulk_in - check if the endpoint is bulk IN
677 * @epd: endpoint to be checked
678 *
679 * Returns true if the endpoint has bulk transfer type and IN direction,
680 * otherwise it returns false.
681 */
682 static inline int usb_endpoint_is_bulk_in(
683 const struct usb_endpoint_descriptor *epd)
684 {
685 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_in(epd));
686 }
687
688 /**
689 * usb_endpoint_is_bulk_out - check if the endpoint is bulk OUT
690 * @epd: endpoint to be checked
691 *
692 * Returns true if the endpoint has bulk transfer type and OUT direction,
693 * otherwise it returns false.
694 */
695 static inline int usb_endpoint_is_bulk_out(
696 const struct usb_endpoint_descriptor *epd)
697 {
698 return (usb_endpoint_xfer_bulk(epd) && usb_endpoint_dir_out(epd));
699 }
700
701 /**
702 * usb_endpoint_is_int_in - check if the endpoint is interrupt IN
703 * @epd: endpoint to be checked
704 *
705 * Returns true if the endpoint has interrupt transfer type and IN direction,
706 * otherwise it returns false.
707 */
708 static inline int usb_endpoint_is_int_in(
709 const struct usb_endpoint_descriptor *epd)
710 {
711 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_in(epd));
712 }
713
714 /**
715 * usb_endpoint_is_int_out - check if the endpoint is interrupt OUT
716 * @epd: endpoint to be checked
717 *
718 * Returns true if the endpoint has interrupt transfer type and OUT direction,
719 * otherwise it returns false.
720 */
721 static inline int usb_endpoint_is_int_out(
722 const struct usb_endpoint_descriptor *epd)
723 {
724 return (usb_endpoint_xfer_int(epd) && usb_endpoint_dir_out(epd));
725 }
726
727 /**
728 * usb_endpoint_is_isoc_in - check if the endpoint is isochronous IN
729 * @epd: endpoint to be checked
730 *
731 * Returns true if the endpoint has isochronous transfer type and IN direction,
732 * otherwise it returns false.
733 */
734 static inline int usb_endpoint_is_isoc_in(
735 const struct usb_endpoint_descriptor *epd)
736 {
737 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_in(epd));
738 }
739
740 /**
741 * usb_endpoint_is_isoc_out - check if the endpoint is isochronous OUT
742 * @epd: endpoint to be checked
743 *
744 * Returns true if the endpoint has isochronous transfer type and OUT direction,
745 * otherwise it returns false.
746 */
747 static inline int usb_endpoint_is_isoc_out(
748 const struct usb_endpoint_descriptor *epd)
749 {
750 return (usb_endpoint_xfer_isoc(epd) && usb_endpoint_dir_out(epd));
751 }
752
753 /*-------------------------------------------------------------------------*/
754
755 #define USB_DEVICE_ID_MATCH_DEVICE \
756 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
757 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
758 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
759 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
760 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
761 #define USB_DEVICE_ID_MATCH_DEV_INFO \
762 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
763 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
764 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
765 #define USB_DEVICE_ID_MATCH_INT_INFO \
766 (USB_DEVICE_ID_MATCH_INT_CLASS | \
767 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
768 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
769
770 /**
771 * USB_DEVICE - macro used to describe a specific usb device
772 * @vend: the 16 bit USB Vendor ID
773 * @prod: the 16 bit USB Product ID
774 *
775 * This macro is used to create a struct usb_device_id that matches a
776 * specific device.
777 */
778 #define USB_DEVICE(vend,prod) \
779 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
780 .idVendor = (vend), \
781 .idProduct = (prod)
782 /**
783 * USB_DEVICE_VER - describe a specific usb device with a version range
784 * @vend: the 16 bit USB Vendor ID
785 * @prod: the 16 bit USB Product ID
786 * @lo: the bcdDevice_lo value
787 * @hi: the bcdDevice_hi value
788 *
789 * This macro is used to create a struct usb_device_id that matches a
790 * specific device, with a version range.
791 */
792 #define USB_DEVICE_VER(vend, prod, lo, hi) \
793 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
794 .idVendor = (vend), \
795 .idProduct = (prod), \
796 .bcdDevice_lo = (lo), \
797 .bcdDevice_hi = (hi)
798
799 /**
800 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
801 * @vend: the 16 bit USB Vendor ID
802 * @prod: the 16 bit USB Product ID
803 * @pr: bInterfaceProtocol value
804 *
805 * This macro is used to create a struct usb_device_id that matches a
806 * specific interface protocol of devices.
807 */
808 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
809 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
810 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
811 .idVendor = (vend), \
812 .idProduct = (prod), \
813 .bInterfaceProtocol = (pr)
814
815 /**
816 * USB_DEVICE_INFO - macro used to describe a class of usb devices
817 * @cl: bDeviceClass value
818 * @sc: bDeviceSubClass value
819 * @pr: bDeviceProtocol value
820 *
821 * This macro is used to create a struct usb_device_id that matches a
822 * specific class of devices.
823 */
824 #define USB_DEVICE_INFO(cl, sc, pr) \
825 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
826 .bDeviceClass = (cl), \
827 .bDeviceSubClass = (sc), \
828 .bDeviceProtocol = (pr)
829
830 /**
831 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
832 * @cl: bInterfaceClass value
833 * @sc: bInterfaceSubClass value
834 * @pr: bInterfaceProtocol value
835 *
836 * This macro is used to create a struct usb_device_id that matches a
837 * specific class of interfaces.
838 */
839 #define USB_INTERFACE_INFO(cl, sc, pr) \
840 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
841 .bInterfaceClass = (cl), \
842 .bInterfaceSubClass = (sc), \
843 .bInterfaceProtocol = (pr)
844
845 /**
846 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
847 * @vend: the 16 bit USB Vendor ID
848 * @prod: the 16 bit USB Product ID
849 * @cl: bInterfaceClass value
850 * @sc: bInterfaceSubClass value
851 * @pr: bInterfaceProtocol value
852 *
853 * This macro is used to create a struct usb_device_id that matches a
854 * specific device with a specific class of interfaces.
855 *
856 * This is especially useful when explicitly matching devices that have
857 * vendor specific bDeviceClass values, but standards-compliant interfaces.
858 */
859 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
860 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
861 | USB_DEVICE_ID_MATCH_DEVICE, \
862 .idVendor = (vend), \
863 .idProduct = (prod), \
864 .bInterfaceClass = (cl), \
865 .bInterfaceSubClass = (sc), \
866 .bInterfaceProtocol = (pr)
867
868 /* ----------------------------------------------------------------------- */
869
870 /* Stuff for dynamic usb ids */
871 struct usb_dynids {
872 spinlock_t lock;
873 struct list_head list;
874 };
875
876 struct usb_dynid {
877 struct list_head node;
878 struct usb_device_id id;
879 };
880
881 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
882 struct device_driver *driver,
883 const char *buf, size_t count);
884
885 /**
886 * struct usbdrv_wrap - wrapper for driver-model structure
887 * @driver: The driver-model core driver structure.
888 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
889 */
890 struct usbdrv_wrap {
891 struct device_driver driver;
892 int for_devices;
893 };
894
895 /**
896 * struct usb_driver - identifies USB interface driver to usbcore
897 * @name: The driver name should be unique among USB drivers,
898 * and should normally be the same as the module name.
899 * @probe: Called to see if the driver is willing to manage a particular
900 * interface on a device. If it is, probe returns zero and uses
901 * dev_set_drvdata() to associate driver-specific data with the
902 * interface. It may also use usb_set_interface() to specify the
903 * appropriate altsetting. If unwilling to manage the interface,
904 * return a negative errno value.
905 * @disconnect: Called when the interface is no longer accessible, usually
906 * because its device has been (or is being) disconnected or the
907 * driver module is being unloaded.
908 * @ioctl: Used for drivers that want to talk to userspace through
909 * the "usbfs" filesystem. This lets devices provide ways to
910 * expose information to user space regardless of where they
911 * do (or don't) show up otherwise in the filesystem.
912 * @suspend: Called when the device is going to be suspended by the system.
913 * @resume: Called when the device is being resumed by the system.
914 * @reset_resume: Called when the suspended device has been reset instead
915 * of being resumed.
916 * @pre_reset: Called by usb_reset_composite_device() when the device
917 * is about to be reset.
918 * @post_reset: Called by usb_reset_composite_device() after the device
919 * has been reset, or in lieu of @resume following a reset-resume
920 * (i.e., the device is reset instead of being resumed, as might
921 * happen if power was lost). The second argument tells which is
922 * the reason.
923 * @id_table: USB drivers use ID table to support hotplugging.
924 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
925 * or your driver's probe function will never get called.
926 * @dynids: used internally to hold the list of dynamically added device
927 * ids for this driver.
928 * @drvwrap: Driver-model core structure wrapper.
929 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
930 * added to this driver by preventing the sysfs file from being created.
931 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
932 * for interfaces bound to this driver.
933 *
934 * USB interface drivers must provide a name, probe() and disconnect()
935 * methods, and an id_table. Other driver fields are optional.
936 *
937 * The id_table is used in hotplugging. It holds a set of descriptors,
938 * and specialized data may be associated with each entry. That table
939 * is used by both user and kernel mode hotplugging support.
940 *
941 * The probe() and disconnect() methods are called in a context where
942 * they can sleep, but they should avoid abusing the privilege. Most
943 * work to connect to a device should be done when the device is opened,
944 * and undone at the last close. The disconnect code needs to address
945 * concurrency issues with respect to open() and close() methods, as
946 * well as forcing all pending I/O requests to complete (by unlinking
947 * them as necessary, and blocking until the unlinks complete).
948 */
949 struct usb_driver {
950 const char *name;
951
952 int (*probe) (struct usb_interface *intf,
953 const struct usb_device_id *id);
954
955 void (*disconnect) (struct usb_interface *intf);
956
957 int (*ioctl) (struct usb_interface *intf, unsigned int code,
958 void *buf);
959
960 int (*suspend) (struct usb_interface *intf, pm_message_t message);
961 int (*resume) (struct usb_interface *intf);
962 int (*reset_resume)(struct usb_interface *intf);
963
964 int (*pre_reset)(struct usb_interface *intf);
965 int (*post_reset)(struct usb_interface *intf);
966
967 const struct usb_device_id *id_table;
968
969 struct usb_dynids dynids;
970 struct usbdrv_wrap drvwrap;
971 unsigned int no_dynamic_id:1;
972 unsigned int supports_autosuspend:1;
973 };
974 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
975
976 /**
977 * struct usb_device_driver - identifies USB device driver to usbcore
978 * @name: The driver name should be unique among USB drivers,
979 * and should normally be the same as the module name.
980 * @probe: Called to see if the driver is willing to manage a particular
981 * device. If it is, probe returns zero and uses dev_set_drvdata()
982 * to associate driver-specific data with the device. If unwilling
983 * to manage the device, return a negative errno value.
984 * @disconnect: Called when the device is no longer accessible, usually
985 * because it has been (or is being) disconnected or the driver's
986 * module is being unloaded.
987 * @suspend: Called when the device is going to be suspended by the system.
988 * @resume: Called when the device is being resumed by the system.
989 * @drvwrap: Driver-model core structure wrapper.
990 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
991 * for devices bound to this driver.
992 *
993 * USB drivers must provide all the fields listed above except drvwrap.
994 */
995 struct usb_device_driver {
996 const char *name;
997
998 int (*probe) (struct usb_device *udev);
999 void (*disconnect) (struct usb_device *udev);
1000
1001 int (*suspend) (struct usb_device *udev, pm_message_t message);
1002 int (*resume) (struct usb_device *udev);
1003 struct usbdrv_wrap drvwrap;
1004 unsigned int supports_autosuspend:1;
1005 };
1006 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
1007 drvwrap.driver)
1008
1009 extern struct bus_type usb_bus_type;
1010
1011 /**
1012 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
1013 * @name: the usb class device name for this driver. Will show up in sysfs.
1014 * @fops: pointer to the struct file_operations of this driver.
1015 * @minor_base: the start of the minor range for this driver.
1016 *
1017 * This structure is used for the usb_register_dev() and
1018 * usb_unregister_dev() functions, to consolidate a number of the
1019 * parameters used for them.
1020 */
1021 struct usb_class_driver {
1022 char *name;
1023 const struct file_operations *fops;
1024 int minor_base;
1025 };
1026
1027 /*
1028 * use these in module_init()/module_exit()
1029 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
1030 */
1031 extern int usb_register_driver(struct usb_driver *, struct module *,
1032 const char *);
1033 static inline int usb_register(struct usb_driver *driver)
1034 {
1035 return usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME);
1036 }
1037 extern void usb_deregister(struct usb_driver *);
1038
1039 extern int usb_register_device_driver(struct usb_device_driver *,
1040 struct module *);
1041 extern void usb_deregister_device_driver(struct usb_device_driver *);
1042
1043 extern int usb_register_dev(struct usb_interface *intf,
1044 struct usb_class_driver *class_driver);
1045 extern void usb_deregister_dev(struct usb_interface *intf,
1046 struct usb_class_driver *class_driver);
1047
1048 extern int usb_disabled(void);
1049
1050 /* ----------------------------------------------------------------------- */
1051
1052 /*
1053 * URB support, for asynchronous request completions
1054 */
1055
1056 /*
1057 * urb->transfer_flags:
1058 *
1059 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1060 */
1061 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1062 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1063 * ignored */
1064 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1065 #define URB_NO_SETUP_DMA_MAP 0x0008 /* urb->setup_dma valid on submit */
1066 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1067 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1068 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1069 * needed */
1070 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1071
1072 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1073 #define URB_DIR_OUT 0
1074 #define URB_DIR_MASK URB_DIR_IN
1075
1076 struct usb_iso_packet_descriptor {
1077 unsigned int offset;
1078 unsigned int length; /* expected length */
1079 unsigned int actual_length;
1080 int status;
1081 };
1082
1083 struct urb;
1084
1085 struct usb_anchor {
1086 struct list_head urb_list;
1087 wait_queue_head_t wait;
1088 spinlock_t lock;
1089 };
1090
1091 static inline void init_usb_anchor(struct usb_anchor *anchor)
1092 {
1093 INIT_LIST_HEAD(&anchor->urb_list);
1094 init_waitqueue_head(&anchor->wait);
1095 spin_lock_init(&anchor->lock);
1096 }
1097
1098 typedef void (*usb_complete_t)(struct urb *);
1099
1100 /**
1101 * struct urb - USB Request Block
1102 * @urb_list: For use by current owner of the URB.
1103 * @anchor_list: membership in the list of an anchor
1104 * @anchor: to anchor URBs to a common mooring
1105 * @ep: Points to the endpoint's data structure. Will eventually
1106 * replace @pipe.
1107 * @pipe: Holds endpoint number, direction, type, and more.
1108 * Create these values with the eight macros available;
1109 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1110 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1111 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1112 * numbers range from zero to fifteen. Note that "in" endpoint two
1113 * is a different endpoint (and pipe) from "out" endpoint two.
1114 * The current configuration controls the existence, type, and
1115 * maximum packet size of any given endpoint.
1116 * @dev: Identifies the USB device to perform the request.
1117 * @status: This is read in non-iso completion functions to get the
1118 * status of the particular request. ISO requests only use it
1119 * to tell whether the URB was unlinked; detailed status for
1120 * each frame is in the fields of the iso_frame-desc.
1121 * @transfer_flags: A variety of flags may be used to affect how URB
1122 * submission, unlinking, or operation are handled. Different
1123 * kinds of URB can use different flags.
1124 * @transfer_buffer: This identifies the buffer to (or from) which
1125 * the I/O request will be performed (unless URB_NO_TRANSFER_DMA_MAP
1126 * is set). This buffer must be suitable for DMA; allocate it with
1127 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1128 * of this buffer will be modified. This buffer is used for the data
1129 * stage of control transfers.
1130 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1131 * the device driver is saying that it provided this DMA address,
1132 * which the host controller driver should use in preference to the
1133 * transfer_buffer.
1134 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1135 * be broken up into chunks according to the current maximum packet
1136 * size for the endpoint, which is a function of the configuration
1137 * and is encoded in the pipe. When the length is zero, neither
1138 * transfer_buffer nor transfer_dma is used.
1139 * @actual_length: This is read in non-iso completion functions, and
1140 * it tells how many bytes (out of transfer_buffer_length) were
1141 * transferred. It will normally be the same as requested, unless
1142 * either an error was reported or a short read was performed.
1143 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1144 * short reads be reported as errors.
1145 * @setup_packet: Only used for control transfers, this points to eight bytes
1146 * of setup data. Control transfers always start by sending this data
1147 * to the device. Then transfer_buffer is read or written, if needed.
1148 * @setup_dma: For control transfers with URB_NO_SETUP_DMA_MAP set, the
1149 * device driver has provided this DMA address for the setup packet.
1150 * The host controller driver should use this in preference to
1151 * setup_packet.
1152 * @start_frame: Returns the initial frame for isochronous transfers.
1153 * @number_of_packets: Lists the number of ISO transfer buffers.
1154 * @interval: Specifies the polling interval for interrupt or isochronous
1155 * transfers. The units are frames (milliseconds) for for full and low
1156 * speed devices, and microframes (1/8 millisecond) for highspeed ones.
1157 * @error_count: Returns the number of ISO transfers that reported errors.
1158 * @context: For use in completion functions. This normally points to
1159 * request-specific driver context.
1160 * @complete: Completion handler. This URB is passed as the parameter to the
1161 * completion function. The completion function may then do what
1162 * it likes with the URB, including resubmitting or freeing it.
1163 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1164 * collect the transfer status for each buffer.
1165 *
1166 * This structure identifies USB transfer requests. URBs must be allocated by
1167 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1168 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1169 * are submitted using usb_submit_urb(), and pending requests may be canceled
1170 * using usb_unlink_urb() or usb_kill_urb().
1171 *
1172 * Data Transfer Buffers:
1173 *
1174 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1175 * taken from the general page pool. That is provided by transfer_buffer
1176 * (control requests also use setup_packet), and host controller drivers
1177 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1178 * mapping operations can be expensive on some platforms (perhaps using a dma
1179 * bounce buffer or talking to an IOMMU),
1180 * although they're cheap on commodity x86 and ppc hardware.
1181 *
1182 * Alternatively, drivers may pass the URB_NO_xxx_DMA_MAP transfer flags,
1183 * which tell the host controller driver that no such mapping is needed since
1184 * the device driver is DMA-aware. For example, a device driver might
1185 * allocate a DMA buffer with usb_buffer_alloc() or call usb_buffer_map().
1186 * When these transfer flags are provided, host controller drivers will
1187 * attempt to use the dma addresses found in the transfer_dma and/or
1188 * setup_dma fields rather than determining a dma address themselves. (Note
1189 * that transfer_buffer and setup_packet must still be set because not all
1190 * host controllers use DMA, nor do virtual root hubs).
1191 *
1192 * Initialization:
1193 *
1194 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1195 * zero), and complete fields. All URBs must also initialize
1196 * transfer_buffer and transfer_buffer_length. They may provide the
1197 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1198 * to be treated as errors; that flag is invalid for write requests.
1199 *
1200 * Bulk URBs may
1201 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1202 * should always terminate with a short packet, even if it means adding an
1203 * extra zero length packet.
1204 *
1205 * Control URBs must provide a setup_packet. The setup_packet and
1206 * transfer_buffer may each be mapped for DMA or not, independently of
1207 * the other. The transfer_flags bits URB_NO_TRANSFER_DMA_MAP and
1208 * URB_NO_SETUP_DMA_MAP indicate which buffers have already been mapped.
1209 * URB_NO_SETUP_DMA_MAP is ignored for non-control URBs.
1210 *
1211 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1212 * or, for highspeed devices, 125 microsecond units)
1213 * to poll for transfers. After the URB has been submitted, the interval
1214 * field reflects how the transfer was actually scheduled.
1215 * The polling interval may be more frequent than requested.
1216 * For example, some controllers have a maximum interval of 32 milliseconds,
1217 * while others support intervals of up to 1024 milliseconds.
1218 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1219 * endpoints, as well as high speed interrupt endpoints, the encoding of
1220 * the transfer interval in the endpoint descriptor is logarithmic.
1221 * Device drivers must convert that value to linear units themselves.)
1222 *
1223 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1224 * the host controller to schedule the transfer as soon as bandwidth
1225 * utilization allows, and then set start_frame to reflect the actual frame
1226 * selected during submission. Otherwise drivers must specify the start_frame
1227 * and handle the case where the transfer can't begin then. However, drivers
1228 * won't know how bandwidth is currently allocated, and while they can
1229 * find the current frame using usb_get_current_frame_number () they can't
1230 * know the range for that frame number. (Ranges for frame counter values
1231 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1232 *
1233 * Isochronous URBs have a different data transfer model, in part because
1234 * the quality of service is only "best effort". Callers provide specially
1235 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1236 * at the end. Each such packet is an individual ISO transfer. Isochronous
1237 * URBs are normally queued, submitted by drivers to arrange that
1238 * transfers are at least double buffered, and then explicitly resubmitted
1239 * in completion handlers, so
1240 * that data (such as audio or video) streams at as constant a rate as the
1241 * host controller scheduler can support.
1242 *
1243 * Completion Callbacks:
1244 *
1245 * The completion callback is made in_interrupt(), and one of the first
1246 * things that a completion handler should do is check the status field.
1247 * The status field is provided for all URBs. It is used to report
1248 * unlinked URBs, and status for all non-ISO transfers. It should not
1249 * be examined before the URB is returned to the completion handler.
1250 *
1251 * The context field is normally used to link URBs back to the relevant
1252 * driver or request state.
1253 *
1254 * When the completion callback is invoked for non-isochronous URBs, the
1255 * actual_length field tells how many bytes were transferred. This field
1256 * is updated even when the URB terminated with an error or was unlinked.
1257 *
1258 * ISO transfer status is reported in the status and actual_length fields
1259 * of the iso_frame_desc array, and the number of errors is reported in
1260 * error_count. Completion callbacks for ISO transfers will normally
1261 * (re)submit URBs to ensure a constant transfer rate.
1262 *
1263 * Note that even fields marked "public" should not be touched by the driver
1264 * when the urb is owned by the hcd, that is, since the call to
1265 * usb_submit_urb() till the entry into the completion routine.
1266 */
1267 struct urb {
1268 /* private: usb core and host controller only fields in the urb */
1269 struct kref kref; /* reference count of the URB */
1270 void *hcpriv; /* private data for host controller */
1271 atomic_t use_count; /* concurrent submissions counter */
1272 u8 reject; /* submissions will fail */
1273 int unlinked; /* unlink error code */
1274
1275 /* public: documented fields in the urb that can be used by drivers */
1276 struct list_head urb_list; /* list head for use by the urb's
1277 * current owner */
1278 struct list_head anchor_list; /* the URB may be anchored */
1279 struct usb_anchor *anchor;
1280 struct usb_device *dev; /* (in) pointer to associated device */
1281 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1282 unsigned int pipe; /* (in) pipe information */
1283 int status; /* (return) non-ISO status */
1284 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1285 void *transfer_buffer; /* (in) associated data buffer */
1286 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1287 int transfer_buffer_length; /* (in) data buffer length */
1288 int actual_length; /* (return) actual transfer length */
1289 unsigned char *setup_packet; /* (in) setup packet (control only) */
1290 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1291 int start_frame; /* (modify) start frame (ISO) */
1292 int number_of_packets; /* (in) number of ISO packets */
1293 int interval; /* (modify) transfer interval
1294 * (INT/ISO) */
1295 int error_count; /* (return) number of ISO errors */
1296 void *context; /* (in) context for completion */
1297 usb_complete_t complete; /* (in) completion routine */
1298 struct usb_iso_packet_descriptor iso_frame_desc[0];
1299 /* (in) ISO ONLY */
1300 };
1301
1302 /* ----------------------------------------------------------------------- */
1303
1304 /**
1305 * usb_fill_control_urb - initializes a control urb
1306 * @urb: pointer to the urb to initialize.
1307 * @dev: pointer to the struct usb_device for this urb.
1308 * @pipe: the endpoint pipe
1309 * @setup_packet: pointer to the setup_packet buffer
1310 * @transfer_buffer: pointer to the transfer buffer
1311 * @buffer_length: length of the transfer buffer
1312 * @complete_fn: pointer to the usb_complete_t function
1313 * @context: what to set the urb context to.
1314 *
1315 * Initializes a control urb with the proper information needed to submit
1316 * it to a device.
1317 */
1318 static inline void usb_fill_control_urb(struct urb *urb,
1319 struct usb_device *dev,
1320 unsigned int pipe,
1321 unsigned char *setup_packet,
1322 void *transfer_buffer,
1323 int buffer_length,
1324 usb_complete_t complete_fn,
1325 void *context)
1326 {
1327 urb->dev = dev;
1328 urb->pipe = pipe;
1329 urb->setup_packet = setup_packet;
1330 urb->transfer_buffer = transfer_buffer;
1331 urb->transfer_buffer_length = buffer_length;
1332 urb->complete = complete_fn;
1333 urb->context = context;
1334 }
1335
1336 /**
1337 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1338 * @urb: pointer to the urb to initialize.
1339 * @dev: pointer to the struct usb_device for this urb.
1340 * @pipe: the endpoint pipe
1341 * @transfer_buffer: pointer to the transfer buffer
1342 * @buffer_length: length of the transfer buffer
1343 * @complete_fn: pointer to the usb_complete_t function
1344 * @context: what to set the urb context to.
1345 *
1346 * Initializes a bulk urb with the proper information needed to submit it
1347 * to a device.
1348 */
1349 static inline void usb_fill_bulk_urb(struct urb *urb,
1350 struct usb_device *dev,
1351 unsigned int pipe,
1352 void *transfer_buffer,
1353 int buffer_length,
1354 usb_complete_t complete_fn,
1355 void *context)
1356 {
1357 urb->dev = dev;
1358 urb->pipe = pipe;
1359 urb->transfer_buffer = transfer_buffer;
1360 urb->transfer_buffer_length = buffer_length;
1361 urb->complete = complete_fn;
1362 urb->context = context;
1363 }
1364
1365 /**
1366 * usb_fill_int_urb - macro to help initialize a interrupt urb
1367 * @urb: pointer to the urb to initialize.
1368 * @dev: pointer to the struct usb_device for this urb.
1369 * @pipe: the endpoint pipe
1370 * @transfer_buffer: pointer to the transfer buffer
1371 * @buffer_length: length of the transfer buffer
1372 * @complete_fn: pointer to the usb_complete_t function
1373 * @context: what to set the urb context to.
1374 * @interval: what to set the urb interval to, encoded like
1375 * the endpoint descriptor's bInterval value.
1376 *
1377 * Initializes a interrupt urb with the proper information needed to submit
1378 * it to a device.
1379 * Note that high speed interrupt endpoints use a logarithmic encoding of
1380 * the endpoint interval, and express polling intervals in microframes
1381 * (eight per millisecond) rather than in frames (one per millisecond).
1382 */
1383 static inline void usb_fill_int_urb(struct urb *urb,
1384 struct usb_device *dev,
1385 unsigned int pipe,
1386 void *transfer_buffer,
1387 int buffer_length,
1388 usb_complete_t complete_fn,
1389 void *context,
1390 int interval)
1391 {
1392 urb->dev = dev;
1393 urb->pipe = pipe;
1394 urb->transfer_buffer = transfer_buffer;
1395 urb->transfer_buffer_length = buffer_length;
1396 urb->complete = complete_fn;
1397 urb->context = context;
1398 if (dev->speed == USB_SPEED_HIGH)
1399 urb->interval = 1 << (interval - 1);
1400 else
1401 urb->interval = interval;
1402 urb->start_frame = -1;
1403 }
1404
1405 extern void usb_init_urb(struct urb *urb);
1406 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1407 extern void usb_free_urb(struct urb *urb);
1408 #define usb_put_urb usb_free_urb
1409 extern struct urb *usb_get_urb(struct urb *urb);
1410 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1411 extern int usb_unlink_urb(struct urb *urb);
1412 extern void usb_kill_urb(struct urb *urb);
1413 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1414 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1415 extern void usb_unanchor_urb(struct urb *urb);
1416 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1417 unsigned int timeout);
1418
1419 /**
1420 * usb_urb_dir_in - check if an URB describes an IN transfer
1421 * @urb: URB to be checked
1422 *
1423 * Returns 1 if @urb describes an IN transfer (device-to-host),
1424 * otherwise 0.
1425 */
1426 static inline int usb_urb_dir_in(struct urb *urb)
1427 {
1428 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1429 }
1430
1431 /**
1432 * usb_urb_dir_out - check if an URB describes an OUT transfer
1433 * @urb: URB to be checked
1434 *
1435 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1436 * otherwise 0.
1437 */
1438 static inline int usb_urb_dir_out(struct urb *urb)
1439 {
1440 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1441 }
1442
1443 void *usb_buffer_alloc(struct usb_device *dev, size_t size,
1444 gfp_t mem_flags, dma_addr_t *dma);
1445 void usb_buffer_free(struct usb_device *dev, size_t size,
1446 void *addr, dma_addr_t dma);
1447
1448 #if 0
1449 struct urb *usb_buffer_map(struct urb *urb);
1450 void usb_buffer_dmasync(struct urb *urb);
1451 void usb_buffer_unmap(struct urb *urb);
1452 #endif
1453
1454 struct scatterlist;
1455 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1456 struct scatterlist *sg, int nents);
1457 #if 0
1458 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1459 struct scatterlist *sg, int n_hw_ents);
1460 #endif
1461 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1462 struct scatterlist *sg, int n_hw_ents);
1463
1464 /*-------------------------------------------------------------------*
1465 * SYNCHRONOUS CALL SUPPORT *
1466 *-------------------------------------------------------------------*/
1467
1468 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1469 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1470 void *data, __u16 size, int timeout);
1471 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1472 void *data, int len, int *actual_length, int timeout);
1473 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1474 void *data, int len, int *actual_length,
1475 int timeout);
1476
1477 /* wrappers around usb_control_msg() for the most common standard requests */
1478 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1479 unsigned char descindex, void *buf, int size);
1480 extern int usb_get_status(struct usb_device *dev,
1481 int type, int target, void *data);
1482 extern int usb_string(struct usb_device *dev, int index,
1483 char *buf, size_t size);
1484
1485 /* wrappers that also update important state inside usbcore */
1486 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1487 extern int usb_reset_configuration(struct usb_device *dev);
1488 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1489
1490 /* this request isn't really synchronous, but it belongs with the others */
1491 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1492
1493 /*
1494 * timeouts, in milliseconds, used for sending/receiving control messages
1495 * they typically complete within a few frames (msec) after they're issued
1496 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1497 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1498 */
1499 #define USB_CTRL_GET_TIMEOUT 5000
1500 #define USB_CTRL_SET_TIMEOUT 5000
1501
1502
1503 /**
1504 * struct usb_sg_request - support for scatter/gather I/O
1505 * @status: zero indicates success, else negative errno
1506 * @bytes: counts bytes transferred.
1507 *
1508 * These requests are initialized using usb_sg_init(), and then are used
1509 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1510 * members of the request object aren't for driver access.
1511 *
1512 * The status and bytecount values are valid only after usb_sg_wait()
1513 * returns. If the status is zero, then the bytecount matches the total
1514 * from the request.
1515 *
1516 * After an error completion, drivers may need to clear a halt condition
1517 * on the endpoint.
1518 */
1519 struct usb_sg_request {
1520 int status;
1521 size_t bytes;
1522
1523 /*
1524 * members below are private: to usbcore,
1525 * and are not provided for driver access!
1526 */
1527 spinlock_t lock;
1528
1529 struct usb_device *dev;
1530 int pipe;
1531 struct scatterlist *sg;
1532 int nents;
1533
1534 int entries;
1535 struct urb **urbs;
1536
1537 int count;
1538 struct completion complete;
1539 };
1540
1541 int usb_sg_init(
1542 struct usb_sg_request *io,
1543 struct usb_device *dev,
1544 unsigned pipe,
1545 unsigned period,
1546 struct scatterlist *sg,
1547 int nents,
1548 size_t length,
1549 gfp_t mem_flags
1550 );
1551 void usb_sg_cancel(struct usb_sg_request *io);
1552 void usb_sg_wait(struct usb_sg_request *io);
1553
1554
1555 /* ----------------------------------------------------------------------- */
1556
1557 /*
1558 * For various legacy reasons, Linux has a small cookie that's paired with
1559 * a struct usb_device to identify an endpoint queue. Queue characteristics
1560 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1561 * an unsigned int encoded as:
1562 *
1563 * - direction: bit 7 (0 = Host-to-Device [Out],
1564 * 1 = Device-to-Host [In] ...
1565 * like endpoint bEndpointAddress)
1566 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1567 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1568 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1569 * 10 = control, 11 = bulk)
1570 *
1571 * Given the device address and endpoint descriptor, pipes are redundant.
1572 */
1573
1574 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1575 /* (yet ... they're the values used by usbfs) */
1576 #define PIPE_ISOCHRONOUS 0
1577 #define PIPE_INTERRUPT 1
1578 #define PIPE_CONTROL 2
1579 #define PIPE_BULK 3
1580
1581 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1582 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1583
1584 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1585 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1586
1587 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1588 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1589 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1590 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1591 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1592
1593 /* The D0/D1 toggle bits ... USE WITH CAUTION (they're almost hcd-internal) */
1594 #define usb_gettoggle(dev, ep, out) (((dev)->toggle[out] >> (ep)) & 1)
1595 #define usb_dotoggle(dev, ep, out) ((dev)->toggle[out] ^= (1 << (ep)))
1596 #define usb_settoggle(dev, ep, out, bit) \
1597 ((dev)->toggle[out] = ((dev)->toggle[out] & ~(1 << (ep))) | \
1598 ((bit) << (ep)))
1599
1600
1601 static inline unsigned int __create_pipe(struct usb_device *dev,
1602 unsigned int endpoint)
1603 {
1604 return (dev->devnum << 8) | (endpoint << 15);
1605 }
1606
1607 /* Create various pipes... */
1608 #define usb_sndctrlpipe(dev,endpoint) \
1609 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1610 #define usb_rcvctrlpipe(dev,endpoint) \
1611 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1612 #define usb_sndisocpipe(dev,endpoint) \
1613 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1614 #define usb_rcvisocpipe(dev,endpoint) \
1615 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1616 #define usb_sndbulkpipe(dev,endpoint) \
1617 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1618 #define usb_rcvbulkpipe(dev,endpoint) \
1619 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1620 #define usb_sndintpipe(dev,endpoint) \
1621 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1622 #define usb_rcvintpipe(dev,endpoint) \
1623 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1624
1625 /*-------------------------------------------------------------------------*/
1626
1627 static inline __u16
1628 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1629 {
1630 struct usb_host_endpoint *ep;
1631 unsigned epnum = usb_pipeendpoint(pipe);
1632
1633 if (is_out) {
1634 WARN_ON(usb_pipein(pipe));
1635 ep = udev->ep_out[epnum];
1636 } else {
1637 WARN_ON(usb_pipeout(pipe));
1638 ep = udev->ep_in[epnum];
1639 }
1640 if (!ep)
1641 return 0;
1642
1643 /* NOTE: only 0x07ff bits are for packet size... */
1644 return le16_to_cpu(ep->desc.wMaxPacketSize);
1645 }
1646
1647 /* ----------------------------------------------------------------------- */
1648
1649 /* Events from the usb core */
1650 #define USB_DEVICE_ADD 0x0001
1651 #define USB_DEVICE_REMOVE 0x0002
1652 #define USB_BUS_ADD 0x0003
1653 #define USB_BUS_REMOVE 0x0004
1654 extern void usb_register_notify(struct notifier_block *nb);
1655 extern void usb_unregister_notify(struct notifier_block *nb);
1656
1657 #ifdef DEBUG
1658 #define dbg(format, arg...) printk(KERN_DEBUG "%s: " format "\n" , \
1659 __FILE__ , ## arg)
1660 #else
1661 #define dbg(format, arg...) do {} while (0)
1662 #endif
1663
1664 #define err(format, arg...) printk(KERN_ERR "%s: " format "\n" , \
1665 __FILE__ , ## arg)
1666 #define info(format, arg...) printk(KERN_INFO "%s: " format "\n" , \
1667 __FILE__ , ## arg)
1668 #define warn(format, arg...) printk(KERN_WARNING "%s: " format "\n" , \
1669 __FILE__ , ## arg)
1670
1671
1672 #endif /* __KERNEL__ */
1673
1674 #endif